diff options
author | David Brownell <david-b@pacbell.net> | 2007-08-08 12:12:54 -0400 |
---|---|---|
committer | Pierre Ossman <drzeus@drzeus.cx> | 2007-09-23 16:17:27 -0400 |
commit | 15a0580ced081a0f7dc2deea8a4812bdc5e9a109 (patch) | |
tree | 8540ae8e0ac8d33cec931276fee1b0bf10435f7c /drivers/mmc | |
parent | af51715079e7fb6b290e1881d63d815dc4de5011 (diff) |
mmc_spi host driver
This is the latest version of the MMC-over-SPI support. It works
on 2.6.23-rc2 plus git-mmc (from rc1-mm2), along with the preceding
patches which teach the rest of the MMC stack about SPI.
The main issue of note is that sometimes cards need to be power cycled
to recover after certain faults. Also, it may sometimes be necessary
to disable CRCs. ("modprobe mmc_core use_spi_crc=n")
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: mikael.starvik@axis.com,
Cc: Hans-Peter Nilsson <hp@axis.com>
Cc: Jan Nikitenko <jan.nikitenko@gmail.com>
Cc: Mike Lavender <mike@steroidmicros.com>
Signed-off-by: Pierre Ossman <drzeus@drzeus.cx>
Diffstat (limited to 'drivers/mmc')
-rw-r--r-- | drivers/mmc/host/Kconfig | 13 | ||||
-rw-r--r-- | drivers/mmc/host/Makefile | 1 | ||||
-rw-r--r-- | drivers/mmc/host/mmc_spi.c | 1408 |
3 files changed, 1422 insertions, 0 deletions
diff --git a/drivers/mmc/host/Kconfig b/drivers/mmc/host/Kconfig index e23082fe88d0..68fb052afd3e 100644 --- a/drivers/mmc/host/Kconfig +++ b/drivers/mmc/host/Kconfig | |||
@@ -100,3 +100,16 @@ config MMC_TIFM_SD | |||
100 | To compile this driver as a module, choose M here: the | 100 | To compile this driver as a module, choose M here: the |
101 | module will be called tifm_sd. | 101 | module will be called tifm_sd. |
102 | 102 | ||
103 | config MMC_SPI | ||
104 | tristate "MMC/SD over SPI (EXPERIMENTAL)" | ||
105 | depends on MMC && SPI_MASTER && !HIGHMEM && EXPERIMENTAL | ||
106 | select CRC7 | ||
107 | select CRC_ITU_T | ||
108 | help | ||
109 | Some systems accss MMC/SD cards using a SPI controller instead of | ||
110 | using a "native" MMC/SD controller. This has a disadvantage of | ||
111 | being relatively high overhead, but a compensating advantage of | ||
112 | working on many systems without dedicated MMC/SD controllers. | ||
113 | |||
114 | If unsure, or if your system has no SPI master driver, say N. | ||
115 | |||
diff --git a/drivers/mmc/host/Makefile b/drivers/mmc/host/Makefile index 6685f64345b4..8dc82ce647b7 100644 --- a/drivers/mmc/host/Makefile +++ b/drivers/mmc/host/Makefile | |||
@@ -15,4 +15,5 @@ obj-$(CONFIG_MMC_AU1X) += au1xmmc.o | |||
15 | obj-$(CONFIG_MMC_OMAP) += omap.o | 15 | obj-$(CONFIG_MMC_OMAP) += omap.o |
16 | obj-$(CONFIG_MMC_AT91) += at91_mci.o | 16 | obj-$(CONFIG_MMC_AT91) += at91_mci.o |
17 | obj-$(CONFIG_MMC_TIFM_SD) += tifm_sd.o | 17 | obj-$(CONFIG_MMC_TIFM_SD) += tifm_sd.o |
18 | obj-$(CONFIG_MMC_SPI) += mmc_spi.o | ||
18 | 19 | ||
diff --git a/drivers/mmc/host/mmc_spi.c b/drivers/mmc/host/mmc_spi.c new file mode 100644 index 000000000000..f30327bba6f6 --- /dev/null +++ b/drivers/mmc/host/mmc_spi.c | |||
@@ -0,0 +1,1408 @@ | |||
1 | /* | ||
2 | * mmc_spi.c - Access SD/MMC cards through SPI master controllers | ||
3 | * | ||
4 | * (C) Copyright 2005, Intec Automation, | ||
5 | * Mike Lavender (mike@steroidmicros) | ||
6 | * (C) Copyright 2006-2007, David Brownell | ||
7 | * (C) Copyright 2007, Axis Communications, | ||
8 | * Hans-Peter Nilsson (hp@axis.com) | ||
9 | * (C) Copyright 2007, ATRON electronic GmbH, | ||
10 | * Jan Nikitenko <jan.nikitenko@gmail.com> | ||
11 | * | ||
12 | * | ||
13 | * This program is free software; you can redistribute it and/or modify | ||
14 | * it under the terms of the GNU General Public License as published by | ||
15 | * the Free Software Foundation; either version 2 of the License, or | ||
16 | * (at your option) any later version. | ||
17 | * | ||
18 | * This program is distributed in the hope that it will be useful, | ||
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
21 | * GNU General Public License for more details. | ||
22 | * | ||
23 | * You should have received a copy of the GNU General Public License | ||
24 | * along with this program; if not, write to the Free Software | ||
25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
26 | */ | ||
27 | #include <linux/hrtimer.h> | ||
28 | #include <linux/delay.h> | ||
29 | #include <linux/blkdev.h> | ||
30 | #include <linux/dma-mapping.h> | ||
31 | #include <linux/crc7.h> | ||
32 | #include <linux/crc-itu-t.h> | ||
33 | |||
34 | #include <linux/mmc/host.h> | ||
35 | #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ | ||
36 | |||
37 | #include <linux/spi/spi.h> | ||
38 | #include <linux/spi/mmc_spi.h> | ||
39 | |||
40 | #include <asm/unaligned.h> | ||
41 | |||
42 | |||
43 | /* NOTES: | ||
44 | * | ||
45 | * - For now, we won't try to interoperate with a real mmc/sd/sdio | ||
46 | * controller, although some of them do have hardware support for | ||
47 | * SPI protocol. The main reason for such configs would be mmc-ish | ||
48 | * cards like DataFlash, which don't support that "native" protocol. | ||
49 | * | ||
50 | * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to | ||
51 | * switch between driver stacks, and in any case if "native" mode | ||
52 | * is available, it will be faster and hence preferable. | ||
53 | * | ||
54 | * - MMC depends on a different chipselect management policy than the | ||
55 | * SPI interface currently supports for shared bus segments: it needs | ||
56 | * to issue multiple spi_message requests with the chipselect active, | ||
57 | * using the results of one message to decide the next one to issue. | ||
58 | * | ||
59 | * Pending updates to the programming interface, this driver expects | ||
60 | * that it not share the bus with other drivers (precluding conflicts). | ||
61 | * | ||
62 | * - We tell the controller to keep the chipselect active from the | ||
63 | * beginning of an mmc_host_ops.request until the end. So beware | ||
64 | * of SPI controller drivers that mis-handle the cs_change flag! | ||
65 | * | ||
66 | * However, many cards seem OK with chipselect flapping up/down | ||
67 | * during that time ... at least on unshared bus segments. | ||
68 | */ | ||
69 | |||
70 | |||
71 | /* | ||
72 | * Local protocol constants, internal to data block protocols. | ||
73 | */ | ||
74 | |||
75 | /* Response tokens used to ack each block written: */ | ||
76 | #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) | ||
77 | #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) | ||
78 | #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) | ||
79 | #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) | ||
80 | |||
81 | /* Read and write blocks start with these tokens and end with crc; | ||
82 | * on error, read tokens act like a subset of R2_SPI_* values. | ||
83 | */ | ||
84 | #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ | ||
85 | #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ | ||
86 | #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ | ||
87 | |||
88 | #define MMC_SPI_BLOCKSIZE 512 | ||
89 | |||
90 | |||
91 | /* These fixed timeouts come from the latest SD specs, which say to ignore | ||
92 | * the CSD values. The R1B value is for card erase (e.g. the "I forgot the | ||
93 | * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after | ||
94 | * reads which takes nowhere near that long. Older cards may be able to use | ||
95 | * shorter timeouts ... but why bother? | ||
96 | */ | ||
97 | #define readblock_timeout ktime_set(0, 100 * 1000 * 1000) | ||
98 | #define writeblock_timeout ktime_set(0, 250 * 1000 * 1000) | ||
99 | #define r1b_timeout ktime_set(3, 0) | ||
100 | |||
101 | |||
102 | /****************************************************************************/ | ||
103 | |||
104 | /* | ||
105 | * Local Data Structures | ||
106 | */ | ||
107 | |||
108 | /* "scratch" is per-{command,block} data exchanged with the card */ | ||
109 | struct scratch { | ||
110 | u8 status[29]; | ||
111 | u8 data_token; | ||
112 | __be16 crc_val; | ||
113 | }; | ||
114 | |||
115 | struct mmc_spi_host { | ||
116 | struct mmc_host *mmc; | ||
117 | struct spi_device *spi; | ||
118 | |||
119 | unsigned char power_mode; | ||
120 | u16 powerup_msecs; | ||
121 | |||
122 | struct mmc_spi_platform_data *pdata; | ||
123 | |||
124 | /* for bulk data transfers */ | ||
125 | struct spi_transfer token, t, crc, early_status; | ||
126 | struct spi_message m; | ||
127 | |||
128 | /* for status readback */ | ||
129 | struct spi_transfer status; | ||
130 | struct spi_message readback; | ||
131 | |||
132 | /* underlying DMA-aware controller, or null */ | ||
133 | struct device *dma_dev; | ||
134 | |||
135 | /* buffer used for commands and for message "overhead" */ | ||
136 | struct scratch *data; | ||
137 | dma_addr_t data_dma; | ||
138 | |||
139 | /* Specs say to write ones most of the time, even when the card | ||
140 | * has no need to read its input data; and many cards won't care. | ||
141 | * This is our source of those ones. | ||
142 | */ | ||
143 | void *ones; | ||
144 | dma_addr_t ones_dma; | ||
145 | }; | ||
146 | |||
147 | |||
148 | /****************************************************************************/ | ||
149 | |||
150 | /* | ||
151 | * MMC-over-SPI protocol glue, used by the MMC stack interface | ||
152 | */ | ||
153 | |||
154 | static inline int mmc_cs_off(struct mmc_spi_host *host) | ||
155 | { | ||
156 | /* chipselect will always be inactive after setup() */ | ||
157 | return spi_setup(host->spi); | ||
158 | } | ||
159 | |||
160 | static int | ||
161 | mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) | ||
162 | { | ||
163 | int status; | ||
164 | |||
165 | if (len > sizeof(*host->data)) { | ||
166 | WARN_ON(1); | ||
167 | return -EIO; | ||
168 | } | ||
169 | |||
170 | host->status.len = len; | ||
171 | |||
172 | if (host->dma_dev) | ||
173 | dma_sync_single_for_device(host->dma_dev, | ||
174 | host->data_dma, sizeof(*host->data), | ||
175 | DMA_FROM_DEVICE); | ||
176 | |||
177 | status = spi_sync(host->spi, &host->readback); | ||
178 | if (status == 0) | ||
179 | status = host->readback.status; | ||
180 | |||
181 | if (host->dma_dev) | ||
182 | dma_sync_single_for_cpu(host->dma_dev, | ||
183 | host->data_dma, sizeof(*host->data), | ||
184 | DMA_FROM_DEVICE); | ||
185 | |||
186 | return status; | ||
187 | } | ||
188 | |||
189 | static int | ||
190 | mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte) | ||
191 | { | ||
192 | u8 *cp = host->data->status; | ||
193 | |||
194 | timeout = ktime_add(timeout, ktime_get()); | ||
195 | |||
196 | while (1) { | ||
197 | int status; | ||
198 | unsigned i; | ||
199 | |||
200 | status = mmc_spi_readbytes(host, n); | ||
201 | if (status < 0) | ||
202 | return status; | ||
203 | |||
204 | for (i = 0; i < n; i++) { | ||
205 | if (cp[i] != byte) | ||
206 | return cp[i]; | ||
207 | } | ||
208 | |||
209 | /* REVISIT investigate msleep() to avoid busy-wait I/O | ||
210 | * in at least some cases. | ||
211 | */ | ||
212 | if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0) | ||
213 | break; | ||
214 | } | ||
215 | return -ETIMEDOUT; | ||
216 | } | ||
217 | |||
218 | static inline int | ||
219 | mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout) | ||
220 | { | ||
221 | return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); | ||
222 | } | ||
223 | |||
224 | static int mmc_spi_readtoken(struct mmc_spi_host *host) | ||
225 | { | ||
226 | return mmc_spi_skip(host, readblock_timeout, 1, 0xff); | ||
227 | } | ||
228 | |||
229 | |||
230 | /* | ||
231 | * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol | ||
232 | * hosts return! The low byte holds R1_SPI bits. The next byte may hold | ||
233 | * R2_SPI bits ... for SEND_STATUS, or after data read errors. | ||
234 | * | ||
235 | * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on | ||
236 | * newer cards R7 (IF_COND). | ||
237 | */ | ||
238 | |||
239 | static char *maptype(struct mmc_command *cmd) | ||
240 | { | ||
241 | switch (mmc_spi_resp_type(cmd)) { | ||
242 | case MMC_RSP_SPI_R1: return "R1"; | ||
243 | case MMC_RSP_SPI_R1B: return "R1B"; | ||
244 | case MMC_RSP_SPI_R2: return "R2/R5"; | ||
245 | case MMC_RSP_SPI_R3: return "R3/R4/R7"; | ||
246 | default: return "?"; | ||
247 | } | ||
248 | } | ||
249 | |||
250 | /* return zero, else negative errno after setting cmd->error */ | ||
251 | static int mmc_spi_response_get(struct mmc_spi_host *host, | ||
252 | struct mmc_command *cmd, int cs_on) | ||
253 | { | ||
254 | u8 *cp = host->data->status; | ||
255 | u8 *end = cp + host->t.len; | ||
256 | int value = 0; | ||
257 | char tag[32]; | ||
258 | |||
259 | snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", | ||
260 | cmd->opcode, maptype(cmd)); | ||
261 | |||
262 | /* Except for data block reads, the whole response will already | ||
263 | * be stored in the scratch buffer. It's somewhere after the | ||
264 | * command and the first byte we read after it. We ignore that | ||
265 | * first byte. After STOP_TRANSMISSION command it may include | ||
266 | * two data bits, but otherwise it's all ones. | ||
267 | */ | ||
268 | cp += 8; | ||
269 | while (cp < end && *cp == 0xff) | ||
270 | cp++; | ||
271 | |||
272 | /* Data block reads (R1 response types) may need more data... */ | ||
273 | if (cp == end) { | ||
274 | unsigned i; | ||
275 | |||
276 | cp = host->data->status; | ||
277 | |||
278 | /* Card sends N(CR) (== 1..8) bytes of all-ones then one | ||
279 | * status byte ... and we already scanned 2 bytes. | ||
280 | * | ||
281 | * REVISIT block read paths use nasty byte-at-a-time I/O | ||
282 | * so it can always DMA directly into the target buffer. | ||
283 | * It'd probably be better to memcpy() the first chunk and | ||
284 | * avoid extra i/o calls... | ||
285 | */ | ||
286 | for (i = 2; i < 9; i++) { | ||
287 | value = mmc_spi_readbytes(host, 1); | ||
288 | if (value < 0) | ||
289 | goto done; | ||
290 | if (*cp != 0xff) | ||
291 | goto checkstatus; | ||
292 | } | ||
293 | value = -ETIMEDOUT; | ||
294 | goto done; | ||
295 | } | ||
296 | |||
297 | checkstatus: | ||
298 | if (*cp & 0x80) { | ||
299 | dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n", | ||
300 | tag, *cp); | ||
301 | value = -EBADR; | ||
302 | goto done; | ||
303 | } | ||
304 | |||
305 | cmd->resp[0] = *cp++; | ||
306 | cmd->error = 0; | ||
307 | |||
308 | /* Status byte: the entire seven-bit R1 response. */ | ||
309 | if (cmd->resp[0] != 0) { | ||
310 | if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS | ||
311 | | R1_SPI_ILLEGAL_COMMAND) | ||
312 | & cmd->resp[0]) | ||
313 | value = -EINVAL; | ||
314 | else if (R1_SPI_COM_CRC & cmd->resp[0]) | ||
315 | value = -EILSEQ; | ||
316 | else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) | ||
317 | & cmd->resp[0]) | ||
318 | value = -EIO; | ||
319 | /* else R1_SPI_IDLE, "it's resetting" */ | ||
320 | } | ||
321 | |||
322 | switch (mmc_spi_resp_type(cmd)) { | ||
323 | |||
324 | /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) | ||
325 | * and less-common stuff like various erase operations. | ||
326 | */ | ||
327 | case MMC_RSP_SPI_R1B: | ||
328 | /* maybe we read all the busy tokens already */ | ||
329 | while (cp < end && *cp == 0) | ||
330 | cp++; | ||
331 | if (cp == end) | ||
332 | mmc_spi_wait_unbusy(host, r1b_timeout); | ||
333 | break; | ||
334 | |||
335 | /* SPI R2 == R1 + second status byte; SEND_STATUS | ||
336 | * SPI R5 == R1 + data byte; IO_RW_DIRECT | ||
337 | */ | ||
338 | case MMC_RSP_SPI_R2: | ||
339 | cmd->resp[0] |= *cp << 8; | ||
340 | break; | ||
341 | |||
342 | /* SPI R3, R4, or R7 == R1 + 4 bytes */ | ||
343 | case MMC_RSP_SPI_R3: | ||
344 | cmd->resp[1] = be32_to_cpu(get_unaligned((u32 *)cp)); | ||
345 | break; | ||
346 | |||
347 | /* SPI R1 == just one status byte */ | ||
348 | case MMC_RSP_SPI_R1: | ||
349 | break; | ||
350 | |||
351 | default: | ||
352 | dev_dbg(&host->spi->dev, "bad response type %04x\n", | ||
353 | mmc_spi_resp_type(cmd)); | ||
354 | if (value >= 0) | ||
355 | value = -EINVAL; | ||
356 | goto done; | ||
357 | } | ||
358 | |||
359 | if (value < 0) | ||
360 | dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", | ||
361 | tag, cmd->resp[0], cmd->resp[1]); | ||
362 | |||
363 | /* disable chipselect on errors and some success cases */ | ||
364 | if (value >= 0 && cs_on) | ||
365 | return value; | ||
366 | done: | ||
367 | if (value < 0) | ||
368 | cmd->error = value; | ||
369 | mmc_cs_off(host); | ||
370 | return value; | ||
371 | } | ||
372 | |||
373 | /* Issue command and read its response. | ||
374 | * Returns zero on success, negative for error. | ||
375 | * | ||
376 | * On error, caller must cope with mmc core retry mechanism. That | ||
377 | * means immediate low-level resubmit, which affects the bus lock... | ||
378 | */ | ||
379 | static int | ||
380 | mmc_spi_command_send(struct mmc_spi_host *host, | ||
381 | struct mmc_request *mrq, | ||
382 | struct mmc_command *cmd, int cs_on) | ||
383 | { | ||
384 | struct scratch *data = host->data; | ||
385 | u8 *cp = data->status; | ||
386 | u32 arg = cmd->arg; | ||
387 | int status; | ||
388 | struct spi_transfer *t; | ||
389 | |||
390 | /* We can handle most commands (except block reads) in one full | ||
391 | * duplex I/O operation before either starting the next transfer | ||
392 | * (data block or command) or else deselecting the card. | ||
393 | * | ||
394 | * First, write 7 bytes: | ||
395 | * - an all-ones byte to ensure the card is ready | ||
396 | * - opcode byte (plus start and transmission bits) | ||
397 | * - four bytes of big-endian argument | ||
398 | * - crc7 (plus end bit) ... always computed, it's cheap | ||
399 | * | ||
400 | * We init the whole buffer to all-ones, which is what we need | ||
401 | * to write while we're reading (later) response data. | ||
402 | */ | ||
403 | memset(cp++, 0xff, sizeof(data->status)); | ||
404 | |||
405 | *cp++ = 0x40 | cmd->opcode; | ||
406 | *cp++ = (u8)(arg >> 24); | ||
407 | *cp++ = (u8)(arg >> 16); | ||
408 | *cp++ = (u8)(arg >> 8); | ||
409 | *cp++ = (u8)arg; | ||
410 | *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; | ||
411 | |||
412 | /* Then, read up to 13 bytes (while writing all-ones): | ||
413 | * - N(CR) (== 1..8) bytes of all-ones | ||
414 | * - status byte (for all response types) | ||
415 | * - the rest of the response, either: | ||
416 | * + nothing, for R1 or R1B responses | ||
417 | * + second status byte, for R2 responses | ||
418 | * + four data bytes, for R3 and R7 responses | ||
419 | * | ||
420 | * Finally, read some more bytes ... in the nice cases we know in | ||
421 | * advance how many, and reading 1 more is always OK: | ||
422 | * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish | ||
423 | * - N(RC) (== 1..N) bytes of all-ones, before next command | ||
424 | * - N(WR) (== 1..N) bytes of all-ones, before data write | ||
425 | * | ||
426 | * So in those cases one full duplex I/O of at most 21 bytes will | ||
427 | * handle the whole command, leaving the card ready to receive a | ||
428 | * data block or new command. We do that whenever we can, shaving | ||
429 | * CPU and IRQ costs (especially when using DMA or FIFOs). | ||
430 | * | ||
431 | * There are two other cases, where it's not generally practical | ||
432 | * to rely on a single I/O: | ||
433 | * | ||
434 | * - R1B responses need at least N(EC) bytes of all-zeroes. | ||
435 | * | ||
436 | * In this case we can *try* to fit it into one I/O, then | ||
437 | * maybe read more data later. | ||
438 | * | ||
439 | * - Data block reads are more troublesome, since a variable | ||
440 | * number of padding bytes precede the token and data. | ||
441 | * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID | ||
442 | * + N(AC) (== 1..many) bytes of all-ones | ||
443 | * | ||
444 | * In this case we currently only have minimal speedups here: | ||
445 | * when N(CR) == 1 we can avoid I/O in response_get(). | ||
446 | */ | ||
447 | if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { | ||
448 | cp += 2; /* min(N(CR)) + status */ | ||
449 | /* R1 */ | ||
450 | } else { | ||
451 | cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ | ||
452 | if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ | ||
453 | cp++; | ||
454 | else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ | ||
455 | cp += 4; | ||
456 | else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ | ||
457 | cp = data->status + sizeof(data->status); | ||
458 | /* else: R1 (most commands) */ | ||
459 | } | ||
460 | |||
461 | dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", | ||
462 | cmd->opcode, maptype(cmd)); | ||
463 | |||
464 | /* send command, leaving chipselect active */ | ||
465 | spi_message_init(&host->m); | ||
466 | |||
467 | t = &host->t; | ||
468 | memset(t, 0, sizeof(*t)); | ||
469 | t->tx_buf = t->rx_buf = data->status; | ||
470 | t->tx_dma = t->rx_dma = host->data_dma; | ||
471 | t->len = cp - data->status; | ||
472 | t->cs_change = 1; | ||
473 | spi_message_add_tail(t, &host->m); | ||
474 | |||
475 | if (host->dma_dev) { | ||
476 | host->m.is_dma_mapped = 1; | ||
477 | dma_sync_single_for_device(host->dma_dev, | ||
478 | host->data_dma, sizeof(*host->data), | ||
479 | DMA_BIDIRECTIONAL); | ||
480 | } | ||
481 | status = spi_sync(host->spi, &host->m); | ||
482 | if (status == 0) | ||
483 | status = host->m.status; | ||
484 | |||
485 | if (host->dma_dev) | ||
486 | dma_sync_single_for_cpu(host->dma_dev, | ||
487 | host->data_dma, sizeof(*host->data), | ||
488 | DMA_BIDIRECTIONAL); | ||
489 | if (status < 0) { | ||
490 | dev_dbg(&host->spi->dev, " ... write returned %d\n", status); | ||
491 | cmd->error = status; | ||
492 | return status; | ||
493 | } | ||
494 | |||
495 | /* after no-data commands and STOP_TRANSMISSION, chipselect off */ | ||
496 | return mmc_spi_response_get(host, cmd, cs_on); | ||
497 | } | ||
498 | |||
499 | /* Build data message with up to four separate transfers. For TX, we | ||
500 | * start by writing the data token. And in most cases, we finish with | ||
501 | * a status transfer. | ||
502 | * | ||
503 | * We always provide TX data for data and CRC. The MMC/SD protocol | ||
504 | * requires us to write ones; but Linux defaults to writing zeroes; | ||
505 | * so we explicitly initialize it to all ones on RX paths. | ||
506 | * | ||
507 | * We also handle DMA mapping, so the underlying SPI controller does | ||
508 | * not need to (re)do it for each message. | ||
509 | */ | ||
510 | static void | ||
511 | mmc_spi_setup_data_message( | ||
512 | struct mmc_spi_host *host, | ||
513 | int multiple, | ||
514 | enum dma_data_direction direction) | ||
515 | { | ||
516 | struct spi_transfer *t; | ||
517 | struct scratch *scratch = host->data; | ||
518 | dma_addr_t dma = host->data_dma; | ||
519 | |||
520 | spi_message_init(&host->m); | ||
521 | if (dma) | ||
522 | host->m.is_dma_mapped = 1; | ||
523 | |||
524 | /* for reads, readblock() skips 0xff bytes before finding | ||
525 | * the token; for writes, this transfer issues that token. | ||
526 | */ | ||
527 | if (direction == DMA_TO_DEVICE) { | ||
528 | t = &host->token; | ||
529 | memset(t, 0, sizeof(*t)); | ||
530 | t->len = 1; | ||
531 | if (multiple) | ||
532 | scratch->data_token = SPI_TOKEN_MULTI_WRITE; | ||
533 | else | ||
534 | scratch->data_token = SPI_TOKEN_SINGLE; | ||
535 | t->tx_buf = &scratch->data_token; | ||
536 | if (dma) | ||
537 | t->tx_dma = dma + offsetof(struct scratch, data_token); | ||
538 | spi_message_add_tail(t, &host->m); | ||
539 | } | ||
540 | |||
541 | /* Body of transfer is buffer, then CRC ... | ||
542 | * either TX-only, or RX with TX-ones. | ||
543 | */ | ||
544 | t = &host->t; | ||
545 | memset(t, 0, sizeof(*t)); | ||
546 | t->tx_buf = host->ones; | ||
547 | t->tx_dma = host->ones_dma; | ||
548 | /* length and actual buffer info are written later */ | ||
549 | spi_message_add_tail(t, &host->m); | ||
550 | |||
551 | t = &host->crc; | ||
552 | memset(t, 0, sizeof(*t)); | ||
553 | t->len = 2; | ||
554 | if (direction == DMA_TO_DEVICE) { | ||
555 | /* the actual CRC may get written later */ | ||
556 | t->tx_buf = &scratch->crc_val; | ||
557 | if (dma) | ||
558 | t->tx_dma = dma + offsetof(struct scratch, crc_val); | ||
559 | } else { | ||
560 | t->tx_buf = host->ones; | ||
561 | t->tx_dma = host->ones_dma; | ||
562 | t->rx_buf = &scratch->crc_val; | ||
563 | if (dma) | ||
564 | t->rx_dma = dma + offsetof(struct scratch, crc_val); | ||
565 | } | ||
566 | spi_message_add_tail(t, &host->m); | ||
567 | |||
568 | /* | ||
569 | * A single block read is followed by N(EC) [0+] all-ones bytes | ||
570 | * before deselect ... don't bother. | ||
571 | * | ||
572 | * Multiblock reads are followed by N(AC) [1+] all-ones bytes before | ||
573 | * the next block is read, or a STOP_TRANSMISSION is issued. We'll | ||
574 | * collect that single byte, so readblock() doesn't need to. | ||
575 | * | ||
576 | * For a write, the one-byte data response follows immediately, then | ||
577 | * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. | ||
578 | * Then single block reads may deselect, and multiblock ones issue | ||
579 | * the next token (next data block, or STOP_TRAN). We can try to | ||
580 | * minimize I/O ops by using a single read to collect end-of-busy. | ||
581 | */ | ||
582 | if (multiple || direction == DMA_TO_DEVICE) { | ||
583 | t = &host->early_status; | ||
584 | memset(t, 0, sizeof(*t)); | ||
585 | t->len = (direction == DMA_TO_DEVICE) | ||
586 | ? sizeof(scratch->status) | ||
587 | : 1; | ||
588 | t->tx_buf = host->ones; | ||
589 | t->tx_dma = host->ones_dma; | ||
590 | t->rx_buf = scratch->status; | ||
591 | if (dma) | ||
592 | t->rx_dma = dma + offsetof(struct scratch, status); | ||
593 | t->cs_change = 1; | ||
594 | spi_message_add_tail(t, &host->m); | ||
595 | } | ||
596 | } | ||
597 | |||
598 | /* | ||
599 | * Write one block: | ||
600 | * - caller handled preceding N(WR) [1+] all-ones bytes | ||
601 | * - data block | ||
602 | * + token | ||
603 | * + data bytes | ||
604 | * + crc16 | ||
605 | * - an all-ones byte ... card writes a data-response byte | ||
606 | * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' | ||
607 | * | ||
608 | * Return negative errno, else success. | ||
609 | */ | ||
610 | static int | ||
611 | mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t) | ||
612 | { | ||
613 | struct spi_device *spi = host->spi; | ||
614 | int status, i; | ||
615 | struct scratch *scratch = host->data; | ||
616 | |||
617 | if (host->mmc->use_spi_crc) | ||
618 | scratch->crc_val = cpu_to_be16( | ||
619 | crc_itu_t(0, t->tx_buf, t->len)); | ||
620 | if (host->dma_dev) | ||
621 | dma_sync_single_for_device(host->dma_dev, | ||
622 | host->data_dma, sizeof(*scratch), | ||
623 | DMA_BIDIRECTIONAL); | ||
624 | |||
625 | status = spi_sync(spi, &host->m); | ||
626 | if (status == 0) | ||
627 | status = host->m.status; | ||
628 | |||
629 | if (status != 0) { | ||
630 | dev_dbg(&spi->dev, "write error (%d)\n", status); | ||
631 | return status; | ||
632 | } | ||
633 | |||
634 | if (host->dma_dev) | ||
635 | dma_sync_single_for_cpu(host->dma_dev, | ||
636 | host->data_dma, sizeof(*scratch), | ||
637 | DMA_BIDIRECTIONAL); | ||
638 | |||
639 | /* | ||
640 | * Get the transmission data-response reply. It must follow | ||
641 | * immediately after the data block we transferred. This reply | ||
642 | * doesn't necessarily tell whether the write operation succeeded; | ||
643 | * it just says if the transmission was ok and whether *earlier* | ||
644 | * writes succeeded; see the standard. | ||
645 | */ | ||
646 | switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) { | ||
647 | case SPI_RESPONSE_ACCEPTED: | ||
648 | status = 0; | ||
649 | break; | ||
650 | case SPI_RESPONSE_CRC_ERR: | ||
651 | /* host shall then issue MMC_STOP_TRANSMISSION */ | ||
652 | status = -EILSEQ; | ||
653 | break; | ||
654 | case SPI_RESPONSE_WRITE_ERR: | ||
655 | /* host shall then issue MMC_STOP_TRANSMISSION, | ||
656 | * and should MMC_SEND_STATUS to sort it out | ||
657 | */ | ||
658 | status = -EIO; | ||
659 | break; | ||
660 | default: | ||
661 | status = -EPROTO; | ||
662 | break; | ||
663 | } | ||
664 | if (status != 0) { | ||
665 | dev_dbg(&spi->dev, "write error %02x (%d)\n", | ||
666 | scratch->status[0], status); | ||
667 | return status; | ||
668 | } | ||
669 | |||
670 | t->tx_buf += t->len; | ||
671 | if (host->dma_dev) | ||
672 | t->tx_dma += t->len; | ||
673 | |||
674 | /* Return when not busy. If we didn't collect that status yet, | ||
675 | * we'll need some more I/O. | ||
676 | */ | ||
677 | for (i = 1; i < sizeof(scratch->status); i++) { | ||
678 | if (scratch->status[i] != 0) | ||
679 | return 0; | ||
680 | } | ||
681 | return mmc_spi_wait_unbusy(host, writeblock_timeout); | ||
682 | } | ||
683 | |||
684 | /* | ||
685 | * Read one block: | ||
686 | * - skip leading all-ones bytes ... either | ||
687 | * + N(AC) [1..f(clock,CSD)] usually, else | ||
688 | * + N(CX) [0..8] when reading CSD or CID | ||
689 | * - data block | ||
690 | * + token ... if error token, no data or crc | ||
691 | * + data bytes | ||
692 | * + crc16 | ||
693 | * | ||
694 | * After single block reads, we're done; N(EC) [0+] all-ones bytes follow | ||
695 | * before dropping chipselect. | ||
696 | * | ||
697 | * For multiblock reads, caller either reads the next block or issues a | ||
698 | * STOP_TRANSMISSION command. | ||
699 | */ | ||
700 | static int | ||
701 | mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t) | ||
702 | { | ||
703 | struct spi_device *spi = host->spi; | ||
704 | int status; | ||
705 | struct scratch *scratch = host->data; | ||
706 | |||
707 | /* At least one SD card sends an all-zeroes byte when N(CX) | ||
708 | * applies, before the all-ones bytes ... just cope with that. | ||
709 | */ | ||
710 | status = mmc_spi_readbytes(host, 1); | ||
711 | if (status < 0) | ||
712 | return status; | ||
713 | status = scratch->status[0]; | ||
714 | if (status == 0xff || status == 0) | ||
715 | status = mmc_spi_readtoken(host); | ||
716 | |||
717 | if (status == SPI_TOKEN_SINGLE) { | ||
718 | if (host->dma_dev) { | ||
719 | dma_sync_single_for_device(host->dma_dev, | ||
720 | host->data_dma, sizeof(*scratch), | ||
721 | DMA_BIDIRECTIONAL); | ||
722 | dma_sync_single_for_device(host->dma_dev, | ||
723 | t->rx_dma, t->len, | ||
724 | DMA_FROM_DEVICE); | ||
725 | } | ||
726 | |||
727 | status = spi_sync(spi, &host->m); | ||
728 | if (status == 0) | ||
729 | status = host->m.status; | ||
730 | |||
731 | if (host->dma_dev) { | ||
732 | dma_sync_single_for_cpu(host->dma_dev, | ||
733 | host->data_dma, sizeof(*scratch), | ||
734 | DMA_BIDIRECTIONAL); | ||
735 | dma_sync_single_for_cpu(host->dma_dev, | ||
736 | t->rx_dma, t->len, | ||
737 | DMA_FROM_DEVICE); | ||
738 | } | ||
739 | |||
740 | } else { | ||
741 | dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); | ||
742 | |||
743 | /* we've read extra garbage, timed out, etc */ | ||
744 | if (status < 0) | ||
745 | return status; | ||
746 | |||
747 | /* low four bits are an R2 subset, fifth seems to be | ||
748 | * vendor specific ... map them all to generic error.. | ||
749 | */ | ||
750 | return -EIO; | ||
751 | } | ||
752 | |||
753 | if (host->mmc->use_spi_crc) { | ||
754 | u16 crc = crc_itu_t(0, t->rx_buf, t->len); | ||
755 | |||
756 | be16_to_cpus(&scratch->crc_val); | ||
757 | if (scratch->crc_val != crc) { | ||
758 | dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " | ||
759 | "computed=0x%04x len=%d\n", | ||
760 | scratch->crc_val, crc, t->len); | ||
761 | return -EILSEQ; | ||
762 | } | ||
763 | } | ||
764 | |||
765 | t->rx_buf += t->len; | ||
766 | if (host->dma_dev) | ||
767 | t->rx_dma += t->len; | ||
768 | |||
769 | return 0; | ||
770 | } | ||
771 | |||
772 | /* | ||
773 | * An MMC/SD data stage includes one or more blocks, optional CRCs, | ||
774 | * and inline handshaking. That handhaking makes it unlike most | ||
775 | * other SPI protocol stacks. | ||
776 | */ | ||
777 | static void | ||
778 | mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, | ||
779 | struct mmc_data *data, u32 blk_size) | ||
780 | { | ||
781 | struct spi_device *spi = host->spi; | ||
782 | struct device *dma_dev = host->dma_dev; | ||
783 | struct spi_transfer *t; | ||
784 | enum dma_data_direction direction; | ||
785 | struct scatterlist *sg; | ||
786 | unsigned n_sg; | ||
787 | int multiple = (data->blocks > 1); | ||
788 | |||
789 | if (data->flags & MMC_DATA_READ) | ||
790 | direction = DMA_FROM_DEVICE; | ||
791 | else | ||
792 | direction = DMA_TO_DEVICE; | ||
793 | mmc_spi_setup_data_message(host, multiple, direction); | ||
794 | t = &host->t; | ||
795 | |||
796 | /* Handle scatterlist segments one at a time, with synch for | ||
797 | * each 512-byte block | ||
798 | */ | ||
799 | for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { | ||
800 | int status = 0; | ||
801 | dma_addr_t dma_addr = 0; | ||
802 | void *kmap_addr; | ||
803 | unsigned length = sg->length; | ||
804 | enum dma_data_direction dir = direction; | ||
805 | |||
806 | /* set up dma mapping for controller drivers that might | ||
807 | * use DMA ... though they may fall back to PIO | ||
808 | */ | ||
809 | if (dma_dev) { | ||
810 | /* never invalidate whole *shared* pages ... */ | ||
811 | if ((sg->offset != 0 || length != PAGE_SIZE) | ||
812 | && dir == DMA_FROM_DEVICE) | ||
813 | dir = DMA_BIDIRECTIONAL; | ||
814 | |||
815 | dma_addr = dma_map_page(dma_dev, sg->page, 0, | ||
816 | PAGE_SIZE, dir); | ||
817 | if (direction == DMA_TO_DEVICE) | ||
818 | t->tx_dma = dma_addr + sg->offset; | ||
819 | else | ||
820 | t->rx_dma = dma_addr + sg->offset; | ||
821 | } | ||
822 | |||
823 | /* allow pio too; we don't allow highmem */ | ||
824 | kmap_addr = kmap(sg->page); | ||
825 | if (direction == DMA_TO_DEVICE) | ||
826 | t->tx_buf = kmap_addr + sg->offset; | ||
827 | else | ||
828 | t->rx_buf = kmap_addr + sg->offset; | ||
829 | |||
830 | /* transfer each block, and update request status */ | ||
831 | while (length) { | ||
832 | t->len = min(length, blk_size); | ||
833 | |||
834 | dev_dbg(&host->spi->dev, | ||
835 | " mmc_spi: %s block, %d bytes\n", | ||
836 | (direction == DMA_TO_DEVICE) | ||
837 | ? "write" | ||
838 | : "read", | ||
839 | t->len); | ||
840 | |||
841 | if (direction == DMA_TO_DEVICE) | ||
842 | status = mmc_spi_writeblock(host, t); | ||
843 | else | ||
844 | status = mmc_spi_readblock(host, t); | ||
845 | if (status < 0) | ||
846 | break; | ||
847 | |||
848 | data->bytes_xfered += t->len; | ||
849 | length -= t->len; | ||
850 | |||
851 | if (!multiple) | ||
852 | break; | ||
853 | } | ||
854 | |||
855 | /* discard mappings */ | ||
856 | if (direction == DMA_FROM_DEVICE) | ||
857 | flush_kernel_dcache_page(sg->page); | ||
858 | kunmap(sg->page); | ||
859 | if (dma_dev) | ||
860 | dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); | ||
861 | |||
862 | if (status < 0) { | ||
863 | data->error = status; | ||
864 | dev_dbg(&spi->dev, "%s status %d\n", | ||
865 | (direction == DMA_TO_DEVICE) | ||
866 | ? "write" : "read", | ||
867 | status); | ||
868 | break; | ||
869 | } | ||
870 | } | ||
871 | |||
872 | /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that | ||
873 | * can be issued before multiblock writes. Unlike its more widely | ||
874 | * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), | ||
875 | * that can affect the STOP_TRAN logic. Complete (and current) | ||
876 | * MMC specs should sort that out before Linux starts using CMD23. | ||
877 | */ | ||
878 | if (direction == DMA_TO_DEVICE && multiple) { | ||
879 | struct scratch *scratch = host->data; | ||
880 | int tmp; | ||
881 | const unsigned statlen = sizeof(scratch->status); | ||
882 | |||
883 | dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); | ||
884 | |||
885 | /* Tweak the per-block message we set up earlier by morphing | ||
886 | * it to hold single buffer with the token followed by some | ||
887 | * all-ones bytes ... skip N(BR) (0..1), scan the rest for | ||
888 | * "not busy any longer" status, and leave chip selected. | ||
889 | */ | ||
890 | INIT_LIST_HEAD(&host->m.transfers); | ||
891 | list_add(&host->early_status.transfer_list, | ||
892 | &host->m.transfers); | ||
893 | |||
894 | memset(scratch->status, 0xff, statlen); | ||
895 | scratch->status[0] = SPI_TOKEN_STOP_TRAN; | ||
896 | |||
897 | host->early_status.tx_buf = host->early_status.rx_buf; | ||
898 | host->early_status.tx_dma = host->early_status.rx_dma; | ||
899 | host->early_status.len = statlen; | ||
900 | |||
901 | if (host->dma_dev) | ||
902 | dma_sync_single_for_device(host->dma_dev, | ||
903 | host->data_dma, sizeof(*scratch), | ||
904 | DMA_BIDIRECTIONAL); | ||
905 | |||
906 | tmp = spi_sync(spi, &host->m); | ||
907 | if (tmp == 0) | ||
908 | tmp = host->m.status; | ||
909 | |||
910 | if (host->dma_dev) | ||
911 | dma_sync_single_for_cpu(host->dma_dev, | ||
912 | host->data_dma, sizeof(*scratch), | ||
913 | DMA_BIDIRECTIONAL); | ||
914 | |||
915 | if (tmp < 0) { | ||
916 | if (!data->error) | ||
917 | data->error = tmp; | ||
918 | return; | ||
919 | } | ||
920 | |||
921 | /* Ideally we collected "not busy" status with one I/O, | ||
922 | * avoiding wasteful byte-at-a-time scanning... but more | ||
923 | * I/O is often needed. | ||
924 | */ | ||
925 | for (tmp = 2; tmp < statlen; tmp++) { | ||
926 | if (scratch->status[tmp] != 0) | ||
927 | return; | ||
928 | } | ||
929 | tmp = mmc_spi_wait_unbusy(host, writeblock_timeout); | ||
930 | if (tmp < 0 && !data->error) | ||
931 | data->error = tmp; | ||
932 | } | ||
933 | } | ||
934 | |||
935 | /****************************************************************************/ | ||
936 | |||
937 | /* | ||
938 | * MMC driver implementation -- the interface to the MMC stack | ||
939 | */ | ||
940 | |||
941 | static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) | ||
942 | { | ||
943 | struct mmc_spi_host *host = mmc_priv(mmc); | ||
944 | int status = -EINVAL; | ||
945 | |||
946 | #ifdef DEBUG | ||
947 | /* MMC core and layered drivers *MUST* issue SPI-aware commands */ | ||
948 | { | ||
949 | struct mmc_command *cmd; | ||
950 | int invalid = 0; | ||
951 | |||
952 | cmd = mrq->cmd; | ||
953 | if (!mmc_spi_resp_type(cmd)) { | ||
954 | dev_dbg(&host->spi->dev, "bogus command\n"); | ||
955 | cmd->error = -EINVAL; | ||
956 | invalid = 1; | ||
957 | } | ||
958 | |||
959 | cmd = mrq->stop; | ||
960 | if (cmd && !mmc_spi_resp_type(cmd)) { | ||
961 | dev_dbg(&host->spi->dev, "bogus STOP command\n"); | ||
962 | cmd->error = -EINVAL; | ||
963 | invalid = 1; | ||
964 | } | ||
965 | |||
966 | if (invalid) { | ||
967 | dump_stack(); | ||
968 | mmc_request_done(host->mmc, mrq); | ||
969 | return; | ||
970 | } | ||
971 | } | ||
972 | #endif | ||
973 | |||
974 | /* issue command; then optionally data and stop */ | ||
975 | status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); | ||
976 | if (status == 0 && mrq->data) { | ||
977 | mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); | ||
978 | if (mrq->stop) | ||
979 | status = mmc_spi_command_send(host, mrq, mrq->stop, 0); | ||
980 | else | ||
981 | mmc_cs_off(host); | ||
982 | } | ||
983 | |||
984 | mmc_request_done(host->mmc, mrq); | ||
985 | } | ||
986 | |||
987 | /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" | ||
988 | * | ||
989 | * NOTE that here we can't know that the card has just been powered up; | ||
990 | * not all MMC/SD sockets support power switching. | ||
991 | * | ||
992 | * FIXME when the card is still in SPI mode, e.g. from a previous kernel, | ||
993 | * this doesn't seem to do the right thing at all... | ||
994 | */ | ||
995 | static void mmc_spi_initsequence(struct mmc_spi_host *host) | ||
996 | { | ||
997 | /* Try to be very sure any previous command has completed; | ||
998 | * wait till not-busy, skip debris from any old commands. | ||
999 | */ | ||
1000 | mmc_spi_wait_unbusy(host, r1b_timeout); | ||
1001 | mmc_spi_readbytes(host, 10); | ||
1002 | |||
1003 | /* | ||
1004 | * Do a burst with chipselect active-high. We need to do this to | ||
1005 | * meet the requirement of 74 clock cycles with both chipselect | ||
1006 | * and CMD (MOSI) high before CMD0 ... after the card has been | ||
1007 | * powered up to Vdd(min), and so is ready to take commands. | ||
1008 | * | ||
1009 | * Some cards are particularly needy of this (e.g. Viking "SD256") | ||
1010 | * while most others don't seem to care. | ||
1011 | * | ||
1012 | * Note that this is one of the places MMC/SD plays games with the | ||
1013 | * SPI protocol. Another is that when chipselect is released while | ||
1014 | * the card returns BUSY status, the clock must issue several cycles | ||
1015 | * with chipselect high before the card will stop driving its output. | ||
1016 | */ | ||
1017 | host->spi->mode |= SPI_CS_HIGH; | ||
1018 | if (spi_setup(host->spi) != 0) { | ||
1019 | /* Just warn; most cards work without it. */ | ||
1020 | dev_warn(&host->spi->dev, | ||
1021 | "can't change chip-select polarity\n"); | ||
1022 | host->spi->mode &= ~SPI_CS_HIGH; | ||
1023 | } else { | ||
1024 | mmc_spi_readbytes(host, 18); | ||
1025 | |||
1026 | host->spi->mode &= ~SPI_CS_HIGH; | ||
1027 | if (spi_setup(host->spi) != 0) { | ||
1028 | /* Wot, we can't get the same setup we had before? */ | ||
1029 | dev_err(&host->spi->dev, | ||
1030 | "can't restore chip-select polarity\n"); | ||
1031 | } | ||
1032 | } | ||
1033 | } | ||
1034 | |||
1035 | static char *mmc_powerstring(u8 power_mode) | ||
1036 | { | ||
1037 | switch (power_mode) { | ||
1038 | case MMC_POWER_OFF: return "off"; | ||
1039 | case MMC_POWER_UP: return "up"; | ||
1040 | case MMC_POWER_ON: return "on"; | ||
1041 | } | ||
1042 | return "?"; | ||
1043 | } | ||
1044 | |||
1045 | static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) | ||
1046 | { | ||
1047 | struct mmc_spi_host *host = mmc_priv(mmc); | ||
1048 | |||
1049 | if (host->power_mode != ios->power_mode) { | ||
1050 | int canpower; | ||
1051 | |||
1052 | canpower = host->pdata && host->pdata->setpower; | ||
1053 | |||
1054 | dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", | ||
1055 | mmc_powerstring(ios->power_mode), | ||
1056 | ios->vdd, | ||
1057 | canpower ? ", can switch" : ""); | ||
1058 | |||
1059 | /* switch power on/off if possible, accounting for | ||
1060 | * max 250msec powerup time if needed. | ||
1061 | */ | ||
1062 | if (canpower) { | ||
1063 | switch (ios->power_mode) { | ||
1064 | case MMC_POWER_OFF: | ||
1065 | case MMC_POWER_UP: | ||
1066 | host->pdata->setpower(&host->spi->dev, | ||
1067 | ios->vdd); | ||
1068 | if (ios->power_mode == MMC_POWER_UP) | ||
1069 | msleep(host->powerup_msecs); | ||
1070 | } | ||
1071 | } | ||
1072 | |||
1073 | /* See 6.4.1 in the simplified SD card physical spec 2.0 */ | ||
1074 | if (ios->power_mode == MMC_POWER_ON) | ||
1075 | mmc_spi_initsequence(host); | ||
1076 | |||
1077 | /* If powering down, ground all card inputs to avoid power | ||
1078 | * delivery from data lines! On a shared SPI bus, this | ||
1079 | * will probably be temporary; 6.4.2 of the simplified SD | ||
1080 | * spec says this must last at least 1msec. | ||
1081 | * | ||
1082 | * - Clock low means CPOL 0, e.g. mode 0 | ||
1083 | * - MOSI low comes from writing zero | ||
1084 | * - Chipselect is usually active low... | ||
1085 | */ | ||
1086 | if (canpower && ios->power_mode == MMC_POWER_OFF) { | ||
1087 | int mres; | ||
1088 | |||
1089 | host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); | ||
1090 | mres = spi_setup(host->spi); | ||
1091 | if (mres < 0) | ||
1092 | dev_dbg(&host->spi->dev, | ||
1093 | "switch to SPI mode 0 failed\n"); | ||
1094 | |||
1095 | if (spi_w8r8(host->spi, 0x00) < 0) | ||
1096 | dev_dbg(&host->spi->dev, | ||
1097 | "put spi signals to low failed\n"); | ||
1098 | |||
1099 | /* | ||
1100 | * Now clock should be low due to spi mode 0; | ||
1101 | * MOSI should be low because of written 0x00; | ||
1102 | * chipselect should be low (it is active low) | ||
1103 | * power supply is off, so now MMC is off too! | ||
1104 | * | ||
1105 | * FIXME no, chipselect can be high since the | ||
1106 | * device is inactive and SPI_CS_HIGH is clear... | ||
1107 | */ | ||
1108 | msleep(10); | ||
1109 | if (mres == 0) { | ||
1110 | host->spi->mode |= (SPI_CPOL|SPI_CPHA); | ||
1111 | mres = spi_setup(host->spi); | ||
1112 | if (mres < 0) | ||
1113 | dev_dbg(&host->spi->dev, | ||
1114 | "switch back to SPI mode 3" | ||
1115 | " failed\n"); | ||
1116 | } | ||
1117 | } | ||
1118 | |||
1119 | host->power_mode = ios->power_mode; | ||
1120 | } | ||
1121 | |||
1122 | if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { | ||
1123 | int status; | ||
1124 | |||
1125 | host->spi->max_speed_hz = ios->clock; | ||
1126 | status = spi_setup(host->spi); | ||
1127 | dev_dbg(&host->spi->dev, | ||
1128 | "mmc_spi: clock to %d Hz, %d\n", | ||
1129 | host->spi->max_speed_hz, status); | ||
1130 | } | ||
1131 | } | ||
1132 | |||
1133 | static int mmc_spi_get_ro(struct mmc_host *mmc) | ||
1134 | { | ||
1135 | struct mmc_spi_host *host = mmc_priv(mmc); | ||
1136 | |||
1137 | if (host->pdata && host->pdata->get_ro) | ||
1138 | return host->pdata->get_ro(mmc->parent); | ||
1139 | /* board doesn't support read only detection; assume writeable */ | ||
1140 | return 0; | ||
1141 | } | ||
1142 | |||
1143 | |||
1144 | static const struct mmc_host_ops mmc_spi_ops = { | ||
1145 | .request = mmc_spi_request, | ||
1146 | .set_ios = mmc_spi_set_ios, | ||
1147 | .get_ro = mmc_spi_get_ro, | ||
1148 | }; | ||
1149 | |||
1150 | |||
1151 | /****************************************************************************/ | ||
1152 | |||
1153 | /* | ||
1154 | * SPI driver implementation | ||
1155 | */ | ||
1156 | |||
1157 | static irqreturn_t | ||
1158 | mmc_spi_detect_irq(int irq, void *mmc) | ||
1159 | { | ||
1160 | struct mmc_spi_host *host = mmc_priv(mmc); | ||
1161 | u16 delay_msec = max(host->pdata->detect_delay, (u16)100); | ||
1162 | |||
1163 | mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); | ||
1164 | return IRQ_HANDLED; | ||
1165 | } | ||
1166 | |||
1167 | static int mmc_spi_probe(struct spi_device *spi) | ||
1168 | { | ||
1169 | void *ones; | ||
1170 | struct mmc_host *mmc; | ||
1171 | struct mmc_spi_host *host; | ||
1172 | int status; | ||
1173 | |||
1174 | /* MMC and SD specs only seem to care that sampling is on the | ||
1175 | * rising edge ... meaning SPI modes 0 or 3. So either SPI mode | ||
1176 | * should be legit. We'll use mode 0 since it seems to be a | ||
1177 | * bit less troublesome on some hardware ... unclear why. | ||
1178 | */ | ||
1179 | spi->mode = SPI_MODE_0; | ||
1180 | spi->bits_per_word = 8; | ||
1181 | |||
1182 | status = spi_setup(spi); | ||
1183 | if (status < 0) { | ||
1184 | dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", | ||
1185 | spi->mode, spi->max_speed_hz / 1000, | ||
1186 | status); | ||
1187 | return status; | ||
1188 | } | ||
1189 | |||
1190 | /* We can use the bus safely iff nobody else will interfere with | ||
1191 | * us. That is, either we have the experimental exclusive access | ||
1192 | * primitives ... or else there's nobody to share it with. | ||
1193 | */ | ||
1194 | if (spi->master->num_chipselect > 1) { | ||
1195 | struct device *parent = spi->dev.parent; | ||
1196 | |||
1197 | /* If there are multiple devices on this bus, we | ||
1198 | * can't proceed. | ||
1199 | */ | ||
1200 | spin_lock(&parent->klist_children.k_lock); | ||
1201 | if (parent->klist_children.k_list.next | ||
1202 | != parent->klist_children.k_list.prev) | ||
1203 | status = -EMLINK; | ||
1204 | else | ||
1205 | status = 0; | ||
1206 | spin_unlock(&parent->klist_children.k_lock); | ||
1207 | if (status < 0) { | ||
1208 | dev_err(&spi->dev, "can't share SPI bus\n"); | ||
1209 | return status; | ||
1210 | } | ||
1211 | |||
1212 | /* REVISIT we can't guarantee another device won't | ||
1213 | * be added later. It's uncommon though ... for now, | ||
1214 | * work as if this is safe. | ||
1215 | */ | ||
1216 | dev_warn(&spi->dev, "ASSUMING unshared SPI bus!\n"); | ||
1217 | } | ||
1218 | |||
1219 | /* We need a supply of ones to transmit. This is the only time | ||
1220 | * the CPU touches these, so cache coherency isn't a concern. | ||
1221 | * | ||
1222 | * NOTE if many systems use more than one MMC-over-SPI connector | ||
1223 | * it'd save some memory to share this. That's evidently rare. | ||
1224 | */ | ||
1225 | status = -ENOMEM; | ||
1226 | ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); | ||
1227 | if (!ones) | ||
1228 | goto nomem; | ||
1229 | memset(ones, 0xff, MMC_SPI_BLOCKSIZE); | ||
1230 | |||
1231 | mmc = mmc_alloc_host(sizeof(*host), &spi->dev); | ||
1232 | if (!mmc) | ||
1233 | goto nomem; | ||
1234 | |||
1235 | mmc->ops = &mmc_spi_ops; | ||
1236 | mmc->max_blk_size = MMC_SPI_BLOCKSIZE; | ||
1237 | |||
1238 | /* As long as we keep track of the number of successfully | ||
1239 | * transmitted blocks, we're good for multiwrite. | ||
1240 | */ | ||
1241 | mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE; | ||
1242 | |||
1243 | /* SPI doesn't need the lowspeed device identification thing for | ||
1244 | * MMC or SD cards, since it never comes up in open drain mode. | ||
1245 | * That's good; some SPI masters can't handle very low speeds! | ||
1246 | * | ||
1247 | * However, low speed SDIO cards need not handle over 400 KHz; | ||
1248 | * that's the only reason not to use a few MHz for f_min (until | ||
1249 | * the upper layer reads the target frequency from the CSD). | ||
1250 | */ | ||
1251 | mmc->f_min = 400000; | ||
1252 | mmc->f_max = spi->max_speed_hz; | ||
1253 | |||
1254 | host = mmc_priv(mmc); | ||
1255 | host->mmc = mmc; | ||
1256 | host->spi = spi; | ||
1257 | |||
1258 | host->ones = ones; | ||
1259 | |||
1260 | /* Platform data is used to hook up things like card sensing | ||
1261 | * and power switching gpios. | ||
1262 | */ | ||
1263 | host->pdata = spi->dev.platform_data; | ||
1264 | if (host->pdata) | ||
1265 | mmc->ocr_avail = host->pdata->ocr_mask; | ||
1266 | if (!mmc->ocr_avail) { | ||
1267 | dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); | ||
1268 | mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; | ||
1269 | } | ||
1270 | if (host->pdata && host->pdata->setpower) { | ||
1271 | host->powerup_msecs = host->pdata->powerup_msecs; | ||
1272 | if (!host->powerup_msecs || host->powerup_msecs > 250) | ||
1273 | host->powerup_msecs = 250; | ||
1274 | } | ||
1275 | |||
1276 | dev_set_drvdata(&spi->dev, mmc); | ||
1277 | |||
1278 | /* preallocate dma buffers */ | ||
1279 | host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); | ||
1280 | if (!host->data) | ||
1281 | goto fail_nobuf1; | ||
1282 | |||
1283 | if (spi->master->cdev.dev->dma_mask) { | ||
1284 | struct device *dev = spi->master->cdev.dev; | ||
1285 | |||
1286 | host->dma_dev = dev; | ||
1287 | host->ones_dma = dma_map_single(dev, ones, | ||
1288 | MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); | ||
1289 | host->data_dma = dma_map_single(dev, host->data, | ||
1290 | sizeof(*host->data), DMA_BIDIRECTIONAL); | ||
1291 | |||
1292 | /* REVISIT in theory those map operations can fail... */ | ||
1293 | |||
1294 | dma_sync_single_for_cpu(host->dma_dev, | ||
1295 | host->data_dma, sizeof(*host->data), | ||
1296 | DMA_BIDIRECTIONAL); | ||
1297 | } | ||
1298 | |||
1299 | /* setup message for status/busy readback */ | ||
1300 | spi_message_init(&host->readback); | ||
1301 | host->readback.is_dma_mapped = (host->dma_dev != NULL); | ||
1302 | |||
1303 | spi_message_add_tail(&host->status, &host->readback); | ||
1304 | host->status.tx_buf = host->ones; | ||
1305 | host->status.tx_dma = host->ones_dma; | ||
1306 | host->status.rx_buf = &host->data->status; | ||
1307 | host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); | ||
1308 | host->status.cs_change = 1; | ||
1309 | |||
1310 | /* register card detect irq */ | ||
1311 | if (host->pdata && host->pdata->init) { | ||
1312 | status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); | ||
1313 | if (status != 0) | ||
1314 | goto fail_glue_init; | ||
1315 | } | ||
1316 | |||
1317 | status = mmc_add_host(mmc); | ||
1318 | if (status != 0) | ||
1319 | goto fail_add_host; | ||
1320 | |||
1321 | dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n", | ||
1322 | mmc->class_dev.bus_id, | ||
1323 | host->dma_dev ? "" : ", no DMA", | ||
1324 | (host->pdata && host->pdata->get_ro) | ||
1325 | ? "" : ", no WP", | ||
1326 | (host->pdata && host->pdata->setpower) | ||
1327 | ? "" : ", no poweroff"); | ||
1328 | return 0; | ||
1329 | |||
1330 | fail_add_host: | ||
1331 | mmc_remove_host (mmc); | ||
1332 | fail_glue_init: | ||
1333 | if (host->dma_dev) | ||
1334 | dma_unmap_single(host->dma_dev, host->data_dma, | ||
1335 | sizeof(*host->data), DMA_BIDIRECTIONAL); | ||
1336 | kfree(host->data); | ||
1337 | |||
1338 | fail_nobuf1: | ||
1339 | mmc_free_host(mmc); | ||
1340 | dev_set_drvdata(&spi->dev, NULL); | ||
1341 | |||
1342 | nomem: | ||
1343 | kfree(ones); | ||
1344 | return status; | ||
1345 | } | ||
1346 | |||
1347 | |||
1348 | static int __devexit mmc_spi_remove(struct spi_device *spi) | ||
1349 | { | ||
1350 | struct mmc_host *mmc = dev_get_drvdata(&spi->dev); | ||
1351 | struct mmc_spi_host *host; | ||
1352 | |||
1353 | if (mmc) { | ||
1354 | host = mmc_priv(mmc); | ||
1355 | |||
1356 | /* prevent new mmc_detect_change() calls */ | ||
1357 | if (host->pdata && host->pdata->exit) | ||
1358 | host->pdata->exit(&spi->dev, mmc); | ||
1359 | |||
1360 | mmc_remove_host(mmc); | ||
1361 | |||
1362 | if (host->dma_dev) { | ||
1363 | dma_unmap_single(host->dma_dev, host->ones_dma, | ||
1364 | MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); | ||
1365 | dma_unmap_single(host->dma_dev, host->data_dma, | ||
1366 | sizeof(*host->data), DMA_BIDIRECTIONAL); | ||
1367 | } | ||
1368 | |||
1369 | kfree(host->data); | ||
1370 | kfree(host->ones); | ||
1371 | |||
1372 | spi->max_speed_hz = mmc->f_max; | ||
1373 | mmc_free_host(mmc); | ||
1374 | dev_set_drvdata(&spi->dev, NULL); | ||
1375 | } | ||
1376 | return 0; | ||
1377 | } | ||
1378 | |||
1379 | |||
1380 | static struct spi_driver mmc_spi_driver = { | ||
1381 | .driver = { | ||
1382 | .name = "mmc_spi", | ||
1383 | .bus = &spi_bus_type, | ||
1384 | .owner = THIS_MODULE, | ||
1385 | }, | ||
1386 | .probe = mmc_spi_probe, | ||
1387 | .remove = __devexit_p(mmc_spi_remove), | ||
1388 | }; | ||
1389 | |||
1390 | |||
1391 | static int __init mmc_spi_init(void) | ||
1392 | { | ||
1393 | return spi_register_driver(&mmc_spi_driver); | ||
1394 | } | ||
1395 | module_init(mmc_spi_init); | ||
1396 | |||
1397 | |||
1398 | static void __exit mmc_spi_exit(void) | ||
1399 | { | ||
1400 | spi_unregister_driver(&mmc_spi_driver); | ||
1401 | } | ||
1402 | module_exit(mmc_spi_exit); | ||
1403 | |||
1404 | |||
1405 | MODULE_AUTHOR("Mike Lavender, David Brownell, " | ||
1406 | "Hans-Peter Nilsson, Jan Nikitenko"); | ||
1407 | MODULE_DESCRIPTION("SPI SD/MMC host driver"); | ||
1408 | MODULE_LICENSE("GPL"); | ||