diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/mtd/chips/cfi_cmdset_0001.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/mtd/chips/cfi_cmdset_0001.c')
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0001.c | 2160 |
1 files changed, 2160 insertions, 0 deletions
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c new file mode 100644 index 000000000000..c268bcd71720 --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0001.c | |||
@@ -0,0 +1,2160 @@ | |||
1 | /* | ||
2 | * Common Flash Interface support: | ||
3 | * Intel Extended Vendor Command Set (ID 0x0001) | ||
4 | * | ||
5 | * (C) 2000 Red Hat. GPL'd | ||
6 | * | ||
7 | * $Id: cfi_cmdset_0001.c,v 1.164 2004/11/16 18:29:00 dwmw2 Exp $ | ||
8 | * | ||
9 | * | ||
10 | * 10/10/2000 Nicolas Pitre <nico@cam.org> | ||
11 | * - completely revamped method functions so they are aware and | ||
12 | * independent of the flash geometry (buswidth, interleave, etc.) | ||
13 | * - scalability vs code size is completely set at compile-time | ||
14 | * (see include/linux/mtd/cfi.h for selection) | ||
15 | * - optimized write buffer method | ||
16 | * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> | ||
17 | * - reworked lock/unlock/erase support for var size flash | ||
18 | */ | ||
19 | |||
20 | #include <linux/module.h> | ||
21 | #include <linux/types.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/sched.h> | ||
24 | #include <linux/init.h> | ||
25 | #include <asm/io.h> | ||
26 | #include <asm/byteorder.h> | ||
27 | |||
28 | #include <linux/errno.h> | ||
29 | #include <linux/slab.h> | ||
30 | #include <linux/delay.h> | ||
31 | #include <linux/interrupt.h> | ||
32 | #include <linux/mtd/xip.h> | ||
33 | #include <linux/mtd/map.h> | ||
34 | #include <linux/mtd/mtd.h> | ||
35 | #include <linux/mtd/compatmac.h> | ||
36 | #include <linux/mtd/cfi.h> | ||
37 | |||
38 | /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ | ||
39 | /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ | ||
40 | |||
41 | // debugging, turns off buffer write mode if set to 1 | ||
42 | #define FORCE_WORD_WRITE 0 | ||
43 | |||
44 | #define MANUFACTURER_INTEL 0x0089 | ||
45 | #define I82802AB 0x00ad | ||
46 | #define I82802AC 0x00ac | ||
47 | #define MANUFACTURER_ST 0x0020 | ||
48 | #define M50LPW080 0x002F | ||
49 | |||
50 | static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
51 | //static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
52 | //static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | ||
53 | static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
54 | static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | ||
55 | static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); | ||
56 | static void cfi_intelext_sync (struct mtd_info *); | ||
57 | static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len); | ||
58 | static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len); | ||
59 | static int cfi_intelext_suspend (struct mtd_info *); | ||
60 | static void cfi_intelext_resume (struct mtd_info *); | ||
61 | |||
62 | static void cfi_intelext_destroy(struct mtd_info *); | ||
63 | |||
64 | struct mtd_info *cfi_cmdset_0001(struct map_info *, int); | ||
65 | |||
66 | static struct mtd_info *cfi_intelext_setup (struct mtd_info *); | ||
67 | static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); | ||
68 | |||
69 | static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, | ||
70 | size_t *retlen, u_char **mtdbuf); | ||
71 | static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, | ||
72 | size_t len); | ||
73 | |||
74 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); | ||
75 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); | ||
76 | #include "fwh_lock.h" | ||
77 | |||
78 | |||
79 | |||
80 | /* | ||
81 | * *********** SETUP AND PROBE BITS *********** | ||
82 | */ | ||
83 | |||
84 | static struct mtd_chip_driver cfi_intelext_chipdrv = { | ||
85 | .probe = NULL, /* Not usable directly */ | ||
86 | .destroy = cfi_intelext_destroy, | ||
87 | .name = "cfi_cmdset_0001", | ||
88 | .module = THIS_MODULE | ||
89 | }; | ||
90 | |||
91 | /* #define DEBUG_LOCK_BITS */ | ||
92 | /* #define DEBUG_CFI_FEATURES */ | ||
93 | |||
94 | #ifdef DEBUG_CFI_FEATURES | ||
95 | static void cfi_tell_features(struct cfi_pri_intelext *extp) | ||
96 | { | ||
97 | int i; | ||
98 | printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); | ||
99 | printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); | ||
100 | printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); | ||
101 | printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); | ||
102 | printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); | ||
103 | printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); | ||
104 | printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); | ||
105 | printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); | ||
106 | printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); | ||
107 | printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); | ||
108 | printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); | ||
109 | for (i=10; i<32; i++) { | ||
110 | if (extp->FeatureSupport & (1<<i)) | ||
111 | printk(" - Unknown Bit %X: supported\n", i); | ||
112 | } | ||
113 | |||
114 | printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); | ||
115 | printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); | ||
116 | for (i=1; i<8; i++) { | ||
117 | if (extp->SuspendCmdSupport & (1<<i)) | ||
118 | printk(" - Unknown Bit %X: supported\n", i); | ||
119 | } | ||
120 | |||
121 | printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); | ||
122 | printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); | ||
123 | printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); | ||
124 | for (i=2; i<16; i++) { | ||
125 | if (extp->BlkStatusRegMask & (1<<i)) | ||
126 | printk(" - Unknown Bit %X Active: yes\n",i); | ||
127 | } | ||
128 | |||
129 | printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", | ||
130 | extp->VccOptimal >> 4, extp->VccOptimal & 0xf); | ||
131 | if (extp->VppOptimal) | ||
132 | printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", | ||
133 | extp->VppOptimal >> 4, extp->VppOptimal & 0xf); | ||
134 | } | ||
135 | #endif | ||
136 | |||
137 | #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE | ||
138 | /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ | ||
139 | static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) | ||
140 | { | ||
141 | struct map_info *map = mtd->priv; | ||
142 | struct cfi_private *cfi = map->fldrv_priv; | ||
143 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | ||
144 | |||
145 | printk(KERN_WARNING "cfi_cmdset_0001: Suspend " | ||
146 | "erase on write disabled.\n"); | ||
147 | extp->SuspendCmdSupport &= ~1; | ||
148 | } | ||
149 | #endif | ||
150 | |||
151 | #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND | ||
152 | static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) | ||
153 | { | ||
154 | struct map_info *map = mtd->priv; | ||
155 | struct cfi_private *cfi = map->fldrv_priv; | ||
156 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | ||
157 | |||
158 | if (cfip && (cfip->FeatureSupport&4)) { | ||
159 | cfip->FeatureSupport &= ~4; | ||
160 | printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); | ||
161 | } | ||
162 | } | ||
163 | #endif | ||
164 | |||
165 | static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) | ||
166 | { | ||
167 | struct map_info *map = mtd->priv; | ||
168 | struct cfi_private *cfi = map->fldrv_priv; | ||
169 | |||
170 | cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ | ||
171 | cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ | ||
172 | } | ||
173 | |||
174 | static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) | ||
175 | { | ||
176 | struct map_info *map = mtd->priv; | ||
177 | struct cfi_private *cfi = map->fldrv_priv; | ||
178 | |||
179 | /* Note this is done after the region info is endian swapped */ | ||
180 | cfi->cfiq->EraseRegionInfo[1] = | ||
181 | (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; | ||
182 | }; | ||
183 | |||
184 | static void fixup_use_point(struct mtd_info *mtd, void *param) | ||
185 | { | ||
186 | struct map_info *map = mtd->priv; | ||
187 | if (!mtd->point && map_is_linear(map)) { | ||
188 | mtd->point = cfi_intelext_point; | ||
189 | mtd->unpoint = cfi_intelext_unpoint; | ||
190 | } | ||
191 | } | ||
192 | |||
193 | static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) | ||
194 | { | ||
195 | struct map_info *map = mtd->priv; | ||
196 | struct cfi_private *cfi = map->fldrv_priv; | ||
197 | if (cfi->cfiq->BufWriteTimeoutTyp) { | ||
198 | printk(KERN_INFO "Using buffer write method\n" ); | ||
199 | mtd->write = cfi_intelext_write_buffers; | ||
200 | } | ||
201 | } | ||
202 | |||
203 | static struct cfi_fixup cfi_fixup_table[] = { | ||
204 | #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE | ||
205 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, | ||
206 | #endif | ||
207 | #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND | ||
208 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL }, | ||
209 | #endif | ||
210 | #if !FORCE_WORD_WRITE | ||
211 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL }, | ||
212 | #endif | ||
213 | { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL }, | ||
214 | { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL }, | ||
215 | { 0, 0, NULL, NULL } | ||
216 | }; | ||
217 | |||
218 | static struct cfi_fixup jedec_fixup_table[] = { | ||
219 | { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, }, | ||
220 | { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, }, | ||
221 | { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, }, | ||
222 | { 0, 0, NULL, NULL } | ||
223 | }; | ||
224 | static struct cfi_fixup fixup_table[] = { | ||
225 | /* The CFI vendor ids and the JEDEC vendor IDs appear | ||
226 | * to be common. It is like the devices id's are as | ||
227 | * well. This table is to pick all cases where | ||
228 | * we know that is the case. | ||
229 | */ | ||
230 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL }, | ||
231 | { 0, 0, NULL, NULL } | ||
232 | }; | ||
233 | |||
234 | static inline struct cfi_pri_intelext * | ||
235 | read_pri_intelext(struct map_info *map, __u16 adr) | ||
236 | { | ||
237 | struct cfi_pri_intelext *extp; | ||
238 | unsigned int extp_size = sizeof(*extp); | ||
239 | |||
240 | again: | ||
241 | extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); | ||
242 | if (!extp) | ||
243 | return NULL; | ||
244 | |||
245 | /* Do some byteswapping if necessary */ | ||
246 | extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); | ||
247 | extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); | ||
248 | extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); | ||
249 | |||
250 | if (extp->MajorVersion == '1' && extp->MinorVersion == '3') { | ||
251 | unsigned int extra_size = 0; | ||
252 | int nb_parts, i; | ||
253 | |||
254 | /* Protection Register info */ | ||
255 | extra_size += (extp->NumProtectionFields - 1) * (4 + 6); | ||
256 | |||
257 | /* Burst Read info */ | ||
258 | extra_size += 6; | ||
259 | |||
260 | /* Number of hardware-partitions */ | ||
261 | extra_size += 1; | ||
262 | if (extp_size < sizeof(*extp) + extra_size) | ||
263 | goto need_more; | ||
264 | nb_parts = extp->extra[extra_size - 1]; | ||
265 | |||
266 | for (i = 0; i < nb_parts; i++) { | ||
267 | struct cfi_intelext_regioninfo *rinfo; | ||
268 | rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; | ||
269 | extra_size += sizeof(*rinfo); | ||
270 | if (extp_size < sizeof(*extp) + extra_size) | ||
271 | goto need_more; | ||
272 | rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); | ||
273 | extra_size += (rinfo->NumBlockTypes - 1) | ||
274 | * sizeof(struct cfi_intelext_blockinfo); | ||
275 | } | ||
276 | |||
277 | if (extp_size < sizeof(*extp) + extra_size) { | ||
278 | need_more: | ||
279 | extp_size = sizeof(*extp) + extra_size; | ||
280 | kfree(extp); | ||
281 | if (extp_size > 4096) { | ||
282 | printk(KERN_ERR | ||
283 | "%s: cfi_pri_intelext is too fat\n", | ||
284 | __FUNCTION__); | ||
285 | return NULL; | ||
286 | } | ||
287 | goto again; | ||
288 | } | ||
289 | } | ||
290 | |||
291 | return extp; | ||
292 | } | ||
293 | |||
294 | /* This routine is made available to other mtd code via | ||
295 | * inter_module_register. It must only be accessed through | ||
296 | * inter_module_get which will bump the use count of this module. The | ||
297 | * addresses passed back in cfi are valid as long as the use count of | ||
298 | * this module is non-zero, i.e. between inter_module_get and | ||
299 | * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. | ||
300 | */ | ||
301 | struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) | ||
302 | { | ||
303 | struct cfi_private *cfi = map->fldrv_priv; | ||
304 | struct mtd_info *mtd; | ||
305 | int i; | ||
306 | |||
307 | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); | ||
308 | if (!mtd) { | ||
309 | printk(KERN_ERR "Failed to allocate memory for MTD device\n"); | ||
310 | return NULL; | ||
311 | } | ||
312 | memset(mtd, 0, sizeof(*mtd)); | ||
313 | mtd->priv = map; | ||
314 | mtd->type = MTD_NORFLASH; | ||
315 | |||
316 | /* Fill in the default mtd operations */ | ||
317 | mtd->erase = cfi_intelext_erase_varsize; | ||
318 | mtd->read = cfi_intelext_read; | ||
319 | mtd->write = cfi_intelext_write_words; | ||
320 | mtd->sync = cfi_intelext_sync; | ||
321 | mtd->lock = cfi_intelext_lock; | ||
322 | mtd->unlock = cfi_intelext_unlock; | ||
323 | mtd->suspend = cfi_intelext_suspend; | ||
324 | mtd->resume = cfi_intelext_resume; | ||
325 | mtd->flags = MTD_CAP_NORFLASH; | ||
326 | mtd->name = map->name; | ||
327 | |||
328 | if (cfi->cfi_mode == CFI_MODE_CFI) { | ||
329 | /* | ||
330 | * It's a real CFI chip, not one for which the probe | ||
331 | * routine faked a CFI structure. So we read the feature | ||
332 | * table from it. | ||
333 | */ | ||
334 | __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; | ||
335 | struct cfi_pri_intelext *extp; | ||
336 | |||
337 | extp = read_pri_intelext(map, adr); | ||
338 | if (!extp) { | ||
339 | kfree(mtd); | ||
340 | return NULL; | ||
341 | } | ||
342 | |||
343 | /* Install our own private info structure */ | ||
344 | cfi->cmdset_priv = extp; | ||
345 | |||
346 | cfi_fixup(mtd, cfi_fixup_table); | ||
347 | |||
348 | #ifdef DEBUG_CFI_FEATURES | ||
349 | /* Tell the user about it in lots of lovely detail */ | ||
350 | cfi_tell_features(extp); | ||
351 | #endif | ||
352 | |||
353 | if(extp->SuspendCmdSupport & 1) { | ||
354 | printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); | ||
355 | } | ||
356 | } | ||
357 | else if (cfi->cfi_mode == CFI_MODE_JEDEC) { | ||
358 | /* Apply jedec specific fixups */ | ||
359 | cfi_fixup(mtd, jedec_fixup_table); | ||
360 | } | ||
361 | /* Apply generic fixups */ | ||
362 | cfi_fixup(mtd, fixup_table); | ||
363 | |||
364 | for (i=0; i< cfi->numchips; i++) { | ||
365 | cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; | ||
366 | cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; | ||
367 | cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; | ||
368 | cfi->chips[i].ref_point_counter = 0; | ||
369 | } | ||
370 | |||
371 | map->fldrv = &cfi_intelext_chipdrv; | ||
372 | |||
373 | return cfi_intelext_setup(mtd); | ||
374 | } | ||
375 | |||
376 | static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) | ||
377 | { | ||
378 | struct map_info *map = mtd->priv; | ||
379 | struct cfi_private *cfi = map->fldrv_priv; | ||
380 | unsigned long offset = 0; | ||
381 | int i,j; | ||
382 | unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; | ||
383 | |||
384 | //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); | ||
385 | |||
386 | mtd->size = devsize * cfi->numchips; | ||
387 | |||
388 | mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; | ||
389 | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) | ||
390 | * mtd->numeraseregions, GFP_KERNEL); | ||
391 | if (!mtd->eraseregions) { | ||
392 | printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); | ||
393 | goto setup_err; | ||
394 | } | ||
395 | |||
396 | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { | ||
397 | unsigned long ernum, ersize; | ||
398 | ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; | ||
399 | ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; | ||
400 | |||
401 | if (mtd->erasesize < ersize) { | ||
402 | mtd->erasesize = ersize; | ||
403 | } | ||
404 | for (j=0; j<cfi->numchips; j++) { | ||
405 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; | ||
406 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; | ||
407 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; | ||
408 | } | ||
409 | offset += (ersize * ernum); | ||
410 | } | ||
411 | |||
412 | if (offset != devsize) { | ||
413 | /* Argh */ | ||
414 | printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); | ||
415 | goto setup_err; | ||
416 | } | ||
417 | |||
418 | for (i=0; i<mtd->numeraseregions;i++){ | ||
419 | printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n", | ||
420 | i,mtd->eraseregions[i].offset, | ||
421 | mtd->eraseregions[i].erasesize, | ||
422 | mtd->eraseregions[i].numblocks); | ||
423 | } | ||
424 | |||
425 | #if 0 | ||
426 | mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; | ||
427 | mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; | ||
428 | #endif | ||
429 | |||
430 | /* This function has the potential to distort the reality | ||
431 | a bit and therefore should be called last. */ | ||
432 | if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) | ||
433 | goto setup_err; | ||
434 | |||
435 | __module_get(THIS_MODULE); | ||
436 | return mtd; | ||
437 | |||
438 | setup_err: | ||
439 | if(mtd) { | ||
440 | if(mtd->eraseregions) | ||
441 | kfree(mtd->eraseregions); | ||
442 | kfree(mtd); | ||
443 | } | ||
444 | kfree(cfi->cmdset_priv); | ||
445 | return NULL; | ||
446 | } | ||
447 | |||
448 | static int cfi_intelext_partition_fixup(struct mtd_info *mtd, | ||
449 | struct cfi_private **pcfi) | ||
450 | { | ||
451 | struct map_info *map = mtd->priv; | ||
452 | struct cfi_private *cfi = *pcfi; | ||
453 | struct cfi_pri_intelext *extp = cfi->cmdset_priv; | ||
454 | |||
455 | /* | ||
456 | * Probing of multi-partition flash ships. | ||
457 | * | ||
458 | * To support multiple partitions when available, we simply arrange | ||
459 | * for each of them to have their own flchip structure even if they | ||
460 | * are on the same physical chip. This means completely recreating | ||
461 | * a new cfi_private structure right here which is a blatent code | ||
462 | * layering violation, but this is still the least intrusive | ||
463 | * arrangement at this point. This can be rearranged in the future | ||
464 | * if someone feels motivated enough. --nico | ||
465 | */ | ||
466 | if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3' | ||
467 | && extp->FeatureSupport & (1 << 9)) { | ||
468 | struct cfi_private *newcfi; | ||
469 | struct flchip *chip; | ||
470 | struct flchip_shared *shared; | ||
471 | int offs, numregions, numparts, partshift, numvirtchips, i, j; | ||
472 | |||
473 | /* Protection Register info */ | ||
474 | offs = (extp->NumProtectionFields - 1) * (4 + 6); | ||
475 | |||
476 | /* Burst Read info */ | ||
477 | offs += 6; | ||
478 | |||
479 | /* Number of partition regions */ | ||
480 | numregions = extp->extra[offs]; | ||
481 | offs += 1; | ||
482 | |||
483 | /* Number of hardware partitions */ | ||
484 | numparts = 0; | ||
485 | for (i = 0; i < numregions; i++) { | ||
486 | struct cfi_intelext_regioninfo *rinfo; | ||
487 | rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; | ||
488 | numparts += rinfo->NumIdentPartitions; | ||
489 | offs += sizeof(*rinfo) | ||
490 | + (rinfo->NumBlockTypes - 1) * | ||
491 | sizeof(struct cfi_intelext_blockinfo); | ||
492 | } | ||
493 | |||
494 | /* | ||
495 | * All functions below currently rely on all chips having | ||
496 | * the same geometry so we'll just assume that all hardware | ||
497 | * partitions are of the same size too. | ||
498 | */ | ||
499 | partshift = cfi->chipshift - __ffs(numparts); | ||
500 | |||
501 | if ((1 << partshift) < mtd->erasesize) { | ||
502 | printk( KERN_ERR | ||
503 | "%s: bad number of hw partitions (%d)\n", | ||
504 | __FUNCTION__, numparts); | ||
505 | return -EINVAL; | ||
506 | } | ||
507 | |||
508 | numvirtchips = cfi->numchips * numparts; | ||
509 | newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); | ||
510 | if (!newcfi) | ||
511 | return -ENOMEM; | ||
512 | shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); | ||
513 | if (!shared) { | ||
514 | kfree(newcfi); | ||
515 | return -ENOMEM; | ||
516 | } | ||
517 | memcpy(newcfi, cfi, sizeof(struct cfi_private)); | ||
518 | newcfi->numchips = numvirtchips; | ||
519 | newcfi->chipshift = partshift; | ||
520 | |||
521 | chip = &newcfi->chips[0]; | ||
522 | for (i = 0; i < cfi->numchips; i++) { | ||
523 | shared[i].writing = shared[i].erasing = NULL; | ||
524 | spin_lock_init(&shared[i].lock); | ||
525 | for (j = 0; j < numparts; j++) { | ||
526 | *chip = cfi->chips[i]; | ||
527 | chip->start += j << partshift; | ||
528 | chip->priv = &shared[i]; | ||
529 | /* those should be reset too since | ||
530 | they create memory references. */ | ||
531 | init_waitqueue_head(&chip->wq); | ||
532 | spin_lock_init(&chip->_spinlock); | ||
533 | chip->mutex = &chip->_spinlock; | ||
534 | chip++; | ||
535 | } | ||
536 | } | ||
537 | |||
538 | printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " | ||
539 | "--> %d partitions of %d KiB\n", | ||
540 | map->name, cfi->numchips, cfi->interleave, | ||
541 | newcfi->numchips, 1<<(newcfi->chipshift-10)); | ||
542 | |||
543 | map->fldrv_priv = newcfi; | ||
544 | *pcfi = newcfi; | ||
545 | kfree(cfi); | ||
546 | } | ||
547 | |||
548 | return 0; | ||
549 | } | ||
550 | |||
551 | /* | ||
552 | * *********** CHIP ACCESS FUNCTIONS *********** | ||
553 | */ | ||
554 | |||
555 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) | ||
556 | { | ||
557 | DECLARE_WAITQUEUE(wait, current); | ||
558 | struct cfi_private *cfi = map->fldrv_priv; | ||
559 | map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); | ||
560 | unsigned long timeo; | ||
561 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | ||
562 | |||
563 | resettime: | ||
564 | timeo = jiffies + HZ; | ||
565 | retry: | ||
566 | if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)) { | ||
567 | /* | ||
568 | * OK. We have possibility for contension on the write/erase | ||
569 | * operations which are global to the real chip and not per | ||
570 | * partition. So let's fight it over in the partition which | ||
571 | * currently has authority on the operation. | ||
572 | * | ||
573 | * The rules are as follows: | ||
574 | * | ||
575 | * - any write operation must own shared->writing. | ||
576 | * | ||
577 | * - any erase operation must own _both_ shared->writing and | ||
578 | * shared->erasing. | ||
579 | * | ||
580 | * - contension arbitration is handled in the owner's context. | ||
581 | * | ||
582 | * The 'shared' struct can be read when its lock is taken. | ||
583 | * However any writes to it can only be made when the current | ||
584 | * owner's lock is also held. | ||
585 | */ | ||
586 | struct flchip_shared *shared = chip->priv; | ||
587 | struct flchip *contender; | ||
588 | spin_lock(&shared->lock); | ||
589 | contender = shared->writing; | ||
590 | if (contender && contender != chip) { | ||
591 | /* | ||
592 | * The engine to perform desired operation on this | ||
593 | * partition is already in use by someone else. | ||
594 | * Let's fight over it in the context of the chip | ||
595 | * currently using it. If it is possible to suspend, | ||
596 | * that other partition will do just that, otherwise | ||
597 | * it'll happily send us to sleep. In any case, when | ||
598 | * get_chip returns success we're clear to go ahead. | ||
599 | */ | ||
600 | int ret = spin_trylock(contender->mutex); | ||
601 | spin_unlock(&shared->lock); | ||
602 | if (!ret) | ||
603 | goto retry; | ||
604 | spin_unlock(chip->mutex); | ||
605 | ret = get_chip(map, contender, contender->start, mode); | ||
606 | spin_lock(chip->mutex); | ||
607 | if (ret) { | ||
608 | spin_unlock(contender->mutex); | ||
609 | return ret; | ||
610 | } | ||
611 | timeo = jiffies + HZ; | ||
612 | spin_lock(&shared->lock); | ||
613 | } | ||
614 | |||
615 | /* We now own it */ | ||
616 | shared->writing = chip; | ||
617 | if (mode == FL_ERASING) | ||
618 | shared->erasing = chip; | ||
619 | if (contender && contender != chip) | ||
620 | spin_unlock(contender->mutex); | ||
621 | spin_unlock(&shared->lock); | ||
622 | } | ||
623 | |||
624 | switch (chip->state) { | ||
625 | |||
626 | case FL_STATUS: | ||
627 | for (;;) { | ||
628 | status = map_read(map, adr); | ||
629 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
630 | break; | ||
631 | |||
632 | /* At this point we're fine with write operations | ||
633 | in other partitions as they don't conflict. */ | ||
634 | if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) | ||
635 | break; | ||
636 | |||
637 | if (time_after(jiffies, timeo)) { | ||
638 | printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", | ||
639 | status.x[0]); | ||
640 | return -EIO; | ||
641 | } | ||
642 | spin_unlock(chip->mutex); | ||
643 | cfi_udelay(1); | ||
644 | spin_lock(chip->mutex); | ||
645 | /* Someone else might have been playing with it. */ | ||
646 | goto retry; | ||
647 | } | ||
648 | |||
649 | case FL_READY: | ||
650 | case FL_CFI_QUERY: | ||
651 | case FL_JEDEC_QUERY: | ||
652 | return 0; | ||
653 | |||
654 | case FL_ERASING: | ||
655 | if (!cfip || | ||
656 | !(cfip->FeatureSupport & 2) || | ||
657 | !(mode == FL_READY || mode == FL_POINT || | ||
658 | (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) | ||
659 | goto sleep; | ||
660 | |||
661 | |||
662 | /* Erase suspend */ | ||
663 | map_write(map, CMD(0xB0), adr); | ||
664 | |||
665 | /* If the flash has finished erasing, then 'erase suspend' | ||
666 | * appears to make some (28F320) flash devices switch to | ||
667 | * 'read' mode. Make sure that we switch to 'read status' | ||
668 | * mode so we get the right data. --rmk | ||
669 | */ | ||
670 | map_write(map, CMD(0x70), adr); | ||
671 | chip->oldstate = FL_ERASING; | ||
672 | chip->state = FL_ERASE_SUSPENDING; | ||
673 | chip->erase_suspended = 1; | ||
674 | for (;;) { | ||
675 | status = map_read(map, adr); | ||
676 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
677 | break; | ||
678 | |||
679 | if (time_after(jiffies, timeo)) { | ||
680 | /* Urgh. Resume and pretend we weren't here. */ | ||
681 | map_write(map, CMD(0xd0), adr); | ||
682 | /* Make sure we're in 'read status' mode if it had finished */ | ||
683 | map_write(map, CMD(0x70), adr); | ||
684 | chip->state = FL_ERASING; | ||
685 | chip->oldstate = FL_READY; | ||
686 | printk(KERN_ERR "Chip not ready after erase " | ||
687 | "suspended: status = 0x%lx\n", status.x[0]); | ||
688 | return -EIO; | ||
689 | } | ||
690 | |||
691 | spin_unlock(chip->mutex); | ||
692 | cfi_udelay(1); | ||
693 | spin_lock(chip->mutex); | ||
694 | /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. | ||
695 | So we can just loop here. */ | ||
696 | } | ||
697 | chip->state = FL_STATUS; | ||
698 | return 0; | ||
699 | |||
700 | case FL_XIP_WHILE_ERASING: | ||
701 | if (mode != FL_READY && mode != FL_POINT && | ||
702 | (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) | ||
703 | goto sleep; | ||
704 | chip->oldstate = chip->state; | ||
705 | chip->state = FL_READY; | ||
706 | return 0; | ||
707 | |||
708 | case FL_POINT: | ||
709 | /* Only if there's no operation suspended... */ | ||
710 | if (mode == FL_READY && chip->oldstate == FL_READY) | ||
711 | return 0; | ||
712 | |||
713 | default: | ||
714 | sleep: | ||
715 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
716 | add_wait_queue(&chip->wq, &wait); | ||
717 | spin_unlock(chip->mutex); | ||
718 | schedule(); | ||
719 | remove_wait_queue(&chip->wq, &wait); | ||
720 | spin_lock(chip->mutex); | ||
721 | goto resettime; | ||
722 | } | ||
723 | } | ||
724 | |||
725 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) | ||
726 | { | ||
727 | struct cfi_private *cfi = map->fldrv_priv; | ||
728 | |||
729 | if (chip->priv) { | ||
730 | struct flchip_shared *shared = chip->priv; | ||
731 | spin_lock(&shared->lock); | ||
732 | if (shared->writing == chip && chip->oldstate == FL_READY) { | ||
733 | /* We own the ability to write, but we're done */ | ||
734 | shared->writing = shared->erasing; | ||
735 | if (shared->writing && shared->writing != chip) { | ||
736 | /* give back ownership to who we loaned it from */ | ||
737 | struct flchip *loaner = shared->writing; | ||
738 | spin_lock(loaner->mutex); | ||
739 | spin_unlock(&shared->lock); | ||
740 | spin_unlock(chip->mutex); | ||
741 | put_chip(map, loaner, loaner->start); | ||
742 | spin_lock(chip->mutex); | ||
743 | spin_unlock(loaner->mutex); | ||
744 | wake_up(&chip->wq); | ||
745 | return; | ||
746 | } | ||
747 | shared->erasing = NULL; | ||
748 | shared->writing = NULL; | ||
749 | } else if (shared->erasing == chip && shared->writing != chip) { | ||
750 | /* | ||
751 | * We own the ability to erase without the ability | ||
752 | * to write, which means the erase was suspended | ||
753 | * and some other partition is currently writing. | ||
754 | * Don't let the switch below mess things up since | ||
755 | * we don't have ownership to resume anything. | ||
756 | */ | ||
757 | spin_unlock(&shared->lock); | ||
758 | wake_up(&chip->wq); | ||
759 | return; | ||
760 | } | ||
761 | spin_unlock(&shared->lock); | ||
762 | } | ||
763 | |||
764 | switch(chip->oldstate) { | ||
765 | case FL_ERASING: | ||
766 | chip->state = chip->oldstate; | ||
767 | /* What if one interleaved chip has finished and the | ||
768 | other hasn't? The old code would leave the finished | ||
769 | one in READY mode. That's bad, and caused -EROFS | ||
770 | errors to be returned from do_erase_oneblock because | ||
771 | that's the only bit it checked for at the time. | ||
772 | As the state machine appears to explicitly allow | ||
773 | sending the 0x70 (Read Status) command to an erasing | ||
774 | chip and expecting it to be ignored, that's what we | ||
775 | do. */ | ||
776 | map_write(map, CMD(0xd0), adr); | ||
777 | map_write(map, CMD(0x70), adr); | ||
778 | chip->oldstate = FL_READY; | ||
779 | chip->state = FL_ERASING; | ||
780 | break; | ||
781 | |||
782 | case FL_XIP_WHILE_ERASING: | ||
783 | chip->state = chip->oldstate; | ||
784 | chip->oldstate = FL_READY; | ||
785 | break; | ||
786 | |||
787 | case FL_READY: | ||
788 | case FL_STATUS: | ||
789 | case FL_JEDEC_QUERY: | ||
790 | /* We should really make set_vpp() count, rather than doing this */ | ||
791 | DISABLE_VPP(map); | ||
792 | break; | ||
793 | default: | ||
794 | printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate); | ||
795 | } | ||
796 | wake_up(&chip->wq); | ||
797 | } | ||
798 | |||
799 | #ifdef CONFIG_MTD_XIP | ||
800 | |||
801 | /* | ||
802 | * No interrupt what so ever can be serviced while the flash isn't in array | ||
803 | * mode. This is ensured by the xip_disable() and xip_enable() functions | ||
804 | * enclosing any code path where the flash is known not to be in array mode. | ||
805 | * And within a XIP disabled code path, only functions marked with __xipram | ||
806 | * may be called and nothing else (it's a good thing to inspect generated | ||
807 | * assembly to make sure inline functions were actually inlined and that gcc | ||
808 | * didn't emit calls to its own support functions). Also configuring MTD CFI | ||
809 | * support to a single buswidth and a single interleave is also recommended. | ||
810 | * Note that not only IRQs are disabled but the preemption count is also | ||
811 | * increased to prevent other locking primitives (namely spin_unlock) from | ||
812 | * decrementing the preempt count to zero and scheduling the CPU away while | ||
813 | * not in array mode. | ||
814 | */ | ||
815 | |||
816 | static void xip_disable(struct map_info *map, struct flchip *chip, | ||
817 | unsigned long adr) | ||
818 | { | ||
819 | /* TODO: chips with no XIP use should ignore and return */ | ||
820 | (void) map_read(map, adr); /* ensure mmu mapping is up to date */ | ||
821 | preempt_disable(); | ||
822 | local_irq_disable(); | ||
823 | } | ||
824 | |||
825 | static void __xipram xip_enable(struct map_info *map, struct flchip *chip, | ||
826 | unsigned long adr) | ||
827 | { | ||
828 | struct cfi_private *cfi = map->fldrv_priv; | ||
829 | if (chip->state != FL_POINT && chip->state != FL_READY) { | ||
830 | map_write(map, CMD(0xff), adr); | ||
831 | chip->state = FL_READY; | ||
832 | } | ||
833 | (void) map_read(map, adr); | ||
834 | asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */ | ||
835 | local_irq_enable(); | ||
836 | preempt_enable(); | ||
837 | } | ||
838 | |||
839 | /* | ||
840 | * When a delay is required for the flash operation to complete, the | ||
841 | * xip_udelay() function is polling for both the given timeout and pending | ||
842 | * (but still masked) hardware interrupts. Whenever there is an interrupt | ||
843 | * pending then the flash erase or write operation is suspended, array mode | ||
844 | * restored and interrupts unmasked. Task scheduling might also happen at that | ||
845 | * point. The CPU eventually returns from the interrupt or the call to | ||
846 | * schedule() and the suspended flash operation is resumed for the remaining | ||
847 | * of the delay period. | ||
848 | * | ||
849 | * Warning: this function _will_ fool interrupt latency tracing tools. | ||
850 | */ | ||
851 | |||
852 | static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, | ||
853 | unsigned long adr, int usec) | ||
854 | { | ||
855 | struct cfi_private *cfi = map->fldrv_priv; | ||
856 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; | ||
857 | map_word status, OK = CMD(0x80); | ||
858 | unsigned long suspended, start = xip_currtime(); | ||
859 | flstate_t oldstate, newstate; | ||
860 | |||
861 | do { | ||
862 | cpu_relax(); | ||
863 | if (xip_irqpending() && cfip && | ||
864 | ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || | ||
865 | (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && | ||
866 | (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { | ||
867 | /* | ||
868 | * Let's suspend the erase or write operation when | ||
869 | * supported. Note that we currently don't try to | ||
870 | * suspend interleaved chips if there is already | ||
871 | * another operation suspended (imagine what happens | ||
872 | * when one chip was already done with the current | ||
873 | * operation while another chip suspended it, then | ||
874 | * we resume the whole thing at once). Yes, it | ||
875 | * can happen! | ||
876 | */ | ||
877 | map_write(map, CMD(0xb0), adr); | ||
878 | map_write(map, CMD(0x70), adr); | ||
879 | usec -= xip_elapsed_since(start); | ||
880 | suspended = xip_currtime(); | ||
881 | do { | ||
882 | if (xip_elapsed_since(suspended) > 100000) { | ||
883 | /* | ||
884 | * The chip doesn't want to suspend | ||
885 | * after waiting for 100 msecs. | ||
886 | * This is a critical error but there | ||
887 | * is not much we can do here. | ||
888 | */ | ||
889 | return; | ||
890 | } | ||
891 | status = map_read(map, adr); | ||
892 | } while (!map_word_andequal(map, status, OK, OK)); | ||
893 | |||
894 | /* Suspend succeeded */ | ||
895 | oldstate = chip->state; | ||
896 | if (oldstate == FL_ERASING) { | ||
897 | if (!map_word_bitsset(map, status, CMD(0x40))) | ||
898 | break; | ||
899 | newstate = FL_XIP_WHILE_ERASING; | ||
900 | chip->erase_suspended = 1; | ||
901 | } else { | ||
902 | if (!map_word_bitsset(map, status, CMD(0x04))) | ||
903 | break; | ||
904 | newstate = FL_XIP_WHILE_WRITING; | ||
905 | chip->write_suspended = 1; | ||
906 | } | ||
907 | chip->state = newstate; | ||
908 | map_write(map, CMD(0xff), adr); | ||
909 | (void) map_read(map, adr); | ||
910 | asm volatile (".rep 8; nop; .endr"); | ||
911 | local_irq_enable(); | ||
912 | preempt_enable(); | ||
913 | asm volatile (".rep 8; nop; .endr"); | ||
914 | cond_resched(); | ||
915 | |||
916 | /* | ||
917 | * We're back. However someone else might have | ||
918 | * decided to go write to the chip if we are in | ||
919 | * a suspended erase state. If so let's wait | ||
920 | * until it's done. | ||
921 | */ | ||
922 | preempt_disable(); | ||
923 | while (chip->state != newstate) { | ||
924 | DECLARE_WAITQUEUE(wait, current); | ||
925 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
926 | add_wait_queue(&chip->wq, &wait); | ||
927 | preempt_enable(); | ||
928 | schedule(); | ||
929 | remove_wait_queue(&chip->wq, &wait); | ||
930 | preempt_disable(); | ||
931 | } | ||
932 | /* Disallow XIP again */ | ||
933 | local_irq_disable(); | ||
934 | |||
935 | /* Resume the write or erase operation */ | ||
936 | map_write(map, CMD(0xd0), adr); | ||
937 | map_write(map, CMD(0x70), adr); | ||
938 | chip->state = oldstate; | ||
939 | start = xip_currtime(); | ||
940 | } else if (usec >= 1000000/HZ) { | ||
941 | /* | ||
942 | * Try to save on CPU power when waiting delay | ||
943 | * is at least a system timer tick period. | ||
944 | * No need to be extremely accurate here. | ||
945 | */ | ||
946 | xip_cpu_idle(); | ||
947 | } | ||
948 | status = map_read(map, adr); | ||
949 | } while (!map_word_andequal(map, status, OK, OK) | ||
950 | && xip_elapsed_since(start) < usec); | ||
951 | } | ||
952 | |||
953 | #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) | ||
954 | |||
955 | /* | ||
956 | * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while | ||
957 | * the flash is actively programming or erasing since we have to poll for | ||
958 | * the operation to complete anyway. We can't do that in a generic way with | ||
959 | * a XIP setup so do it before the actual flash operation in this case. | ||
960 | */ | ||
961 | #undef INVALIDATE_CACHED_RANGE | ||
962 | #define INVALIDATE_CACHED_RANGE(x...) | ||
963 | #define XIP_INVAL_CACHED_RANGE(map, from, size) \ | ||
964 | do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0) | ||
965 | |||
966 | /* | ||
967 | * Extra notes: | ||
968 | * | ||
969 | * Activating this XIP support changes the way the code works a bit. For | ||
970 | * example the code to suspend the current process when concurrent access | ||
971 | * happens is never executed because xip_udelay() will always return with the | ||
972 | * same chip state as it was entered with. This is why there is no care for | ||
973 | * the presence of add_wait_queue() or schedule() calls from within a couple | ||
974 | * xip_disable()'d areas of code, like in do_erase_oneblock for example. | ||
975 | * The queueing and scheduling are always happening within xip_udelay(). | ||
976 | * | ||
977 | * Similarly, get_chip() and put_chip() just happen to always be executed | ||
978 | * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state | ||
979 | * is in array mode, therefore never executing many cases therein and not | ||
980 | * causing any problem with XIP. | ||
981 | */ | ||
982 | |||
983 | #else | ||
984 | |||
985 | #define xip_disable(map, chip, adr) | ||
986 | #define xip_enable(map, chip, adr) | ||
987 | |||
988 | #define UDELAY(map, chip, adr, usec) cfi_udelay(usec) | ||
989 | |||
990 | #define XIP_INVAL_CACHED_RANGE(x...) | ||
991 | |||
992 | #endif | ||
993 | |||
994 | static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) | ||
995 | { | ||
996 | unsigned long cmd_addr; | ||
997 | struct cfi_private *cfi = map->fldrv_priv; | ||
998 | int ret = 0; | ||
999 | |||
1000 | adr += chip->start; | ||
1001 | |||
1002 | /* Ensure cmd read/writes are aligned. */ | ||
1003 | cmd_addr = adr & ~(map_bankwidth(map)-1); | ||
1004 | |||
1005 | spin_lock(chip->mutex); | ||
1006 | |||
1007 | ret = get_chip(map, chip, cmd_addr, FL_POINT); | ||
1008 | |||
1009 | if (!ret) { | ||
1010 | if (chip->state != FL_POINT && chip->state != FL_READY) | ||
1011 | map_write(map, CMD(0xff), cmd_addr); | ||
1012 | |||
1013 | chip->state = FL_POINT; | ||
1014 | chip->ref_point_counter++; | ||
1015 | } | ||
1016 | spin_unlock(chip->mutex); | ||
1017 | |||
1018 | return ret; | ||
1019 | } | ||
1020 | |||
1021 | static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf) | ||
1022 | { | ||
1023 | struct map_info *map = mtd->priv; | ||
1024 | struct cfi_private *cfi = map->fldrv_priv; | ||
1025 | unsigned long ofs; | ||
1026 | int chipnum; | ||
1027 | int ret = 0; | ||
1028 | |||
1029 | if (!map->virt || (from + len > mtd->size)) | ||
1030 | return -EINVAL; | ||
1031 | |||
1032 | *mtdbuf = (void *)map->virt + from; | ||
1033 | *retlen = 0; | ||
1034 | |||
1035 | /* Now lock the chip(s) to POINT state */ | ||
1036 | |||
1037 | /* ofs: offset within the first chip that the first read should start */ | ||
1038 | chipnum = (from >> cfi->chipshift); | ||
1039 | ofs = from - (chipnum << cfi->chipshift); | ||
1040 | |||
1041 | while (len) { | ||
1042 | unsigned long thislen; | ||
1043 | |||
1044 | if (chipnum >= cfi->numchips) | ||
1045 | break; | ||
1046 | |||
1047 | if ((len + ofs -1) >> cfi->chipshift) | ||
1048 | thislen = (1<<cfi->chipshift) - ofs; | ||
1049 | else | ||
1050 | thislen = len; | ||
1051 | |||
1052 | ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); | ||
1053 | if (ret) | ||
1054 | break; | ||
1055 | |||
1056 | *retlen += thislen; | ||
1057 | len -= thislen; | ||
1058 | |||
1059 | ofs = 0; | ||
1060 | chipnum++; | ||
1061 | } | ||
1062 | return 0; | ||
1063 | } | ||
1064 | |||
1065 | static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) | ||
1066 | { | ||
1067 | struct map_info *map = mtd->priv; | ||
1068 | struct cfi_private *cfi = map->fldrv_priv; | ||
1069 | unsigned long ofs; | ||
1070 | int chipnum; | ||
1071 | |||
1072 | /* Now unlock the chip(s) POINT state */ | ||
1073 | |||
1074 | /* ofs: offset within the first chip that the first read should start */ | ||
1075 | chipnum = (from >> cfi->chipshift); | ||
1076 | ofs = from - (chipnum << cfi->chipshift); | ||
1077 | |||
1078 | while (len) { | ||
1079 | unsigned long thislen; | ||
1080 | struct flchip *chip; | ||
1081 | |||
1082 | chip = &cfi->chips[chipnum]; | ||
1083 | if (chipnum >= cfi->numchips) | ||
1084 | break; | ||
1085 | |||
1086 | if ((len + ofs -1) >> cfi->chipshift) | ||
1087 | thislen = (1<<cfi->chipshift) - ofs; | ||
1088 | else | ||
1089 | thislen = len; | ||
1090 | |||
1091 | spin_lock(chip->mutex); | ||
1092 | if (chip->state == FL_POINT) { | ||
1093 | chip->ref_point_counter--; | ||
1094 | if(chip->ref_point_counter == 0) | ||
1095 | chip->state = FL_READY; | ||
1096 | } else | ||
1097 | printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */ | ||
1098 | |||
1099 | put_chip(map, chip, chip->start); | ||
1100 | spin_unlock(chip->mutex); | ||
1101 | |||
1102 | len -= thislen; | ||
1103 | ofs = 0; | ||
1104 | chipnum++; | ||
1105 | } | ||
1106 | } | ||
1107 | |||
1108 | static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) | ||
1109 | { | ||
1110 | unsigned long cmd_addr; | ||
1111 | struct cfi_private *cfi = map->fldrv_priv; | ||
1112 | int ret; | ||
1113 | |||
1114 | adr += chip->start; | ||
1115 | |||
1116 | /* Ensure cmd read/writes are aligned. */ | ||
1117 | cmd_addr = adr & ~(map_bankwidth(map)-1); | ||
1118 | |||
1119 | spin_lock(chip->mutex); | ||
1120 | ret = get_chip(map, chip, cmd_addr, FL_READY); | ||
1121 | if (ret) { | ||
1122 | spin_unlock(chip->mutex); | ||
1123 | return ret; | ||
1124 | } | ||
1125 | |||
1126 | if (chip->state != FL_POINT && chip->state != FL_READY) { | ||
1127 | map_write(map, CMD(0xff), cmd_addr); | ||
1128 | |||
1129 | chip->state = FL_READY; | ||
1130 | } | ||
1131 | |||
1132 | map_copy_from(map, buf, adr, len); | ||
1133 | |||
1134 | put_chip(map, chip, cmd_addr); | ||
1135 | |||
1136 | spin_unlock(chip->mutex); | ||
1137 | return 0; | ||
1138 | } | ||
1139 | |||
1140 | static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
1141 | { | ||
1142 | struct map_info *map = mtd->priv; | ||
1143 | struct cfi_private *cfi = map->fldrv_priv; | ||
1144 | unsigned long ofs; | ||
1145 | int chipnum; | ||
1146 | int ret = 0; | ||
1147 | |||
1148 | /* ofs: offset within the first chip that the first read should start */ | ||
1149 | chipnum = (from >> cfi->chipshift); | ||
1150 | ofs = from - (chipnum << cfi->chipshift); | ||
1151 | |||
1152 | *retlen = 0; | ||
1153 | |||
1154 | while (len) { | ||
1155 | unsigned long thislen; | ||
1156 | |||
1157 | if (chipnum >= cfi->numchips) | ||
1158 | break; | ||
1159 | |||
1160 | if ((len + ofs -1) >> cfi->chipshift) | ||
1161 | thislen = (1<<cfi->chipshift) - ofs; | ||
1162 | else | ||
1163 | thislen = len; | ||
1164 | |||
1165 | ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); | ||
1166 | if (ret) | ||
1167 | break; | ||
1168 | |||
1169 | *retlen += thislen; | ||
1170 | len -= thislen; | ||
1171 | buf += thislen; | ||
1172 | |||
1173 | ofs = 0; | ||
1174 | chipnum++; | ||
1175 | } | ||
1176 | return ret; | ||
1177 | } | ||
1178 | |||
1179 | #if 0 | ||
1180 | static int __xipram cfi_intelext_read_prot_reg (struct mtd_info *mtd, | ||
1181 | loff_t from, size_t len, | ||
1182 | size_t *retlen, | ||
1183 | u_char *buf, | ||
1184 | int base_offst, int reg_sz) | ||
1185 | { | ||
1186 | struct map_info *map = mtd->priv; | ||
1187 | struct cfi_private *cfi = map->fldrv_priv; | ||
1188 | struct cfi_pri_intelext *extp = cfi->cmdset_priv; | ||
1189 | struct flchip *chip; | ||
1190 | int ofs_factor = cfi->interleave * cfi->device_type; | ||
1191 | int count = len; | ||
1192 | int chip_num, offst; | ||
1193 | int ret; | ||
1194 | |||
1195 | chip_num = ((unsigned int)from/reg_sz); | ||
1196 | offst = from - (reg_sz*chip_num)+base_offst; | ||
1197 | |||
1198 | while (count) { | ||
1199 | /* Calculate which chip & protection register offset we need */ | ||
1200 | |||
1201 | if (chip_num >= cfi->numchips) | ||
1202 | goto out; | ||
1203 | |||
1204 | chip = &cfi->chips[chip_num]; | ||
1205 | |||
1206 | spin_lock(chip->mutex); | ||
1207 | ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); | ||
1208 | if (ret) { | ||
1209 | spin_unlock(chip->mutex); | ||
1210 | return (len-count)?:ret; | ||
1211 | } | ||
1212 | |||
1213 | xip_disable(map, chip, chip->start); | ||
1214 | |||
1215 | if (chip->state != FL_JEDEC_QUERY) { | ||
1216 | map_write(map, CMD(0x90), chip->start); | ||
1217 | chip->state = FL_JEDEC_QUERY; | ||
1218 | } | ||
1219 | |||
1220 | while (count && ((offst-base_offst) < reg_sz)) { | ||
1221 | *buf = map_read8(map,(chip->start+((extp->ProtRegAddr+1)*ofs_factor)+offst)); | ||
1222 | buf++; | ||
1223 | offst++; | ||
1224 | count--; | ||
1225 | } | ||
1226 | |||
1227 | xip_enable(map, chip, chip->start); | ||
1228 | put_chip(map, chip, chip->start); | ||
1229 | spin_unlock(chip->mutex); | ||
1230 | |||
1231 | /* Move on to the next chip */ | ||
1232 | chip_num++; | ||
1233 | offst = base_offst; | ||
1234 | } | ||
1235 | |||
1236 | out: | ||
1237 | return len-count; | ||
1238 | } | ||
1239 | |||
1240 | static int cfi_intelext_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
1241 | { | ||
1242 | struct map_info *map = mtd->priv; | ||
1243 | struct cfi_private *cfi = map->fldrv_priv; | ||
1244 | struct cfi_pri_intelext *extp=cfi->cmdset_priv; | ||
1245 | int base_offst,reg_sz; | ||
1246 | |||
1247 | /* Check that we actually have some protection registers */ | ||
1248 | if(!extp || !(extp->FeatureSupport&64)){ | ||
1249 | printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); | ||
1250 | return 0; | ||
1251 | } | ||
1252 | |||
1253 | base_offst=(1<<extp->FactProtRegSize); | ||
1254 | reg_sz=(1<<extp->UserProtRegSize); | ||
1255 | |||
1256 | return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); | ||
1257 | } | ||
1258 | |||
1259 | static int cfi_intelext_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | ||
1260 | { | ||
1261 | struct map_info *map = mtd->priv; | ||
1262 | struct cfi_private *cfi = map->fldrv_priv; | ||
1263 | struct cfi_pri_intelext *extp=cfi->cmdset_priv; | ||
1264 | int base_offst,reg_sz; | ||
1265 | |||
1266 | /* Check that we actually have some protection registers */ | ||
1267 | if(!extp || !(extp->FeatureSupport&64)){ | ||
1268 | printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); | ||
1269 | return 0; | ||
1270 | } | ||
1271 | |||
1272 | base_offst=0; | ||
1273 | reg_sz=(1<<extp->FactProtRegSize); | ||
1274 | |||
1275 | return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); | ||
1276 | } | ||
1277 | #endif | ||
1278 | |||
1279 | static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, | ||
1280 | unsigned long adr, map_word datum) | ||
1281 | { | ||
1282 | struct cfi_private *cfi = map->fldrv_priv; | ||
1283 | map_word status, status_OK; | ||
1284 | unsigned long timeo; | ||
1285 | int z, ret=0; | ||
1286 | |||
1287 | adr += chip->start; | ||
1288 | |||
1289 | /* Let's determine this according to the interleave only once */ | ||
1290 | status_OK = CMD(0x80); | ||
1291 | |||
1292 | spin_lock(chip->mutex); | ||
1293 | ret = get_chip(map, chip, adr, FL_WRITING); | ||
1294 | if (ret) { | ||
1295 | spin_unlock(chip->mutex); | ||
1296 | return ret; | ||
1297 | } | ||
1298 | |||
1299 | XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); | ||
1300 | ENABLE_VPP(map); | ||
1301 | xip_disable(map, chip, adr); | ||
1302 | map_write(map, CMD(0x40), adr); | ||
1303 | map_write(map, datum, adr); | ||
1304 | chip->state = FL_WRITING; | ||
1305 | |||
1306 | spin_unlock(chip->mutex); | ||
1307 | INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map)); | ||
1308 | UDELAY(map, chip, adr, chip->word_write_time); | ||
1309 | spin_lock(chip->mutex); | ||
1310 | |||
1311 | timeo = jiffies + (HZ/2); | ||
1312 | z = 0; | ||
1313 | for (;;) { | ||
1314 | if (chip->state != FL_WRITING) { | ||
1315 | /* Someone's suspended the write. Sleep */ | ||
1316 | DECLARE_WAITQUEUE(wait, current); | ||
1317 | |||
1318 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1319 | add_wait_queue(&chip->wq, &wait); | ||
1320 | spin_unlock(chip->mutex); | ||
1321 | schedule(); | ||
1322 | remove_wait_queue(&chip->wq, &wait); | ||
1323 | timeo = jiffies + (HZ / 2); /* FIXME */ | ||
1324 | spin_lock(chip->mutex); | ||
1325 | continue; | ||
1326 | } | ||
1327 | |||
1328 | status = map_read(map, adr); | ||
1329 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1330 | break; | ||
1331 | |||
1332 | /* OK Still waiting */ | ||
1333 | if (time_after(jiffies, timeo)) { | ||
1334 | chip->state = FL_STATUS; | ||
1335 | xip_enable(map, chip, adr); | ||
1336 | printk(KERN_ERR "waiting for chip to be ready timed out in word write\n"); | ||
1337 | ret = -EIO; | ||
1338 | goto out; | ||
1339 | } | ||
1340 | |||
1341 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1342 | spin_unlock(chip->mutex); | ||
1343 | z++; | ||
1344 | UDELAY(map, chip, adr, 1); | ||
1345 | spin_lock(chip->mutex); | ||
1346 | } | ||
1347 | if (!z) { | ||
1348 | chip->word_write_time--; | ||
1349 | if (!chip->word_write_time) | ||
1350 | chip->word_write_time++; | ||
1351 | } | ||
1352 | if (z > 1) | ||
1353 | chip->word_write_time++; | ||
1354 | |||
1355 | /* Done and happy. */ | ||
1356 | chip->state = FL_STATUS; | ||
1357 | |||
1358 | /* check for lock bit */ | ||
1359 | if (map_word_bitsset(map, status, CMD(0x02))) { | ||
1360 | /* clear status */ | ||
1361 | map_write(map, CMD(0x50), adr); | ||
1362 | /* put back into read status register mode */ | ||
1363 | map_write(map, CMD(0x70), adr); | ||
1364 | ret = -EROFS; | ||
1365 | } | ||
1366 | |||
1367 | xip_enable(map, chip, adr); | ||
1368 | out: put_chip(map, chip, adr); | ||
1369 | spin_unlock(chip->mutex); | ||
1370 | |||
1371 | return ret; | ||
1372 | } | ||
1373 | |||
1374 | |||
1375 | static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) | ||
1376 | { | ||
1377 | struct map_info *map = mtd->priv; | ||
1378 | struct cfi_private *cfi = map->fldrv_priv; | ||
1379 | int ret = 0; | ||
1380 | int chipnum; | ||
1381 | unsigned long ofs; | ||
1382 | |||
1383 | *retlen = 0; | ||
1384 | if (!len) | ||
1385 | return 0; | ||
1386 | |||
1387 | chipnum = to >> cfi->chipshift; | ||
1388 | ofs = to - (chipnum << cfi->chipshift); | ||
1389 | |||
1390 | /* If it's not bus-aligned, do the first byte write */ | ||
1391 | if (ofs & (map_bankwidth(map)-1)) { | ||
1392 | unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); | ||
1393 | int gap = ofs - bus_ofs; | ||
1394 | int n; | ||
1395 | map_word datum; | ||
1396 | |||
1397 | n = min_t(int, len, map_bankwidth(map)-gap); | ||
1398 | datum = map_word_ff(map); | ||
1399 | datum = map_word_load_partial(map, datum, buf, gap, n); | ||
1400 | |||
1401 | ret = do_write_oneword(map, &cfi->chips[chipnum], | ||
1402 | bus_ofs, datum); | ||
1403 | if (ret) | ||
1404 | return ret; | ||
1405 | |||
1406 | len -= n; | ||
1407 | ofs += n; | ||
1408 | buf += n; | ||
1409 | (*retlen) += n; | ||
1410 | |||
1411 | if (ofs >> cfi->chipshift) { | ||
1412 | chipnum ++; | ||
1413 | ofs = 0; | ||
1414 | if (chipnum == cfi->numchips) | ||
1415 | return 0; | ||
1416 | } | ||
1417 | } | ||
1418 | |||
1419 | while(len >= map_bankwidth(map)) { | ||
1420 | map_word datum = map_word_load(map, buf); | ||
1421 | |||
1422 | ret = do_write_oneword(map, &cfi->chips[chipnum], | ||
1423 | ofs, datum); | ||
1424 | if (ret) | ||
1425 | return ret; | ||
1426 | |||
1427 | ofs += map_bankwidth(map); | ||
1428 | buf += map_bankwidth(map); | ||
1429 | (*retlen) += map_bankwidth(map); | ||
1430 | len -= map_bankwidth(map); | ||
1431 | |||
1432 | if (ofs >> cfi->chipshift) { | ||
1433 | chipnum ++; | ||
1434 | ofs = 0; | ||
1435 | if (chipnum == cfi->numchips) | ||
1436 | return 0; | ||
1437 | } | ||
1438 | } | ||
1439 | |||
1440 | if (len & (map_bankwidth(map)-1)) { | ||
1441 | map_word datum; | ||
1442 | |||
1443 | datum = map_word_ff(map); | ||
1444 | datum = map_word_load_partial(map, datum, buf, 0, len); | ||
1445 | |||
1446 | ret = do_write_oneword(map, &cfi->chips[chipnum], | ||
1447 | ofs, datum); | ||
1448 | if (ret) | ||
1449 | return ret; | ||
1450 | |||
1451 | (*retlen) += len; | ||
1452 | } | ||
1453 | |||
1454 | return 0; | ||
1455 | } | ||
1456 | |||
1457 | |||
1458 | static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, | ||
1459 | unsigned long adr, const u_char *buf, int len) | ||
1460 | { | ||
1461 | struct cfi_private *cfi = map->fldrv_priv; | ||
1462 | map_word status, status_OK; | ||
1463 | unsigned long cmd_adr, timeo; | ||
1464 | int wbufsize, z, ret=0, bytes, words; | ||
1465 | |||
1466 | wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | ||
1467 | adr += chip->start; | ||
1468 | cmd_adr = adr & ~(wbufsize-1); | ||
1469 | |||
1470 | /* Let's determine this according to the interleave only once */ | ||
1471 | status_OK = CMD(0x80); | ||
1472 | |||
1473 | spin_lock(chip->mutex); | ||
1474 | ret = get_chip(map, chip, cmd_adr, FL_WRITING); | ||
1475 | if (ret) { | ||
1476 | spin_unlock(chip->mutex); | ||
1477 | return ret; | ||
1478 | } | ||
1479 | |||
1480 | XIP_INVAL_CACHED_RANGE(map, adr, len); | ||
1481 | ENABLE_VPP(map); | ||
1482 | xip_disable(map, chip, cmd_adr); | ||
1483 | |||
1484 | /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set | ||
1485 | [...], the device will not accept any more Write to Buffer commands". | ||
1486 | So we must check here and reset those bits if they're set. Otherwise | ||
1487 | we're just pissing in the wind */ | ||
1488 | if (chip->state != FL_STATUS) | ||
1489 | map_write(map, CMD(0x70), cmd_adr); | ||
1490 | status = map_read(map, cmd_adr); | ||
1491 | if (map_word_bitsset(map, status, CMD(0x30))) { | ||
1492 | xip_enable(map, chip, cmd_adr); | ||
1493 | printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); | ||
1494 | xip_disable(map, chip, cmd_adr); | ||
1495 | map_write(map, CMD(0x50), cmd_adr); | ||
1496 | map_write(map, CMD(0x70), cmd_adr); | ||
1497 | } | ||
1498 | |||
1499 | chip->state = FL_WRITING_TO_BUFFER; | ||
1500 | |||
1501 | z = 0; | ||
1502 | for (;;) { | ||
1503 | map_write(map, CMD(0xe8), cmd_adr); | ||
1504 | |||
1505 | status = map_read(map, cmd_adr); | ||
1506 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1507 | break; | ||
1508 | |||
1509 | spin_unlock(chip->mutex); | ||
1510 | UDELAY(map, chip, cmd_adr, 1); | ||
1511 | spin_lock(chip->mutex); | ||
1512 | |||
1513 | if (++z > 20) { | ||
1514 | /* Argh. Not ready for write to buffer */ | ||
1515 | map_word Xstatus; | ||
1516 | map_write(map, CMD(0x70), cmd_adr); | ||
1517 | chip->state = FL_STATUS; | ||
1518 | Xstatus = map_read(map, cmd_adr); | ||
1519 | /* Odd. Clear status bits */ | ||
1520 | map_write(map, CMD(0x50), cmd_adr); | ||
1521 | map_write(map, CMD(0x70), cmd_adr); | ||
1522 | xip_enable(map, chip, cmd_adr); | ||
1523 | printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n", | ||
1524 | status.x[0], Xstatus.x[0]); | ||
1525 | ret = -EIO; | ||
1526 | goto out; | ||
1527 | } | ||
1528 | } | ||
1529 | |||
1530 | /* Write length of data to come */ | ||
1531 | bytes = len & (map_bankwidth(map)-1); | ||
1532 | words = len / map_bankwidth(map); | ||
1533 | map_write(map, CMD(words - !bytes), cmd_adr ); | ||
1534 | |||
1535 | /* Write data */ | ||
1536 | z = 0; | ||
1537 | while(z < words * map_bankwidth(map)) { | ||
1538 | map_word datum = map_word_load(map, buf); | ||
1539 | map_write(map, datum, adr+z); | ||
1540 | |||
1541 | z += map_bankwidth(map); | ||
1542 | buf += map_bankwidth(map); | ||
1543 | } | ||
1544 | |||
1545 | if (bytes) { | ||
1546 | map_word datum; | ||
1547 | |||
1548 | datum = map_word_ff(map); | ||
1549 | datum = map_word_load_partial(map, datum, buf, 0, bytes); | ||
1550 | map_write(map, datum, adr+z); | ||
1551 | } | ||
1552 | |||
1553 | /* GO GO GO */ | ||
1554 | map_write(map, CMD(0xd0), cmd_adr); | ||
1555 | chip->state = FL_WRITING; | ||
1556 | |||
1557 | spin_unlock(chip->mutex); | ||
1558 | INVALIDATE_CACHED_RANGE(map, adr, len); | ||
1559 | UDELAY(map, chip, cmd_adr, chip->buffer_write_time); | ||
1560 | spin_lock(chip->mutex); | ||
1561 | |||
1562 | timeo = jiffies + (HZ/2); | ||
1563 | z = 0; | ||
1564 | for (;;) { | ||
1565 | if (chip->state != FL_WRITING) { | ||
1566 | /* Someone's suspended the write. Sleep */ | ||
1567 | DECLARE_WAITQUEUE(wait, current); | ||
1568 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1569 | add_wait_queue(&chip->wq, &wait); | ||
1570 | spin_unlock(chip->mutex); | ||
1571 | schedule(); | ||
1572 | remove_wait_queue(&chip->wq, &wait); | ||
1573 | timeo = jiffies + (HZ / 2); /* FIXME */ | ||
1574 | spin_lock(chip->mutex); | ||
1575 | continue; | ||
1576 | } | ||
1577 | |||
1578 | status = map_read(map, cmd_adr); | ||
1579 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1580 | break; | ||
1581 | |||
1582 | /* OK Still waiting */ | ||
1583 | if (time_after(jiffies, timeo)) { | ||
1584 | chip->state = FL_STATUS; | ||
1585 | xip_enable(map, chip, cmd_adr); | ||
1586 | printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); | ||
1587 | ret = -EIO; | ||
1588 | goto out; | ||
1589 | } | ||
1590 | |||
1591 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1592 | spin_unlock(chip->mutex); | ||
1593 | UDELAY(map, chip, cmd_adr, 1); | ||
1594 | z++; | ||
1595 | spin_lock(chip->mutex); | ||
1596 | } | ||
1597 | if (!z) { | ||
1598 | chip->buffer_write_time--; | ||
1599 | if (!chip->buffer_write_time) | ||
1600 | chip->buffer_write_time++; | ||
1601 | } | ||
1602 | if (z > 1) | ||
1603 | chip->buffer_write_time++; | ||
1604 | |||
1605 | /* Done and happy. */ | ||
1606 | chip->state = FL_STATUS; | ||
1607 | |||
1608 | /* check for lock bit */ | ||
1609 | if (map_word_bitsset(map, status, CMD(0x02))) { | ||
1610 | /* clear status */ | ||
1611 | map_write(map, CMD(0x50), cmd_adr); | ||
1612 | /* put back into read status register mode */ | ||
1613 | map_write(map, CMD(0x70), adr); | ||
1614 | ret = -EROFS; | ||
1615 | } | ||
1616 | |||
1617 | xip_enable(map, chip, cmd_adr); | ||
1618 | out: put_chip(map, chip, cmd_adr); | ||
1619 | spin_unlock(chip->mutex); | ||
1620 | return ret; | ||
1621 | } | ||
1622 | |||
1623 | static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, | ||
1624 | size_t len, size_t *retlen, const u_char *buf) | ||
1625 | { | ||
1626 | struct map_info *map = mtd->priv; | ||
1627 | struct cfi_private *cfi = map->fldrv_priv; | ||
1628 | int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | ||
1629 | int ret = 0; | ||
1630 | int chipnum; | ||
1631 | unsigned long ofs; | ||
1632 | |||
1633 | *retlen = 0; | ||
1634 | if (!len) | ||
1635 | return 0; | ||
1636 | |||
1637 | chipnum = to >> cfi->chipshift; | ||
1638 | ofs = to - (chipnum << cfi->chipshift); | ||
1639 | |||
1640 | /* If it's not bus-aligned, do the first word write */ | ||
1641 | if (ofs & (map_bankwidth(map)-1)) { | ||
1642 | size_t local_len = (-ofs)&(map_bankwidth(map)-1); | ||
1643 | if (local_len > len) | ||
1644 | local_len = len; | ||
1645 | ret = cfi_intelext_write_words(mtd, to, local_len, | ||
1646 | retlen, buf); | ||
1647 | if (ret) | ||
1648 | return ret; | ||
1649 | ofs += local_len; | ||
1650 | buf += local_len; | ||
1651 | len -= local_len; | ||
1652 | |||
1653 | if (ofs >> cfi->chipshift) { | ||
1654 | chipnum ++; | ||
1655 | ofs = 0; | ||
1656 | if (chipnum == cfi->numchips) | ||
1657 | return 0; | ||
1658 | } | ||
1659 | } | ||
1660 | |||
1661 | while(len) { | ||
1662 | /* We must not cross write block boundaries */ | ||
1663 | int size = wbufsize - (ofs & (wbufsize-1)); | ||
1664 | |||
1665 | if (size > len) | ||
1666 | size = len; | ||
1667 | ret = do_write_buffer(map, &cfi->chips[chipnum], | ||
1668 | ofs, buf, size); | ||
1669 | if (ret) | ||
1670 | return ret; | ||
1671 | |||
1672 | ofs += size; | ||
1673 | buf += size; | ||
1674 | (*retlen) += size; | ||
1675 | len -= size; | ||
1676 | |||
1677 | if (ofs >> cfi->chipshift) { | ||
1678 | chipnum ++; | ||
1679 | ofs = 0; | ||
1680 | if (chipnum == cfi->numchips) | ||
1681 | return 0; | ||
1682 | } | ||
1683 | } | ||
1684 | return 0; | ||
1685 | } | ||
1686 | |||
1687 | static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, | ||
1688 | unsigned long adr, int len, void *thunk) | ||
1689 | { | ||
1690 | struct cfi_private *cfi = map->fldrv_priv; | ||
1691 | map_word status, status_OK; | ||
1692 | unsigned long timeo; | ||
1693 | int retries = 3; | ||
1694 | DECLARE_WAITQUEUE(wait, current); | ||
1695 | int ret = 0; | ||
1696 | |||
1697 | adr += chip->start; | ||
1698 | |||
1699 | /* Let's determine this according to the interleave only once */ | ||
1700 | status_OK = CMD(0x80); | ||
1701 | |||
1702 | retry: | ||
1703 | spin_lock(chip->mutex); | ||
1704 | ret = get_chip(map, chip, adr, FL_ERASING); | ||
1705 | if (ret) { | ||
1706 | spin_unlock(chip->mutex); | ||
1707 | return ret; | ||
1708 | } | ||
1709 | |||
1710 | XIP_INVAL_CACHED_RANGE(map, adr, len); | ||
1711 | ENABLE_VPP(map); | ||
1712 | xip_disable(map, chip, adr); | ||
1713 | |||
1714 | /* Clear the status register first */ | ||
1715 | map_write(map, CMD(0x50), adr); | ||
1716 | |||
1717 | /* Now erase */ | ||
1718 | map_write(map, CMD(0x20), adr); | ||
1719 | map_write(map, CMD(0xD0), adr); | ||
1720 | chip->state = FL_ERASING; | ||
1721 | chip->erase_suspended = 0; | ||
1722 | |||
1723 | spin_unlock(chip->mutex); | ||
1724 | INVALIDATE_CACHED_RANGE(map, adr, len); | ||
1725 | UDELAY(map, chip, adr, chip->erase_time*1000/2); | ||
1726 | spin_lock(chip->mutex); | ||
1727 | |||
1728 | /* FIXME. Use a timer to check this, and return immediately. */ | ||
1729 | /* Once the state machine's known to be working I'll do that */ | ||
1730 | |||
1731 | timeo = jiffies + (HZ*20); | ||
1732 | for (;;) { | ||
1733 | if (chip->state != FL_ERASING) { | ||
1734 | /* Someone's suspended the erase. Sleep */ | ||
1735 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1736 | add_wait_queue(&chip->wq, &wait); | ||
1737 | spin_unlock(chip->mutex); | ||
1738 | schedule(); | ||
1739 | remove_wait_queue(&chip->wq, &wait); | ||
1740 | spin_lock(chip->mutex); | ||
1741 | continue; | ||
1742 | } | ||
1743 | if (chip->erase_suspended) { | ||
1744 | /* This erase was suspended and resumed. | ||
1745 | Adjust the timeout */ | ||
1746 | timeo = jiffies + (HZ*20); /* FIXME */ | ||
1747 | chip->erase_suspended = 0; | ||
1748 | } | ||
1749 | |||
1750 | status = map_read(map, adr); | ||
1751 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1752 | break; | ||
1753 | |||
1754 | /* OK Still waiting */ | ||
1755 | if (time_after(jiffies, timeo)) { | ||
1756 | map_word Xstatus; | ||
1757 | map_write(map, CMD(0x70), adr); | ||
1758 | chip->state = FL_STATUS; | ||
1759 | Xstatus = map_read(map, adr); | ||
1760 | /* Clear status bits */ | ||
1761 | map_write(map, CMD(0x50), adr); | ||
1762 | map_write(map, CMD(0x70), adr); | ||
1763 | xip_enable(map, chip, adr); | ||
1764 | printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n", | ||
1765 | adr, status.x[0], Xstatus.x[0]); | ||
1766 | ret = -EIO; | ||
1767 | goto out; | ||
1768 | } | ||
1769 | |||
1770 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1771 | spin_unlock(chip->mutex); | ||
1772 | UDELAY(map, chip, adr, 1000000/HZ); | ||
1773 | spin_lock(chip->mutex); | ||
1774 | } | ||
1775 | |||
1776 | /* We've broken this before. It doesn't hurt to be safe */ | ||
1777 | map_write(map, CMD(0x70), adr); | ||
1778 | chip->state = FL_STATUS; | ||
1779 | status = map_read(map, adr); | ||
1780 | |||
1781 | /* check for lock bit */ | ||
1782 | if (map_word_bitsset(map, status, CMD(0x3a))) { | ||
1783 | unsigned char chipstatus; | ||
1784 | |||
1785 | /* Reset the error bits */ | ||
1786 | map_write(map, CMD(0x50), adr); | ||
1787 | map_write(map, CMD(0x70), adr); | ||
1788 | xip_enable(map, chip, adr); | ||
1789 | |||
1790 | chipstatus = status.x[0]; | ||
1791 | if (!map_word_equal(map, status, CMD(chipstatus))) { | ||
1792 | int i, w; | ||
1793 | for (w=0; w<map_words(map); w++) { | ||
1794 | for (i = 0; i<cfi_interleave(cfi); i++) { | ||
1795 | chipstatus |= status.x[w] >> (cfi->device_type * 8); | ||
1796 | } | ||
1797 | } | ||
1798 | printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", | ||
1799 | status.x[0], chipstatus); | ||
1800 | } | ||
1801 | |||
1802 | if ((chipstatus & 0x30) == 0x30) { | ||
1803 | printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); | ||
1804 | ret = -EIO; | ||
1805 | } else if (chipstatus & 0x02) { | ||
1806 | /* Protection bit set */ | ||
1807 | ret = -EROFS; | ||
1808 | } else if (chipstatus & 0x8) { | ||
1809 | /* Voltage */ | ||
1810 | printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); | ||
1811 | ret = -EIO; | ||
1812 | } else if (chipstatus & 0x20) { | ||
1813 | if (retries--) { | ||
1814 | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); | ||
1815 | timeo = jiffies + HZ; | ||
1816 | put_chip(map, chip, adr); | ||
1817 | spin_unlock(chip->mutex); | ||
1818 | goto retry; | ||
1819 | } | ||
1820 | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); | ||
1821 | ret = -EIO; | ||
1822 | } | ||
1823 | } else { | ||
1824 | xip_enable(map, chip, adr); | ||
1825 | ret = 0; | ||
1826 | } | ||
1827 | |||
1828 | out: put_chip(map, chip, adr); | ||
1829 | spin_unlock(chip->mutex); | ||
1830 | return ret; | ||
1831 | } | ||
1832 | |||
1833 | int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) | ||
1834 | { | ||
1835 | unsigned long ofs, len; | ||
1836 | int ret; | ||
1837 | |||
1838 | ofs = instr->addr; | ||
1839 | len = instr->len; | ||
1840 | |||
1841 | ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); | ||
1842 | if (ret) | ||
1843 | return ret; | ||
1844 | |||
1845 | instr->state = MTD_ERASE_DONE; | ||
1846 | mtd_erase_callback(instr); | ||
1847 | |||
1848 | return 0; | ||
1849 | } | ||
1850 | |||
1851 | static void cfi_intelext_sync (struct mtd_info *mtd) | ||
1852 | { | ||
1853 | struct map_info *map = mtd->priv; | ||
1854 | struct cfi_private *cfi = map->fldrv_priv; | ||
1855 | int i; | ||
1856 | struct flchip *chip; | ||
1857 | int ret = 0; | ||
1858 | |||
1859 | for (i=0; !ret && i<cfi->numchips; i++) { | ||
1860 | chip = &cfi->chips[i]; | ||
1861 | |||
1862 | spin_lock(chip->mutex); | ||
1863 | ret = get_chip(map, chip, chip->start, FL_SYNCING); | ||
1864 | |||
1865 | if (!ret) { | ||
1866 | chip->oldstate = chip->state; | ||
1867 | chip->state = FL_SYNCING; | ||
1868 | /* No need to wake_up() on this state change - | ||
1869 | * as the whole point is that nobody can do anything | ||
1870 | * with the chip now anyway. | ||
1871 | */ | ||
1872 | } | ||
1873 | spin_unlock(chip->mutex); | ||
1874 | } | ||
1875 | |||
1876 | /* Unlock the chips again */ | ||
1877 | |||
1878 | for (i--; i >=0; i--) { | ||
1879 | chip = &cfi->chips[i]; | ||
1880 | |||
1881 | spin_lock(chip->mutex); | ||
1882 | |||
1883 | if (chip->state == FL_SYNCING) { | ||
1884 | chip->state = chip->oldstate; | ||
1885 | wake_up(&chip->wq); | ||
1886 | } | ||
1887 | spin_unlock(chip->mutex); | ||
1888 | } | ||
1889 | } | ||
1890 | |||
1891 | #ifdef DEBUG_LOCK_BITS | ||
1892 | static int __xipram do_printlockstatus_oneblock(struct map_info *map, | ||
1893 | struct flchip *chip, | ||
1894 | unsigned long adr, | ||
1895 | int len, void *thunk) | ||
1896 | { | ||
1897 | struct cfi_private *cfi = map->fldrv_priv; | ||
1898 | int status, ofs_factor = cfi->interleave * cfi->device_type; | ||
1899 | |||
1900 | xip_disable(map, chip, adr+(2*ofs_factor)); | ||
1901 | cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); | ||
1902 | chip->state = FL_JEDEC_QUERY; | ||
1903 | status = cfi_read_query(map, adr+(2*ofs_factor)); | ||
1904 | xip_enable(map, chip, 0); | ||
1905 | printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", | ||
1906 | adr, status); | ||
1907 | return 0; | ||
1908 | } | ||
1909 | #endif | ||
1910 | |||
1911 | #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) | ||
1912 | #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) | ||
1913 | |||
1914 | static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, | ||
1915 | unsigned long adr, int len, void *thunk) | ||
1916 | { | ||
1917 | struct cfi_private *cfi = map->fldrv_priv; | ||
1918 | map_word status, status_OK; | ||
1919 | unsigned long timeo = jiffies + HZ; | ||
1920 | int ret; | ||
1921 | |||
1922 | adr += chip->start; | ||
1923 | |||
1924 | /* Let's determine this according to the interleave only once */ | ||
1925 | status_OK = CMD(0x80); | ||
1926 | |||
1927 | spin_lock(chip->mutex); | ||
1928 | ret = get_chip(map, chip, adr, FL_LOCKING); | ||
1929 | if (ret) { | ||
1930 | spin_unlock(chip->mutex); | ||
1931 | return ret; | ||
1932 | } | ||
1933 | |||
1934 | ENABLE_VPP(map); | ||
1935 | xip_disable(map, chip, adr); | ||
1936 | |||
1937 | map_write(map, CMD(0x60), adr); | ||
1938 | if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { | ||
1939 | map_write(map, CMD(0x01), adr); | ||
1940 | chip->state = FL_LOCKING; | ||
1941 | } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { | ||
1942 | map_write(map, CMD(0xD0), adr); | ||
1943 | chip->state = FL_UNLOCKING; | ||
1944 | } else | ||
1945 | BUG(); | ||
1946 | |||
1947 | spin_unlock(chip->mutex); | ||
1948 | UDELAY(map, chip, adr, 1000000/HZ); | ||
1949 | spin_lock(chip->mutex); | ||
1950 | |||
1951 | /* FIXME. Use a timer to check this, and return immediately. */ | ||
1952 | /* Once the state machine's known to be working I'll do that */ | ||
1953 | |||
1954 | timeo = jiffies + (HZ*20); | ||
1955 | for (;;) { | ||
1956 | |||
1957 | status = map_read(map, adr); | ||
1958 | if (map_word_andequal(map, status, status_OK, status_OK)) | ||
1959 | break; | ||
1960 | |||
1961 | /* OK Still waiting */ | ||
1962 | if (time_after(jiffies, timeo)) { | ||
1963 | map_word Xstatus; | ||
1964 | map_write(map, CMD(0x70), adr); | ||
1965 | chip->state = FL_STATUS; | ||
1966 | Xstatus = map_read(map, adr); | ||
1967 | xip_enable(map, chip, adr); | ||
1968 | printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n", | ||
1969 | status.x[0], Xstatus.x[0]); | ||
1970 | put_chip(map, chip, adr); | ||
1971 | spin_unlock(chip->mutex); | ||
1972 | return -EIO; | ||
1973 | } | ||
1974 | |||
1975 | /* Latency issues. Drop the lock, wait a while and retry */ | ||
1976 | spin_unlock(chip->mutex); | ||
1977 | UDELAY(map, chip, adr, 1); | ||
1978 | spin_lock(chip->mutex); | ||
1979 | } | ||
1980 | |||
1981 | /* Done and happy. */ | ||
1982 | chip->state = FL_STATUS; | ||
1983 | xip_enable(map, chip, adr); | ||
1984 | put_chip(map, chip, adr); | ||
1985 | spin_unlock(chip->mutex); | ||
1986 | return 0; | ||
1987 | } | ||
1988 | |||
1989 | static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
1990 | { | ||
1991 | int ret; | ||
1992 | |||
1993 | #ifdef DEBUG_LOCK_BITS | ||
1994 | printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", | ||
1995 | __FUNCTION__, ofs, len); | ||
1996 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | ||
1997 | ofs, len, 0); | ||
1998 | #endif | ||
1999 | |||
2000 | ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, | ||
2001 | ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); | ||
2002 | |||
2003 | #ifdef DEBUG_LOCK_BITS | ||
2004 | printk(KERN_DEBUG "%s: lock status after, ret=%d\n", | ||
2005 | __FUNCTION__, ret); | ||
2006 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | ||
2007 | ofs, len, 0); | ||
2008 | #endif | ||
2009 | |||
2010 | return ret; | ||
2011 | } | ||
2012 | |||
2013 | static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) | ||
2014 | { | ||
2015 | int ret; | ||
2016 | |||
2017 | #ifdef DEBUG_LOCK_BITS | ||
2018 | printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", | ||
2019 | __FUNCTION__, ofs, len); | ||
2020 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | ||
2021 | ofs, len, 0); | ||
2022 | #endif | ||
2023 | |||
2024 | ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, | ||
2025 | ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); | ||
2026 | |||
2027 | #ifdef DEBUG_LOCK_BITS | ||
2028 | printk(KERN_DEBUG "%s: lock status after, ret=%d\n", | ||
2029 | __FUNCTION__, ret); | ||
2030 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, | ||
2031 | ofs, len, 0); | ||
2032 | #endif | ||
2033 | |||
2034 | return ret; | ||
2035 | } | ||
2036 | |||
2037 | static int cfi_intelext_suspend(struct mtd_info *mtd) | ||
2038 | { | ||
2039 | struct map_info *map = mtd->priv; | ||
2040 | struct cfi_private *cfi = map->fldrv_priv; | ||
2041 | int i; | ||
2042 | struct flchip *chip; | ||
2043 | int ret = 0; | ||
2044 | |||
2045 | for (i=0; !ret && i<cfi->numchips; i++) { | ||
2046 | chip = &cfi->chips[i]; | ||
2047 | |||
2048 | spin_lock(chip->mutex); | ||
2049 | |||
2050 | switch (chip->state) { | ||
2051 | case FL_READY: | ||
2052 | case FL_STATUS: | ||
2053 | case FL_CFI_QUERY: | ||
2054 | case FL_JEDEC_QUERY: | ||
2055 | if (chip->oldstate == FL_READY) { | ||
2056 | chip->oldstate = chip->state; | ||
2057 | chip->state = FL_PM_SUSPENDED; | ||
2058 | /* No need to wake_up() on this state change - | ||
2059 | * as the whole point is that nobody can do anything | ||
2060 | * with the chip now anyway. | ||
2061 | */ | ||
2062 | } else { | ||
2063 | /* There seems to be an operation pending. We must wait for it. */ | ||
2064 | printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); | ||
2065 | ret = -EAGAIN; | ||
2066 | } | ||
2067 | break; | ||
2068 | default: | ||
2069 | /* Should we actually wait? Once upon a time these routines weren't | ||
2070 | allowed to. Or should we return -EAGAIN, because the upper layers | ||
2071 | ought to have already shut down anything which was using the device | ||
2072 | anyway? The latter for now. */ | ||
2073 | printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); | ||
2074 | ret = -EAGAIN; | ||
2075 | case FL_PM_SUSPENDED: | ||
2076 | break; | ||
2077 | } | ||
2078 | spin_unlock(chip->mutex); | ||
2079 | } | ||
2080 | |||
2081 | /* Unlock the chips again */ | ||
2082 | |||
2083 | if (ret) { | ||
2084 | for (i--; i >=0; i--) { | ||
2085 | chip = &cfi->chips[i]; | ||
2086 | |||
2087 | spin_lock(chip->mutex); | ||
2088 | |||
2089 | if (chip->state == FL_PM_SUSPENDED) { | ||
2090 | /* No need to force it into a known state here, | ||
2091 | because we're returning failure, and it didn't | ||
2092 | get power cycled */ | ||
2093 | chip->state = chip->oldstate; | ||
2094 | chip->oldstate = FL_READY; | ||
2095 | wake_up(&chip->wq); | ||
2096 | } | ||
2097 | spin_unlock(chip->mutex); | ||
2098 | } | ||
2099 | } | ||
2100 | |||
2101 | return ret; | ||
2102 | } | ||
2103 | |||
2104 | static void cfi_intelext_resume(struct mtd_info *mtd) | ||
2105 | { | ||
2106 | struct map_info *map = mtd->priv; | ||
2107 | struct cfi_private *cfi = map->fldrv_priv; | ||
2108 | int i; | ||
2109 | struct flchip *chip; | ||
2110 | |||
2111 | for (i=0; i<cfi->numchips; i++) { | ||
2112 | |||
2113 | chip = &cfi->chips[i]; | ||
2114 | |||
2115 | spin_lock(chip->mutex); | ||
2116 | |||
2117 | /* Go to known state. Chip may have been power cycled */ | ||
2118 | if (chip->state == FL_PM_SUSPENDED) { | ||
2119 | map_write(map, CMD(0xFF), cfi->chips[i].start); | ||
2120 | chip->oldstate = chip->state = FL_READY; | ||
2121 | wake_up(&chip->wq); | ||
2122 | } | ||
2123 | |||
2124 | spin_unlock(chip->mutex); | ||
2125 | } | ||
2126 | } | ||
2127 | |||
2128 | static void cfi_intelext_destroy(struct mtd_info *mtd) | ||
2129 | { | ||
2130 | struct map_info *map = mtd->priv; | ||
2131 | struct cfi_private *cfi = map->fldrv_priv; | ||
2132 | kfree(cfi->cmdset_priv); | ||
2133 | kfree(cfi->cfiq); | ||
2134 | kfree(cfi->chips[0].priv); | ||
2135 | kfree(cfi); | ||
2136 | kfree(mtd->eraseregions); | ||
2137 | } | ||
2138 | |||
2139 | static char im_name_1[]="cfi_cmdset_0001"; | ||
2140 | static char im_name_3[]="cfi_cmdset_0003"; | ||
2141 | |||
2142 | static int __init cfi_intelext_init(void) | ||
2143 | { | ||
2144 | inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001); | ||
2145 | inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001); | ||
2146 | return 0; | ||
2147 | } | ||
2148 | |||
2149 | static void __exit cfi_intelext_exit(void) | ||
2150 | { | ||
2151 | inter_module_unregister(im_name_1); | ||
2152 | inter_module_unregister(im_name_3); | ||
2153 | } | ||
2154 | |||
2155 | module_init(cfi_intelext_init); | ||
2156 | module_exit(cfi_intelext_exit); | ||
2157 | |||
2158 | MODULE_LICENSE("GPL"); | ||
2159 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); | ||
2160 | MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); | ||