diff options
author | Dean Nelson <dcn@sgi.com> | 2008-04-22 15:46:56 -0400 |
---|---|---|
committer | Tony Luck <tony.luck@intel.com> | 2008-04-22 18:08:17 -0400 |
commit | 45d9ca492e4bd1522d1b5bd125c2908f1cee3d4a (patch) | |
tree | dfbe831a5f71159855c3a252856664411ca53f8a /drivers/misc/sgi-xp | |
parent | 9010eff0eadfe4eb60c3f0c71573f0fc505c31e3 (diff) |
[IA64] move XP and XPC to drivers/misc/sgi-xp
Move XPC and XPNET from arch/ia64/sn/kernel to drivers/misc/sgi-xp.
Signed-off-by: Dean Nelson <dcn@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Diffstat (limited to 'drivers/misc/sgi-xp')
-rw-r--r-- | drivers/misc/sgi-xp/Makefile | 11 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xp.h | 485 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xp_main.c | 290 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xp_nofault.S | 36 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpc.h | 1267 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpc_channel.c | 2379 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpc_main.c | 1431 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpc_partition.c | 1239 | ||||
-rw-r--r-- | drivers/misc/sgi-xp/xpnet.c | 718 |
9 files changed, 7856 insertions, 0 deletions
diff --git a/drivers/misc/sgi-xp/Makefile b/drivers/misc/sgi-xp/Makefile new file mode 100644 index 000000000000..b6e40a7958ce --- /dev/null +++ b/drivers/misc/sgi-xp/Makefile | |||
@@ -0,0 +1,11 @@ | |||
1 | # | ||
2 | # Makefile for SGI's XP devices. | ||
3 | # | ||
4 | |||
5 | obj-$(CONFIG_SGI_XP) += xp.o | ||
6 | xp-y := xp_main.o xp_nofault.o | ||
7 | |||
8 | obj-$(CONFIG_SGI_XP) += xpc.o | ||
9 | xpc-y := xpc_main.o xpc_channel.o xpc_partition.o | ||
10 | |||
11 | obj-$(CONFIG_SGI_XP) += xpnet.o | ||
diff --git a/drivers/misc/sgi-xp/xp.h b/drivers/misc/sgi-xp/xp.h new file mode 100644 index 000000000000..fb65981754c3 --- /dev/null +++ b/drivers/misc/sgi-xp/xp.h | |||
@@ -0,0 +1,485 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 2004-2008 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * External Cross Partition (XP) structures and defines. | ||
12 | */ | ||
13 | |||
14 | |||
15 | #ifndef _DRIVERS_MISC_SGIXP_XP_H | ||
16 | #define _DRIVERS_MISC_SGIXP_XP_H | ||
17 | |||
18 | |||
19 | #include <linux/cache.h> | ||
20 | #include <linux/hardirq.h> | ||
21 | #include <linux/mutex.h> | ||
22 | #include <asm/sn/types.h> | ||
23 | #include <asm/sn/bte.h> | ||
24 | |||
25 | |||
26 | #ifdef USE_DBUG_ON | ||
27 | #define DBUG_ON(condition) BUG_ON(condition) | ||
28 | #else | ||
29 | #define DBUG_ON(condition) | ||
30 | #endif | ||
31 | |||
32 | |||
33 | /* | ||
34 | * Define the maximum number of logically defined partitions the system | ||
35 | * can support. It is constrained by the maximum number of hardware | ||
36 | * partitionable regions. The term 'region' in this context refers to the | ||
37 | * minimum number of nodes that can comprise an access protection grouping. | ||
38 | * The access protection is in regards to memory, IPI and IOI. | ||
39 | * | ||
40 | * The maximum number of hardware partitionable regions is equal to the | ||
41 | * maximum number of nodes in the entire system divided by the minimum number | ||
42 | * of nodes that comprise an access protection grouping. | ||
43 | */ | ||
44 | #define XP_MAX_PARTITIONS 64 | ||
45 | |||
46 | |||
47 | /* | ||
48 | * Define the number of u64s required to represent all the C-brick nasids | ||
49 | * as a bitmap. The cross-partition kernel modules deal only with | ||
50 | * C-brick nasids, thus the need for bitmaps which don't account for | ||
51 | * odd-numbered (non C-brick) nasids. | ||
52 | */ | ||
53 | #define XP_MAX_PHYSNODE_ID (MAX_NUMALINK_NODES / 2) | ||
54 | #define XP_NASID_MASK_BYTES ((XP_MAX_PHYSNODE_ID + 7) / 8) | ||
55 | #define XP_NASID_MASK_WORDS ((XP_MAX_PHYSNODE_ID + 63) / 64) | ||
56 | |||
57 | |||
58 | /* | ||
59 | * Wrapper for bte_copy() that should it return a failure status will retry | ||
60 | * the bte_copy() once in the hope that the failure was due to a temporary | ||
61 | * aberration (i.e., the link going down temporarily). | ||
62 | * | ||
63 | * src - physical address of the source of the transfer. | ||
64 | * vdst - virtual address of the destination of the transfer. | ||
65 | * len - number of bytes to transfer from source to destination. | ||
66 | * mode - see bte_copy() for definition. | ||
67 | * notification - see bte_copy() for definition. | ||
68 | * | ||
69 | * Note: xp_bte_copy() should never be called while holding a spinlock. | ||
70 | */ | ||
71 | static inline bte_result_t | ||
72 | xp_bte_copy(u64 src, u64 vdst, u64 len, u64 mode, void *notification) | ||
73 | { | ||
74 | bte_result_t ret; | ||
75 | u64 pdst = ia64_tpa(vdst); | ||
76 | |||
77 | |||
78 | /* | ||
79 | * Ensure that the physically mapped memory is contiguous. | ||
80 | * | ||
81 | * We do this by ensuring that the memory is from region 7 only. | ||
82 | * If the need should arise to use memory from one of the other | ||
83 | * regions, then modify the BUG_ON() statement to ensure that the | ||
84 | * memory from that region is always physically contiguous. | ||
85 | */ | ||
86 | BUG_ON(REGION_NUMBER(vdst) != RGN_KERNEL); | ||
87 | |||
88 | ret = bte_copy(src, pdst, len, mode, notification); | ||
89 | if ((ret != BTE_SUCCESS) && BTE_ERROR_RETRY(ret)) { | ||
90 | if (!in_interrupt()) { | ||
91 | cond_resched(); | ||
92 | } | ||
93 | ret = bte_copy(src, pdst, len, mode, notification); | ||
94 | } | ||
95 | |||
96 | return ret; | ||
97 | } | ||
98 | |||
99 | |||
100 | /* | ||
101 | * XPC establishes channel connections between the local partition and any | ||
102 | * other partition that is currently up. Over these channels, kernel-level | ||
103 | * `users' can communicate with their counterparts on the other partitions. | ||
104 | * | ||
105 | * The maxinum number of channels is limited to eight. For performance reasons, | ||
106 | * the internal cross partition structures require sixteen bytes per channel, | ||
107 | * and eight allows all of this interface-shared info to fit in one cache line. | ||
108 | * | ||
109 | * XPC_NCHANNELS reflects the total number of channels currently defined. | ||
110 | * If the need for additional channels arises, one can simply increase | ||
111 | * XPC_NCHANNELS accordingly. If the day should come where that number | ||
112 | * exceeds the MAXIMUM number of channels allowed (eight), then one will need | ||
113 | * to make changes to the XPC code to allow for this. | ||
114 | */ | ||
115 | #define XPC_MEM_CHANNEL 0 /* memory channel number */ | ||
116 | #define XPC_NET_CHANNEL 1 /* network channel number */ | ||
117 | |||
118 | #define XPC_NCHANNELS 2 /* #of defined channels */ | ||
119 | #define XPC_MAX_NCHANNELS 8 /* max #of channels allowed */ | ||
120 | |||
121 | #if XPC_NCHANNELS > XPC_MAX_NCHANNELS | ||
122 | #error XPC_NCHANNELS exceeds MAXIMUM allowed. | ||
123 | #endif | ||
124 | |||
125 | |||
126 | /* | ||
127 | * The format of an XPC message is as follows: | ||
128 | * | ||
129 | * +-------+--------------------------------+ | ||
130 | * | flags |////////////////////////////////| | ||
131 | * +-------+--------------------------------+ | ||
132 | * | message # | | ||
133 | * +----------------------------------------+ | ||
134 | * | payload (user-defined message) | | ||
135 | * | | | ||
136 | * : | ||
137 | * | | | ||
138 | * +----------------------------------------+ | ||
139 | * | ||
140 | * The size of the payload is defined by the user via xpc_connect(). A user- | ||
141 | * defined message resides in the payload area. | ||
142 | * | ||
143 | * The user should have no dealings with the message header, but only the | ||
144 | * message's payload. When a message entry is allocated (via xpc_allocate()) | ||
145 | * a pointer to the payload area is returned and not the actual beginning of | ||
146 | * the XPC message. The user then constructs a message in the payload area | ||
147 | * and passes that pointer as an argument on xpc_send() or xpc_send_notify(). | ||
148 | * | ||
149 | * The size of a message entry (within a message queue) must be a cacheline | ||
150 | * sized multiple in order to facilitate the BTE transfer of messages from one | ||
151 | * message queue to another. A macro, XPC_MSG_SIZE(), is provided for the user | ||
152 | * that wants to fit as many msg entries as possible in a given memory size | ||
153 | * (e.g. a memory page). | ||
154 | */ | ||
155 | struct xpc_msg { | ||
156 | u8 flags; /* FOR XPC INTERNAL USE ONLY */ | ||
157 | u8 reserved[7]; /* FOR XPC INTERNAL USE ONLY */ | ||
158 | s64 number; /* FOR XPC INTERNAL USE ONLY */ | ||
159 | |||
160 | u64 payload; /* user defined portion of message */ | ||
161 | }; | ||
162 | |||
163 | |||
164 | #define XPC_MSG_PAYLOAD_OFFSET (u64) (&((struct xpc_msg *)0)->payload) | ||
165 | #define XPC_MSG_SIZE(_payload_size) \ | ||
166 | L1_CACHE_ALIGN(XPC_MSG_PAYLOAD_OFFSET + (_payload_size)) | ||
167 | |||
168 | |||
169 | /* | ||
170 | * Define the return values and values passed to user's callout functions. | ||
171 | * (It is important to add new value codes at the end just preceding | ||
172 | * xpcUnknownReason, which must have the highest numerical value.) | ||
173 | */ | ||
174 | enum xpc_retval { | ||
175 | xpcSuccess = 0, | ||
176 | |||
177 | xpcNotConnected, /* 1: channel is not connected */ | ||
178 | xpcConnected, /* 2: channel connected (opened) */ | ||
179 | xpcRETIRED1, /* 3: (formerly xpcDisconnected) */ | ||
180 | |||
181 | xpcMsgReceived, /* 4: message received */ | ||
182 | xpcMsgDelivered, /* 5: message delivered and acknowledged */ | ||
183 | |||
184 | xpcRETIRED2, /* 6: (formerly xpcTransferFailed) */ | ||
185 | |||
186 | xpcNoWait, /* 7: operation would require wait */ | ||
187 | xpcRetry, /* 8: retry operation */ | ||
188 | xpcTimeout, /* 9: timeout in xpc_allocate_msg_wait() */ | ||
189 | xpcInterrupted, /* 10: interrupted wait */ | ||
190 | |||
191 | xpcUnequalMsgSizes, /* 11: message size disparity between sides */ | ||
192 | xpcInvalidAddress, /* 12: invalid address */ | ||
193 | |||
194 | xpcNoMemory, /* 13: no memory available for XPC structures */ | ||
195 | xpcLackOfResources, /* 14: insufficient resources for operation */ | ||
196 | xpcUnregistered, /* 15: channel is not registered */ | ||
197 | xpcAlreadyRegistered, /* 16: channel is already registered */ | ||
198 | |||
199 | xpcPartitionDown, /* 17: remote partition is down */ | ||
200 | xpcNotLoaded, /* 18: XPC module is not loaded */ | ||
201 | xpcUnloading, /* 19: this side is unloading XPC module */ | ||
202 | |||
203 | xpcBadMagic, /* 20: XPC MAGIC string not found */ | ||
204 | |||
205 | xpcReactivating, /* 21: remote partition was reactivated */ | ||
206 | |||
207 | xpcUnregistering, /* 22: this side is unregistering channel */ | ||
208 | xpcOtherUnregistering, /* 23: other side is unregistering channel */ | ||
209 | |||
210 | xpcCloneKThread, /* 24: cloning kernel thread */ | ||
211 | xpcCloneKThreadFailed, /* 25: cloning kernel thread failed */ | ||
212 | |||
213 | xpcNoHeartbeat, /* 26: remote partition has no heartbeat */ | ||
214 | |||
215 | xpcPioReadError, /* 27: PIO read error */ | ||
216 | xpcPhysAddrRegFailed, /* 28: registration of phys addr range failed */ | ||
217 | |||
218 | xpcBteDirectoryError, /* 29: maps to BTEFAIL_DIR */ | ||
219 | xpcBtePoisonError, /* 30: maps to BTEFAIL_POISON */ | ||
220 | xpcBteWriteError, /* 31: maps to BTEFAIL_WERR */ | ||
221 | xpcBteAccessError, /* 32: maps to BTEFAIL_ACCESS */ | ||
222 | xpcBtePWriteError, /* 33: maps to BTEFAIL_PWERR */ | ||
223 | xpcBtePReadError, /* 34: maps to BTEFAIL_PRERR */ | ||
224 | xpcBteTimeOutError, /* 35: maps to BTEFAIL_TOUT */ | ||
225 | xpcBteXtalkError, /* 36: maps to BTEFAIL_XTERR */ | ||
226 | xpcBteNotAvailable, /* 37: maps to BTEFAIL_NOTAVAIL */ | ||
227 | xpcBteUnmappedError, /* 38: unmapped BTEFAIL_ error */ | ||
228 | |||
229 | xpcBadVersion, /* 39: bad version number */ | ||
230 | xpcVarsNotSet, /* 40: the XPC variables are not set up */ | ||
231 | xpcNoRsvdPageAddr, /* 41: unable to get rsvd page's phys addr */ | ||
232 | xpcInvalidPartid, /* 42: invalid partition ID */ | ||
233 | xpcLocalPartid, /* 43: local partition ID */ | ||
234 | |||
235 | xpcOtherGoingDown, /* 44: other side going down, reason unknown */ | ||
236 | xpcSystemGoingDown, /* 45: system is going down, reason unknown */ | ||
237 | xpcSystemHalt, /* 46: system is being halted */ | ||
238 | xpcSystemReboot, /* 47: system is being rebooted */ | ||
239 | xpcSystemPoweroff, /* 48: system is being powered off */ | ||
240 | |||
241 | xpcDisconnecting, /* 49: channel disconnecting (closing) */ | ||
242 | |||
243 | xpcOpenCloseError, /* 50: channel open/close protocol error */ | ||
244 | |||
245 | xpcDisconnected, /* 51: channel disconnected (closed) */ | ||
246 | |||
247 | xpcBteSh2Start, /* 52: BTE CRB timeout */ | ||
248 | |||
249 | /* 53: 0x1 BTE Error Response Short */ | ||
250 | xpcBteSh2RspShort = xpcBteSh2Start + BTEFAIL_SH2_RESP_SHORT, | ||
251 | |||
252 | /* 54: 0x2 BTE Error Response Long */ | ||
253 | xpcBteSh2RspLong = xpcBteSh2Start + BTEFAIL_SH2_RESP_LONG, | ||
254 | |||
255 | /* 56: 0x4 BTE Error Response DSB */ | ||
256 | xpcBteSh2RspDSB = xpcBteSh2Start + BTEFAIL_SH2_RESP_DSP, | ||
257 | |||
258 | /* 60: 0x8 BTE Error Response Access */ | ||
259 | xpcBteSh2RspAccess = xpcBteSh2Start + BTEFAIL_SH2_RESP_ACCESS, | ||
260 | |||
261 | /* 68: 0x10 BTE Error CRB timeout */ | ||
262 | xpcBteSh2CRBTO = xpcBteSh2Start + BTEFAIL_SH2_CRB_TO, | ||
263 | |||
264 | /* 84: 0x20 BTE Error NACK limit */ | ||
265 | xpcBteSh2NACKLimit = xpcBteSh2Start + BTEFAIL_SH2_NACK_LIMIT, | ||
266 | |||
267 | /* 115: BTE end */ | ||
268 | xpcBteSh2End = xpcBteSh2Start + BTEFAIL_SH2_ALL, | ||
269 | |||
270 | xpcUnknownReason /* 116: unknown reason -- must be last in list */ | ||
271 | }; | ||
272 | |||
273 | |||
274 | /* | ||
275 | * Define the callout function types used by XPC to update the user on | ||
276 | * connection activity and state changes (via the user function registered by | ||
277 | * xpc_connect()) and to notify them of messages received and delivered (via | ||
278 | * the user function registered by xpc_send_notify()). | ||
279 | * | ||
280 | * The two function types are xpc_channel_func and xpc_notify_func and | ||
281 | * both share the following arguments, with the exception of "data", which | ||
282 | * only xpc_channel_func has. | ||
283 | * | ||
284 | * Arguments: | ||
285 | * | ||
286 | * reason - reason code. (See following table.) | ||
287 | * partid - partition ID associated with condition. | ||
288 | * ch_number - channel # associated with condition. | ||
289 | * data - pointer to optional data. (See following table.) | ||
290 | * key - pointer to optional user-defined value provided as the "key" | ||
291 | * argument to xpc_connect() or xpc_send_notify(). | ||
292 | * | ||
293 | * In the following table the "Optional Data" column applies to callouts made | ||
294 | * to functions registered by xpc_connect(). A "NA" in that column indicates | ||
295 | * that this reason code can be passed to functions registered by | ||
296 | * xpc_send_notify() (i.e. they don't have data arguments). | ||
297 | * | ||
298 | * Also, the first three reason codes in the following table indicate | ||
299 | * success, whereas the others indicate failure. When a failure reason code | ||
300 | * is received, one can assume that the channel is not connected. | ||
301 | * | ||
302 | * | ||
303 | * Reason Code | Cause | Optional Data | ||
304 | * =====================+================================+===================== | ||
305 | * xpcConnected | connection has been established| max #of entries | ||
306 | * | to the specified partition on | allowed in message | ||
307 | * | the specified channel | queue | ||
308 | * ---------------------+--------------------------------+--------------------- | ||
309 | * xpcMsgReceived | an XPC message arrived from | address of payload | ||
310 | * | the specified partition on the | | ||
311 | * | specified channel | [the user must call | ||
312 | * | | xpc_received() when | ||
313 | * | | finished with the | ||
314 | * | | payload] | ||
315 | * ---------------------+--------------------------------+--------------------- | ||
316 | * xpcMsgDelivered | notification that the message | NA | ||
317 | * | was delivered to the intended | | ||
318 | * | recipient and that they have | | ||
319 | * | acknowledged its receipt by | | ||
320 | * | calling xpc_received() | | ||
321 | * =====================+================================+===================== | ||
322 | * xpcUnequalMsgSizes | can't connect to the specified | NULL | ||
323 | * | partition on the specified | | ||
324 | * | channel because of mismatched | | ||
325 | * | message sizes | | ||
326 | * ---------------------+--------------------------------+--------------------- | ||
327 | * xpcNoMemory | insufficient memory avaiable | NULL | ||
328 | * | to allocate message queue | | ||
329 | * ---------------------+--------------------------------+--------------------- | ||
330 | * xpcLackOfResources | lack of resources to create | NULL | ||
331 | * | the necessary kthreads to | | ||
332 | * | support the channel | | ||
333 | * ---------------------+--------------------------------+--------------------- | ||
334 | * xpcUnregistering | this side's user has | NULL or NA | ||
335 | * | unregistered by calling | | ||
336 | * | xpc_disconnect() | | ||
337 | * ---------------------+--------------------------------+--------------------- | ||
338 | * xpcOtherUnregistering| the other side's user has | NULL or NA | ||
339 | * | unregistered by calling | | ||
340 | * | xpc_disconnect() | | ||
341 | * ---------------------+--------------------------------+--------------------- | ||
342 | * xpcNoHeartbeat | the other side's XPC is no | NULL or NA | ||
343 | * | longer heartbeating | | ||
344 | * | | | ||
345 | * ---------------------+--------------------------------+--------------------- | ||
346 | * xpcUnloading | this side's XPC module is | NULL or NA | ||
347 | * | being unloaded | | ||
348 | * | | | ||
349 | * ---------------------+--------------------------------+--------------------- | ||
350 | * xpcOtherUnloading | the other side's XPC module is | NULL or NA | ||
351 | * | is being unloaded | | ||
352 | * | | | ||
353 | * ---------------------+--------------------------------+--------------------- | ||
354 | * xpcPioReadError | xp_nofault_PIOR() returned an | NULL or NA | ||
355 | * | error while sending an IPI | | ||
356 | * | | | ||
357 | * ---------------------+--------------------------------+--------------------- | ||
358 | * xpcInvalidAddress | the address either received or | NULL or NA | ||
359 | * | sent by the specified partition| | ||
360 | * | is invalid | | ||
361 | * ---------------------+--------------------------------+--------------------- | ||
362 | * xpcBteNotAvailable | attempt to pull data from the | NULL or NA | ||
363 | * xpcBtePoisonError | specified partition over the | | ||
364 | * xpcBteWriteError | specified channel via a | | ||
365 | * xpcBteAccessError | bte_copy() failed | | ||
366 | * xpcBteTimeOutError | | | ||
367 | * xpcBteXtalkError | | | ||
368 | * xpcBteDirectoryError | | | ||
369 | * xpcBteGenericError | | | ||
370 | * xpcBteUnmappedError | | | ||
371 | * ---------------------+--------------------------------+--------------------- | ||
372 | * xpcUnknownReason | the specified channel to the | NULL or NA | ||
373 | * | specified partition was | | ||
374 | * | unavailable for unknown reasons| | ||
375 | * =====================+================================+===================== | ||
376 | */ | ||
377 | |||
378 | typedef void (*xpc_channel_func)(enum xpc_retval reason, partid_t partid, | ||
379 | int ch_number, void *data, void *key); | ||
380 | |||
381 | typedef void (*xpc_notify_func)(enum xpc_retval reason, partid_t partid, | ||
382 | int ch_number, void *key); | ||
383 | |||
384 | |||
385 | /* | ||
386 | * The following is a registration entry. There is a global array of these, | ||
387 | * one per channel. It is used to record the connection registration made | ||
388 | * by the users of XPC. As long as a registration entry exists, for any | ||
389 | * partition that comes up, XPC will attempt to establish a connection on | ||
390 | * that channel. Notification that a connection has been made will occur via | ||
391 | * the xpc_channel_func function. | ||
392 | * | ||
393 | * The 'func' field points to the function to call when aynchronous | ||
394 | * notification is required for such events as: a connection established/lost, | ||
395 | * or an incoming message received, or an error condition encountered. A | ||
396 | * non-NULL 'func' field indicates that there is an active registration for | ||
397 | * the channel. | ||
398 | */ | ||
399 | struct xpc_registration { | ||
400 | struct mutex mutex; | ||
401 | xpc_channel_func func; /* function to call */ | ||
402 | void *key; /* pointer to user's key */ | ||
403 | u16 nentries; /* #of msg entries in local msg queue */ | ||
404 | u16 msg_size; /* message queue's message size */ | ||
405 | u32 assigned_limit; /* limit on #of assigned kthreads */ | ||
406 | u32 idle_limit; /* limit on #of idle kthreads */ | ||
407 | } ____cacheline_aligned; | ||
408 | |||
409 | |||
410 | #define XPC_CHANNEL_REGISTERED(_c) (xpc_registrations[_c].func != NULL) | ||
411 | |||
412 | |||
413 | /* the following are valid xpc_allocate() flags */ | ||
414 | #define XPC_WAIT 0 /* wait flag */ | ||
415 | #define XPC_NOWAIT 1 /* no wait flag */ | ||
416 | |||
417 | |||
418 | struct xpc_interface { | ||
419 | void (*connect)(int); | ||
420 | void (*disconnect)(int); | ||
421 | enum xpc_retval (*allocate)(partid_t, int, u32, void **); | ||
422 | enum xpc_retval (*send)(partid_t, int, void *); | ||
423 | enum xpc_retval (*send_notify)(partid_t, int, void *, | ||
424 | xpc_notify_func, void *); | ||
425 | void (*received)(partid_t, int, void *); | ||
426 | enum xpc_retval (*partid_to_nasids)(partid_t, void *); | ||
427 | }; | ||
428 | |||
429 | |||
430 | extern struct xpc_interface xpc_interface; | ||
431 | |||
432 | extern void xpc_set_interface(void (*)(int), | ||
433 | void (*)(int), | ||
434 | enum xpc_retval (*)(partid_t, int, u32, void **), | ||
435 | enum xpc_retval (*)(partid_t, int, void *), | ||
436 | enum xpc_retval (*)(partid_t, int, void *, xpc_notify_func, | ||
437 | void *), | ||
438 | void (*)(partid_t, int, void *), | ||
439 | enum xpc_retval (*)(partid_t, void *)); | ||
440 | extern void xpc_clear_interface(void); | ||
441 | |||
442 | |||
443 | extern enum xpc_retval xpc_connect(int, xpc_channel_func, void *, u16, | ||
444 | u16, u32, u32); | ||
445 | extern void xpc_disconnect(int); | ||
446 | |||
447 | static inline enum xpc_retval | ||
448 | xpc_allocate(partid_t partid, int ch_number, u32 flags, void **payload) | ||
449 | { | ||
450 | return xpc_interface.allocate(partid, ch_number, flags, payload); | ||
451 | } | ||
452 | |||
453 | static inline enum xpc_retval | ||
454 | xpc_send(partid_t partid, int ch_number, void *payload) | ||
455 | { | ||
456 | return xpc_interface.send(partid, ch_number, payload); | ||
457 | } | ||
458 | |||
459 | static inline enum xpc_retval | ||
460 | xpc_send_notify(partid_t partid, int ch_number, void *payload, | ||
461 | xpc_notify_func func, void *key) | ||
462 | { | ||
463 | return xpc_interface.send_notify(partid, ch_number, payload, func, key); | ||
464 | } | ||
465 | |||
466 | static inline void | ||
467 | xpc_received(partid_t partid, int ch_number, void *payload) | ||
468 | { | ||
469 | return xpc_interface.received(partid, ch_number, payload); | ||
470 | } | ||
471 | |||
472 | static inline enum xpc_retval | ||
473 | xpc_partid_to_nasids(partid_t partid, void *nasids) | ||
474 | { | ||
475 | return xpc_interface.partid_to_nasids(partid, nasids); | ||
476 | } | ||
477 | |||
478 | |||
479 | extern u64 xp_nofault_PIOR_target; | ||
480 | extern int xp_nofault_PIOR(void *); | ||
481 | extern int xp_error_PIOR(void); | ||
482 | |||
483 | |||
484 | #endif /* _DRIVERS_MISC_SGIXP_XP_H */ | ||
485 | |||
diff --git a/drivers/misc/sgi-xp/xp_main.c b/drivers/misc/sgi-xp/xp_main.c new file mode 100644 index 000000000000..5f9f9c2e9298 --- /dev/null +++ b/drivers/misc/sgi-xp/xp_main.c | |||
@@ -0,0 +1,290 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition (XP) base. | ||
12 | * | ||
13 | * XP provides a base from which its users can interact | ||
14 | * with XPC, yet not be dependent on XPC. | ||
15 | * | ||
16 | */ | ||
17 | |||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/interrupt.h> | ||
21 | #include <linux/module.h> | ||
22 | #include <linux/mutex.h> | ||
23 | #include <asm/sn/intr.h> | ||
24 | #include <asm/sn/sn_sal.h> | ||
25 | #include "xp.h" | ||
26 | |||
27 | |||
28 | /* | ||
29 | * Target of nofault PIO read. | ||
30 | */ | ||
31 | u64 xp_nofault_PIOR_target; | ||
32 | |||
33 | |||
34 | /* | ||
35 | * xpc_registrations[] keeps track of xpc_connect()'s done by the kernel-level | ||
36 | * users of XPC. | ||
37 | */ | ||
38 | struct xpc_registration xpc_registrations[XPC_NCHANNELS]; | ||
39 | |||
40 | |||
41 | /* | ||
42 | * Initialize the XPC interface to indicate that XPC isn't loaded. | ||
43 | */ | ||
44 | static enum xpc_retval xpc_notloaded(void) { return xpcNotLoaded; } | ||
45 | |||
46 | struct xpc_interface xpc_interface = { | ||
47 | (void (*)(int)) xpc_notloaded, | ||
48 | (void (*)(int)) xpc_notloaded, | ||
49 | (enum xpc_retval (*)(partid_t, int, u32, void **)) xpc_notloaded, | ||
50 | (enum xpc_retval (*)(partid_t, int, void *)) xpc_notloaded, | ||
51 | (enum xpc_retval (*)(partid_t, int, void *, xpc_notify_func, void *)) | ||
52 | xpc_notloaded, | ||
53 | (void (*)(partid_t, int, void *)) xpc_notloaded, | ||
54 | (enum xpc_retval (*)(partid_t, void *)) xpc_notloaded | ||
55 | }; | ||
56 | |||
57 | |||
58 | /* | ||
59 | * XPC calls this when it (the XPC module) has been loaded. | ||
60 | */ | ||
61 | void | ||
62 | xpc_set_interface(void (*connect)(int), | ||
63 | void (*disconnect)(int), | ||
64 | enum xpc_retval (*allocate)(partid_t, int, u32, void **), | ||
65 | enum xpc_retval (*send)(partid_t, int, void *), | ||
66 | enum xpc_retval (*send_notify)(partid_t, int, void *, | ||
67 | xpc_notify_func, void *), | ||
68 | void (*received)(partid_t, int, void *), | ||
69 | enum xpc_retval (*partid_to_nasids)(partid_t, void *)) | ||
70 | { | ||
71 | xpc_interface.connect = connect; | ||
72 | xpc_interface.disconnect = disconnect; | ||
73 | xpc_interface.allocate = allocate; | ||
74 | xpc_interface.send = send; | ||
75 | xpc_interface.send_notify = send_notify; | ||
76 | xpc_interface.received = received; | ||
77 | xpc_interface.partid_to_nasids = partid_to_nasids; | ||
78 | } | ||
79 | |||
80 | |||
81 | /* | ||
82 | * XPC calls this when it (the XPC module) is being unloaded. | ||
83 | */ | ||
84 | void | ||
85 | xpc_clear_interface(void) | ||
86 | { | ||
87 | xpc_interface.connect = (void (*)(int)) xpc_notloaded; | ||
88 | xpc_interface.disconnect = (void (*)(int)) xpc_notloaded; | ||
89 | xpc_interface.allocate = (enum xpc_retval (*)(partid_t, int, u32, | ||
90 | void **)) xpc_notloaded; | ||
91 | xpc_interface.send = (enum xpc_retval (*)(partid_t, int, void *)) | ||
92 | xpc_notloaded; | ||
93 | xpc_interface.send_notify = (enum xpc_retval (*)(partid_t, int, void *, | ||
94 | xpc_notify_func, void *)) xpc_notloaded; | ||
95 | xpc_interface.received = (void (*)(partid_t, int, void *)) | ||
96 | xpc_notloaded; | ||
97 | xpc_interface.partid_to_nasids = (enum xpc_retval (*)(partid_t, void *)) | ||
98 | xpc_notloaded; | ||
99 | } | ||
100 | |||
101 | |||
102 | /* | ||
103 | * Register for automatic establishment of a channel connection whenever | ||
104 | * a partition comes up. | ||
105 | * | ||
106 | * Arguments: | ||
107 | * | ||
108 | * ch_number - channel # to register for connection. | ||
109 | * func - function to call for asynchronous notification of channel | ||
110 | * state changes (i.e., connection, disconnection, error) and | ||
111 | * the arrival of incoming messages. | ||
112 | * key - pointer to optional user-defined value that gets passed back | ||
113 | * to the user on any callouts made to func. | ||
114 | * payload_size - size in bytes of the XPC message's payload area which | ||
115 | * contains a user-defined message. The user should make | ||
116 | * this large enough to hold their largest message. | ||
117 | * nentries - max #of XPC message entries a message queue can contain. | ||
118 | * The actual number, which is determined when a connection | ||
119 | * is established and may be less then requested, will be | ||
120 | * passed to the user via the xpcConnected callout. | ||
121 | * assigned_limit - max number of kthreads allowed to be processing | ||
122 | * messages (per connection) at any given instant. | ||
123 | * idle_limit - max number of kthreads allowed to be idle at any given | ||
124 | * instant. | ||
125 | */ | ||
126 | enum xpc_retval | ||
127 | xpc_connect(int ch_number, xpc_channel_func func, void *key, u16 payload_size, | ||
128 | u16 nentries, u32 assigned_limit, u32 idle_limit) | ||
129 | { | ||
130 | struct xpc_registration *registration; | ||
131 | |||
132 | |||
133 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
134 | DBUG_ON(payload_size == 0 || nentries == 0); | ||
135 | DBUG_ON(func == NULL); | ||
136 | DBUG_ON(assigned_limit == 0 || idle_limit > assigned_limit); | ||
137 | |||
138 | registration = &xpc_registrations[ch_number]; | ||
139 | |||
140 | if (mutex_lock_interruptible(®istration->mutex) != 0) { | ||
141 | return xpcInterrupted; | ||
142 | } | ||
143 | |||
144 | /* if XPC_CHANNEL_REGISTERED(ch_number) */ | ||
145 | if (registration->func != NULL) { | ||
146 | mutex_unlock(®istration->mutex); | ||
147 | return xpcAlreadyRegistered; | ||
148 | } | ||
149 | |||
150 | /* register the channel for connection */ | ||
151 | registration->msg_size = XPC_MSG_SIZE(payload_size); | ||
152 | registration->nentries = nentries; | ||
153 | registration->assigned_limit = assigned_limit; | ||
154 | registration->idle_limit = idle_limit; | ||
155 | registration->key = key; | ||
156 | registration->func = func; | ||
157 | |||
158 | mutex_unlock(®istration->mutex); | ||
159 | |||
160 | xpc_interface.connect(ch_number); | ||
161 | |||
162 | return xpcSuccess; | ||
163 | } | ||
164 | |||
165 | |||
166 | /* | ||
167 | * Remove the registration for automatic connection of the specified channel | ||
168 | * when a partition comes up. | ||
169 | * | ||
170 | * Before returning this xpc_disconnect() will wait for all connections on the | ||
171 | * specified channel have been closed/torndown. So the caller can be assured | ||
172 | * that they will not be receiving any more callouts from XPC to their | ||
173 | * function registered via xpc_connect(). | ||
174 | * | ||
175 | * Arguments: | ||
176 | * | ||
177 | * ch_number - channel # to unregister. | ||
178 | */ | ||
179 | void | ||
180 | xpc_disconnect(int ch_number) | ||
181 | { | ||
182 | struct xpc_registration *registration; | ||
183 | |||
184 | |||
185 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
186 | |||
187 | registration = &xpc_registrations[ch_number]; | ||
188 | |||
189 | /* | ||
190 | * We've decided not to make this a down_interruptible(), since we | ||
191 | * figured XPC's users will just turn around and call xpc_disconnect() | ||
192 | * again anyways, so we might as well wait, if need be. | ||
193 | */ | ||
194 | mutex_lock(®istration->mutex); | ||
195 | |||
196 | /* if !XPC_CHANNEL_REGISTERED(ch_number) */ | ||
197 | if (registration->func == NULL) { | ||
198 | mutex_unlock(®istration->mutex); | ||
199 | return; | ||
200 | } | ||
201 | |||
202 | /* remove the connection registration for the specified channel */ | ||
203 | registration->func = NULL; | ||
204 | registration->key = NULL; | ||
205 | registration->nentries = 0; | ||
206 | registration->msg_size = 0; | ||
207 | registration->assigned_limit = 0; | ||
208 | registration->idle_limit = 0; | ||
209 | |||
210 | xpc_interface.disconnect(ch_number); | ||
211 | |||
212 | mutex_unlock(®istration->mutex); | ||
213 | |||
214 | return; | ||
215 | } | ||
216 | |||
217 | |||
218 | int __init | ||
219 | xp_init(void) | ||
220 | { | ||
221 | int ret, ch_number; | ||
222 | u64 func_addr = *(u64 *) xp_nofault_PIOR; | ||
223 | u64 err_func_addr = *(u64 *) xp_error_PIOR; | ||
224 | |||
225 | |||
226 | if (!ia64_platform_is("sn2")) { | ||
227 | return -ENODEV; | ||
228 | } | ||
229 | |||
230 | /* | ||
231 | * Register a nofault code region which performs a cross-partition | ||
232 | * PIO read. If the PIO read times out, the MCA handler will consume | ||
233 | * the error and return to a kernel-provided instruction to indicate | ||
234 | * an error. This PIO read exists because it is guaranteed to timeout | ||
235 | * if the destination is down (AMO operations do not timeout on at | ||
236 | * least some CPUs on Shubs <= v1.2, which unfortunately we have to | ||
237 | * work around). | ||
238 | */ | ||
239 | if ((ret = sn_register_nofault_code(func_addr, err_func_addr, | ||
240 | err_func_addr, 1, 1)) != 0) { | ||
241 | printk(KERN_ERR "XP: can't register nofault code, error=%d\n", | ||
242 | ret); | ||
243 | } | ||
244 | /* | ||
245 | * Setup the nofault PIO read target. (There is no special reason why | ||
246 | * SH_IPI_ACCESS was selected.) | ||
247 | */ | ||
248 | if (is_shub2()) { | ||
249 | xp_nofault_PIOR_target = SH2_IPI_ACCESS0; | ||
250 | } else { | ||
251 | xp_nofault_PIOR_target = SH1_IPI_ACCESS; | ||
252 | } | ||
253 | |||
254 | /* initialize the connection registration mutex */ | ||
255 | for (ch_number = 0; ch_number < XPC_NCHANNELS; ch_number++) { | ||
256 | mutex_init(&xpc_registrations[ch_number].mutex); | ||
257 | } | ||
258 | |||
259 | return 0; | ||
260 | } | ||
261 | module_init(xp_init); | ||
262 | |||
263 | |||
264 | void __exit | ||
265 | xp_exit(void) | ||
266 | { | ||
267 | u64 func_addr = *(u64 *) xp_nofault_PIOR; | ||
268 | u64 err_func_addr = *(u64 *) xp_error_PIOR; | ||
269 | |||
270 | |||
271 | /* unregister the PIO read nofault code region */ | ||
272 | (void) sn_register_nofault_code(func_addr, err_func_addr, | ||
273 | err_func_addr, 1, 0); | ||
274 | } | ||
275 | module_exit(xp_exit); | ||
276 | |||
277 | |||
278 | MODULE_AUTHOR("Silicon Graphics, Inc."); | ||
279 | MODULE_DESCRIPTION("Cross Partition (XP) base"); | ||
280 | MODULE_LICENSE("GPL"); | ||
281 | |||
282 | EXPORT_SYMBOL(xp_nofault_PIOR); | ||
283 | EXPORT_SYMBOL(xp_nofault_PIOR_target); | ||
284 | EXPORT_SYMBOL(xpc_registrations); | ||
285 | EXPORT_SYMBOL(xpc_interface); | ||
286 | EXPORT_SYMBOL(xpc_clear_interface); | ||
287 | EXPORT_SYMBOL(xpc_set_interface); | ||
288 | EXPORT_SYMBOL(xpc_connect); | ||
289 | EXPORT_SYMBOL(xpc_disconnect); | ||
290 | |||
diff --git a/drivers/misc/sgi-xp/xp_nofault.S b/drivers/misc/sgi-xp/xp_nofault.S new file mode 100644 index 000000000000..c13a709c4db5 --- /dev/null +++ b/drivers/misc/sgi-xp/xp_nofault.S | |||
@@ -0,0 +1,36 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * The xp_nofault_PIOR function takes a pointer to a remote PIO register | ||
12 | * and attempts to load and consume a value from it. This function | ||
13 | * will be registered as a nofault code block. In the event that the | ||
14 | * PIO read fails, the MCA handler will force the error to look | ||
15 | * corrected and vector to the xp_error_PIOR which will return an error. | ||
16 | * | ||
17 | * The definition of "consumption" and the time it takes for an MCA | ||
18 | * to surface is processor implementation specific. This code | ||
19 | * is sufficient on Itanium through the Montvale processor family. | ||
20 | * It may need to be adjusted for future processor implementations. | ||
21 | * | ||
22 | * extern int xp_nofault_PIOR(void *remote_register); | ||
23 | */ | ||
24 | |||
25 | .global xp_nofault_PIOR | ||
26 | xp_nofault_PIOR: | ||
27 | mov r8=r0 // Stage a success return value | ||
28 | ld8.acq r9=[r32];; // PIO Read the specified register | ||
29 | adds r9=1,r9;; // Add to force consumption | ||
30 | srlz.i;; // Allow time for MCA to surface | ||
31 | br.ret.sptk.many b0;; // Return success | ||
32 | |||
33 | .global xp_error_PIOR | ||
34 | xp_error_PIOR: | ||
35 | mov r8=1 // Return value of 1 | ||
36 | br.ret.sptk.many b0;; // Return failure | ||
diff --git a/drivers/misc/sgi-xp/xpc.h b/drivers/misc/sgi-xp/xpc.h new file mode 100644 index 000000000000..14e70ee53ebe --- /dev/null +++ b/drivers/misc/sgi-xp/xpc.h | |||
@@ -0,0 +1,1267 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition Communication (XPC) structures and macros. | ||
12 | */ | ||
13 | |||
14 | #ifndef _DRIVERS_MISC_SGIXP_XPC_H | ||
15 | #define _DRIVERS_MISC_SGIXP_XPC_H | ||
16 | |||
17 | |||
18 | #include <linux/interrupt.h> | ||
19 | #include <linux/sysctl.h> | ||
20 | #include <linux/device.h> | ||
21 | #include <linux/mutex.h> | ||
22 | #include <linux/completion.h> | ||
23 | #include <asm/pgtable.h> | ||
24 | #include <asm/processor.h> | ||
25 | #include <asm/sn/bte.h> | ||
26 | #include <asm/sn/clksupport.h> | ||
27 | #include <asm/sn/addrs.h> | ||
28 | #include <asm/sn/mspec.h> | ||
29 | #include <asm/sn/shub_mmr.h> | ||
30 | #include "xp.h" | ||
31 | |||
32 | |||
33 | /* | ||
34 | * XPC Version numbers consist of a major and minor number. XPC can always | ||
35 | * talk to versions with same major #, and never talk to versions with a | ||
36 | * different major #. | ||
37 | */ | ||
38 | #define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf)) | ||
39 | #define XPC_VERSION_MAJOR(_v) ((_v) >> 4) | ||
40 | #define XPC_VERSION_MINOR(_v) ((_v) & 0xf) | ||
41 | |||
42 | |||
43 | /* | ||
44 | * The next macros define word or bit representations for given | ||
45 | * C-brick nasid in either the SAL provided bit array representing | ||
46 | * nasids in the partition/machine or the AMO_t array used for | ||
47 | * inter-partition initiation communications. | ||
48 | * | ||
49 | * For SN2 machines, C-Bricks are alway even numbered NASIDs. As | ||
50 | * such, some space will be saved by insisting that nasid information | ||
51 | * passed from SAL always be packed for C-Bricks and the | ||
52 | * cross-partition interrupts use the same packing scheme. | ||
53 | */ | ||
54 | #define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2) | ||
55 | #define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1)) | ||
56 | #define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \ | ||
57 | (1UL << XPC_NASID_B_INDEX(_n))) | ||
58 | #define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2) | ||
59 | |||
60 | #define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */ | ||
61 | #define XPC_HB_CHECK_DEFAULT_INTERVAL 20 /* check HB every x secs */ | ||
62 | |||
63 | /* define the process name of HB checker and the CPU it is pinned to */ | ||
64 | #define XPC_HB_CHECK_THREAD_NAME "xpc_hb" | ||
65 | #define XPC_HB_CHECK_CPU 0 | ||
66 | |||
67 | /* define the process name of the discovery thread */ | ||
68 | #define XPC_DISCOVERY_THREAD_NAME "xpc_discovery" | ||
69 | |||
70 | |||
71 | /* | ||
72 | * the reserved page | ||
73 | * | ||
74 | * SAL reserves one page of memory per partition for XPC. Though a full page | ||
75 | * in length (16384 bytes), its starting address is not page aligned, but it | ||
76 | * is cacheline aligned. The reserved page consists of the following: | ||
77 | * | ||
78 | * reserved page header | ||
79 | * | ||
80 | * The first cacheline of the reserved page contains the header | ||
81 | * (struct xpc_rsvd_page). Before SAL initialization has completed, | ||
82 | * SAL has set up the following fields of the reserved page header: | ||
83 | * SAL_signature, SAL_version, partid, and nasids_size. The other | ||
84 | * fields are set up by XPC. (xpc_rsvd_page points to the local | ||
85 | * partition's reserved page.) | ||
86 | * | ||
87 | * part_nasids mask | ||
88 | * mach_nasids mask | ||
89 | * | ||
90 | * SAL also sets up two bitmaps (or masks), one that reflects the actual | ||
91 | * nasids in this partition (part_nasids), and the other that reflects | ||
92 | * the actual nasids in the entire machine (mach_nasids). We're only | ||
93 | * interested in the even numbered nasids (which contain the processors | ||
94 | * and/or memory), so we only need half as many bits to represent the | ||
95 | * nasids. The part_nasids mask is located starting at the first cacheline | ||
96 | * following the reserved page header. The mach_nasids mask follows right | ||
97 | * after the part_nasids mask. The size in bytes of each mask is reflected | ||
98 | * by the reserved page header field 'nasids_size'. (Local partition's | ||
99 | * mask pointers are xpc_part_nasids and xpc_mach_nasids.) | ||
100 | * | ||
101 | * vars | ||
102 | * vars part | ||
103 | * | ||
104 | * Immediately following the mach_nasids mask are the XPC variables | ||
105 | * required by other partitions. First are those that are generic to all | ||
106 | * partitions (vars), followed on the next available cacheline by those | ||
107 | * which are partition specific (vars part). These are setup by XPC. | ||
108 | * (Local partition's vars pointers are xpc_vars and xpc_vars_part.) | ||
109 | * | ||
110 | * Note: Until vars_pa is set, the partition XPC code has not been initialized. | ||
111 | */ | ||
112 | struct xpc_rsvd_page { | ||
113 | u64 SAL_signature; /* SAL: unique signature */ | ||
114 | u64 SAL_version; /* SAL: version */ | ||
115 | u8 partid; /* SAL: partition ID */ | ||
116 | u8 version; | ||
117 | u8 pad1[6]; /* align to next u64 in cacheline */ | ||
118 | volatile u64 vars_pa; | ||
119 | struct timespec stamp; /* time when reserved page was setup by XPC */ | ||
120 | u64 pad2[9]; /* align to last u64 in cacheline */ | ||
121 | u64 nasids_size; /* SAL: size of each nasid mask in bytes */ | ||
122 | }; | ||
123 | |||
124 | #define XPC_RP_VERSION _XPC_VERSION(1,1) /* version 1.1 of the reserved page */ | ||
125 | |||
126 | #define XPC_SUPPORTS_RP_STAMP(_version) \ | ||
127 | (_version >= _XPC_VERSION(1,1)) | ||
128 | |||
129 | /* | ||
130 | * compare stamps - the return value is: | ||
131 | * | ||
132 | * < 0, if stamp1 < stamp2 | ||
133 | * = 0, if stamp1 == stamp2 | ||
134 | * > 0, if stamp1 > stamp2 | ||
135 | */ | ||
136 | static inline int | ||
137 | xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2) | ||
138 | { | ||
139 | int ret; | ||
140 | |||
141 | |||
142 | if ((ret = stamp1->tv_sec - stamp2->tv_sec) == 0) { | ||
143 | ret = stamp1->tv_nsec - stamp2->tv_nsec; | ||
144 | } | ||
145 | return ret; | ||
146 | } | ||
147 | |||
148 | |||
149 | /* | ||
150 | * Define the structures by which XPC variables can be exported to other | ||
151 | * partitions. (There are two: struct xpc_vars and struct xpc_vars_part) | ||
152 | */ | ||
153 | |||
154 | /* | ||
155 | * The following structure describes the partition generic variables | ||
156 | * needed by other partitions in order to properly initialize. | ||
157 | * | ||
158 | * struct xpc_vars version number also applies to struct xpc_vars_part. | ||
159 | * Changes to either structure and/or related functionality should be | ||
160 | * reflected by incrementing either the major or minor version numbers | ||
161 | * of struct xpc_vars. | ||
162 | */ | ||
163 | struct xpc_vars { | ||
164 | u8 version; | ||
165 | u64 heartbeat; | ||
166 | u64 heartbeating_to_mask; | ||
167 | u64 heartbeat_offline; /* if 0, heartbeat should be changing */ | ||
168 | int act_nasid; | ||
169 | int act_phys_cpuid; | ||
170 | u64 vars_part_pa; | ||
171 | u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */ | ||
172 | AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */ | ||
173 | }; | ||
174 | |||
175 | #define XPC_V_VERSION _XPC_VERSION(3,1) /* version 3.1 of the cross vars */ | ||
176 | |||
177 | #define XPC_SUPPORTS_DISENGAGE_REQUEST(_version) \ | ||
178 | (_version >= _XPC_VERSION(3,1)) | ||
179 | |||
180 | |||
181 | static inline int | ||
182 | xpc_hb_allowed(partid_t partid, struct xpc_vars *vars) | ||
183 | { | ||
184 | return ((vars->heartbeating_to_mask & (1UL << partid)) != 0); | ||
185 | } | ||
186 | |||
187 | static inline void | ||
188 | xpc_allow_hb(partid_t partid, struct xpc_vars *vars) | ||
189 | { | ||
190 | u64 old_mask, new_mask; | ||
191 | |||
192 | do { | ||
193 | old_mask = vars->heartbeating_to_mask; | ||
194 | new_mask = (old_mask | (1UL << partid)); | ||
195 | } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != | ||
196 | old_mask); | ||
197 | } | ||
198 | |||
199 | static inline void | ||
200 | xpc_disallow_hb(partid_t partid, struct xpc_vars *vars) | ||
201 | { | ||
202 | u64 old_mask, new_mask; | ||
203 | |||
204 | do { | ||
205 | old_mask = vars->heartbeating_to_mask; | ||
206 | new_mask = (old_mask & ~(1UL << partid)); | ||
207 | } while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) != | ||
208 | old_mask); | ||
209 | } | ||
210 | |||
211 | |||
212 | /* | ||
213 | * The AMOs page consists of a number of AMO variables which are divided into | ||
214 | * four groups, The first two groups are used to identify an IRQ's sender. | ||
215 | * These two groups consist of 64 and 128 AMO variables respectively. The last | ||
216 | * two groups, consisting of just one AMO variable each, are used to identify | ||
217 | * the remote partitions that are currently engaged (from the viewpoint of | ||
218 | * the XPC running on the remote partition). | ||
219 | */ | ||
220 | #define XPC_NOTIFY_IRQ_AMOS 0 | ||
221 | #define XPC_ACTIVATE_IRQ_AMOS (XPC_NOTIFY_IRQ_AMOS + XP_MAX_PARTITIONS) | ||
222 | #define XPC_ENGAGED_PARTITIONS_AMO (XPC_ACTIVATE_IRQ_AMOS + XP_NASID_MASK_WORDS) | ||
223 | #define XPC_DISENGAGE_REQUEST_AMO (XPC_ENGAGED_PARTITIONS_AMO + 1) | ||
224 | |||
225 | |||
226 | /* | ||
227 | * The following structure describes the per partition specific variables. | ||
228 | * | ||
229 | * An array of these structures, one per partition, will be defined. As a | ||
230 | * partition becomes active XPC will copy the array entry corresponding to | ||
231 | * itself from that partition. It is desirable that the size of this | ||
232 | * structure evenly divide into a cacheline, such that none of the entries | ||
233 | * in this array crosses a cacheline boundary. As it is now, each entry | ||
234 | * occupies half a cacheline. | ||
235 | */ | ||
236 | struct xpc_vars_part { | ||
237 | volatile u64 magic; | ||
238 | |||
239 | u64 openclose_args_pa; /* physical address of open and close args */ | ||
240 | u64 GPs_pa; /* physical address of Get/Put values */ | ||
241 | |||
242 | u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */ | ||
243 | int IPI_nasid; /* nasid of where to send IPIs */ | ||
244 | int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */ | ||
245 | |||
246 | u8 nchannels; /* #of defined channels supported */ | ||
247 | |||
248 | u8 reserved[23]; /* pad to a full 64 bytes */ | ||
249 | }; | ||
250 | |||
251 | /* | ||
252 | * The vars_part MAGIC numbers play a part in the first contact protocol. | ||
253 | * | ||
254 | * MAGIC1 indicates that the per partition specific variables for a remote | ||
255 | * partition have been initialized by this partition. | ||
256 | * | ||
257 | * MAGIC2 indicates that this partition has pulled the remote partititions | ||
258 | * per partition variables that pertain to this partition. | ||
259 | */ | ||
260 | #define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */ | ||
261 | #define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */ | ||
262 | |||
263 | |||
264 | /* the reserved page sizes and offsets */ | ||
265 | |||
266 | #define XPC_RP_HEADER_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page)) | ||
267 | #define XPC_RP_VARS_SIZE L1_CACHE_ALIGN(sizeof(struct xpc_vars)) | ||
268 | |||
269 | #define XPC_RP_PART_NASIDS(_rp) (u64 *) ((u8 *) _rp + XPC_RP_HEADER_SIZE) | ||
270 | #define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + xp_nasid_mask_words) | ||
271 | #define XPC_RP_VARS(_rp) ((struct xpc_vars *) XPC_RP_MACH_NASIDS(_rp) + xp_nasid_mask_words) | ||
272 | #define XPC_RP_VARS_PART(_rp) (struct xpc_vars_part *) ((u8 *) XPC_RP_VARS(rp) + XPC_RP_VARS_SIZE) | ||
273 | |||
274 | |||
275 | /* | ||
276 | * Functions registered by add_timer() or called by kernel_thread() only | ||
277 | * allow for a single 64-bit argument. The following macros can be used to | ||
278 | * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from | ||
279 | * the passed argument. | ||
280 | */ | ||
281 | #define XPC_PACK_ARGS(_arg1, _arg2) \ | ||
282 | ((((u64) _arg1) & 0xffffffff) | \ | ||
283 | ((((u64) _arg2) & 0xffffffff) << 32)) | ||
284 | |||
285 | #define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff) | ||
286 | #define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff) | ||
287 | |||
288 | |||
289 | |||
290 | /* | ||
291 | * Define a Get/Put value pair (pointers) used with a message queue. | ||
292 | */ | ||
293 | struct xpc_gp { | ||
294 | volatile s64 get; /* Get value */ | ||
295 | volatile s64 put; /* Put value */ | ||
296 | }; | ||
297 | |||
298 | #define XPC_GP_SIZE \ | ||
299 | L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS) | ||
300 | |||
301 | |||
302 | |||
303 | /* | ||
304 | * Define a structure that contains arguments associated with opening and | ||
305 | * closing a channel. | ||
306 | */ | ||
307 | struct xpc_openclose_args { | ||
308 | u16 reason; /* reason why channel is closing */ | ||
309 | u16 msg_size; /* sizeof each message entry */ | ||
310 | u16 remote_nentries; /* #of message entries in remote msg queue */ | ||
311 | u16 local_nentries; /* #of message entries in local msg queue */ | ||
312 | u64 local_msgqueue_pa; /* physical address of local message queue */ | ||
313 | }; | ||
314 | |||
315 | #define XPC_OPENCLOSE_ARGS_SIZE \ | ||
316 | L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS) | ||
317 | |||
318 | |||
319 | |||
320 | /* struct xpc_msg flags */ | ||
321 | |||
322 | #define XPC_M_DONE 0x01 /* msg has been received/consumed */ | ||
323 | #define XPC_M_READY 0x02 /* msg is ready to be sent */ | ||
324 | #define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */ | ||
325 | |||
326 | |||
327 | #define XPC_MSG_ADDRESS(_payload) \ | ||
328 | ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET)) | ||
329 | |||
330 | |||
331 | |||
332 | /* | ||
333 | * Defines notify entry. | ||
334 | * | ||
335 | * This is used to notify a message's sender that their message was received | ||
336 | * and consumed by the intended recipient. | ||
337 | */ | ||
338 | struct xpc_notify { | ||
339 | volatile u8 type; /* type of notification */ | ||
340 | |||
341 | /* the following two fields are only used if type == XPC_N_CALL */ | ||
342 | xpc_notify_func func; /* user's notify function */ | ||
343 | void *key; /* pointer to user's key */ | ||
344 | }; | ||
345 | |||
346 | /* struct xpc_notify type of notification */ | ||
347 | |||
348 | #define XPC_N_CALL 0x01 /* notify function provided by user */ | ||
349 | |||
350 | |||
351 | |||
352 | /* | ||
353 | * Define the structure that manages all the stuff required by a channel. In | ||
354 | * particular, they are used to manage the messages sent across the channel. | ||
355 | * | ||
356 | * This structure is private to a partition, and is NOT shared across the | ||
357 | * partition boundary. | ||
358 | * | ||
359 | * There is an array of these structures for each remote partition. It is | ||
360 | * allocated at the time a partition becomes active. The array contains one | ||
361 | * of these structures for each potential channel connection to that partition. | ||
362 | * | ||
363 | * Each of these structures manages two message queues (circular buffers). | ||
364 | * They are allocated at the time a channel connection is made. One of | ||
365 | * these message queues (local_msgqueue) holds the locally created messages | ||
366 | * that are destined for the remote partition. The other of these message | ||
367 | * queues (remote_msgqueue) is a locally cached copy of the remote partition's | ||
368 | * own local_msgqueue. | ||
369 | * | ||
370 | * The following is a description of the Get/Put pointers used to manage these | ||
371 | * two message queues. Consider the local_msgqueue to be on one partition | ||
372 | * and the remote_msgqueue to be its cached copy on another partition. A | ||
373 | * description of what each of the lettered areas contains is included. | ||
374 | * | ||
375 | * | ||
376 | * local_msgqueue remote_msgqueue | ||
377 | * | ||
378 | * |/////////| |/////////| | ||
379 | * w_remote_GP.get --> +---------+ |/////////| | ||
380 | * | F | |/////////| | ||
381 | * remote_GP.get --> +---------+ +---------+ <-- local_GP->get | ||
382 | * | | | | | ||
383 | * | | | E | | ||
384 | * | | | | | ||
385 | * | | +---------+ <-- w_local_GP.get | ||
386 | * | B | |/////////| | ||
387 | * | | |////D////| | ||
388 | * | | |/////////| | ||
389 | * | | +---------+ <-- w_remote_GP.put | ||
390 | * | | |////C////| | ||
391 | * local_GP->put --> +---------+ +---------+ <-- remote_GP.put | ||
392 | * | | |/////////| | ||
393 | * | A | |/////////| | ||
394 | * | | |/////////| | ||
395 | * w_local_GP.put --> +---------+ |/////////| | ||
396 | * |/////////| |/////////| | ||
397 | * | ||
398 | * | ||
399 | * ( remote_GP.[get|put] are cached copies of the remote | ||
400 | * partition's local_GP->[get|put], and thus their values can | ||
401 | * lag behind their counterparts on the remote partition. ) | ||
402 | * | ||
403 | * | ||
404 | * A - Messages that have been allocated, but have not yet been sent to the | ||
405 | * remote partition. | ||
406 | * | ||
407 | * B - Messages that have been sent, but have not yet been acknowledged by the | ||
408 | * remote partition as having been received. | ||
409 | * | ||
410 | * C - Area that needs to be prepared for the copying of sent messages, by | ||
411 | * the clearing of the message flags of any previously received messages. | ||
412 | * | ||
413 | * D - Area into which sent messages are to be copied from the remote | ||
414 | * partition's local_msgqueue and then delivered to their intended | ||
415 | * recipients. [ To allow for a multi-message copy, another pointer | ||
416 | * (next_msg_to_pull) has been added to keep track of the next message | ||
417 | * number needing to be copied (pulled). It chases after w_remote_GP.put. | ||
418 | * Any messages lying between w_local_GP.get and next_msg_to_pull have | ||
419 | * been copied and are ready to be delivered. ] | ||
420 | * | ||
421 | * E - Messages that have been copied and delivered, but have not yet been | ||
422 | * acknowledged by the recipient as having been received. | ||
423 | * | ||
424 | * F - Messages that have been acknowledged, but XPC has not yet notified the | ||
425 | * sender that the message was received by its intended recipient. | ||
426 | * This is also an area that needs to be prepared for the allocating of | ||
427 | * new messages, by the clearing of the message flags of the acknowledged | ||
428 | * messages. | ||
429 | */ | ||
430 | struct xpc_channel { | ||
431 | partid_t partid; /* ID of remote partition connected */ | ||
432 | spinlock_t lock; /* lock for updating this structure */ | ||
433 | u32 flags; /* general flags */ | ||
434 | |||
435 | enum xpc_retval reason; /* reason why channel is disconnect'g */ | ||
436 | int reason_line; /* line# disconnect initiated from */ | ||
437 | |||
438 | u16 number; /* channel # */ | ||
439 | |||
440 | u16 msg_size; /* sizeof each msg entry */ | ||
441 | u16 local_nentries; /* #of msg entries in local msg queue */ | ||
442 | u16 remote_nentries; /* #of msg entries in remote msg queue*/ | ||
443 | |||
444 | void *local_msgqueue_base; /* base address of kmalloc'd space */ | ||
445 | struct xpc_msg *local_msgqueue; /* local message queue */ | ||
446 | void *remote_msgqueue_base; /* base address of kmalloc'd space */ | ||
447 | struct xpc_msg *remote_msgqueue;/* cached copy of remote partition's */ | ||
448 | /* local message queue */ | ||
449 | u64 remote_msgqueue_pa; /* phys addr of remote partition's */ | ||
450 | /* local message queue */ | ||
451 | |||
452 | atomic_t references; /* #of external references to queues */ | ||
453 | |||
454 | atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */ | ||
455 | wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */ | ||
456 | |||
457 | u8 delayed_IPI_flags; /* IPI flags received, but delayed */ | ||
458 | /* action until channel disconnected */ | ||
459 | |||
460 | /* queue of msg senders who want to be notified when msg received */ | ||
461 | |||
462 | atomic_t n_to_notify; /* #of msg senders to notify */ | ||
463 | struct xpc_notify *notify_queue;/* notify queue for messages sent */ | ||
464 | |||
465 | xpc_channel_func func; /* user's channel function */ | ||
466 | void *key; /* pointer to user's key */ | ||
467 | |||
468 | struct mutex msg_to_pull_mutex; /* next msg to pull serialization */ | ||
469 | struct completion wdisconnect_wait; /* wait for channel disconnect */ | ||
470 | |||
471 | struct xpc_openclose_args *local_openclose_args; /* args passed on */ | ||
472 | /* opening or closing of channel */ | ||
473 | |||
474 | /* various flavors of local and remote Get/Put values */ | ||
475 | |||
476 | struct xpc_gp *local_GP; /* local Get/Put values */ | ||
477 | struct xpc_gp remote_GP; /* remote Get/Put values */ | ||
478 | struct xpc_gp w_local_GP; /* working local Get/Put values */ | ||
479 | struct xpc_gp w_remote_GP; /* working remote Get/Put values */ | ||
480 | s64 next_msg_to_pull; /* Put value of next msg to pull */ | ||
481 | |||
482 | /* kthread management related fields */ | ||
483 | |||
484 | // >>> rethink having kthreads_assigned_limit and kthreads_idle_limit; perhaps | ||
485 | // >>> allow the assigned limit be unbounded and let the idle limit be dynamic | ||
486 | // >>> dependent on activity over the last interval of time | ||
487 | atomic_t kthreads_assigned; /* #of kthreads assigned to channel */ | ||
488 | u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */ | ||
489 | atomic_t kthreads_idle; /* #of kthreads idle waiting for work */ | ||
490 | u32 kthreads_idle_limit; /* limit on #of kthreads idle */ | ||
491 | atomic_t kthreads_active; /* #of kthreads actively working */ | ||
492 | // >>> following field is temporary | ||
493 | u32 kthreads_created; /* total #of kthreads created */ | ||
494 | |||
495 | wait_queue_head_t idle_wq; /* idle kthread wait queue */ | ||
496 | |||
497 | } ____cacheline_aligned; | ||
498 | |||
499 | |||
500 | /* struct xpc_channel flags */ | ||
501 | |||
502 | #define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */ | ||
503 | |||
504 | #define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */ | ||
505 | #define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */ | ||
506 | #define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */ | ||
507 | #define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */ | ||
508 | |||
509 | #define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */ | ||
510 | #define XPC_C_CONNECTEDCALLOUT 0x00000040 /* connected callout initiated */ | ||
511 | #define XPC_C_CONNECTEDCALLOUT_MADE \ | ||
512 | 0x00000080 /* connected callout completed */ | ||
513 | #define XPC_C_CONNECTED 0x00000100 /* local channel is connected */ | ||
514 | #define XPC_C_CONNECTING 0x00000200 /* channel is being connected */ | ||
515 | |||
516 | #define XPC_C_RCLOSEREPLY 0x00000400 /* remote close channel reply */ | ||
517 | #define XPC_C_CLOSEREPLY 0x00000800 /* local close channel reply */ | ||
518 | #define XPC_C_RCLOSEREQUEST 0x00001000 /* remote close channel request */ | ||
519 | #define XPC_C_CLOSEREQUEST 0x00002000 /* local close channel request */ | ||
520 | |||
521 | #define XPC_C_DISCONNECTED 0x00004000 /* channel is disconnected */ | ||
522 | #define XPC_C_DISCONNECTING 0x00008000 /* channel is being disconnected */ | ||
523 | #define XPC_C_DISCONNECTINGCALLOUT \ | ||
524 | 0x00010000 /* disconnecting callout initiated */ | ||
525 | #define XPC_C_DISCONNECTINGCALLOUT_MADE \ | ||
526 | 0x00020000 /* disconnecting callout completed */ | ||
527 | #define XPC_C_WDISCONNECT 0x00040000 /* waiting for channel disconnect */ | ||
528 | |||
529 | |||
530 | |||
531 | /* | ||
532 | * Manages channels on a partition basis. There is one of these structures | ||
533 | * for each partition (a partition will never utilize the structure that | ||
534 | * represents itself). | ||
535 | */ | ||
536 | struct xpc_partition { | ||
537 | |||
538 | /* XPC HB infrastructure */ | ||
539 | |||
540 | u8 remote_rp_version; /* version# of partition's rsvd pg */ | ||
541 | struct timespec remote_rp_stamp;/* time when rsvd pg was initialized */ | ||
542 | u64 remote_rp_pa; /* phys addr of partition's rsvd pg */ | ||
543 | u64 remote_vars_pa; /* phys addr of partition's vars */ | ||
544 | u64 remote_vars_part_pa; /* phys addr of partition's vars part */ | ||
545 | u64 last_heartbeat; /* HB at last read */ | ||
546 | u64 remote_amos_page_pa; /* phys addr of partition's amos page */ | ||
547 | int remote_act_nasid; /* active part's act/deact nasid */ | ||
548 | int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */ | ||
549 | u32 act_IRQ_rcvd; /* IRQs since activation */ | ||
550 | spinlock_t act_lock; /* protect updating of act_state */ | ||
551 | u8 act_state; /* from XPC HB viewpoint */ | ||
552 | u8 remote_vars_version; /* version# of partition's vars */ | ||
553 | enum xpc_retval reason; /* reason partition is deactivating */ | ||
554 | int reason_line; /* line# deactivation initiated from */ | ||
555 | int reactivate_nasid; /* nasid in partition to reactivate */ | ||
556 | |||
557 | unsigned long disengage_request_timeout; /* timeout in jiffies */ | ||
558 | struct timer_list disengage_request_timer; | ||
559 | |||
560 | |||
561 | /* XPC infrastructure referencing and teardown control */ | ||
562 | |||
563 | volatile u8 setup_state; /* infrastructure setup state */ | ||
564 | wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */ | ||
565 | atomic_t references; /* #of references to infrastructure */ | ||
566 | |||
567 | |||
568 | /* | ||
569 | * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN | ||
570 | * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION | ||
571 | * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE | ||
572 | * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.) | ||
573 | */ | ||
574 | |||
575 | |||
576 | u8 nchannels; /* #of defined channels supported */ | ||
577 | atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */ | ||
578 | atomic_t nchannels_engaged;/* #of channels engaged with remote part */ | ||
579 | struct xpc_channel *channels;/* array of channel structures */ | ||
580 | |||
581 | void *local_GPs_base; /* base address of kmalloc'd space */ | ||
582 | struct xpc_gp *local_GPs; /* local Get/Put values */ | ||
583 | void *remote_GPs_base; /* base address of kmalloc'd space */ | ||
584 | struct xpc_gp *remote_GPs;/* copy of remote partition's local Get/Put */ | ||
585 | /* values */ | ||
586 | u64 remote_GPs_pa; /* phys address of remote partition's local */ | ||
587 | /* Get/Put values */ | ||
588 | |||
589 | |||
590 | /* fields used to pass args when opening or closing a channel */ | ||
591 | |||
592 | void *local_openclose_args_base; /* base address of kmalloc'd space */ | ||
593 | struct xpc_openclose_args *local_openclose_args; /* local's args */ | ||
594 | void *remote_openclose_args_base; /* base address of kmalloc'd space */ | ||
595 | struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */ | ||
596 | /* args */ | ||
597 | u64 remote_openclose_args_pa; /* phys addr of remote's args */ | ||
598 | |||
599 | |||
600 | /* IPI sending, receiving and handling related fields */ | ||
601 | |||
602 | int remote_IPI_nasid; /* nasid of where to send IPIs */ | ||
603 | int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */ | ||
604 | AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */ | ||
605 | |||
606 | AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */ | ||
607 | u64 local_IPI_amo; /* IPI amo flags yet to be handled */ | ||
608 | char IPI_owner[8]; /* IPI owner's name */ | ||
609 | struct timer_list dropped_IPI_timer; /* dropped IPI timer */ | ||
610 | |||
611 | spinlock_t IPI_lock; /* IPI handler lock */ | ||
612 | |||
613 | |||
614 | /* channel manager related fields */ | ||
615 | |||
616 | atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */ | ||
617 | wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */ | ||
618 | |||
619 | } ____cacheline_aligned; | ||
620 | |||
621 | |||
622 | /* struct xpc_partition act_state values (for XPC HB) */ | ||
623 | |||
624 | #define XPC_P_INACTIVE 0x00 /* partition is not active */ | ||
625 | #define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */ | ||
626 | #define XPC_P_ACTIVATING 0x02 /* activation thread started */ | ||
627 | #define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */ | ||
628 | #define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */ | ||
629 | |||
630 | |||
631 | #define XPC_DEACTIVATE_PARTITION(_p, _reason) \ | ||
632 | xpc_deactivate_partition(__LINE__, (_p), (_reason)) | ||
633 | |||
634 | |||
635 | /* struct xpc_partition setup_state values */ | ||
636 | |||
637 | #define XPC_P_UNSET 0x00 /* infrastructure was never setup */ | ||
638 | #define XPC_P_SETUP 0x01 /* infrastructure is setup */ | ||
639 | #define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */ | ||
640 | #define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */ | ||
641 | |||
642 | |||
643 | |||
644 | /* | ||
645 | * struct xpc_partition IPI_timer #of seconds to wait before checking for | ||
646 | * dropped IPIs. These occur whenever an IPI amo write doesn't complete until | ||
647 | * after the IPI was received. | ||
648 | */ | ||
649 | #define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ) | ||
650 | |||
651 | |||
652 | /* number of seconds to wait for other partitions to disengage */ | ||
653 | #define XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT 90 | ||
654 | |||
655 | /* interval in seconds to print 'waiting disengagement' messages */ | ||
656 | #define XPC_DISENGAGE_PRINTMSG_INTERVAL 10 | ||
657 | |||
658 | |||
659 | #define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0])) | ||
660 | |||
661 | |||
662 | |||
663 | /* found in xp_main.c */ | ||
664 | extern struct xpc_registration xpc_registrations[]; | ||
665 | |||
666 | |||
667 | /* found in xpc_main.c */ | ||
668 | extern struct device *xpc_part; | ||
669 | extern struct device *xpc_chan; | ||
670 | extern int xpc_disengage_request_timelimit; | ||
671 | extern int xpc_disengage_request_timedout; | ||
672 | extern irqreturn_t xpc_notify_IRQ_handler(int, void *); | ||
673 | extern void xpc_dropped_IPI_check(struct xpc_partition *); | ||
674 | extern void xpc_activate_partition(struct xpc_partition *); | ||
675 | extern void xpc_activate_kthreads(struct xpc_channel *, int); | ||
676 | extern void xpc_create_kthreads(struct xpc_channel *, int, int); | ||
677 | extern void xpc_disconnect_wait(int); | ||
678 | |||
679 | |||
680 | /* found in xpc_partition.c */ | ||
681 | extern int xpc_exiting; | ||
682 | extern struct xpc_vars *xpc_vars; | ||
683 | extern struct xpc_rsvd_page *xpc_rsvd_page; | ||
684 | extern struct xpc_vars_part *xpc_vars_part; | ||
685 | extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; | ||
686 | extern char *xpc_remote_copy_buffer; | ||
687 | extern void *xpc_remote_copy_buffer_base; | ||
688 | extern void *xpc_kmalloc_cacheline_aligned(size_t, gfp_t, void **); | ||
689 | extern struct xpc_rsvd_page *xpc_rsvd_page_init(void); | ||
690 | extern void xpc_allow_IPI_ops(void); | ||
691 | extern void xpc_restrict_IPI_ops(void); | ||
692 | extern int xpc_identify_act_IRQ_sender(void); | ||
693 | extern int xpc_partition_disengaged(struct xpc_partition *); | ||
694 | extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *); | ||
695 | extern void xpc_mark_partition_inactive(struct xpc_partition *); | ||
696 | extern void xpc_discovery(void); | ||
697 | extern void xpc_check_remote_hb(void); | ||
698 | extern void xpc_deactivate_partition(const int, struct xpc_partition *, | ||
699 | enum xpc_retval); | ||
700 | extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *); | ||
701 | |||
702 | |||
703 | /* found in xpc_channel.c */ | ||
704 | extern void xpc_initiate_connect(int); | ||
705 | extern void xpc_initiate_disconnect(int); | ||
706 | extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **); | ||
707 | extern enum xpc_retval xpc_initiate_send(partid_t, int, void *); | ||
708 | extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *, | ||
709 | xpc_notify_func, void *); | ||
710 | extern void xpc_initiate_received(partid_t, int, void *); | ||
711 | extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *); | ||
712 | extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *); | ||
713 | extern void xpc_process_channel_activity(struct xpc_partition *); | ||
714 | extern void xpc_connected_callout(struct xpc_channel *); | ||
715 | extern void xpc_deliver_msg(struct xpc_channel *); | ||
716 | extern void xpc_disconnect_channel(const int, struct xpc_channel *, | ||
717 | enum xpc_retval, unsigned long *); | ||
718 | extern void xpc_disconnect_callout(struct xpc_channel *, enum xpc_retval); | ||
719 | extern void xpc_partition_going_down(struct xpc_partition *, enum xpc_retval); | ||
720 | extern void xpc_teardown_infrastructure(struct xpc_partition *); | ||
721 | |||
722 | |||
723 | |||
724 | static inline void | ||
725 | xpc_wakeup_channel_mgr(struct xpc_partition *part) | ||
726 | { | ||
727 | if (atomic_inc_return(&part->channel_mgr_requests) == 1) { | ||
728 | wake_up(&part->channel_mgr_wq); | ||
729 | } | ||
730 | } | ||
731 | |||
732 | |||
733 | |||
734 | /* | ||
735 | * These next two inlines are used to keep us from tearing down a channel's | ||
736 | * msg queues while a thread may be referencing them. | ||
737 | */ | ||
738 | static inline void | ||
739 | xpc_msgqueue_ref(struct xpc_channel *ch) | ||
740 | { | ||
741 | atomic_inc(&ch->references); | ||
742 | } | ||
743 | |||
744 | static inline void | ||
745 | xpc_msgqueue_deref(struct xpc_channel *ch) | ||
746 | { | ||
747 | s32 refs = atomic_dec_return(&ch->references); | ||
748 | |||
749 | DBUG_ON(refs < 0); | ||
750 | if (refs == 0) { | ||
751 | xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]); | ||
752 | } | ||
753 | } | ||
754 | |||
755 | |||
756 | |||
757 | #define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \ | ||
758 | xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs) | ||
759 | |||
760 | |||
761 | /* | ||
762 | * These two inlines are used to keep us from tearing down a partition's | ||
763 | * setup infrastructure while a thread may be referencing it. | ||
764 | */ | ||
765 | static inline void | ||
766 | xpc_part_deref(struct xpc_partition *part) | ||
767 | { | ||
768 | s32 refs = atomic_dec_return(&part->references); | ||
769 | |||
770 | |||
771 | DBUG_ON(refs < 0); | ||
772 | if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) { | ||
773 | wake_up(&part->teardown_wq); | ||
774 | } | ||
775 | } | ||
776 | |||
777 | static inline int | ||
778 | xpc_part_ref(struct xpc_partition *part) | ||
779 | { | ||
780 | int setup; | ||
781 | |||
782 | |||
783 | atomic_inc(&part->references); | ||
784 | setup = (part->setup_state == XPC_P_SETUP); | ||
785 | if (!setup) { | ||
786 | xpc_part_deref(part); | ||
787 | } | ||
788 | return setup; | ||
789 | } | ||
790 | |||
791 | |||
792 | |||
793 | /* | ||
794 | * The following macro is to be used for the setting of the reason and | ||
795 | * reason_line fields in both the struct xpc_channel and struct xpc_partition | ||
796 | * structures. | ||
797 | */ | ||
798 | #define XPC_SET_REASON(_p, _reason, _line) \ | ||
799 | { \ | ||
800 | (_p)->reason = _reason; \ | ||
801 | (_p)->reason_line = _line; \ | ||
802 | } | ||
803 | |||
804 | |||
805 | |||
806 | /* | ||
807 | * This next set of inlines are used to keep track of when a partition is | ||
808 | * potentially engaged in accessing memory belonging to another partition. | ||
809 | */ | ||
810 | |||
811 | static inline void | ||
812 | xpc_mark_partition_engaged(struct xpc_partition *part) | ||
813 | { | ||
814 | unsigned long irq_flags; | ||
815 | AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa + | ||
816 | (XPC_ENGAGED_PARTITIONS_AMO * sizeof(AMO_t))); | ||
817 | |||
818 | |||
819 | local_irq_save(irq_flags); | ||
820 | |||
821 | /* set bit corresponding to our partid in remote partition's AMO */ | ||
822 | FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, | ||
823 | (1UL << sn_partition_id)); | ||
824 | /* | ||
825 | * We must always use the nofault function regardless of whether we | ||
826 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
827 | * didn't, we'd never know that the other partition is down and would | ||
828 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
829 | */ | ||
830 | (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
831 | variable), xp_nofault_PIOR_target)); | ||
832 | |||
833 | local_irq_restore(irq_flags); | ||
834 | } | ||
835 | |||
836 | static inline void | ||
837 | xpc_mark_partition_disengaged(struct xpc_partition *part) | ||
838 | { | ||
839 | unsigned long irq_flags; | ||
840 | AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa + | ||
841 | (XPC_ENGAGED_PARTITIONS_AMO * sizeof(AMO_t))); | ||
842 | |||
843 | |||
844 | local_irq_save(irq_flags); | ||
845 | |||
846 | /* clear bit corresponding to our partid in remote partition's AMO */ | ||
847 | FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND, | ||
848 | ~(1UL << sn_partition_id)); | ||
849 | /* | ||
850 | * We must always use the nofault function regardless of whether we | ||
851 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
852 | * didn't, we'd never know that the other partition is down and would | ||
853 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
854 | */ | ||
855 | (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
856 | variable), xp_nofault_PIOR_target)); | ||
857 | |||
858 | local_irq_restore(irq_flags); | ||
859 | } | ||
860 | |||
861 | static inline void | ||
862 | xpc_request_partition_disengage(struct xpc_partition *part) | ||
863 | { | ||
864 | unsigned long irq_flags; | ||
865 | AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa + | ||
866 | (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); | ||
867 | |||
868 | |||
869 | local_irq_save(irq_flags); | ||
870 | |||
871 | /* set bit corresponding to our partid in remote partition's AMO */ | ||
872 | FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, | ||
873 | (1UL << sn_partition_id)); | ||
874 | /* | ||
875 | * We must always use the nofault function regardless of whether we | ||
876 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
877 | * didn't, we'd never know that the other partition is down and would | ||
878 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
879 | */ | ||
880 | (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
881 | variable), xp_nofault_PIOR_target)); | ||
882 | |||
883 | local_irq_restore(irq_flags); | ||
884 | } | ||
885 | |||
886 | static inline void | ||
887 | xpc_cancel_partition_disengage_request(struct xpc_partition *part) | ||
888 | { | ||
889 | unsigned long irq_flags; | ||
890 | AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa + | ||
891 | (XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t))); | ||
892 | |||
893 | |||
894 | local_irq_save(irq_flags); | ||
895 | |||
896 | /* clear bit corresponding to our partid in remote partition's AMO */ | ||
897 | FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND, | ||
898 | ~(1UL << sn_partition_id)); | ||
899 | /* | ||
900 | * We must always use the nofault function regardless of whether we | ||
901 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
902 | * didn't, we'd never know that the other partition is down and would | ||
903 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
904 | */ | ||
905 | (void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo-> | ||
906 | variable), xp_nofault_PIOR_target)); | ||
907 | |||
908 | local_irq_restore(irq_flags); | ||
909 | } | ||
910 | |||
911 | static inline u64 | ||
912 | xpc_partition_engaged(u64 partid_mask) | ||
913 | { | ||
914 | AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; | ||
915 | |||
916 | |||
917 | /* return our partition's AMO variable ANDed with partid_mask */ | ||
918 | return (FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_LOAD) & | ||
919 | partid_mask); | ||
920 | } | ||
921 | |||
922 | static inline u64 | ||
923 | xpc_partition_disengage_requested(u64 partid_mask) | ||
924 | { | ||
925 | AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; | ||
926 | |||
927 | |||
928 | /* return our partition's AMO variable ANDed with partid_mask */ | ||
929 | return (FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_LOAD) & | ||
930 | partid_mask); | ||
931 | } | ||
932 | |||
933 | static inline void | ||
934 | xpc_clear_partition_engaged(u64 partid_mask) | ||
935 | { | ||
936 | AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO; | ||
937 | |||
938 | |||
939 | /* clear bit(s) based on partid_mask in our partition's AMO */ | ||
940 | FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND, | ||
941 | ~partid_mask); | ||
942 | } | ||
943 | |||
944 | static inline void | ||
945 | xpc_clear_partition_disengage_request(u64 partid_mask) | ||
946 | { | ||
947 | AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO; | ||
948 | |||
949 | |||
950 | /* clear bit(s) based on partid_mask in our partition's AMO */ | ||
951 | FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND, | ||
952 | ~partid_mask); | ||
953 | } | ||
954 | |||
955 | |||
956 | |||
957 | /* | ||
958 | * The following set of macros and inlines are used for the sending and | ||
959 | * receiving of IPIs (also known as IRQs). There are two flavors of IPIs, | ||
960 | * one that is associated with partition activity (SGI_XPC_ACTIVATE) and | ||
961 | * the other that is associated with channel activity (SGI_XPC_NOTIFY). | ||
962 | */ | ||
963 | |||
964 | static inline u64 | ||
965 | xpc_IPI_receive(AMO_t *amo) | ||
966 | { | ||
967 | return FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_CLEAR); | ||
968 | } | ||
969 | |||
970 | |||
971 | static inline enum xpc_retval | ||
972 | xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector) | ||
973 | { | ||
974 | int ret = 0; | ||
975 | unsigned long irq_flags; | ||
976 | |||
977 | |||
978 | local_irq_save(irq_flags); | ||
979 | |||
980 | FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, flag); | ||
981 | sn_send_IPI_phys(nasid, phys_cpuid, vector, 0); | ||
982 | |||
983 | /* | ||
984 | * We must always use the nofault function regardless of whether we | ||
985 | * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we | ||
986 | * didn't, we'd never know that the other partition is down and would | ||
987 | * keep sending IPIs and AMOs to it until the heartbeat times out. | ||
988 | */ | ||
989 | ret = xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->variable), | ||
990 | xp_nofault_PIOR_target)); | ||
991 | |||
992 | local_irq_restore(irq_flags); | ||
993 | |||
994 | return ((ret == 0) ? xpcSuccess : xpcPioReadError); | ||
995 | } | ||
996 | |||
997 | |||
998 | /* | ||
999 | * IPIs associated with SGI_XPC_ACTIVATE IRQ. | ||
1000 | */ | ||
1001 | |||
1002 | /* | ||
1003 | * Flag the appropriate AMO variable and send an IPI to the specified node. | ||
1004 | */ | ||
1005 | static inline void | ||
1006 | xpc_activate_IRQ_send(u64 amos_page_pa, int from_nasid, int to_nasid, | ||
1007 | int to_phys_cpuid) | ||
1008 | { | ||
1009 | int w_index = XPC_NASID_W_INDEX(from_nasid); | ||
1010 | int b_index = XPC_NASID_B_INDEX(from_nasid); | ||
1011 | AMO_t *amos = (AMO_t *) __va(amos_page_pa + | ||
1012 | (XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t))); | ||
1013 | |||
1014 | |||
1015 | (void) xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid, | ||
1016 | to_phys_cpuid, SGI_XPC_ACTIVATE); | ||
1017 | } | ||
1018 | |||
1019 | static inline void | ||
1020 | xpc_IPI_send_activate(struct xpc_vars *vars) | ||
1021 | { | ||
1022 | xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0), | ||
1023 | vars->act_nasid, vars->act_phys_cpuid); | ||
1024 | } | ||
1025 | |||
1026 | static inline void | ||
1027 | xpc_IPI_send_activated(struct xpc_partition *part) | ||
1028 | { | ||
1029 | xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), | ||
1030 | part->remote_act_nasid, part->remote_act_phys_cpuid); | ||
1031 | } | ||
1032 | |||
1033 | static inline void | ||
1034 | xpc_IPI_send_reactivate(struct xpc_partition *part) | ||
1035 | { | ||
1036 | xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid, | ||
1037 | xpc_vars->act_nasid, xpc_vars->act_phys_cpuid); | ||
1038 | } | ||
1039 | |||
1040 | static inline void | ||
1041 | xpc_IPI_send_disengage(struct xpc_partition *part) | ||
1042 | { | ||
1043 | xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), | ||
1044 | part->remote_act_nasid, part->remote_act_phys_cpuid); | ||
1045 | } | ||
1046 | |||
1047 | |||
1048 | /* | ||
1049 | * IPIs associated with SGI_XPC_NOTIFY IRQ. | ||
1050 | */ | ||
1051 | |||
1052 | /* | ||
1053 | * Send an IPI to the remote partition that is associated with the | ||
1054 | * specified channel. | ||
1055 | */ | ||
1056 | #define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \ | ||
1057 | xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f) | ||
1058 | |||
1059 | static inline void | ||
1060 | xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string, | ||
1061 | unsigned long *irq_flags) | ||
1062 | { | ||
1063 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
1064 | enum xpc_retval ret; | ||
1065 | |||
1066 | |||
1067 | if (likely(part->act_state != XPC_P_DEACTIVATING)) { | ||
1068 | ret = xpc_IPI_send(part->remote_IPI_amo_va, | ||
1069 | (u64) ipi_flag << (ch->number * 8), | ||
1070 | part->remote_IPI_nasid, | ||
1071 | part->remote_IPI_phys_cpuid, | ||
1072 | SGI_XPC_NOTIFY); | ||
1073 | dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n", | ||
1074 | ipi_flag_string, ch->partid, ch->number, ret); | ||
1075 | if (unlikely(ret != xpcSuccess)) { | ||
1076 | if (irq_flags != NULL) { | ||
1077 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
1078 | } | ||
1079 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1080 | if (irq_flags != NULL) { | ||
1081 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
1082 | } | ||
1083 | } | ||
1084 | } | ||
1085 | } | ||
1086 | |||
1087 | |||
1088 | /* | ||
1089 | * Make it look like the remote partition, which is associated with the | ||
1090 | * specified channel, sent us an IPI. This faked IPI will be handled | ||
1091 | * by xpc_dropped_IPI_check(). | ||
1092 | */ | ||
1093 | #define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \ | ||
1094 | xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f) | ||
1095 | |||
1096 | static inline void | ||
1097 | xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag, | ||
1098 | char *ipi_flag_string) | ||
1099 | { | ||
1100 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
1101 | |||
1102 | |||
1103 | FETCHOP_STORE_OP(TO_AMO((u64) &part->local_IPI_amo_va->variable), | ||
1104 | FETCHOP_OR, ((u64) ipi_flag << (ch->number * 8))); | ||
1105 | dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n", | ||
1106 | ipi_flag_string, ch->partid, ch->number); | ||
1107 | } | ||
1108 | |||
1109 | |||
1110 | /* | ||
1111 | * The sending and receiving of IPIs includes the setting of an AMO variable | ||
1112 | * to indicate the reason the IPI was sent. The 64-bit variable is divided | ||
1113 | * up into eight bytes, ordered from right to left. Byte zero pertains to | ||
1114 | * channel 0, byte one to channel 1, and so on. Each byte is described by | ||
1115 | * the following IPI flags. | ||
1116 | */ | ||
1117 | |||
1118 | #define XPC_IPI_CLOSEREQUEST 0x01 | ||
1119 | #define XPC_IPI_CLOSEREPLY 0x02 | ||
1120 | #define XPC_IPI_OPENREQUEST 0x04 | ||
1121 | #define XPC_IPI_OPENREPLY 0x08 | ||
1122 | #define XPC_IPI_MSGREQUEST 0x10 | ||
1123 | |||
1124 | |||
1125 | /* given an AMO variable and a channel#, get its associated IPI flags */ | ||
1126 | #define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff)) | ||
1127 | #define XPC_SET_IPI_FLAGS(_amo, _c, _f) (_amo) |= ((u64) (_f) << ((_c) * 8)) | ||
1128 | |||
1129 | #define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & __IA64_UL_CONST(0x0f0f0f0f0f0f0f0f)) | ||
1130 | #define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & __IA64_UL_CONST(0x1010101010101010)) | ||
1131 | |||
1132 | |||
1133 | static inline void | ||
1134 | xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1135 | { | ||
1136 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
1137 | |||
1138 | |||
1139 | args->reason = ch->reason; | ||
1140 | |||
1141 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags); | ||
1142 | } | ||
1143 | |||
1144 | static inline void | ||
1145 | xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1146 | { | ||
1147 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags); | ||
1148 | } | ||
1149 | |||
1150 | static inline void | ||
1151 | xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1152 | { | ||
1153 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
1154 | |||
1155 | |||
1156 | args->msg_size = ch->msg_size; | ||
1157 | args->local_nentries = ch->local_nentries; | ||
1158 | |||
1159 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags); | ||
1160 | } | ||
1161 | |||
1162 | static inline void | ||
1163 | xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags) | ||
1164 | { | ||
1165 | struct xpc_openclose_args *args = ch->local_openclose_args; | ||
1166 | |||
1167 | |||
1168 | args->remote_nentries = ch->remote_nentries; | ||
1169 | args->local_nentries = ch->local_nentries; | ||
1170 | args->local_msgqueue_pa = __pa(ch->local_msgqueue); | ||
1171 | |||
1172 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags); | ||
1173 | } | ||
1174 | |||
1175 | static inline void | ||
1176 | xpc_IPI_send_msgrequest(struct xpc_channel *ch) | ||
1177 | { | ||
1178 | XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL); | ||
1179 | } | ||
1180 | |||
1181 | static inline void | ||
1182 | xpc_IPI_send_local_msgrequest(struct xpc_channel *ch) | ||
1183 | { | ||
1184 | XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST); | ||
1185 | } | ||
1186 | |||
1187 | |||
1188 | /* | ||
1189 | * Memory for XPC's AMO variables is allocated by the MSPEC driver. These | ||
1190 | * pages are located in the lowest granule. The lowest granule uses 4k pages | ||
1191 | * for cached references and an alternate TLB handler to never provide a | ||
1192 | * cacheable mapping for the entire region. This will prevent speculative | ||
1193 | * reading of cached copies of our lines from being issued which will cause | ||
1194 | * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64 | ||
1195 | * AMO variables (based on XP_MAX_PARTITIONS) for message notification and an | ||
1196 | * additional 128 AMO variables (based on XP_NASID_MASK_WORDS) for partition | ||
1197 | * activation and 2 AMO variables for partition deactivation. | ||
1198 | */ | ||
1199 | static inline AMO_t * | ||
1200 | xpc_IPI_init(int index) | ||
1201 | { | ||
1202 | AMO_t *amo = xpc_vars->amos_page + index; | ||
1203 | |||
1204 | |||
1205 | (void) xpc_IPI_receive(amo); /* clear AMO variable */ | ||
1206 | return amo; | ||
1207 | } | ||
1208 | |||
1209 | |||
1210 | |||
1211 | static inline enum xpc_retval | ||
1212 | xpc_map_bte_errors(bte_result_t error) | ||
1213 | { | ||
1214 | if (error == BTE_SUCCESS) | ||
1215 | return xpcSuccess; | ||
1216 | |||
1217 | if (is_shub2()) { | ||
1218 | if (BTE_VALID_SH2_ERROR(error)) | ||
1219 | return xpcBteSh2Start + error; | ||
1220 | return xpcBteUnmappedError; | ||
1221 | } | ||
1222 | switch (error) { | ||
1223 | case BTE_SUCCESS: return xpcSuccess; | ||
1224 | case BTEFAIL_DIR: return xpcBteDirectoryError; | ||
1225 | case BTEFAIL_POISON: return xpcBtePoisonError; | ||
1226 | case BTEFAIL_WERR: return xpcBteWriteError; | ||
1227 | case BTEFAIL_ACCESS: return xpcBteAccessError; | ||
1228 | case BTEFAIL_PWERR: return xpcBtePWriteError; | ||
1229 | case BTEFAIL_PRERR: return xpcBtePReadError; | ||
1230 | case BTEFAIL_TOUT: return xpcBteTimeOutError; | ||
1231 | case BTEFAIL_XTERR: return xpcBteXtalkError; | ||
1232 | case BTEFAIL_NOTAVAIL: return xpcBteNotAvailable; | ||
1233 | default: return xpcBteUnmappedError; | ||
1234 | } | ||
1235 | } | ||
1236 | |||
1237 | |||
1238 | |||
1239 | /* | ||
1240 | * Check to see if there is any channel activity to/from the specified | ||
1241 | * partition. | ||
1242 | */ | ||
1243 | static inline void | ||
1244 | xpc_check_for_channel_activity(struct xpc_partition *part) | ||
1245 | { | ||
1246 | u64 IPI_amo; | ||
1247 | unsigned long irq_flags; | ||
1248 | |||
1249 | |||
1250 | IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va); | ||
1251 | if (IPI_amo == 0) { | ||
1252 | return; | ||
1253 | } | ||
1254 | |||
1255 | spin_lock_irqsave(&part->IPI_lock, irq_flags); | ||
1256 | part->local_IPI_amo |= IPI_amo; | ||
1257 | spin_unlock_irqrestore(&part->IPI_lock, irq_flags); | ||
1258 | |||
1259 | dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n", | ||
1260 | XPC_PARTID(part), IPI_amo); | ||
1261 | |||
1262 | xpc_wakeup_channel_mgr(part); | ||
1263 | } | ||
1264 | |||
1265 | |||
1266 | #endif /* _DRIVERS_MISC_SGIXP_XPC_H */ | ||
1267 | |||
diff --git a/drivers/misc/sgi-xp/xpc_channel.c b/drivers/misc/sgi-xp/xpc_channel.c new file mode 100644 index 000000000000..d7a215eeaaf6 --- /dev/null +++ b/drivers/misc/sgi-xp/xpc_channel.c | |||
@@ -0,0 +1,2379 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition Communication (XPC) channel support. | ||
12 | * | ||
13 | * This is the part of XPC that manages the channels and | ||
14 | * sends/receives messages across them to/from other partitions. | ||
15 | * | ||
16 | */ | ||
17 | |||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/sched.h> | ||
22 | #include <linux/cache.h> | ||
23 | #include <linux/interrupt.h> | ||
24 | #include <linux/mutex.h> | ||
25 | #include <linux/completion.h> | ||
26 | #include <asm/sn/bte.h> | ||
27 | #include <asm/sn/sn_sal.h> | ||
28 | #include "xpc.h" | ||
29 | |||
30 | |||
31 | /* | ||
32 | * Guarantee that the kzalloc'd memory is cacheline aligned. | ||
33 | */ | ||
34 | static void * | ||
35 | xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) | ||
36 | { | ||
37 | /* see if kzalloc will give us cachline aligned memory by default */ | ||
38 | *base = kzalloc(size, flags); | ||
39 | if (*base == NULL) { | ||
40 | return NULL; | ||
41 | } | ||
42 | if ((u64) *base == L1_CACHE_ALIGN((u64) *base)) { | ||
43 | return *base; | ||
44 | } | ||
45 | kfree(*base); | ||
46 | |||
47 | /* nope, we'll have to do it ourselves */ | ||
48 | *base = kzalloc(size + L1_CACHE_BYTES, flags); | ||
49 | if (*base == NULL) { | ||
50 | return NULL; | ||
51 | } | ||
52 | return (void *) L1_CACHE_ALIGN((u64) *base); | ||
53 | } | ||
54 | |||
55 | |||
56 | /* | ||
57 | * Set up the initial values for the XPartition Communication channels. | ||
58 | */ | ||
59 | static void | ||
60 | xpc_initialize_channels(struct xpc_partition *part, partid_t partid) | ||
61 | { | ||
62 | int ch_number; | ||
63 | struct xpc_channel *ch; | ||
64 | |||
65 | |||
66 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
67 | ch = &part->channels[ch_number]; | ||
68 | |||
69 | ch->partid = partid; | ||
70 | ch->number = ch_number; | ||
71 | ch->flags = XPC_C_DISCONNECTED; | ||
72 | |||
73 | ch->local_GP = &part->local_GPs[ch_number]; | ||
74 | ch->local_openclose_args = | ||
75 | &part->local_openclose_args[ch_number]; | ||
76 | |||
77 | atomic_set(&ch->kthreads_assigned, 0); | ||
78 | atomic_set(&ch->kthreads_idle, 0); | ||
79 | atomic_set(&ch->kthreads_active, 0); | ||
80 | |||
81 | atomic_set(&ch->references, 0); | ||
82 | atomic_set(&ch->n_to_notify, 0); | ||
83 | |||
84 | spin_lock_init(&ch->lock); | ||
85 | mutex_init(&ch->msg_to_pull_mutex); | ||
86 | init_completion(&ch->wdisconnect_wait); | ||
87 | |||
88 | atomic_set(&ch->n_on_msg_allocate_wq, 0); | ||
89 | init_waitqueue_head(&ch->msg_allocate_wq); | ||
90 | init_waitqueue_head(&ch->idle_wq); | ||
91 | } | ||
92 | } | ||
93 | |||
94 | |||
95 | /* | ||
96 | * Setup the infrastructure necessary to support XPartition Communication | ||
97 | * between the specified remote partition and the local one. | ||
98 | */ | ||
99 | enum xpc_retval | ||
100 | xpc_setup_infrastructure(struct xpc_partition *part) | ||
101 | { | ||
102 | int ret, cpuid; | ||
103 | struct timer_list *timer; | ||
104 | partid_t partid = XPC_PARTID(part); | ||
105 | |||
106 | |||
107 | /* | ||
108 | * Zero out MOST of the entry for this partition. Only the fields | ||
109 | * starting with `nchannels' will be zeroed. The preceding fields must | ||
110 | * remain `viable' across partition ups and downs, since they may be | ||
111 | * referenced during this memset() operation. | ||
112 | */ | ||
113 | memset(&part->nchannels, 0, sizeof(struct xpc_partition) - | ||
114 | offsetof(struct xpc_partition, nchannels)); | ||
115 | |||
116 | /* | ||
117 | * Allocate all of the channel structures as a contiguous chunk of | ||
118 | * memory. | ||
119 | */ | ||
120 | part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_NCHANNELS, | ||
121 | GFP_KERNEL); | ||
122 | if (part->channels == NULL) { | ||
123 | dev_err(xpc_chan, "can't get memory for channels\n"); | ||
124 | return xpcNoMemory; | ||
125 | } | ||
126 | |||
127 | part->nchannels = XPC_NCHANNELS; | ||
128 | |||
129 | |||
130 | /* allocate all the required GET/PUT values */ | ||
131 | |||
132 | part->local_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, | ||
133 | GFP_KERNEL, &part->local_GPs_base); | ||
134 | if (part->local_GPs == NULL) { | ||
135 | kfree(part->channels); | ||
136 | part->channels = NULL; | ||
137 | dev_err(xpc_chan, "can't get memory for local get/put " | ||
138 | "values\n"); | ||
139 | return xpcNoMemory; | ||
140 | } | ||
141 | |||
142 | part->remote_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, | ||
143 | GFP_KERNEL, &part->remote_GPs_base); | ||
144 | if (part->remote_GPs == NULL) { | ||
145 | dev_err(xpc_chan, "can't get memory for remote get/put " | ||
146 | "values\n"); | ||
147 | kfree(part->local_GPs_base); | ||
148 | part->local_GPs = NULL; | ||
149 | kfree(part->channels); | ||
150 | part->channels = NULL; | ||
151 | return xpcNoMemory; | ||
152 | } | ||
153 | |||
154 | |||
155 | /* allocate all the required open and close args */ | ||
156 | |||
157 | part->local_openclose_args = xpc_kzalloc_cacheline_aligned( | ||
158 | XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, | ||
159 | &part->local_openclose_args_base); | ||
160 | if (part->local_openclose_args == NULL) { | ||
161 | dev_err(xpc_chan, "can't get memory for local connect args\n"); | ||
162 | kfree(part->remote_GPs_base); | ||
163 | part->remote_GPs = NULL; | ||
164 | kfree(part->local_GPs_base); | ||
165 | part->local_GPs = NULL; | ||
166 | kfree(part->channels); | ||
167 | part->channels = NULL; | ||
168 | return xpcNoMemory; | ||
169 | } | ||
170 | |||
171 | part->remote_openclose_args = xpc_kzalloc_cacheline_aligned( | ||
172 | XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, | ||
173 | &part->remote_openclose_args_base); | ||
174 | if (part->remote_openclose_args == NULL) { | ||
175 | dev_err(xpc_chan, "can't get memory for remote connect args\n"); | ||
176 | kfree(part->local_openclose_args_base); | ||
177 | part->local_openclose_args = NULL; | ||
178 | kfree(part->remote_GPs_base); | ||
179 | part->remote_GPs = NULL; | ||
180 | kfree(part->local_GPs_base); | ||
181 | part->local_GPs = NULL; | ||
182 | kfree(part->channels); | ||
183 | part->channels = NULL; | ||
184 | return xpcNoMemory; | ||
185 | } | ||
186 | |||
187 | |||
188 | xpc_initialize_channels(part, partid); | ||
189 | |||
190 | atomic_set(&part->nchannels_active, 0); | ||
191 | atomic_set(&part->nchannels_engaged, 0); | ||
192 | |||
193 | |||
194 | /* local_IPI_amo were set to 0 by an earlier memset() */ | ||
195 | |||
196 | /* Initialize this partitions AMO_t structure */ | ||
197 | part->local_IPI_amo_va = xpc_IPI_init(partid); | ||
198 | |||
199 | spin_lock_init(&part->IPI_lock); | ||
200 | |||
201 | atomic_set(&part->channel_mgr_requests, 1); | ||
202 | init_waitqueue_head(&part->channel_mgr_wq); | ||
203 | |||
204 | sprintf(part->IPI_owner, "xpc%02d", partid); | ||
205 | ret = request_irq(SGI_XPC_NOTIFY, xpc_notify_IRQ_handler, IRQF_SHARED, | ||
206 | part->IPI_owner, (void *) (u64) partid); | ||
207 | if (ret != 0) { | ||
208 | dev_err(xpc_chan, "can't register NOTIFY IRQ handler, " | ||
209 | "errno=%d\n", -ret); | ||
210 | kfree(part->remote_openclose_args_base); | ||
211 | part->remote_openclose_args = NULL; | ||
212 | kfree(part->local_openclose_args_base); | ||
213 | part->local_openclose_args = NULL; | ||
214 | kfree(part->remote_GPs_base); | ||
215 | part->remote_GPs = NULL; | ||
216 | kfree(part->local_GPs_base); | ||
217 | part->local_GPs = NULL; | ||
218 | kfree(part->channels); | ||
219 | part->channels = NULL; | ||
220 | return xpcLackOfResources; | ||
221 | } | ||
222 | |||
223 | /* Setup a timer to check for dropped IPIs */ | ||
224 | timer = &part->dropped_IPI_timer; | ||
225 | init_timer(timer); | ||
226 | timer->function = (void (*)(unsigned long)) xpc_dropped_IPI_check; | ||
227 | timer->data = (unsigned long) part; | ||
228 | timer->expires = jiffies + XPC_P_DROPPED_IPI_WAIT; | ||
229 | add_timer(timer); | ||
230 | |||
231 | /* | ||
232 | * With the setting of the partition setup_state to XPC_P_SETUP, we're | ||
233 | * declaring that this partition is ready to go. | ||
234 | */ | ||
235 | part->setup_state = XPC_P_SETUP; | ||
236 | |||
237 | |||
238 | /* | ||
239 | * Setup the per partition specific variables required by the | ||
240 | * remote partition to establish channel connections with us. | ||
241 | * | ||
242 | * The setting of the magic # indicates that these per partition | ||
243 | * specific variables are ready to be used. | ||
244 | */ | ||
245 | xpc_vars_part[partid].GPs_pa = __pa(part->local_GPs); | ||
246 | xpc_vars_part[partid].openclose_args_pa = | ||
247 | __pa(part->local_openclose_args); | ||
248 | xpc_vars_part[partid].IPI_amo_pa = __pa(part->local_IPI_amo_va); | ||
249 | cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */ | ||
250 | xpc_vars_part[partid].IPI_nasid = cpuid_to_nasid(cpuid); | ||
251 | xpc_vars_part[partid].IPI_phys_cpuid = cpu_physical_id(cpuid); | ||
252 | xpc_vars_part[partid].nchannels = part->nchannels; | ||
253 | xpc_vars_part[partid].magic = XPC_VP_MAGIC1; | ||
254 | |||
255 | return xpcSuccess; | ||
256 | } | ||
257 | |||
258 | |||
259 | /* | ||
260 | * Create a wrapper that hides the underlying mechanism for pulling a cacheline | ||
261 | * (or multiple cachelines) from a remote partition. | ||
262 | * | ||
263 | * src must be a cacheline aligned physical address on the remote partition. | ||
264 | * dst must be a cacheline aligned virtual address on this partition. | ||
265 | * cnt must be an cacheline sized | ||
266 | */ | ||
267 | static enum xpc_retval | ||
268 | xpc_pull_remote_cachelines(struct xpc_partition *part, void *dst, | ||
269 | const void *src, size_t cnt) | ||
270 | { | ||
271 | bte_result_t bte_ret; | ||
272 | |||
273 | |||
274 | DBUG_ON((u64) src != L1_CACHE_ALIGN((u64) src)); | ||
275 | DBUG_ON((u64) dst != L1_CACHE_ALIGN((u64) dst)); | ||
276 | DBUG_ON(cnt != L1_CACHE_ALIGN(cnt)); | ||
277 | |||
278 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
279 | return part->reason; | ||
280 | } | ||
281 | |||
282 | bte_ret = xp_bte_copy((u64) src, (u64) dst, (u64) cnt, | ||
283 | (BTE_NORMAL | BTE_WACQUIRE), NULL); | ||
284 | if (bte_ret == BTE_SUCCESS) { | ||
285 | return xpcSuccess; | ||
286 | } | ||
287 | |||
288 | dev_dbg(xpc_chan, "xp_bte_copy() from partition %d failed, ret=%d\n", | ||
289 | XPC_PARTID(part), bte_ret); | ||
290 | |||
291 | return xpc_map_bte_errors(bte_ret); | ||
292 | } | ||
293 | |||
294 | |||
295 | /* | ||
296 | * Pull the remote per partition specific variables from the specified | ||
297 | * partition. | ||
298 | */ | ||
299 | enum xpc_retval | ||
300 | xpc_pull_remote_vars_part(struct xpc_partition *part) | ||
301 | { | ||
302 | u8 buffer[L1_CACHE_BYTES * 2]; | ||
303 | struct xpc_vars_part *pulled_entry_cacheline = | ||
304 | (struct xpc_vars_part *) L1_CACHE_ALIGN((u64) buffer); | ||
305 | struct xpc_vars_part *pulled_entry; | ||
306 | u64 remote_entry_cacheline_pa, remote_entry_pa; | ||
307 | partid_t partid = XPC_PARTID(part); | ||
308 | enum xpc_retval ret; | ||
309 | |||
310 | |||
311 | /* pull the cacheline that contains the variables we're interested in */ | ||
312 | |||
313 | DBUG_ON(part->remote_vars_part_pa != | ||
314 | L1_CACHE_ALIGN(part->remote_vars_part_pa)); | ||
315 | DBUG_ON(sizeof(struct xpc_vars_part) != L1_CACHE_BYTES / 2); | ||
316 | |||
317 | remote_entry_pa = part->remote_vars_part_pa + | ||
318 | sn_partition_id * sizeof(struct xpc_vars_part); | ||
319 | |||
320 | remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1)); | ||
321 | |||
322 | pulled_entry = (struct xpc_vars_part *) ((u64) pulled_entry_cacheline + | ||
323 | (remote_entry_pa & (L1_CACHE_BYTES - 1))); | ||
324 | |||
325 | ret = xpc_pull_remote_cachelines(part, pulled_entry_cacheline, | ||
326 | (void *) remote_entry_cacheline_pa, | ||
327 | L1_CACHE_BYTES); | ||
328 | if (ret != xpcSuccess) { | ||
329 | dev_dbg(xpc_chan, "failed to pull XPC vars_part from " | ||
330 | "partition %d, ret=%d\n", partid, ret); | ||
331 | return ret; | ||
332 | } | ||
333 | |||
334 | |||
335 | /* see if they've been set up yet */ | ||
336 | |||
337 | if (pulled_entry->magic != XPC_VP_MAGIC1 && | ||
338 | pulled_entry->magic != XPC_VP_MAGIC2) { | ||
339 | |||
340 | if (pulled_entry->magic != 0) { | ||
341 | dev_dbg(xpc_chan, "partition %d's XPC vars_part for " | ||
342 | "partition %d has bad magic value (=0x%lx)\n", | ||
343 | partid, sn_partition_id, pulled_entry->magic); | ||
344 | return xpcBadMagic; | ||
345 | } | ||
346 | |||
347 | /* they've not been initialized yet */ | ||
348 | return xpcRetry; | ||
349 | } | ||
350 | |||
351 | if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) { | ||
352 | |||
353 | /* validate the variables */ | ||
354 | |||
355 | if (pulled_entry->GPs_pa == 0 || | ||
356 | pulled_entry->openclose_args_pa == 0 || | ||
357 | pulled_entry->IPI_amo_pa == 0) { | ||
358 | |||
359 | dev_err(xpc_chan, "partition %d's XPC vars_part for " | ||
360 | "partition %d are not valid\n", partid, | ||
361 | sn_partition_id); | ||
362 | return xpcInvalidAddress; | ||
363 | } | ||
364 | |||
365 | /* the variables we imported look to be valid */ | ||
366 | |||
367 | part->remote_GPs_pa = pulled_entry->GPs_pa; | ||
368 | part->remote_openclose_args_pa = | ||
369 | pulled_entry->openclose_args_pa; | ||
370 | part->remote_IPI_amo_va = | ||
371 | (AMO_t *) __va(pulled_entry->IPI_amo_pa); | ||
372 | part->remote_IPI_nasid = pulled_entry->IPI_nasid; | ||
373 | part->remote_IPI_phys_cpuid = pulled_entry->IPI_phys_cpuid; | ||
374 | |||
375 | if (part->nchannels > pulled_entry->nchannels) { | ||
376 | part->nchannels = pulled_entry->nchannels; | ||
377 | } | ||
378 | |||
379 | /* let the other side know that we've pulled their variables */ | ||
380 | |||
381 | xpc_vars_part[partid].magic = XPC_VP_MAGIC2; | ||
382 | } | ||
383 | |||
384 | if (pulled_entry->magic == XPC_VP_MAGIC1) { | ||
385 | return xpcRetry; | ||
386 | } | ||
387 | |||
388 | return xpcSuccess; | ||
389 | } | ||
390 | |||
391 | |||
392 | /* | ||
393 | * Get the IPI flags and pull the openclose args and/or remote GPs as needed. | ||
394 | */ | ||
395 | static u64 | ||
396 | xpc_get_IPI_flags(struct xpc_partition *part) | ||
397 | { | ||
398 | unsigned long irq_flags; | ||
399 | u64 IPI_amo; | ||
400 | enum xpc_retval ret; | ||
401 | |||
402 | |||
403 | /* | ||
404 | * See if there are any IPI flags to be handled. | ||
405 | */ | ||
406 | |||
407 | spin_lock_irqsave(&part->IPI_lock, irq_flags); | ||
408 | if ((IPI_amo = part->local_IPI_amo) != 0) { | ||
409 | part->local_IPI_amo = 0; | ||
410 | } | ||
411 | spin_unlock_irqrestore(&part->IPI_lock, irq_flags); | ||
412 | |||
413 | |||
414 | if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_amo)) { | ||
415 | ret = xpc_pull_remote_cachelines(part, | ||
416 | part->remote_openclose_args, | ||
417 | (void *) part->remote_openclose_args_pa, | ||
418 | XPC_OPENCLOSE_ARGS_SIZE); | ||
419 | if (ret != xpcSuccess) { | ||
420 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
421 | |||
422 | dev_dbg(xpc_chan, "failed to pull openclose args from " | ||
423 | "partition %d, ret=%d\n", XPC_PARTID(part), | ||
424 | ret); | ||
425 | |||
426 | /* don't bother processing IPIs anymore */ | ||
427 | IPI_amo = 0; | ||
428 | } | ||
429 | } | ||
430 | |||
431 | if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_amo)) { | ||
432 | ret = xpc_pull_remote_cachelines(part, part->remote_GPs, | ||
433 | (void *) part->remote_GPs_pa, | ||
434 | XPC_GP_SIZE); | ||
435 | if (ret != xpcSuccess) { | ||
436 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
437 | |||
438 | dev_dbg(xpc_chan, "failed to pull GPs from partition " | ||
439 | "%d, ret=%d\n", XPC_PARTID(part), ret); | ||
440 | |||
441 | /* don't bother processing IPIs anymore */ | ||
442 | IPI_amo = 0; | ||
443 | } | ||
444 | } | ||
445 | |||
446 | return IPI_amo; | ||
447 | } | ||
448 | |||
449 | |||
450 | /* | ||
451 | * Allocate the local message queue and the notify queue. | ||
452 | */ | ||
453 | static enum xpc_retval | ||
454 | xpc_allocate_local_msgqueue(struct xpc_channel *ch) | ||
455 | { | ||
456 | unsigned long irq_flags; | ||
457 | int nentries; | ||
458 | size_t nbytes; | ||
459 | |||
460 | |||
461 | // >>> may want to check for ch->flags & XPC_C_DISCONNECTING between | ||
462 | // >>> iterations of the for-loop, bail if set? | ||
463 | |||
464 | // >>> should we impose a minimum #of entries? like 4 or 8? | ||
465 | for (nentries = ch->local_nentries; nentries > 0; nentries--) { | ||
466 | |||
467 | nbytes = nentries * ch->msg_size; | ||
468 | ch->local_msgqueue = xpc_kzalloc_cacheline_aligned(nbytes, | ||
469 | GFP_KERNEL, | ||
470 | &ch->local_msgqueue_base); | ||
471 | if (ch->local_msgqueue == NULL) { | ||
472 | continue; | ||
473 | } | ||
474 | |||
475 | nbytes = nentries * sizeof(struct xpc_notify); | ||
476 | ch->notify_queue = kzalloc(nbytes, GFP_KERNEL); | ||
477 | if (ch->notify_queue == NULL) { | ||
478 | kfree(ch->local_msgqueue_base); | ||
479 | ch->local_msgqueue = NULL; | ||
480 | continue; | ||
481 | } | ||
482 | |||
483 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
484 | if (nentries < ch->local_nentries) { | ||
485 | dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, " | ||
486 | "partid=%d, channel=%d\n", nentries, | ||
487 | ch->local_nentries, ch->partid, ch->number); | ||
488 | |||
489 | ch->local_nentries = nentries; | ||
490 | } | ||
491 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
492 | return xpcSuccess; | ||
493 | } | ||
494 | |||
495 | dev_dbg(xpc_chan, "can't get memory for local message queue and notify " | ||
496 | "queue, partid=%d, channel=%d\n", ch->partid, ch->number); | ||
497 | return xpcNoMemory; | ||
498 | } | ||
499 | |||
500 | |||
501 | /* | ||
502 | * Allocate the cached remote message queue. | ||
503 | */ | ||
504 | static enum xpc_retval | ||
505 | xpc_allocate_remote_msgqueue(struct xpc_channel *ch) | ||
506 | { | ||
507 | unsigned long irq_flags; | ||
508 | int nentries; | ||
509 | size_t nbytes; | ||
510 | |||
511 | |||
512 | DBUG_ON(ch->remote_nentries <= 0); | ||
513 | |||
514 | // >>> may want to check for ch->flags & XPC_C_DISCONNECTING between | ||
515 | // >>> iterations of the for-loop, bail if set? | ||
516 | |||
517 | // >>> should we impose a minimum #of entries? like 4 or 8? | ||
518 | for (nentries = ch->remote_nentries; nentries > 0; nentries--) { | ||
519 | |||
520 | nbytes = nentries * ch->msg_size; | ||
521 | ch->remote_msgqueue = xpc_kzalloc_cacheline_aligned(nbytes, | ||
522 | GFP_KERNEL, | ||
523 | &ch->remote_msgqueue_base); | ||
524 | if (ch->remote_msgqueue == NULL) { | ||
525 | continue; | ||
526 | } | ||
527 | |||
528 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
529 | if (nentries < ch->remote_nentries) { | ||
530 | dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, " | ||
531 | "partid=%d, channel=%d\n", nentries, | ||
532 | ch->remote_nentries, ch->partid, ch->number); | ||
533 | |||
534 | ch->remote_nentries = nentries; | ||
535 | } | ||
536 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
537 | return xpcSuccess; | ||
538 | } | ||
539 | |||
540 | dev_dbg(xpc_chan, "can't get memory for cached remote message queue, " | ||
541 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
542 | return xpcNoMemory; | ||
543 | } | ||
544 | |||
545 | |||
546 | /* | ||
547 | * Allocate message queues and other stuff associated with a channel. | ||
548 | * | ||
549 | * Note: Assumes all of the channel sizes are filled in. | ||
550 | */ | ||
551 | static enum xpc_retval | ||
552 | xpc_allocate_msgqueues(struct xpc_channel *ch) | ||
553 | { | ||
554 | unsigned long irq_flags; | ||
555 | enum xpc_retval ret; | ||
556 | |||
557 | |||
558 | DBUG_ON(ch->flags & XPC_C_SETUP); | ||
559 | |||
560 | if ((ret = xpc_allocate_local_msgqueue(ch)) != xpcSuccess) { | ||
561 | return ret; | ||
562 | } | ||
563 | |||
564 | if ((ret = xpc_allocate_remote_msgqueue(ch)) != xpcSuccess) { | ||
565 | kfree(ch->local_msgqueue_base); | ||
566 | ch->local_msgqueue = NULL; | ||
567 | kfree(ch->notify_queue); | ||
568 | ch->notify_queue = NULL; | ||
569 | return ret; | ||
570 | } | ||
571 | |||
572 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
573 | ch->flags |= XPC_C_SETUP; | ||
574 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
575 | |||
576 | return xpcSuccess; | ||
577 | } | ||
578 | |||
579 | |||
580 | /* | ||
581 | * Process a connect message from a remote partition. | ||
582 | * | ||
583 | * Note: xpc_process_connect() is expecting to be called with the | ||
584 | * spin_lock_irqsave held and will leave it locked upon return. | ||
585 | */ | ||
586 | static void | ||
587 | xpc_process_connect(struct xpc_channel *ch, unsigned long *irq_flags) | ||
588 | { | ||
589 | enum xpc_retval ret; | ||
590 | |||
591 | |||
592 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
593 | |||
594 | if (!(ch->flags & XPC_C_OPENREQUEST) || | ||
595 | !(ch->flags & XPC_C_ROPENREQUEST)) { | ||
596 | /* nothing more to do for now */ | ||
597 | return; | ||
598 | } | ||
599 | DBUG_ON(!(ch->flags & XPC_C_CONNECTING)); | ||
600 | |||
601 | if (!(ch->flags & XPC_C_SETUP)) { | ||
602 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
603 | ret = xpc_allocate_msgqueues(ch); | ||
604 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
605 | |||
606 | if (ret != xpcSuccess) { | ||
607 | XPC_DISCONNECT_CHANNEL(ch, ret, irq_flags); | ||
608 | } | ||
609 | if (ch->flags & (XPC_C_CONNECTED | XPC_C_DISCONNECTING)) { | ||
610 | return; | ||
611 | } | ||
612 | |||
613 | DBUG_ON(!(ch->flags & XPC_C_SETUP)); | ||
614 | DBUG_ON(ch->local_msgqueue == NULL); | ||
615 | DBUG_ON(ch->remote_msgqueue == NULL); | ||
616 | } | ||
617 | |||
618 | if (!(ch->flags & XPC_C_OPENREPLY)) { | ||
619 | ch->flags |= XPC_C_OPENREPLY; | ||
620 | xpc_IPI_send_openreply(ch, irq_flags); | ||
621 | } | ||
622 | |||
623 | if (!(ch->flags & XPC_C_ROPENREPLY)) { | ||
624 | return; | ||
625 | } | ||
626 | |||
627 | DBUG_ON(ch->remote_msgqueue_pa == 0); | ||
628 | |||
629 | ch->flags = (XPC_C_CONNECTED | XPC_C_SETUP); /* clear all else */ | ||
630 | |||
631 | dev_info(xpc_chan, "channel %d to partition %d connected\n", | ||
632 | ch->number, ch->partid); | ||
633 | |||
634 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
635 | xpc_create_kthreads(ch, 1, 0); | ||
636 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
637 | } | ||
638 | |||
639 | |||
640 | /* | ||
641 | * Notify those who wanted to be notified upon delivery of their message. | ||
642 | */ | ||
643 | static void | ||
644 | xpc_notify_senders(struct xpc_channel *ch, enum xpc_retval reason, s64 put) | ||
645 | { | ||
646 | struct xpc_notify *notify; | ||
647 | u8 notify_type; | ||
648 | s64 get = ch->w_remote_GP.get - 1; | ||
649 | |||
650 | |||
651 | while (++get < put && atomic_read(&ch->n_to_notify) > 0) { | ||
652 | |||
653 | notify = &ch->notify_queue[get % ch->local_nentries]; | ||
654 | |||
655 | /* | ||
656 | * See if the notify entry indicates it was associated with | ||
657 | * a message who's sender wants to be notified. It is possible | ||
658 | * that it is, but someone else is doing or has done the | ||
659 | * notification. | ||
660 | */ | ||
661 | notify_type = notify->type; | ||
662 | if (notify_type == 0 || | ||
663 | cmpxchg(¬ify->type, notify_type, 0) != | ||
664 | notify_type) { | ||
665 | continue; | ||
666 | } | ||
667 | |||
668 | DBUG_ON(notify_type != XPC_N_CALL); | ||
669 | |||
670 | atomic_dec(&ch->n_to_notify); | ||
671 | |||
672 | if (notify->func != NULL) { | ||
673 | dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, " | ||
674 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
675 | (void *) notify, get, ch->partid, ch->number); | ||
676 | |||
677 | notify->func(reason, ch->partid, ch->number, | ||
678 | notify->key); | ||
679 | |||
680 | dev_dbg(xpc_chan, "notify->func() returned, " | ||
681 | "notify=0x%p, msg_number=%ld, partid=%d, " | ||
682 | "channel=%d\n", (void *) notify, get, | ||
683 | ch->partid, ch->number); | ||
684 | } | ||
685 | } | ||
686 | } | ||
687 | |||
688 | |||
689 | /* | ||
690 | * Free up message queues and other stuff that were allocated for the specified | ||
691 | * channel. | ||
692 | * | ||
693 | * Note: ch->reason and ch->reason_line are left set for debugging purposes, | ||
694 | * they're cleared when XPC_C_DISCONNECTED is cleared. | ||
695 | */ | ||
696 | static void | ||
697 | xpc_free_msgqueues(struct xpc_channel *ch) | ||
698 | { | ||
699 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
700 | DBUG_ON(atomic_read(&ch->n_to_notify) != 0); | ||
701 | |||
702 | ch->remote_msgqueue_pa = 0; | ||
703 | ch->func = NULL; | ||
704 | ch->key = NULL; | ||
705 | ch->msg_size = 0; | ||
706 | ch->local_nentries = 0; | ||
707 | ch->remote_nentries = 0; | ||
708 | ch->kthreads_assigned_limit = 0; | ||
709 | ch->kthreads_idle_limit = 0; | ||
710 | |||
711 | ch->local_GP->get = 0; | ||
712 | ch->local_GP->put = 0; | ||
713 | ch->remote_GP.get = 0; | ||
714 | ch->remote_GP.put = 0; | ||
715 | ch->w_local_GP.get = 0; | ||
716 | ch->w_local_GP.put = 0; | ||
717 | ch->w_remote_GP.get = 0; | ||
718 | ch->w_remote_GP.put = 0; | ||
719 | ch->next_msg_to_pull = 0; | ||
720 | |||
721 | if (ch->flags & XPC_C_SETUP) { | ||
722 | ch->flags &= ~XPC_C_SETUP; | ||
723 | |||
724 | dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n", | ||
725 | ch->flags, ch->partid, ch->number); | ||
726 | |||
727 | kfree(ch->local_msgqueue_base); | ||
728 | ch->local_msgqueue = NULL; | ||
729 | kfree(ch->remote_msgqueue_base); | ||
730 | ch->remote_msgqueue = NULL; | ||
731 | kfree(ch->notify_queue); | ||
732 | ch->notify_queue = NULL; | ||
733 | } | ||
734 | } | ||
735 | |||
736 | |||
737 | /* | ||
738 | * spin_lock_irqsave() is expected to be held on entry. | ||
739 | */ | ||
740 | static void | ||
741 | xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) | ||
742 | { | ||
743 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
744 | u32 channel_was_connected = (ch->flags & XPC_C_WASCONNECTED); | ||
745 | |||
746 | |||
747 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
748 | |||
749 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
750 | return; | ||
751 | } | ||
752 | |||
753 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | ||
754 | |||
755 | /* make sure all activity has settled down first */ | ||
756 | |||
757 | if (atomic_read(&ch->kthreads_assigned) > 0 || | ||
758 | atomic_read(&ch->references) > 0) { | ||
759 | return; | ||
760 | } | ||
761 | DBUG_ON((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && | ||
762 | !(ch->flags & XPC_C_DISCONNECTINGCALLOUT_MADE)); | ||
763 | |||
764 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
765 | /* can't proceed until the other side disengages from us */ | ||
766 | if (xpc_partition_engaged(1UL << ch->partid)) { | ||
767 | return; | ||
768 | } | ||
769 | |||
770 | } else { | ||
771 | |||
772 | /* as long as the other side is up do the full protocol */ | ||
773 | |||
774 | if (!(ch->flags & XPC_C_RCLOSEREQUEST)) { | ||
775 | return; | ||
776 | } | ||
777 | |||
778 | if (!(ch->flags & XPC_C_CLOSEREPLY)) { | ||
779 | ch->flags |= XPC_C_CLOSEREPLY; | ||
780 | xpc_IPI_send_closereply(ch, irq_flags); | ||
781 | } | ||
782 | |||
783 | if (!(ch->flags & XPC_C_RCLOSEREPLY)) { | ||
784 | return; | ||
785 | } | ||
786 | } | ||
787 | |||
788 | /* wake those waiting for notify completion */ | ||
789 | if (atomic_read(&ch->n_to_notify) > 0) { | ||
790 | /* >>> we do callout while holding ch->lock */ | ||
791 | xpc_notify_senders(ch, ch->reason, ch->w_local_GP.put); | ||
792 | } | ||
793 | |||
794 | /* both sides are disconnected now */ | ||
795 | |||
796 | if (ch->flags & XPC_C_DISCONNECTINGCALLOUT_MADE) { | ||
797 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
798 | xpc_disconnect_callout(ch, xpcDisconnected); | ||
799 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
800 | } | ||
801 | |||
802 | /* it's now safe to free the channel's message queues */ | ||
803 | xpc_free_msgqueues(ch); | ||
804 | |||
805 | /* mark disconnected, clear all other flags except XPC_C_WDISCONNECT */ | ||
806 | ch->flags = (XPC_C_DISCONNECTED | (ch->flags & XPC_C_WDISCONNECT)); | ||
807 | |||
808 | atomic_dec(&part->nchannels_active); | ||
809 | |||
810 | if (channel_was_connected) { | ||
811 | dev_info(xpc_chan, "channel %d to partition %d disconnected, " | ||
812 | "reason=%d\n", ch->number, ch->partid, ch->reason); | ||
813 | } | ||
814 | |||
815 | if (ch->flags & XPC_C_WDISCONNECT) { | ||
816 | /* we won't lose the CPU since we're holding ch->lock */ | ||
817 | complete(&ch->wdisconnect_wait); | ||
818 | } else if (ch->delayed_IPI_flags) { | ||
819 | if (part->act_state != XPC_P_DEACTIVATING) { | ||
820 | /* time to take action on any delayed IPI flags */ | ||
821 | spin_lock(&part->IPI_lock); | ||
822 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, ch->number, | ||
823 | ch->delayed_IPI_flags); | ||
824 | spin_unlock(&part->IPI_lock); | ||
825 | } | ||
826 | ch->delayed_IPI_flags = 0; | ||
827 | } | ||
828 | } | ||
829 | |||
830 | |||
831 | /* | ||
832 | * Process a change in the channel's remote connection state. | ||
833 | */ | ||
834 | static void | ||
835 | xpc_process_openclose_IPI(struct xpc_partition *part, int ch_number, | ||
836 | u8 IPI_flags) | ||
837 | { | ||
838 | unsigned long irq_flags; | ||
839 | struct xpc_openclose_args *args = | ||
840 | &part->remote_openclose_args[ch_number]; | ||
841 | struct xpc_channel *ch = &part->channels[ch_number]; | ||
842 | enum xpc_retval reason; | ||
843 | |||
844 | |||
845 | |||
846 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
847 | |||
848 | again: | ||
849 | |||
850 | if ((ch->flags & XPC_C_DISCONNECTED) && | ||
851 | (ch->flags & XPC_C_WDISCONNECT)) { | ||
852 | /* | ||
853 | * Delay processing IPI flags until thread waiting disconnect | ||
854 | * has had a chance to see that the channel is disconnected. | ||
855 | */ | ||
856 | ch->delayed_IPI_flags |= IPI_flags; | ||
857 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
858 | return; | ||
859 | } | ||
860 | |||
861 | |||
862 | if (IPI_flags & XPC_IPI_CLOSEREQUEST) { | ||
863 | |||
864 | dev_dbg(xpc_chan, "XPC_IPI_CLOSEREQUEST (reason=%d) received " | ||
865 | "from partid=%d, channel=%d\n", args->reason, | ||
866 | ch->partid, ch->number); | ||
867 | |||
868 | /* | ||
869 | * If RCLOSEREQUEST is set, we're probably waiting for | ||
870 | * RCLOSEREPLY. We should find it and a ROPENREQUEST packed | ||
871 | * with this RCLOSEREQUEST in the IPI_flags. | ||
872 | */ | ||
873 | |||
874 | if (ch->flags & XPC_C_RCLOSEREQUEST) { | ||
875 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTING)); | ||
876 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | ||
877 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREPLY)); | ||
878 | DBUG_ON(ch->flags & XPC_C_RCLOSEREPLY); | ||
879 | |||
880 | DBUG_ON(!(IPI_flags & XPC_IPI_CLOSEREPLY)); | ||
881 | IPI_flags &= ~XPC_IPI_CLOSEREPLY; | ||
882 | ch->flags |= XPC_C_RCLOSEREPLY; | ||
883 | |||
884 | /* both sides have finished disconnecting */ | ||
885 | xpc_process_disconnect(ch, &irq_flags); | ||
886 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); | ||
887 | goto again; | ||
888 | } | ||
889 | |||
890 | if (ch->flags & XPC_C_DISCONNECTED) { | ||
891 | if (!(IPI_flags & XPC_IPI_OPENREQUEST)) { | ||
892 | if ((XPC_GET_IPI_FLAGS(part->local_IPI_amo, | ||
893 | ch_number) & XPC_IPI_OPENREQUEST)) { | ||
894 | |||
895 | DBUG_ON(ch->delayed_IPI_flags != 0); | ||
896 | spin_lock(&part->IPI_lock); | ||
897 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, | ||
898 | ch_number, | ||
899 | XPC_IPI_CLOSEREQUEST); | ||
900 | spin_unlock(&part->IPI_lock); | ||
901 | } | ||
902 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
903 | return; | ||
904 | } | ||
905 | |||
906 | XPC_SET_REASON(ch, 0, 0); | ||
907 | ch->flags &= ~XPC_C_DISCONNECTED; | ||
908 | |||
909 | atomic_inc(&part->nchannels_active); | ||
910 | ch->flags |= (XPC_C_CONNECTING | XPC_C_ROPENREQUEST); | ||
911 | } | ||
912 | |||
913 | IPI_flags &= ~(XPC_IPI_OPENREQUEST | XPC_IPI_OPENREPLY); | ||
914 | |||
915 | /* | ||
916 | * The meaningful CLOSEREQUEST connection state fields are: | ||
917 | * reason = reason connection is to be closed | ||
918 | */ | ||
919 | |||
920 | ch->flags |= XPC_C_RCLOSEREQUEST; | ||
921 | |||
922 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
923 | reason = args->reason; | ||
924 | if (reason <= xpcSuccess || reason > xpcUnknownReason) { | ||
925 | reason = xpcUnknownReason; | ||
926 | } else if (reason == xpcUnregistering) { | ||
927 | reason = xpcOtherUnregistering; | ||
928 | } | ||
929 | |||
930 | XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); | ||
931 | |||
932 | DBUG_ON(IPI_flags & XPC_IPI_CLOSEREPLY); | ||
933 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
934 | return; | ||
935 | } | ||
936 | |||
937 | xpc_process_disconnect(ch, &irq_flags); | ||
938 | } | ||
939 | |||
940 | |||
941 | if (IPI_flags & XPC_IPI_CLOSEREPLY) { | ||
942 | |||
943 | dev_dbg(xpc_chan, "XPC_IPI_CLOSEREPLY received from partid=%d," | ||
944 | " channel=%d\n", ch->partid, ch->number); | ||
945 | |||
946 | if (ch->flags & XPC_C_DISCONNECTED) { | ||
947 | DBUG_ON(part->act_state != XPC_P_DEACTIVATING); | ||
948 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
949 | return; | ||
950 | } | ||
951 | |||
952 | DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); | ||
953 | |||
954 | if (!(ch->flags & XPC_C_RCLOSEREQUEST)) { | ||
955 | if ((XPC_GET_IPI_FLAGS(part->local_IPI_amo, ch_number) | ||
956 | & XPC_IPI_CLOSEREQUEST)) { | ||
957 | |||
958 | DBUG_ON(ch->delayed_IPI_flags != 0); | ||
959 | spin_lock(&part->IPI_lock); | ||
960 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, | ||
961 | ch_number, XPC_IPI_CLOSEREPLY); | ||
962 | spin_unlock(&part->IPI_lock); | ||
963 | } | ||
964 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
965 | return; | ||
966 | } | ||
967 | |||
968 | ch->flags |= XPC_C_RCLOSEREPLY; | ||
969 | |||
970 | if (ch->flags & XPC_C_CLOSEREPLY) { | ||
971 | /* both sides have finished disconnecting */ | ||
972 | xpc_process_disconnect(ch, &irq_flags); | ||
973 | } | ||
974 | } | ||
975 | |||
976 | |||
977 | if (IPI_flags & XPC_IPI_OPENREQUEST) { | ||
978 | |||
979 | dev_dbg(xpc_chan, "XPC_IPI_OPENREQUEST (msg_size=%d, " | ||
980 | "local_nentries=%d) received from partid=%d, " | ||
981 | "channel=%d\n", args->msg_size, args->local_nentries, | ||
982 | ch->partid, ch->number); | ||
983 | |||
984 | if (part->act_state == XPC_P_DEACTIVATING || | ||
985 | (ch->flags & XPC_C_ROPENREQUEST)) { | ||
986 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
987 | return; | ||
988 | } | ||
989 | |||
990 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_WDISCONNECT)) { | ||
991 | ch->delayed_IPI_flags |= XPC_IPI_OPENREQUEST; | ||
992 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
993 | return; | ||
994 | } | ||
995 | DBUG_ON(!(ch->flags & (XPC_C_DISCONNECTED | | ||
996 | XPC_C_OPENREQUEST))); | ||
997 | DBUG_ON(ch->flags & (XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | | ||
998 | XPC_C_OPENREPLY | XPC_C_CONNECTED)); | ||
999 | |||
1000 | /* | ||
1001 | * The meaningful OPENREQUEST connection state fields are: | ||
1002 | * msg_size = size of channel's messages in bytes | ||
1003 | * local_nentries = remote partition's local_nentries | ||
1004 | */ | ||
1005 | if (args->msg_size == 0 || args->local_nentries == 0) { | ||
1006 | /* assume OPENREQUEST was delayed by mistake */ | ||
1007 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1008 | return; | ||
1009 | } | ||
1010 | |||
1011 | ch->flags |= (XPC_C_ROPENREQUEST | XPC_C_CONNECTING); | ||
1012 | ch->remote_nentries = args->local_nentries; | ||
1013 | |||
1014 | |||
1015 | if (ch->flags & XPC_C_OPENREQUEST) { | ||
1016 | if (args->msg_size != ch->msg_size) { | ||
1017 | XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes, | ||
1018 | &irq_flags); | ||
1019 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1020 | return; | ||
1021 | } | ||
1022 | } else { | ||
1023 | ch->msg_size = args->msg_size; | ||
1024 | |||
1025 | XPC_SET_REASON(ch, 0, 0); | ||
1026 | ch->flags &= ~XPC_C_DISCONNECTED; | ||
1027 | |||
1028 | atomic_inc(&part->nchannels_active); | ||
1029 | } | ||
1030 | |||
1031 | xpc_process_connect(ch, &irq_flags); | ||
1032 | } | ||
1033 | |||
1034 | |||
1035 | if (IPI_flags & XPC_IPI_OPENREPLY) { | ||
1036 | |||
1037 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY (local_msgqueue_pa=0x%lx, " | ||
1038 | "local_nentries=%d, remote_nentries=%d) received from " | ||
1039 | "partid=%d, channel=%d\n", args->local_msgqueue_pa, | ||
1040 | args->local_nentries, args->remote_nentries, | ||
1041 | ch->partid, ch->number); | ||
1042 | |||
1043 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) { | ||
1044 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1045 | return; | ||
1046 | } | ||
1047 | if (!(ch->flags & XPC_C_OPENREQUEST)) { | ||
1048 | XPC_DISCONNECT_CHANNEL(ch, xpcOpenCloseError, | ||
1049 | &irq_flags); | ||
1050 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1051 | return; | ||
1052 | } | ||
1053 | |||
1054 | DBUG_ON(!(ch->flags & XPC_C_ROPENREQUEST)); | ||
1055 | DBUG_ON(ch->flags & XPC_C_CONNECTED); | ||
1056 | |||
1057 | /* | ||
1058 | * The meaningful OPENREPLY connection state fields are: | ||
1059 | * local_msgqueue_pa = physical address of remote | ||
1060 | * partition's local_msgqueue | ||
1061 | * local_nentries = remote partition's local_nentries | ||
1062 | * remote_nentries = remote partition's remote_nentries | ||
1063 | */ | ||
1064 | DBUG_ON(args->local_msgqueue_pa == 0); | ||
1065 | DBUG_ON(args->local_nentries == 0); | ||
1066 | DBUG_ON(args->remote_nentries == 0); | ||
1067 | |||
1068 | ch->flags |= XPC_C_ROPENREPLY; | ||
1069 | ch->remote_msgqueue_pa = args->local_msgqueue_pa; | ||
1070 | |||
1071 | if (args->local_nentries < ch->remote_nentries) { | ||
1072 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " | ||
1073 | "remote_nentries=%d, old remote_nentries=%d, " | ||
1074 | "partid=%d, channel=%d\n", | ||
1075 | args->local_nentries, ch->remote_nentries, | ||
1076 | ch->partid, ch->number); | ||
1077 | |||
1078 | ch->remote_nentries = args->local_nentries; | ||
1079 | } | ||
1080 | if (args->remote_nentries < ch->local_nentries) { | ||
1081 | dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " | ||
1082 | "local_nentries=%d, old local_nentries=%d, " | ||
1083 | "partid=%d, channel=%d\n", | ||
1084 | args->remote_nentries, ch->local_nentries, | ||
1085 | ch->partid, ch->number); | ||
1086 | |||
1087 | ch->local_nentries = args->remote_nentries; | ||
1088 | } | ||
1089 | |||
1090 | xpc_process_connect(ch, &irq_flags); | ||
1091 | } | ||
1092 | |||
1093 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1094 | } | ||
1095 | |||
1096 | |||
1097 | /* | ||
1098 | * Attempt to establish a channel connection to a remote partition. | ||
1099 | */ | ||
1100 | static enum xpc_retval | ||
1101 | xpc_connect_channel(struct xpc_channel *ch) | ||
1102 | { | ||
1103 | unsigned long irq_flags; | ||
1104 | struct xpc_registration *registration = &xpc_registrations[ch->number]; | ||
1105 | |||
1106 | |||
1107 | if (mutex_trylock(®istration->mutex) == 0) { | ||
1108 | return xpcRetry; | ||
1109 | } | ||
1110 | |||
1111 | if (!XPC_CHANNEL_REGISTERED(ch->number)) { | ||
1112 | mutex_unlock(®istration->mutex); | ||
1113 | return xpcUnregistered; | ||
1114 | } | ||
1115 | |||
1116 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1117 | |||
1118 | DBUG_ON(ch->flags & XPC_C_CONNECTED); | ||
1119 | DBUG_ON(ch->flags & XPC_C_OPENREQUEST); | ||
1120 | |||
1121 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1122 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1123 | mutex_unlock(®istration->mutex); | ||
1124 | return ch->reason; | ||
1125 | } | ||
1126 | |||
1127 | |||
1128 | /* add info from the channel connect registration to the channel */ | ||
1129 | |||
1130 | ch->kthreads_assigned_limit = registration->assigned_limit; | ||
1131 | ch->kthreads_idle_limit = registration->idle_limit; | ||
1132 | DBUG_ON(atomic_read(&ch->kthreads_assigned) != 0); | ||
1133 | DBUG_ON(atomic_read(&ch->kthreads_idle) != 0); | ||
1134 | DBUG_ON(atomic_read(&ch->kthreads_active) != 0); | ||
1135 | |||
1136 | ch->func = registration->func; | ||
1137 | DBUG_ON(registration->func == NULL); | ||
1138 | ch->key = registration->key; | ||
1139 | |||
1140 | ch->local_nentries = registration->nentries; | ||
1141 | |||
1142 | if (ch->flags & XPC_C_ROPENREQUEST) { | ||
1143 | if (registration->msg_size != ch->msg_size) { | ||
1144 | /* the local and remote sides aren't the same */ | ||
1145 | |||
1146 | /* | ||
1147 | * Because XPC_DISCONNECT_CHANNEL() can block we're | ||
1148 | * forced to up the registration sema before we unlock | ||
1149 | * the channel lock. But that's okay here because we're | ||
1150 | * done with the part that required the registration | ||
1151 | * sema. XPC_DISCONNECT_CHANNEL() requires that the | ||
1152 | * channel lock be locked and will unlock and relock | ||
1153 | * the channel lock as needed. | ||
1154 | */ | ||
1155 | mutex_unlock(®istration->mutex); | ||
1156 | XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes, | ||
1157 | &irq_flags); | ||
1158 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1159 | return xpcUnequalMsgSizes; | ||
1160 | } | ||
1161 | } else { | ||
1162 | ch->msg_size = registration->msg_size; | ||
1163 | |||
1164 | XPC_SET_REASON(ch, 0, 0); | ||
1165 | ch->flags &= ~XPC_C_DISCONNECTED; | ||
1166 | |||
1167 | atomic_inc(&xpc_partitions[ch->partid].nchannels_active); | ||
1168 | } | ||
1169 | |||
1170 | mutex_unlock(®istration->mutex); | ||
1171 | |||
1172 | |||
1173 | /* initiate the connection */ | ||
1174 | |||
1175 | ch->flags |= (XPC_C_OPENREQUEST | XPC_C_CONNECTING); | ||
1176 | xpc_IPI_send_openrequest(ch, &irq_flags); | ||
1177 | |||
1178 | xpc_process_connect(ch, &irq_flags); | ||
1179 | |||
1180 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1181 | |||
1182 | return xpcSuccess; | ||
1183 | } | ||
1184 | |||
1185 | |||
1186 | /* | ||
1187 | * Clear some of the msg flags in the local message queue. | ||
1188 | */ | ||
1189 | static inline void | ||
1190 | xpc_clear_local_msgqueue_flags(struct xpc_channel *ch) | ||
1191 | { | ||
1192 | struct xpc_msg *msg; | ||
1193 | s64 get; | ||
1194 | |||
1195 | |||
1196 | get = ch->w_remote_GP.get; | ||
1197 | do { | ||
1198 | msg = (struct xpc_msg *) ((u64) ch->local_msgqueue + | ||
1199 | (get % ch->local_nentries) * ch->msg_size); | ||
1200 | msg->flags = 0; | ||
1201 | } while (++get < (volatile s64) ch->remote_GP.get); | ||
1202 | } | ||
1203 | |||
1204 | |||
1205 | /* | ||
1206 | * Clear some of the msg flags in the remote message queue. | ||
1207 | */ | ||
1208 | static inline void | ||
1209 | xpc_clear_remote_msgqueue_flags(struct xpc_channel *ch) | ||
1210 | { | ||
1211 | struct xpc_msg *msg; | ||
1212 | s64 put; | ||
1213 | |||
1214 | |||
1215 | put = ch->w_remote_GP.put; | ||
1216 | do { | ||
1217 | msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + | ||
1218 | (put % ch->remote_nentries) * ch->msg_size); | ||
1219 | msg->flags = 0; | ||
1220 | } while (++put < (volatile s64) ch->remote_GP.put); | ||
1221 | } | ||
1222 | |||
1223 | |||
1224 | static void | ||
1225 | xpc_process_msg_IPI(struct xpc_partition *part, int ch_number) | ||
1226 | { | ||
1227 | struct xpc_channel *ch = &part->channels[ch_number]; | ||
1228 | int nmsgs_sent; | ||
1229 | |||
1230 | |||
1231 | ch->remote_GP = part->remote_GPs[ch_number]; | ||
1232 | |||
1233 | |||
1234 | /* See what, if anything, has changed for each connected channel */ | ||
1235 | |||
1236 | xpc_msgqueue_ref(ch); | ||
1237 | |||
1238 | if (ch->w_remote_GP.get == ch->remote_GP.get && | ||
1239 | ch->w_remote_GP.put == ch->remote_GP.put) { | ||
1240 | /* nothing changed since GPs were last pulled */ | ||
1241 | xpc_msgqueue_deref(ch); | ||
1242 | return; | ||
1243 | } | ||
1244 | |||
1245 | if (!(ch->flags & XPC_C_CONNECTED)){ | ||
1246 | xpc_msgqueue_deref(ch); | ||
1247 | return; | ||
1248 | } | ||
1249 | |||
1250 | |||
1251 | /* | ||
1252 | * First check to see if messages recently sent by us have been | ||
1253 | * received by the other side. (The remote GET value will have | ||
1254 | * changed since we last looked at it.) | ||
1255 | */ | ||
1256 | |||
1257 | if (ch->w_remote_GP.get != ch->remote_GP.get) { | ||
1258 | |||
1259 | /* | ||
1260 | * We need to notify any senders that want to be notified | ||
1261 | * that their sent messages have been received by their | ||
1262 | * intended recipients. We need to do this before updating | ||
1263 | * w_remote_GP.get so that we don't allocate the same message | ||
1264 | * queue entries prematurely (see xpc_allocate_msg()). | ||
1265 | */ | ||
1266 | if (atomic_read(&ch->n_to_notify) > 0) { | ||
1267 | /* | ||
1268 | * Notify senders that messages sent have been | ||
1269 | * received and delivered by the other side. | ||
1270 | */ | ||
1271 | xpc_notify_senders(ch, xpcMsgDelivered, | ||
1272 | ch->remote_GP.get); | ||
1273 | } | ||
1274 | |||
1275 | /* | ||
1276 | * Clear msg->flags in previously sent messages, so that | ||
1277 | * they're ready for xpc_allocate_msg(). | ||
1278 | */ | ||
1279 | xpc_clear_local_msgqueue_flags(ch); | ||
1280 | |||
1281 | ch->w_remote_GP.get = ch->remote_GP.get; | ||
1282 | |||
1283 | dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, " | ||
1284 | "channel=%d\n", ch->w_remote_GP.get, ch->partid, | ||
1285 | ch->number); | ||
1286 | |||
1287 | /* | ||
1288 | * If anyone was waiting for message queue entries to become | ||
1289 | * available, wake them up. | ||
1290 | */ | ||
1291 | if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) { | ||
1292 | wake_up(&ch->msg_allocate_wq); | ||
1293 | } | ||
1294 | } | ||
1295 | |||
1296 | |||
1297 | /* | ||
1298 | * Now check for newly sent messages by the other side. (The remote | ||
1299 | * PUT value will have changed since we last looked at it.) | ||
1300 | */ | ||
1301 | |||
1302 | if (ch->w_remote_GP.put != ch->remote_GP.put) { | ||
1303 | /* | ||
1304 | * Clear msg->flags in previously received messages, so that | ||
1305 | * they're ready for xpc_get_deliverable_msg(). | ||
1306 | */ | ||
1307 | xpc_clear_remote_msgqueue_flags(ch); | ||
1308 | |||
1309 | ch->w_remote_GP.put = ch->remote_GP.put; | ||
1310 | |||
1311 | dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, " | ||
1312 | "channel=%d\n", ch->w_remote_GP.put, ch->partid, | ||
1313 | ch->number); | ||
1314 | |||
1315 | nmsgs_sent = ch->w_remote_GP.put - ch->w_local_GP.get; | ||
1316 | if (nmsgs_sent > 0) { | ||
1317 | dev_dbg(xpc_chan, "msgs waiting to be copied and " | ||
1318 | "delivered=%d, partid=%d, channel=%d\n", | ||
1319 | nmsgs_sent, ch->partid, ch->number); | ||
1320 | |||
1321 | if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) { | ||
1322 | xpc_activate_kthreads(ch, nmsgs_sent); | ||
1323 | } | ||
1324 | } | ||
1325 | } | ||
1326 | |||
1327 | xpc_msgqueue_deref(ch); | ||
1328 | } | ||
1329 | |||
1330 | |||
1331 | void | ||
1332 | xpc_process_channel_activity(struct xpc_partition *part) | ||
1333 | { | ||
1334 | unsigned long irq_flags; | ||
1335 | u64 IPI_amo, IPI_flags; | ||
1336 | struct xpc_channel *ch; | ||
1337 | int ch_number; | ||
1338 | u32 ch_flags; | ||
1339 | |||
1340 | |||
1341 | IPI_amo = xpc_get_IPI_flags(part); | ||
1342 | |||
1343 | /* | ||
1344 | * Initiate channel connections for registered channels. | ||
1345 | * | ||
1346 | * For each connected channel that has pending messages activate idle | ||
1347 | * kthreads and/or create new kthreads as needed. | ||
1348 | */ | ||
1349 | |||
1350 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
1351 | ch = &part->channels[ch_number]; | ||
1352 | |||
1353 | |||
1354 | /* | ||
1355 | * Process any open or close related IPI flags, and then deal | ||
1356 | * with connecting or disconnecting the channel as required. | ||
1357 | */ | ||
1358 | |||
1359 | IPI_flags = XPC_GET_IPI_FLAGS(IPI_amo, ch_number); | ||
1360 | |||
1361 | if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_flags)) { | ||
1362 | xpc_process_openclose_IPI(part, ch_number, IPI_flags); | ||
1363 | } | ||
1364 | |||
1365 | ch_flags = ch->flags; /* need an atomic snapshot of flags */ | ||
1366 | |||
1367 | if (ch_flags & XPC_C_DISCONNECTING) { | ||
1368 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1369 | xpc_process_disconnect(ch, &irq_flags); | ||
1370 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1371 | continue; | ||
1372 | } | ||
1373 | |||
1374 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
1375 | continue; | ||
1376 | } | ||
1377 | |||
1378 | if (!(ch_flags & XPC_C_CONNECTED)) { | ||
1379 | if (!(ch_flags & XPC_C_OPENREQUEST)) { | ||
1380 | DBUG_ON(ch_flags & XPC_C_SETUP); | ||
1381 | (void) xpc_connect_channel(ch); | ||
1382 | } else { | ||
1383 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1384 | xpc_process_connect(ch, &irq_flags); | ||
1385 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1386 | } | ||
1387 | continue; | ||
1388 | } | ||
1389 | |||
1390 | |||
1391 | /* | ||
1392 | * Process any message related IPI flags, this may involve the | ||
1393 | * activation of kthreads to deliver any pending messages sent | ||
1394 | * from the other partition. | ||
1395 | */ | ||
1396 | |||
1397 | if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_flags)) { | ||
1398 | xpc_process_msg_IPI(part, ch_number); | ||
1399 | } | ||
1400 | } | ||
1401 | } | ||
1402 | |||
1403 | |||
1404 | /* | ||
1405 | * XPC's heartbeat code calls this function to inform XPC that a partition is | ||
1406 | * going down. XPC responds by tearing down the XPartition Communication | ||
1407 | * infrastructure used for the just downed partition. | ||
1408 | * | ||
1409 | * XPC's heartbeat code will never call this function and xpc_partition_up() | ||
1410 | * at the same time. Nor will it ever make multiple calls to either function | ||
1411 | * at the same time. | ||
1412 | */ | ||
1413 | void | ||
1414 | xpc_partition_going_down(struct xpc_partition *part, enum xpc_retval reason) | ||
1415 | { | ||
1416 | unsigned long irq_flags; | ||
1417 | int ch_number; | ||
1418 | struct xpc_channel *ch; | ||
1419 | |||
1420 | |||
1421 | dev_dbg(xpc_chan, "deactivating partition %d, reason=%d\n", | ||
1422 | XPC_PARTID(part), reason); | ||
1423 | |||
1424 | if (!xpc_part_ref(part)) { | ||
1425 | /* infrastructure for this partition isn't currently set up */ | ||
1426 | return; | ||
1427 | } | ||
1428 | |||
1429 | |||
1430 | /* disconnect channels associated with the partition going down */ | ||
1431 | |||
1432 | for (ch_number = 0; ch_number < part->nchannels; ch_number++) { | ||
1433 | ch = &part->channels[ch_number]; | ||
1434 | |||
1435 | xpc_msgqueue_ref(ch); | ||
1436 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1437 | |||
1438 | XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); | ||
1439 | |||
1440 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1441 | xpc_msgqueue_deref(ch); | ||
1442 | } | ||
1443 | |||
1444 | xpc_wakeup_channel_mgr(part); | ||
1445 | |||
1446 | xpc_part_deref(part); | ||
1447 | } | ||
1448 | |||
1449 | |||
1450 | /* | ||
1451 | * Teardown the infrastructure necessary to support XPartition Communication | ||
1452 | * between the specified remote partition and the local one. | ||
1453 | */ | ||
1454 | void | ||
1455 | xpc_teardown_infrastructure(struct xpc_partition *part) | ||
1456 | { | ||
1457 | partid_t partid = XPC_PARTID(part); | ||
1458 | |||
1459 | |||
1460 | /* | ||
1461 | * We start off by making this partition inaccessible to local | ||
1462 | * processes by marking it as no longer setup. Then we make it | ||
1463 | * inaccessible to remote processes by clearing the XPC per partition | ||
1464 | * specific variable's magic # (which indicates that these variables | ||
1465 | * are no longer valid) and by ignoring all XPC notify IPIs sent to | ||
1466 | * this partition. | ||
1467 | */ | ||
1468 | |||
1469 | DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); | ||
1470 | DBUG_ON(atomic_read(&part->nchannels_active) != 0); | ||
1471 | DBUG_ON(part->setup_state != XPC_P_SETUP); | ||
1472 | part->setup_state = XPC_P_WTEARDOWN; | ||
1473 | |||
1474 | xpc_vars_part[partid].magic = 0; | ||
1475 | |||
1476 | |||
1477 | free_irq(SGI_XPC_NOTIFY, (void *) (u64) partid); | ||
1478 | |||
1479 | |||
1480 | /* | ||
1481 | * Before proceeding with the teardown we have to wait until all | ||
1482 | * existing references cease. | ||
1483 | */ | ||
1484 | wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); | ||
1485 | |||
1486 | |||
1487 | /* now we can begin tearing down the infrastructure */ | ||
1488 | |||
1489 | part->setup_state = XPC_P_TORNDOWN; | ||
1490 | |||
1491 | /* in case we've still got outstanding timers registered... */ | ||
1492 | del_timer_sync(&part->dropped_IPI_timer); | ||
1493 | |||
1494 | kfree(part->remote_openclose_args_base); | ||
1495 | part->remote_openclose_args = NULL; | ||
1496 | kfree(part->local_openclose_args_base); | ||
1497 | part->local_openclose_args = NULL; | ||
1498 | kfree(part->remote_GPs_base); | ||
1499 | part->remote_GPs = NULL; | ||
1500 | kfree(part->local_GPs_base); | ||
1501 | part->local_GPs = NULL; | ||
1502 | kfree(part->channels); | ||
1503 | part->channels = NULL; | ||
1504 | part->local_IPI_amo_va = NULL; | ||
1505 | } | ||
1506 | |||
1507 | |||
1508 | /* | ||
1509 | * Called by XP at the time of channel connection registration to cause | ||
1510 | * XPC to establish connections to all currently active partitions. | ||
1511 | */ | ||
1512 | void | ||
1513 | xpc_initiate_connect(int ch_number) | ||
1514 | { | ||
1515 | partid_t partid; | ||
1516 | struct xpc_partition *part; | ||
1517 | struct xpc_channel *ch; | ||
1518 | |||
1519 | |||
1520 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
1521 | |||
1522 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1523 | part = &xpc_partitions[partid]; | ||
1524 | |||
1525 | if (xpc_part_ref(part)) { | ||
1526 | ch = &part->channels[ch_number]; | ||
1527 | |||
1528 | /* | ||
1529 | * Initiate the establishment of a connection on the | ||
1530 | * newly registered channel to the remote partition. | ||
1531 | */ | ||
1532 | xpc_wakeup_channel_mgr(part); | ||
1533 | xpc_part_deref(part); | ||
1534 | } | ||
1535 | } | ||
1536 | } | ||
1537 | |||
1538 | |||
1539 | void | ||
1540 | xpc_connected_callout(struct xpc_channel *ch) | ||
1541 | { | ||
1542 | /* let the registerer know that a connection has been established */ | ||
1543 | |||
1544 | if (ch->func != NULL) { | ||
1545 | dev_dbg(xpc_chan, "ch->func() called, reason=xpcConnected, " | ||
1546 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
1547 | |||
1548 | ch->func(xpcConnected, ch->partid, ch->number, | ||
1549 | (void *) (u64) ch->local_nentries, ch->key); | ||
1550 | |||
1551 | dev_dbg(xpc_chan, "ch->func() returned, reason=xpcConnected, " | ||
1552 | "partid=%d, channel=%d\n", ch->partid, ch->number); | ||
1553 | } | ||
1554 | } | ||
1555 | |||
1556 | |||
1557 | /* | ||
1558 | * Called by XP at the time of channel connection unregistration to cause | ||
1559 | * XPC to teardown all current connections for the specified channel. | ||
1560 | * | ||
1561 | * Before returning xpc_initiate_disconnect() will wait until all connections | ||
1562 | * on the specified channel have been closed/torndown. So the caller can be | ||
1563 | * assured that they will not be receiving any more callouts from XPC to the | ||
1564 | * function they registered via xpc_connect(). | ||
1565 | * | ||
1566 | * Arguments: | ||
1567 | * | ||
1568 | * ch_number - channel # to unregister. | ||
1569 | */ | ||
1570 | void | ||
1571 | xpc_initiate_disconnect(int ch_number) | ||
1572 | { | ||
1573 | unsigned long irq_flags; | ||
1574 | partid_t partid; | ||
1575 | struct xpc_partition *part; | ||
1576 | struct xpc_channel *ch; | ||
1577 | |||
1578 | |||
1579 | DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); | ||
1580 | |||
1581 | /* initiate the channel disconnect for every active partition */ | ||
1582 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1583 | part = &xpc_partitions[partid]; | ||
1584 | |||
1585 | if (xpc_part_ref(part)) { | ||
1586 | ch = &part->channels[ch_number]; | ||
1587 | xpc_msgqueue_ref(ch); | ||
1588 | |||
1589 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
1590 | |||
1591 | if (!(ch->flags & XPC_C_DISCONNECTED)) { | ||
1592 | ch->flags |= XPC_C_WDISCONNECT; | ||
1593 | |||
1594 | XPC_DISCONNECT_CHANNEL(ch, xpcUnregistering, | ||
1595 | &irq_flags); | ||
1596 | } | ||
1597 | |||
1598 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
1599 | |||
1600 | xpc_msgqueue_deref(ch); | ||
1601 | xpc_part_deref(part); | ||
1602 | } | ||
1603 | } | ||
1604 | |||
1605 | xpc_disconnect_wait(ch_number); | ||
1606 | } | ||
1607 | |||
1608 | |||
1609 | /* | ||
1610 | * To disconnect a channel, and reflect it back to all who may be waiting. | ||
1611 | * | ||
1612 | * An OPEN is not allowed until XPC_C_DISCONNECTING is cleared by | ||
1613 | * xpc_process_disconnect(), and if set, XPC_C_WDISCONNECT is cleared by | ||
1614 | * xpc_disconnect_wait(). | ||
1615 | * | ||
1616 | * THE CHANNEL IS TO BE LOCKED BY THE CALLER AND WILL REMAIN LOCKED UPON RETURN. | ||
1617 | */ | ||
1618 | void | ||
1619 | xpc_disconnect_channel(const int line, struct xpc_channel *ch, | ||
1620 | enum xpc_retval reason, unsigned long *irq_flags) | ||
1621 | { | ||
1622 | u32 channel_was_connected = (ch->flags & XPC_C_CONNECTED); | ||
1623 | |||
1624 | |||
1625 | DBUG_ON(!spin_is_locked(&ch->lock)); | ||
1626 | |||
1627 | if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) { | ||
1628 | return; | ||
1629 | } | ||
1630 | DBUG_ON(!(ch->flags & (XPC_C_CONNECTING | XPC_C_CONNECTED))); | ||
1631 | |||
1632 | dev_dbg(xpc_chan, "reason=%d, line=%d, partid=%d, channel=%d\n", | ||
1633 | reason, line, ch->partid, ch->number); | ||
1634 | |||
1635 | XPC_SET_REASON(ch, reason, line); | ||
1636 | |||
1637 | ch->flags |= (XPC_C_CLOSEREQUEST | XPC_C_DISCONNECTING); | ||
1638 | /* some of these may not have been set */ | ||
1639 | ch->flags &= ~(XPC_C_OPENREQUEST | XPC_C_OPENREPLY | | ||
1640 | XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | | ||
1641 | XPC_C_CONNECTING | XPC_C_CONNECTED); | ||
1642 | |||
1643 | xpc_IPI_send_closerequest(ch, irq_flags); | ||
1644 | |||
1645 | if (channel_was_connected) { | ||
1646 | ch->flags |= XPC_C_WASCONNECTED; | ||
1647 | } | ||
1648 | |||
1649 | spin_unlock_irqrestore(&ch->lock, *irq_flags); | ||
1650 | |||
1651 | /* wake all idle kthreads so they can exit */ | ||
1652 | if (atomic_read(&ch->kthreads_idle) > 0) { | ||
1653 | wake_up_all(&ch->idle_wq); | ||
1654 | |||
1655 | } else if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && | ||
1656 | !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { | ||
1657 | /* start a kthread that will do the xpcDisconnecting callout */ | ||
1658 | xpc_create_kthreads(ch, 1, 1); | ||
1659 | } | ||
1660 | |||
1661 | /* wake those waiting to allocate an entry from the local msg queue */ | ||
1662 | if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) { | ||
1663 | wake_up(&ch->msg_allocate_wq); | ||
1664 | } | ||
1665 | |||
1666 | spin_lock_irqsave(&ch->lock, *irq_flags); | ||
1667 | } | ||
1668 | |||
1669 | |||
1670 | void | ||
1671 | xpc_disconnect_callout(struct xpc_channel *ch, enum xpc_retval reason) | ||
1672 | { | ||
1673 | /* | ||
1674 | * Let the channel's registerer know that the channel is being | ||
1675 | * disconnected. We don't want to do this if the registerer was never | ||
1676 | * informed of a connection being made. | ||
1677 | */ | ||
1678 | |||
1679 | if (ch->func != NULL) { | ||
1680 | dev_dbg(xpc_chan, "ch->func() called, reason=%d, partid=%d, " | ||
1681 | "channel=%d\n", reason, ch->partid, ch->number); | ||
1682 | |||
1683 | ch->func(reason, ch->partid, ch->number, NULL, ch->key); | ||
1684 | |||
1685 | dev_dbg(xpc_chan, "ch->func() returned, reason=%d, partid=%d, " | ||
1686 | "channel=%d\n", reason, ch->partid, ch->number); | ||
1687 | } | ||
1688 | } | ||
1689 | |||
1690 | |||
1691 | /* | ||
1692 | * Wait for a message entry to become available for the specified channel, | ||
1693 | * but don't wait any longer than 1 jiffy. | ||
1694 | */ | ||
1695 | static enum xpc_retval | ||
1696 | xpc_allocate_msg_wait(struct xpc_channel *ch) | ||
1697 | { | ||
1698 | enum xpc_retval ret; | ||
1699 | |||
1700 | |||
1701 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1702 | DBUG_ON(ch->reason == xpcInterrupted); // >>> Is this true? | ||
1703 | return ch->reason; | ||
1704 | } | ||
1705 | |||
1706 | atomic_inc(&ch->n_on_msg_allocate_wq); | ||
1707 | ret = interruptible_sleep_on_timeout(&ch->msg_allocate_wq, 1); | ||
1708 | atomic_dec(&ch->n_on_msg_allocate_wq); | ||
1709 | |||
1710 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1711 | ret = ch->reason; | ||
1712 | DBUG_ON(ch->reason == xpcInterrupted); // >>> Is this true? | ||
1713 | } else if (ret == 0) { | ||
1714 | ret = xpcTimeout; | ||
1715 | } else { | ||
1716 | ret = xpcInterrupted; | ||
1717 | } | ||
1718 | |||
1719 | return ret; | ||
1720 | } | ||
1721 | |||
1722 | |||
1723 | /* | ||
1724 | * Allocate an entry for a message from the message queue associated with the | ||
1725 | * specified channel. | ||
1726 | */ | ||
1727 | static enum xpc_retval | ||
1728 | xpc_allocate_msg(struct xpc_channel *ch, u32 flags, | ||
1729 | struct xpc_msg **address_of_msg) | ||
1730 | { | ||
1731 | struct xpc_msg *msg; | ||
1732 | enum xpc_retval ret; | ||
1733 | s64 put; | ||
1734 | |||
1735 | |||
1736 | /* this reference will be dropped in xpc_send_msg() */ | ||
1737 | xpc_msgqueue_ref(ch); | ||
1738 | |||
1739 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1740 | xpc_msgqueue_deref(ch); | ||
1741 | return ch->reason; | ||
1742 | } | ||
1743 | if (!(ch->flags & XPC_C_CONNECTED)) { | ||
1744 | xpc_msgqueue_deref(ch); | ||
1745 | return xpcNotConnected; | ||
1746 | } | ||
1747 | |||
1748 | |||
1749 | /* | ||
1750 | * Get the next available message entry from the local message queue. | ||
1751 | * If none are available, we'll make sure that we grab the latest | ||
1752 | * GP values. | ||
1753 | */ | ||
1754 | ret = xpcTimeout; | ||
1755 | |||
1756 | while (1) { | ||
1757 | |||
1758 | put = (volatile s64) ch->w_local_GP.put; | ||
1759 | if (put - (volatile s64) ch->w_remote_GP.get < | ||
1760 | ch->local_nentries) { | ||
1761 | |||
1762 | /* There are available message entries. We need to try | ||
1763 | * to secure one for ourselves. We'll do this by trying | ||
1764 | * to increment w_local_GP.put as long as someone else | ||
1765 | * doesn't beat us to it. If they do, we'll have to | ||
1766 | * try again. | ||
1767 | */ | ||
1768 | if (cmpxchg(&ch->w_local_GP.put, put, put + 1) == | ||
1769 | put) { | ||
1770 | /* we got the entry referenced by put */ | ||
1771 | break; | ||
1772 | } | ||
1773 | continue; /* try again */ | ||
1774 | } | ||
1775 | |||
1776 | |||
1777 | /* | ||
1778 | * There aren't any available msg entries at this time. | ||
1779 | * | ||
1780 | * In waiting for a message entry to become available, | ||
1781 | * we set a timeout in case the other side is not | ||
1782 | * sending completion IPIs. This lets us fake an IPI | ||
1783 | * that will cause the IPI handler to fetch the latest | ||
1784 | * GP values as if an IPI was sent by the other side. | ||
1785 | */ | ||
1786 | if (ret == xpcTimeout) { | ||
1787 | xpc_IPI_send_local_msgrequest(ch); | ||
1788 | } | ||
1789 | |||
1790 | if (flags & XPC_NOWAIT) { | ||
1791 | xpc_msgqueue_deref(ch); | ||
1792 | return xpcNoWait; | ||
1793 | } | ||
1794 | |||
1795 | ret = xpc_allocate_msg_wait(ch); | ||
1796 | if (ret != xpcInterrupted && ret != xpcTimeout) { | ||
1797 | xpc_msgqueue_deref(ch); | ||
1798 | return ret; | ||
1799 | } | ||
1800 | } | ||
1801 | |||
1802 | |||
1803 | /* get the message's address and initialize it */ | ||
1804 | msg = (struct xpc_msg *) ((u64) ch->local_msgqueue + | ||
1805 | (put % ch->local_nentries) * ch->msg_size); | ||
1806 | |||
1807 | |||
1808 | DBUG_ON(msg->flags != 0); | ||
1809 | msg->number = put; | ||
1810 | |||
1811 | dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, " | ||
1812 | "msg_number=%ld, partid=%d, channel=%d\n", put + 1, | ||
1813 | (void *) msg, msg->number, ch->partid, ch->number); | ||
1814 | |||
1815 | *address_of_msg = msg; | ||
1816 | |||
1817 | return xpcSuccess; | ||
1818 | } | ||
1819 | |||
1820 | |||
1821 | /* | ||
1822 | * Allocate an entry for a message from the message queue associated with the | ||
1823 | * specified channel. NOTE that this routine can sleep waiting for a message | ||
1824 | * entry to become available. To not sleep, pass in the XPC_NOWAIT flag. | ||
1825 | * | ||
1826 | * Arguments: | ||
1827 | * | ||
1828 | * partid - ID of partition to which the channel is connected. | ||
1829 | * ch_number - channel #. | ||
1830 | * flags - see xpc.h for valid flags. | ||
1831 | * payload - address of the allocated payload area pointer (filled in on | ||
1832 | * return) in which the user-defined message is constructed. | ||
1833 | */ | ||
1834 | enum xpc_retval | ||
1835 | xpc_initiate_allocate(partid_t partid, int ch_number, u32 flags, void **payload) | ||
1836 | { | ||
1837 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
1838 | enum xpc_retval ret = xpcUnknownReason; | ||
1839 | struct xpc_msg *msg = NULL; | ||
1840 | |||
1841 | |||
1842 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
1843 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
1844 | |||
1845 | *payload = NULL; | ||
1846 | |||
1847 | if (xpc_part_ref(part)) { | ||
1848 | ret = xpc_allocate_msg(&part->channels[ch_number], flags, &msg); | ||
1849 | xpc_part_deref(part); | ||
1850 | |||
1851 | if (msg != NULL) { | ||
1852 | *payload = &msg->payload; | ||
1853 | } | ||
1854 | } | ||
1855 | |||
1856 | return ret; | ||
1857 | } | ||
1858 | |||
1859 | |||
1860 | /* | ||
1861 | * Now we actually send the messages that are ready to be sent by advancing | ||
1862 | * the local message queue's Put value and then send an IPI to the recipient | ||
1863 | * partition. | ||
1864 | */ | ||
1865 | static void | ||
1866 | xpc_send_msgs(struct xpc_channel *ch, s64 initial_put) | ||
1867 | { | ||
1868 | struct xpc_msg *msg; | ||
1869 | s64 put = initial_put + 1; | ||
1870 | int send_IPI = 0; | ||
1871 | |||
1872 | |||
1873 | while (1) { | ||
1874 | |||
1875 | while (1) { | ||
1876 | if (put == (volatile s64) ch->w_local_GP.put) { | ||
1877 | break; | ||
1878 | } | ||
1879 | |||
1880 | msg = (struct xpc_msg *) ((u64) ch->local_msgqueue + | ||
1881 | (put % ch->local_nentries) * ch->msg_size); | ||
1882 | |||
1883 | if (!(msg->flags & XPC_M_READY)) { | ||
1884 | break; | ||
1885 | } | ||
1886 | |||
1887 | put++; | ||
1888 | } | ||
1889 | |||
1890 | if (put == initial_put) { | ||
1891 | /* nothing's changed */ | ||
1892 | break; | ||
1893 | } | ||
1894 | |||
1895 | if (cmpxchg_rel(&ch->local_GP->put, initial_put, put) != | ||
1896 | initial_put) { | ||
1897 | /* someone else beat us to it */ | ||
1898 | DBUG_ON((volatile s64) ch->local_GP->put < initial_put); | ||
1899 | break; | ||
1900 | } | ||
1901 | |||
1902 | /* we just set the new value of local_GP->put */ | ||
1903 | |||
1904 | dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, " | ||
1905 | "channel=%d\n", put, ch->partid, ch->number); | ||
1906 | |||
1907 | send_IPI = 1; | ||
1908 | |||
1909 | /* | ||
1910 | * We need to ensure that the message referenced by | ||
1911 | * local_GP->put is not XPC_M_READY or that local_GP->put | ||
1912 | * equals w_local_GP.put, so we'll go have a look. | ||
1913 | */ | ||
1914 | initial_put = put; | ||
1915 | } | ||
1916 | |||
1917 | if (send_IPI) { | ||
1918 | xpc_IPI_send_msgrequest(ch); | ||
1919 | } | ||
1920 | } | ||
1921 | |||
1922 | |||
1923 | /* | ||
1924 | * Common code that does the actual sending of the message by advancing the | ||
1925 | * local message queue's Put value and sends an IPI to the partition the | ||
1926 | * message is being sent to. | ||
1927 | */ | ||
1928 | static enum xpc_retval | ||
1929 | xpc_send_msg(struct xpc_channel *ch, struct xpc_msg *msg, u8 notify_type, | ||
1930 | xpc_notify_func func, void *key) | ||
1931 | { | ||
1932 | enum xpc_retval ret = xpcSuccess; | ||
1933 | struct xpc_notify *notify = notify; | ||
1934 | s64 put, msg_number = msg->number; | ||
1935 | |||
1936 | |||
1937 | DBUG_ON(notify_type == XPC_N_CALL && func == NULL); | ||
1938 | DBUG_ON((((u64) msg - (u64) ch->local_msgqueue) / ch->msg_size) != | ||
1939 | msg_number % ch->local_nentries); | ||
1940 | DBUG_ON(msg->flags & XPC_M_READY); | ||
1941 | |||
1942 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1943 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1944 | xpc_msgqueue_deref(ch); | ||
1945 | return ch->reason; | ||
1946 | } | ||
1947 | |||
1948 | if (notify_type != 0) { | ||
1949 | /* | ||
1950 | * Tell the remote side to send an ACK interrupt when the | ||
1951 | * message has been delivered. | ||
1952 | */ | ||
1953 | msg->flags |= XPC_M_INTERRUPT; | ||
1954 | |||
1955 | atomic_inc(&ch->n_to_notify); | ||
1956 | |||
1957 | notify = &ch->notify_queue[msg_number % ch->local_nentries]; | ||
1958 | notify->func = func; | ||
1959 | notify->key = key; | ||
1960 | notify->type = notify_type; | ||
1961 | |||
1962 | // >>> is a mb() needed here? | ||
1963 | |||
1964 | if (ch->flags & XPC_C_DISCONNECTING) { | ||
1965 | /* | ||
1966 | * An error occurred between our last error check and | ||
1967 | * this one. We will try to clear the type field from | ||
1968 | * the notify entry. If we succeed then | ||
1969 | * xpc_disconnect_channel() didn't already process | ||
1970 | * the notify entry. | ||
1971 | */ | ||
1972 | if (cmpxchg(¬ify->type, notify_type, 0) == | ||
1973 | notify_type) { | ||
1974 | atomic_dec(&ch->n_to_notify); | ||
1975 | ret = ch->reason; | ||
1976 | } | ||
1977 | |||
1978 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
1979 | xpc_msgqueue_deref(ch); | ||
1980 | return ret; | ||
1981 | } | ||
1982 | } | ||
1983 | |||
1984 | msg->flags |= XPC_M_READY; | ||
1985 | |||
1986 | /* | ||
1987 | * The preceding store of msg->flags must occur before the following | ||
1988 | * load of ch->local_GP->put. | ||
1989 | */ | ||
1990 | mb(); | ||
1991 | |||
1992 | /* see if the message is next in line to be sent, if so send it */ | ||
1993 | |||
1994 | put = ch->local_GP->put; | ||
1995 | if (put == msg_number) { | ||
1996 | xpc_send_msgs(ch, put); | ||
1997 | } | ||
1998 | |||
1999 | /* drop the reference grabbed in xpc_allocate_msg() */ | ||
2000 | xpc_msgqueue_deref(ch); | ||
2001 | return ret; | ||
2002 | } | ||
2003 | |||
2004 | |||
2005 | /* | ||
2006 | * Send a message previously allocated using xpc_initiate_allocate() on the | ||
2007 | * specified channel connected to the specified partition. | ||
2008 | * | ||
2009 | * This routine will not wait for the message to be received, nor will | ||
2010 | * notification be given when it does happen. Once this routine has returned | ||
2011 | * the message entry allocated via xpc_initiate_allocate() is no longer | ||
2012 | * accessable to the caller. | ||
2013 | * | ||
2014 | * This routine, although called by users, does not call xpc_part_ref() to | ||
2015 | * ensure that the partition infrastructure is in place. It relies on the | ||
2016 | * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). | ||
2017 | * | ||
2018 | * Arguments: | ||
2019 | * | ||
2020 | * partid - ID of partition to which the channel is connected. | ||
2021 | * ch_number - channel # to send message on. | ||
2022 | * payload - pointer to the payload area allocated via | ||
2023 | * xpc_initiate_allocate(). | ||
2024 | */ | ||
2025 | enum xpc_retval | ||
2026 | xpc_initiate_send(partid_t partid, int ch_number, void *payload) | ||
2027 | { | ||
2028 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
2029 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
2030 | enum xpc_retval ret; | ||
2031 | |||
2032 | |||
2033 | dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *) msg, | ||
2034 | partid, ch_number); | ||
2035 | |||
2036 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
2037 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
2038 | DBUG_ON(msg == NULL); | ||
2039 | |||
2040 | ret = xpc_send_msg(&part->channels[ch_number], msg, 0, NULL, NULL); | ||
2041 | |||
2042 | return ret; | ||
2043 | } | ||
2044 | |||
2045 | |||
2046 | /* | ||
2047 | * Send a message previously allocated using xpc_initiate_allocate on the | ||
2048 | * specified channel connected to the specified partition. | ||
2049 | * | ||
2050 | * This routine will not wait for the message to be sent. Once this routine | ||
2051 | * has returned the message entry allocated via xpc_initiate_allocate() is no | ||
2052 | * longer accessable to the caller. | ||
2053 | * | ||
2054 | * Once the remote end of the channel has received the message, the function | ||
2055 | * passed as an argument to xpc_initiate_send_notify() will be called. This | ||
2056 | * allows the sender to free up or re-use any buffers referenced by the | ||
2057 | * message, but does NOT mean the message has been processed at the remote | ||
2058 | * end by a receiver. | ||
2059 | * | ||
2060 | * If this routine returns an error, the caller's function will NOT be called. | ||
2061 | * | ||
2062 | * This routine, although called by users, does not call xpc_part_ref() to | ||
2063 | * ensure that the partition infrastructure is in place. It relies on the | ||
2064 | * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). | ||
2065 | * | ||
2066 | * Arguments: | ||
2067 | * | ||
2068 | * partid - ID of partition to which the channel is connected. | ||
2069 | * ch_number - channel # to send message on. | ||
2070 | * payload - pointer to the payload area allocated via | ||
2071 | * xpc_initiate_allocate(). | ||
2072 | * func - function to call with asynchronous notification of message | ||
2073 | * receipt. THIS FUNCTION MUST BE NON-BLOCKING. | ||
2074 | * key - user-defined key to be passed to the function when it's called. | ||
2075 | */ | ||
2076 | enum xpc_retval | ||
2077 | xpc_initiate_send_notify(partid_t partid, int ch_number, void *payload, | ||
2078 | xpc_notify_func func, void *key) | ||
2079 | { | ||
2080 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
2081 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
2082 | enum xpc_retval ret; | ||
2083 | |||
2084 | |||
2085 | dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *) msg, | ||
2086 | partid, ch_number); | ||
2087 | |||
2088 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
2089 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
2090 | DBUG_ON(msg == NULL); | ||
2091 | DBUG_ON(func == NULL); | ||
2092 | |||
2093 | ret = xpc_send_msg(&part->channels[ch_number], msg, XPC_N_CALL, | ||
2094 | func, key); | ||
2095 | return ret; | ||
2096 | } | ||
2097 | |||
2098 | |||
2099 | static struct xpc_msg * | ||
2100 | xpc_pull_remote_msg(struct xpc_channel *ch, s64 get) | ||
2101 | { | ||
2102 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
2103 | struct xpc_msg *remote_msg, *msg; | ||
2104 | u32 msg_index, nmsgs; | ||
2105 | u64 msg_offset; | ||
2106 | enum xpc_retval ret; | ||
2107 | |||
2108 | |||
2109 | if (mutex_lock_interruptible(&ch->msg_to_pull_mutex) != 0) { | ||
2110 | /* we were interrupted by a signal */ | ||
2111 | return NULL; | ||
2112 | } | ||
2113 | |||
2114 | while (get >= ch->next_msg_to_pull) { | ||
2115 | |||
2116 | /* pull as many messages as are ready and able to be pulled */ | ||
2117 | |||
2118 | msg_index = ch->next_msg_to_pull % ch->remote_nentries; | ||
2119 | |||
2120 | DBUG_ON(ch->next_msg_to_pull >= | ||
2121 | (volatile s64) ch->w_remote_GP.put); | ||
2122 | nmsgs = (volatile s64) ch->w_remote_GP.put - | ||
2123 | ch->next_msg_to_pull; | ||
2124 | if (msg_index + nmsgs > ch->remote_nentries) { | ||
2125 | /* ignore the ones that wrap the msg queue for now */ | ||
2126 | nmsgs = ch->remote_nentries - msg_index; | ||
2127 | } | ||
2128 | |||
2129 | msg_offset = msg_index * ch->msg_size; | ||
2130 | msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + | ||
2131 | msg_offset); | ||
2132 | remote_msg = (struct xpc_msg *) (ch->remote_msgqueue_pa + | ||
2133 | msg_offset); | ||
2134 | |||
2135 | if ((ret = xpc_pull_remote_cachelines(part, msg, remote_msg, | ||
2136 | nmsgs * ch->msg_size)) != xpcSuccess) { | ||
2137 | |||
2138 | dev_dbg(xpc_chan, "failed to pull %d msgs starting with" | ||
2139 | " msg %ld from partition %d, channel=%d, " | ||
2140 | "ret=%d\n", nmsgs, ch->next_msg_to_pull, | ||
2141 | ch->partid, ch->number, ret); | ||
2142 | |||
2143 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
2144 | |||
2145 | mutex_unlock(&ch->msg_to_pull_mutex); | ||
2146 | return NULL; | ||
2147 | } | ||
2148 | |||
2149 | mb(); /* >>> this may not be needed, we're not sure */ | ||
2150 | |||
2151 | ch->next_msg_to_pull += nmsgs; | ||
2152 | } | ||
2153 | |||
2154 | mutex_unlock(&ch->msg_to_pull_mutex); | ||
2155 | |||
2156 | /* return the message we were looking for */ | ||
2157 | msg_offset = (get % ch->remote_nentries) * ch->msg_size; | ||
2158 | msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + msg_offset); | ||
2159 | |||
2160 | return msg; | ||
2161 | } | ||
2162 | |||
2163 | |||
2164 | /* | ||
2165 | * Get a message to be delivered. | ||
2166 | */ | ||
2167 | static struct xpc_msg * | ||
2168 | xpc_get_deliverable_msg(struct xpc_channel *ch) | ||
2169 | { | ||
2170 | struct xpc_msg *msg = NULL; | ||
2171 | s64 get; | ||
2172 | |||
2173 | |||
2174 | do { | ||
2175 | if ((volatile u32) ch->flags & XPC_C_DISCONNECTING) { | ||
2176 | break; | ||
2177 | } | ||
2178 | |||
2179 | get = (volatile s64) ch->w_local_GP.get; | ||
2180 | if (get == (volatile s64) ch->w_remote_GP.put) { | ||
2181 | break; | ||
2182 | } | ||
2183 | |||
2184 | /* There are messages waiting to be pulled and delivered. | ||
2185 | * We need to try to secure one for ourselves. We'll do this | ||
2186 | * by trying to increment w_local_GP.get and hope that no one | ||
2187 | * else beats us to it. If they do, we'll we'll simply have | ||
2188 | * to try again for the next one. | ||
2189 | */ | ||
2190 | |||
2191 | if (cmpxchg(&ch->w_local_GP.get, get, get + 1) == get) { | ||
2192 | /* we got the entry referenced by get */ | ||
2193 | |||
2194 | dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, " | ||
2195 | "partid=%d, channel=%d\n", get + 1, | ||
2196 | ch->partid, ch->number); | ||
2197 | |||
2198 | /* pull the message from the remote partition */ | ||
2199 | |||
2200 | msg = xpc_pull_remote_msg(ch, get); | ||
2201 | |||
2202 | DBUG_ON(msg != NULL && msg->number != get); | ||
2203 | DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE)); | ||
2204 | DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY)); | ||
2205 | |||
2206 | break; | ||
2207 | } | ||
2208 | |||
2209 | } while (1); | ||
2210 | |||
2211 | return msg; | ||
2212 | } | ||
2213 | |||
2214 | |||
2215 | /* | ||
2216 | * Deliver a message to its intended recipient. | ||
2217 | */ | ||
2218 | void | ||
2219 | xpc_deliver_msg(struct xpc_channel *ch) | ||
2220 | { | ||
2221 | struct xpc_msg *msg; | ||
2222 | |||
2223 | |||
2224 | if ((msg = xpc_get_deliverable_msg(ch)) != NULL) { | ||
2225 | |||
2226 | /* | ||
2227 | * This ref is taken to protect the payload itself from being | ||
2228 | * freed before the user is finished with it, which the user | ||
2229 | * indicates by calling xpc_initiate_received(). | ||
2230 | */ | ||
2231 | xpc_msgqueue_ref(ch); | ||
2232 | |||
2233 | atomic_inc(&ch->kthreads_active); | ||
2234 | |||
2235 | if (ch->func != NULL) { | ||
2236 | dev_dbg(xpc_chan, "ch->func() called, msg=0x%p, " | ||
2237 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
2238 | (void *) msg, msg->number, ch->partid, | ||
2239 | ch->number); | ||
2240 | |||
2241 | /* deliver the message to its intended recipient */ | ||
2242 | ch->func(xpcMsgReceived, ch->partid, ch->number, | ||
2243 | &msg->payload, ch->key); | ||
2244 | |||
2245 | dev_dbg(xpc_chan, "ch->func() returned, msg=0x%p, " | ||
2246 | "msg_number=%ld, partid=%d, channel=%d\n", | ||
2247 | (void *) msg, msg->number, ch->partid, | ||
2248 | ch->number); | ||
2249 | } | ||
2250 | |||
2251 | atomic_dec(&ch->kthreads_active); | ||
2252 | } | ||
2253 | } | ||
2254 | |||
2255 | |||
2256 | /* | ||
2257 | * Now we actually acknowledge the messages that have been delivered and ack'd | ||
2258 | * by advancing the cached remote message queue's Get value and if requested | ||
2259 | * send an IPI to the message sender's partition. | ||
2260 | */ | ||
2261 | static void | ||
2262 | xpc_acknowledge_msgs(struct xpc_channel *ch, s64 initial_get, u8 msg_flags) | ||
2263 | { | ||
2264 | struct xpc_msg *msg; | ||
2265 | s64 get = initial_get + 1; | ||
2266 | int send_IPI = 0; | ||
2267 | |||
2268 | |||
2269 | while (1) { | ||
2270 | |||
2271 | while (1) { | ||
2272 | if (get == (volatile s64) ch->w_local_GP.get) { | ||
2273 | break; | ||
2274 | } | ||
2275 | |||
2276 | msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + | ||
2277 | (get % ch->remote_nentries) * ch->msg_size); | ||
2278 | |||
2279 | if (!(msg->flags & XPC_M_DONE)) { | ||
2280 | break; | ||
2281 | } | ||
2282 | |||
2283 | msg_flags |= msg->flags; | ||
2284 | get++; | ||
2285 | } | ||
2286 | |||
2287 | if (get == initial_get) { | ||
2288 | /* nothing's changed */ | ||
2289 | break; | ||
2290 | } | ||
2291 | |||
2292 | if (cmpxchg_rel(&ch->local_GP->get, initial_get, get) != | ||
2293 | initial_get) { | ||
2294 | /* someone else beat us to it */ | ||
2295 | DBUG_ON((volatile s64) ch->local_GP->get <= | ||
2296 | initial_get); | ||
2297 | break; | ||
2298 | } | ||
2299 | |||
2300 | /* we just set the new value of local_GP->get */ | ||
2301 | |||
2302 | dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, " | ||
2303 | "channel=%d\n", get, ch->partid, ch->number); | ||
2304 | |||
2305 | send_IPI = (msg_flags & XPC_M_INTERRUPT); | ||
2306 | |||
2307 | /* | ||
2308 | * We need to ensure that the message referenced by | ||
2309 | * local_GP->get is not XPC_M_DONE or that local_GP->get | ||
2310 | * equals w_local_GP.get, so we'll go have a look. | ||
2311 | */ | ||
2312 | initial_get = get; | ||
2313 | } | ||
2314 | |||
2315 | if (send_IPI) { | ||
2316 | xpc_IPI_send_msgrequest(ch); | ||
2317 | } | ||
2318 | } | ||
2319 | |||
2320 | |||
2321 | /* | ||
2322 | * Acknowledge receipt of a delivered message. | ||
2323 | * | ||
2324 | * If a message has XPC_M_INTERRUPT set, send an interrupt to the partition | ||
2325 | * that sent the message. | ||
2326 | * | ||
2327 | * This function, although called by users, does not call xpc_part_ref() to | ||
2328 | * ensure that the partition infrastructure is in place. It relies on the | ||
2329 | * fact that we called xpc_msgqueue_ref() in xpc_deliver_msg(). | ||
2330 | * | ||
2331 | * Arguments: | ||
2332 | * | ||
2333 | * partid - ID of partition to which the channel is connected. | ||
2334 | * ch_number - channel # message received on. | ||
2335 | * payload - pointer to the payload area allocated via | ||
2336 | * xpc_initiate_allocate(). | ||
2337 | */ | ||
2338 | void | ||
2339 | xpc_initiate_received(partid_t partid, int ch_number, void *payload) | ||
2340 | { | ||
2341 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
2342 | struct xpc_channel *ch; | ||
2343 | struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); | ||
2344 | s64 get, msg_number = msg->number; | ||
2345 | |||
2346 | |||
2347 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
2348 | DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); | ||
2349 | |||
2350 | ch = &part->channels[ch_number]; | ||
2351 | |||
2352 | dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n", | ||
2353 | (void *) msg, msg_number, ch->partid, ch->number); | ||
2354 | |||
2355 | DBUG_ON((((u64) msg - (u64) ch->remote_msgqueue) / ch->msg_size) != | ||
2356 | msg_number % ch->remote_nentries); | ||
2357 | DBUG_ON(msg->flags & XPC_M_DONE); | ||
2358 | |||
2359 | msg->flags |= XPC_M_DONE; | ||
2360 | |||
2361 | /* | ||
2362 | * The preceding store of msg->flags must occur before the following | ||
2363 | * load of ch->local_GP->get. | ||
2364 | */ | ||
2365 | mb(); | ||
2366 | |||
2367 | /* | ||
2368 | * See if this message is next in line to be acknowledged as having | ||
2369 | * been delivered. | ||
2370 | */ | ||
2371 | get = ch->local_GP->get; | ||
2372 | if (get == msg_number) { | ||
2373 | xpc_acknowledge_msgs(ch, get, msg->flags); | ||
2374 | } | ||
2375 | |||
2376 | /* the call to xpc_msgqueue_ref() was done by xpc_deliver_msg() */ | ||
2377 | xpc_msgqueue_deref(ch); | ||
2378 | } | ||
2379 | |||
diff --git a/drivers/misc/sgi-xp/xpc_main.c b/drivers/misc/sgi-xp/xpc_main.c new file mode 100644 index 000000000000..bdb2cf1fcbcc --- /dev/null +++ b/drivers/misc/sgi-xp/xpc_main.c | |||
@@ -0,0 +1,1431 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition Communication (XPC) support - standard version. | ||
12 | * | ||
13 | * XPC provides a message passing capability that crosses partition | ||
14 | * boundaries. This module is made up of two parts: | ||
15 | * | ||
16 | * partition This part detects the presence/absence of other | ||
17 | * partitions. It provides a heartbeat and monitors | ||
18 | * the heartbeats of other partitions. | ||
19 | * | ||
20 | * channel This part manages the channels and sends/receives | ||
21 | * messages across them to/from other partitions. | ||
22 | * | ||
23 | * There are a couple of additional functions residing in XP, which | ||
24 | * provide an interface to XPC for its users. | ||
25 | * | ||
26 | * | ||
27 | * Caveats: | ||
28 | * | ||
29 | * . We currently have no way to determine which nasid an IPI came | ||
30 | * from. Thus, xpc_IPI_send() does a remote AMO write followed by | ||
31 | * an IPI. The AMO indicates where data is to be pulled from, so | ||
32 | * after the IPI arrives, the remote partition checks the AMO word. | ||
33 | * The IPI can actually arrive before the AMO however, so other code | ||
34 | * must periodically check for this case. Also, remote AMO operations | ||
35 | * do not reliably time out. Thus we do a remote PIO read solely to | ||
36 | * know whether the remote partition is down and whether we should | ||
37 | * stop sending IPIs to it. This remote PIO read operation is set up | ||
38 | * in a special nofault region so SAL knows to ignore (and cleanup) | ||
39 | * any errors due to the remote AMO write, PIO read, and/or PIO | ||
40 | * write operations. | ||
41 | * | ||
42 | * If/when new hardware solves this IPI problem, we should abandon | ||
43 | * the current approach. | ||
44 | * | ||
45 | */ | ||
46 | |||
47 | |||
48 | #include <linux/kernel.h> | ||
49 | #include <linux/module.h> | ||
50 | #include <linux/init.h> | ||
51 | #include <linux/sched.h> | ||
52 | #include <linux/syscalls.h> | ||
53 | #include <linux/cache.h> | ||
54 | #include <linux/interrupt.h> | ||
55 | #include <linux/delay.h> | ||
56 | #include <linux/reboot.h> | ||
57 | #include <linux/completion.h> | ||
58 | #include <linux/kdebug.h> | ||
59 | #include <asm/sn/intr.h> | ||
60 | #include <asm/sn/sn_sal.h> | ||
61 | #include <asm/uaccess.h> | ||
62 | #include "xpc.h" | ||
63 | |||
64 | |||
65 | /* define two XPC debug device structures to be used with dev_dbg() et al */ | ||
66 | |||
67 | struct device_driver xpc_dbg_name = { | ||
68 | .name = "xpc" | ||
69 | }; | ||
70 | |||
71 | struct device xpc_part_dbg_subname = { | ||
72 | .bus_id = {0}, /* set to "part" at xpc_init() time */ | ||
73 | .driver = &xpc_dbg_name | ||
74 | }; | ||
75 | |||
76 | struct device xpc_chan_dbg_subname = { | ||
77 | .bus_id = {0}, /* set to "chan" at xpc_init() time */ | ||
78 | .driver = &xpc_dbg_name | ||
79 | }; | ||
80 | |||
81 | struct device *xpc_part = &xpc_part_dbg_subname; | ||
82 | struct device *xpc_chan = &xpc_chan_dbg_subname; | ||
83 | |||
84 | |||
85 | static int xpc_kdebug_ignore; | ||
86 | |||
87 | |||
88 | /* systune related variables for /proc/sys directories */ | ||
89 | |||
90 | static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; | ||
91 | static int xpc_hb_min_interval = 1; | ||
92 | static int xpc_hb_max_interval = 10; | ||
93 | |||
94 | static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; | ||
95 | static int xpc_hb_check_min_interval = 10; | ||
96 | static int xpc_hb_check_max_interval = 120; | ||
97 | |||
98 | int xpc_disengage_request_timelimit = XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT; | ||
99 | static int xpc_disengage_request_min_timelimit = 0; | ||
100 | static int xpc_disengage_request_max_timelimit = 120; | ||
101 | |||
102 | static ctl_table xpc_sys_xpc_hb_dir[] = { | ||
103 | { | ||
104 | .ctl_name = CTL_UNNUMBERED, | ||
105 | .procname = "hb_interval", | ||
106 | .data = &xpc_hb_interval, | ||
107 | .maxlen = sizeof(int), | ||
108 | .mode = 0644, | ||
109 | .proc_handler = &proc_dointvec_minmax, | ||
110 | .strategy = &sysctl_intvec, | ||
111 | .extra1 = &xpc_hb_min_interval, | ||
112 | .extra2 = &xpc_hb_max_interval | ||
113 | }, | ||
114 | { | ||
115 | .ctl_name = CTL_UNNUMBERED, | ||
116 | .procname = "hb_check_interval", | ||
117 | .data = &xpc_hb_check_interval, | ||
118 | .maxlen = sizeof(int), | ||
119 | .mode = 0644, | ||
120 | .proc_handler = &proc_dointvec_minmax, | ||
121 | .strategy = &sysctl_intvec, | ||
122 | .extra1 = &xpc_hb_check_min_interval, | ||
123 | .extra2 = &xpc_hb_check_max_interval | ||
124 | }, | ||
125 | {} | ||
126 | }; | ||
127 | static ctl_table xpc_sys_xpc_dir[] = { | ||
128 | { | ||
129 | .ctl_name = CTL_UNNUMBERED, | ||
130 | .procname = "hb", | ||
131 | .mode = 0555, | ||
132 | .child = xpc_sys_xpc_hb_dir | ||
133 | }, | ||
134 | { | ||
135 | .ctl_name = CTL_UNNUMBERED, | ||
136 | .procname = "disengage_request_timelimit", | ||
137 | .data = &xpc_disengage_request_timelimit, | ||
138 | .maxlen = sizeof(int), | ||
139 | .mode = 0644, | ||
140 | .proc_handler = &proc_dointvec_minmax, | ||
141 | .strategy = &sysctl_intvec, | ||
142 | .extra1 = &xpc_disengage_request_min_timelimit, | ||
143 | .extra2 = &xpc_disengage_request_max_timelimit | ||
144 | }, | ||
145 | {} | ||
146 | }; | ||
147 | static ctl_table xpc_sys_dir[] = { | ||
148 | { | ||
149 | .ctl_name = CTL_UNNUMBERED, | ||
150 | .procname = "xpc", | ||
151 | .mode = 0555, | ||
152 | .child = xpc_sys_xpc_dir | ||
153 | }, | ||
154 | {} | ||
155 | }; | ||
156 | static struct ctl_table_header *xpc_sysctl; | ||
157 | |||
158 | /* non-zero if any remote partition disengage request was timed out */ | ||
159 | int xpc_disengage_request_timedout; | ||
160 | |||
161 | /* #of IRQs received */ | ||
162 | static atomic_t xpc_act_IRQ_rcvd; | ||
163 | |||
164 | /* IRQ handler notifies this wait queue on receipt of an IRQ */ | ||
165 | static DECLARE_WAIT_QUEUE_HEAD(xpc_act_IRQ_wq); | ||
166 | |||
167 | static unsigned long xpc_hb_check_timeout; | ||
168 | |||
169 | /* notification that the xpc_hb_checker thread has exited */ | ||
170 | static DECLARE_COMPLETION(xpc_hb_checker_exited); | ||
171 | |||
172 | /* notification that the xpc_discovery thread has exited */ | ||
173 | static DECLARE_COMPLETION(xpc_discovery_exited); | ||
174 | |||
175 | |||
176 | static struct timer_list xpc_hb_timer; | ||
177 | |||
178 | |||
179 | static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); | ||
180 | |||
181 | |||
182 | static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); | ||
183 | static struct notifier_block xpc_reboot_notifier = { | ||
184 | .notifier_call = xpc_system_reboot, | ||
185 | }; | ||
186 | |||
187 | static int xpc_system_die(struct notifier_block *, unsigned long, void *); | ||
188 | static struct notifier_block xpc_die_notifier = { | ||
189 | .notifier_call = xpc_system_die, | ||
190 | }; | ||
191 | |||
192 | |||
193 | /* | ||
194 | * Timer function to enforce the timelimit on the partition disengage request. | ||
195 | */ | ||
196 | static void | ||
197 | xpc_timeout_partition_disengage_request(unsigned long data) | ||
198 | { | ||
199 | struct xpc_partition *part = (struct xpc_partition *) data; | ||
200 | |||
201 | |||
202 | DBUG_ON(time_before(jiffies, part->disengage_request_timeout)); | ||
203 | |||
204 | (void) xpc_partition_disengaged(part); | ||
205 | |||
206 | DBUG_ON(part->disengage_request_timeout != 0); | ||
207 | DBUG_ON(xpc_partition_engaged(1UL << XPC_PARTID(part)) != 0); | ||
208 | } | ||
209 | |||
210 | |||
211 | /* | ||
212 | * Notify the heartbeat check thread that an IRQ has been received. | ||
213 | */ | ||
214 | static irqreturn_t | ||
215 | xpc_act_IRQ_handler(int irq, void *dev_id) | ||
216 | { | ||
217 | atomic_inc(&xpc_act_IRQ_rcvd); | ||
218 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
219 | return IRQ_HANDLED; | ||
220 | } | ||
221 | |||
222 | |||
223 | /* | ||
224 | * Timer to produce the heartbeat. The timer structures function is | ||
225 | * already set when this is initially called. A tunable is used to | ||
226 | * specify when the next timeout should occur. | ||
227 | */ | ||
228 | static void | ||
229 | xpc_hb_beater(unsigned long dummy) | ||
230 | { | ||
231 | xpc_vars->heartbeat++; | ||
232 | |||
233 | if (time_after_eq(jiffies, xpc_hb_check_timeout)) { | ||
234 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
235 | } | ||
236 | |||
237 | xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); | ||
238 | add_timer(&xpc_hb_timer); | ||
239 | } | ||
240 | |||
241 | |||
242 | /* | ||
243 | * This thread is responsible for nearly all of the partition | ||
244 | * activation/deactivation. | ||
245 | */ | ||
246 | static int | ||
247 | xpc_hb_checker(void *ignore) | ||
248 | { | ||
249 | int last_IRQ_count = 0; | ||
250 | int new_IRQ_count; | ||
251 | int force_IRQ=0; | ||
252 | |||
253 | |||
254 | /* this thread was marked active by xpc_hb_init() */ | ||
255 | |||
256 | daemonize(XPC_HB_CHECK_THREAD_NAME); | ||
257 | |||
258 | set_cpus_allowed(current, cpumask_of_cpu(XPC_HB_CHECK_CPU)); | ||
259 | |||
260 | /* set our heartbeating to other partitions into motion */ | ||
261 | xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); | ||
262 | xpc_hb_beater(0); | ||
263 | |||
264 | while (!(volatile int) xpc_exiting) { | ||
265 | |||
266 | dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " | ||
267 | "been received\n", | ||
268 | (int) (xpc_hb_check_timeout - jiffies), | ||
269 | atomic_read(&xpc_act_IRQ_rcvd) - last_IRQ_count); | ||
270 | |||
271 | |||
272 | /* checking of remote heartbeats is skewed by IRQ handling */ | ||
273 | if (time_after_eq(jiffies, xpc_hb_check_timeout)) { | ||
274 | dev_dbg(xpc_part, "checking remote heartbeats\n"); | ||
275 | xpc_check_remote_hb(); | ||
276 | |||
277 | /* | ||
278 | * We need to periodically recheck to ensure no | ||
279 | * IPI/AMO pairs have been missed. That check | ||
280 | * must always reset xpc_hb_check_timeout. | ||
281 | */ | ||
282 | force_IRQ = 1; | ||
283 | } | ||
284 | |||
285 | |||
286 | /* check for outstanding IRQs */ | ||
287 | new_IRQ_count = atomic_read(&xpc_act_IRQ_rcvd); | ||
288 | if (last_IRQ_count < new_IRQ_count || force_IRQ != 0) { | ||
289 | force_IRQ = 0; | ||
290 | |||
291 | dev_dbg(xpc_part, "found an IRQ to process; will be " | ||
292 | "resetting xpc_hb_check_timeout\n"); | ||
293 | |||
294 | last_IRQ_count += xpc_identify_act_IRQ_sender(); | ||
295 | if (last_IRQ_count < new_IRQ_count) { | ||
296 | /* retry once to help avoid missing AMO */ | ||
297 | (void) xpc_identify_act_IRQ_sender(); | ||
298 | } | ||
299 | last_IRQ_count = new_IRQ_count; | ||
300 | |||
301 | xpc_hb_check_timeout = jiffies + | ||
302 | (xpc_hb_check_interval * HZ); | ||
303 | } | ||
304 | |||
305 | /* wait for IRQ or timeout */ | ||
306 | (void) wait_event_interruptible(xpc_act_IRQ_wq, | ||
307 | (last_IRQ_count < atomic_read(&xpc_act_IRQ_rcvd) || | ||
308 | time_after_eq(jiffies, xpc_hb_check_timeout) || | ||
309 | (volatile int) xpc_exiting)); | ||
310 | } | ||
311 | |||
312 | dev_dbg(xpc_part, "heartbeat checker is exiting\n"); | ||
313 | |||
314 | |||
315 | /* mark this thread as having exited */ | ||
316 | complete(&xpc_hb_checker_exited); | ||
317 | return 0; | ||
318 | } | ||
319 | |||
320 | |||
321 | /* | ||
322 | * This thread will attempt to discover other partitions to activate | ||
323 | * based on info provided by SAL. This new thread is short lived and | ||
324 | * will exit once discovery is complete. | ||
325 | */ | ||
326 | static int | ||
327 | xpc_initiate_discovery(void *ignore) | ||
328 | { | ||
329 | daemonize(XPC_DISCOVERY_THREAD_NAME); | ||
330 | |||
331 | xpc_discovery(); | ||
332 | |||
333 | dev_dbg(xpc_part, "discovery thread is exiting\n"); | ||
334 | |||
335 | /* mark this thread as having exited */ | ||
336 | complete(&xpc_discovery_exited); | ||
337 | return 0; | ||
338 | } | ||
339 | |||
340 | |||
341 | /* | ||
342 | * Establish first contact with the remote partititon. This involves pulling | ||
343 | * the XPC per partition variables from the remote partition and waiting for | ||
344 | * the remote partition to pull ours. | ||
345 | */ | ||
346 | static enum xpc_retval | ||
347 | xpc_make_first_contact(struct xpc_partition *part) | ||
348 | { | ||
349 | enum xpc_retval ret; | ||
350 | |||
351 | |||
352 | while ((ret = xpc_pull_remote_vars_part(part)) != xpcSuccess) { | ||
353 | if (ret != xpcRetry) { | ||
354 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
355 | return ret; | ||
356 | } | ||
357 | |||
358 | dev_dbg(xpc_chan, "waiting to make first contact with " | ||
359 | "partition %d\n", XPC_PARTID(part)); | ||
360 | |||
361 | /* wait a 1/4 of a second or so */ | ||
362 | (void) msleep_interruptible(250); | ||
363 | |||
364 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
365 | return part->reason; | ||
366 | } | ||
367 | } | ||
368 | |||
369 | return xpc_mark_partition_active(part); | ||
370 | } | ||
371 | |||
372 | |||
373 | /* | ||
374 | * The first kthread assigned to a newly activated partition is the one | ||
375 | * created by XPC HB with which it calls xpc_partition_up(). XPC hangs on to | ||
376 | * that kthread until the partition is brought down, at which time that kthread | ||
377 | * returns back to XPC HB. (The return of that kthread will signify to XPC HB | ||
378 | * that XPC has dismantled all communication infrastructure for the associated | ||
379 | * partition.) This kthread becomes the channel manager for that partition. | ||
380 | * | ||
381 | * Each active partition has a channel manager, who, besides connecting and | ||
382 | * disconnecting channels, will ensure that each of the partition's connected | ||
383 | * channels has the required number of assigned kthreads to get the work done. | ||
384 | */ | ||
385 | static void | ||
386 | xpc_channel_mgr(struct xpc_partition *part) | ||
387 | { | ||
388 | while (part->act_state != XPC_P_DEACTIVATING || | ||
389 | atomic_read(&part->nchannels_active) > 0 || | ||
390 | !xpc_partition_disengaged(part)) { | ||
391 | |||
392 | xpc_process_channel_activity(part); | ||
393 | |||
394 | |||
395 | /* | ||
396 | * Wait until we've been requested to activate kthreads or | ||
397 | * all of the channel's message queues have been torn down or | ||
398 | * a signal is pending. | ||
399 | * | ||
400 | * The channel_mgr_requests is set to 1 after being awakened, | ||
401 | * This is done to prevent the channel mgr from making one pass | ||
402 | * through the loop for each request, since he will | ||
403 | * be servicing all the requests in one pass. The reason it's | ||
404 | * set to 1 instead of 0 is so that other kthreads will know | ||
405 | * that the channel mgr is running and won't bother trying to | ||
406 | * wake him up. | ||
407 | */ | ||
408 | atomic_dec(&part->channel_mgr_requests); | ||
409 | (void) wait_event_interruptible(part->channel_mgr_wq, | ||
410 | (atomic_read(&part->channel_mgr_requests) > 0 || | ||
411 | (volatile u64) part->local_IPI_amo != 0 || | ||
412 | ((volatile u8) part->act_state == | ||
413 | XPC_P_DEACTIVATING && | ||
414 | atomic_read(&part->nchannels_active) == 0 && | ||
415 | xpc_partition_disengaged(part)))); | ||
416 | atomic_set(&part->channel_mgr_requests, 1); | ||
417 | |||
418 | // >>> Does it need to wakeup periodically as well? In case we | ||
419 | // >>> miscalculated the #of kthreads to wakeup or create? | ||
420 | } | ||
421 | } | ||
422 | |||
423 | |||
424 | /* | ||
425 | * When XPC HB determines that a partition has come up, it will create a new | ||
426 | * kthread and that kthread will call this function to attempt to set up the | ||
427 | * basic infrastructure used for Cross Partition Communication with the newly | ||
428 | * upped partition. | ||
429 | * | ||
430 | * The kthread that was created by XPC HB and which setup the XPC | ||
431 | * infrastructure will remain assigned to the partition until the partition | ||
432 | * goes down. At which time the kthread will teardown the XPC infrastructure | ||
433 | * and then exit. | ||
434 | * | ||
435 | * XPC HB will put the remote partition's XPC per partition specific variables | ||
436 | * physical address into xpc_partitions[partid].remote_vars_part_pa prior to | ||
437 | * calling xpc_partition_up(). | ||
438 | */ | ||
439 | static void | ||
440 | xpc_partition_up(struct xpc_partition *part) | ||
441 | { | ||
442 | DBUG_ON(part->channels != NULL); | ||
443 | |||
444 | dev_dbg(xpc_chan, "activating partition %d\n", XPC_PARTID(part)); | ||
445 | |||
446 | if (xpc_setup_infrastructure(part) != xpcSuccess) { | ||
447 | return; | ||
448 | } | ||
449 | |||
450 | /* | ||
451 | * The kthread that XPC HB called us with will become the | ||
452 | * channel manager for this partition. It will not return | ||
453 | * back to XPC HB until the partition's XPC infrastructure | ||
454 | * has been dismantled. | ||
455 | */ | ||
456 | |||
457 | (void) xpc_part_ref(part); /* this will always succeed */ | ||
458 | |||
459 | if (xpc_make_first_contact(part) == xpcSuccess) { | ||
460 | xpc_channel_mgr(part); | ||
461 | } | ||
462 | |||
463 | xpc_part_deref(part); | ||
464 | |||
465 | xpc_teardown_infrastructure(part); | ||
466 | } | ||
467 | |||
468 | |||
469 | static int | ||
470 | xpc_activating(void *__partid) | ||
471 | { | ||
472 | partid_t partid = (u64) __partid; | ||
473 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
474 | unsigned long irq_flags; | ||
475 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | ||
476 | int ret; | ||
477 | |||
478 | |||
479 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
480 | |||
481 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
482 | |||
483 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
484 | part->act_state = XPC_P_INACTIVE; | ||
485 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
486 | part->remote_rp_pa = 0; | ||
487 | return 0; | ||
488 | } | ||
489 | |||
490 | /* indicate the thread is activating */ | ||
491 | DBUG_ON(part->act_state != XPC_P_ACTIVATION_REQ); | ||
492 | part->act_state = XPC_P_ACTIVATING; | ||
493 | |||
494 | XPC_SET_REASON(part, 0, 0); | ||
495 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
496 | |||
497 | dev_dbg(xpc_part, "bringing partition %d up\n", partid); | ||
498 | |||
499 | daemonize("xpc%02d", partid); | ||
500 | |||
501 | /* | ||
502 | * This thread needs to run at a realtime priority to prevent a | ||
503 | * significant performance degradation. | ||
504 | */ | ||
505 | ret = sched_setscheduler(current, SCHED_FIFO, ¶m); | ||
506 | if (ret != 0) { | ||
507 | dev_warn(xpc_part, "unable to set pid %d to a realtime " | ||
508 | "priority, ret=%d\n", current->pid, ret); | ||
509 | } | ||
510 | |||
511 | /* allow this thread and its children to run on any CPU */ | ||
512 | set_cpus_allowed(current, CPU_MASK_ALL); | ||
513 | |||
514 | /* | ||
515 | * Register the remote partition's AMOs with SAL so it can handle | ||
516 | * and cleanup errors within that address range should the remote | ||
517 | * partition go down. We don't unregister this range because it is | ||
518 | * difficult to tell when outstanding writes to the remote partition | ||
519 | * are finished and thus when it is safe to unregister. This should | ||
520 | * not result in wasted space in the SAL xp_addr_region table because | ||
521 | * we should get the same page for remote_amos_page_pa after module | ||
522 | * reloads and system reboots. | ||
523 | */ | ||
524 | if (sn_register_xp_addr_region(part->remote_amos_page_pa, | ||
525 | PAGE_SIZE, 1) < 0) { | ||
526 | dev_warn(xpc_part, "xpc_partition_up(%d) failed to register " | ||
527 | "xp_addr region\n", partid); | ||
528 | |||
529 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
530 | part->act_state = XPC_P_INACTIVE; | ||
531 | XPC_SET_REASON(part, xpcPhysAddrRegFailed, __LINE__); | ||
532 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
533 | part->remote_rp_pa = 0; | ||
534 | return 0; | ||
535 | } | ||
536 | |||
537 | xpc_allow_hb(partid, xpc_vars); | ||
538 | xpc_IPI_send_activated(part); | ||
539 | |||
540 | |||
541 | /* | ||
542 | * xpc_partition_up() holds this thread and marks this partition as | ||
543 | * XPC_P_ACTIVE by calling xpc_hb_mark_active(). | ||
544 | */ | ||
545 | (void) xpc_partition_up(part); | ||
546 | |||
547 | xpc_disallow_hb(partid, xpc_vars); | ||
548 | xpc_mark_partition_inactive(part); | ||
549 | |||
550 | if (part->reason == xpcReactivating) { | ||
551 | /* interrupting ourselves results in activating partition */ | ||
552 | xpc_IPI_send_reactivate(part); | ||
553 | } | ||
554 | |||
555 | return 0; | ||
556 | } | ||
557 | |||
558 | |||
559 | void | ||
560 | xpc_activate_partition(struct xpc_partition *part) | ||
561 | { | ||
562 | partid_t partid = XPC_PARTID(part); | ||
563 | unsigned long irq_flags; | ||
564 | pid_t pid; | ||
565 | |||
566 | |||
567 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
568 | |||
569 | DBUG_ON(part->act_state != XPC_P_INACTIVE); | ||
570 | |||
571 | part->act_state = XPC_P_ACTIVATION_REQ; | ||
572 | XPC_SET_REASON(part, xpcCloneKThread, __LINE__); | ||
573 | |||
574 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
575 | |||
576 | pid = kernel_thread(xpc_activating, (void *) ((u64) partid), 0); | ||
577 | |||
578 | if (unlikely(pid <= 0)) { | ||
579 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
580 | part->act_state = XPC_P_INACTIVE; | ||
581 | XPC_SET_REASON(part, xpcCloneKThreadFailed, __LINE__); | ||
582 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
583 | } | ||
584 | } | ||
585 | |||
586 | |||
587 | /* | ||
588 | * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified | ||
589 | * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more | ||
590 | * than one partition, we use an AMO_t structure per partition to indicate | ||
591 | * whether a partition has sent an IPI or not. >>> If it has, then wake up the | ||
592 | * associated kthread to handle it. | ||
593 | * | ||
594 | * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC | ||
595 | * running on other partitions. | ||
596 | * | ||
597 | * Noteworthy Arguments: | ||
598 | * | ||
599 | * irq - Interrupt ReQuest number. NOT USED. | ||
600 | * | ||
601 | * dev_id - partid of IPI's potential sender. | ||
602 | */ | ||
603 | irqreturn_t | ||
604 | xpc_notify_IRQ_handler(int irq, void *dev_id) | ||
605 | { | ||
606 | partid_t partid = (partid_t) (u64) dev_id; | ||
607 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
608 | |||
609 | |||
610 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
611 | |||
612 | if (xpc_part_ref(part)) { | ||
613 | xpc_check_for_channel_activity(part); | ||
614 | |||
615 | xpc_part_deref(part); | ||
616 | } | ||
617 | return IRQ_HANDLED; | ||
618 | } | ||
619 | |||
620 | |||
621 | /* | ||
622 | * Check to see if xpc_notify_IRQ_handler() dropped any IPIs on the floor | ||
623 | * because the write to their associated IPI amo completed after the IRQ/IPI | ||
624 | * was received. | ||
625 | */ | ||
626 | void | ||
627 | xpc_dropped_IPI_check(struct xpc_partition *part) | ||
628 | { | ||
629 | if (xpc_part_ref(part)) { | ||
630 | xpc_check_for_channel_activity(part); | ||
631 | |||
632 | part->dropped_IPI_timer.expires = jiffies + | ||
633 | XPC_P_DROPPED_IPI_WAIT; | ||
634 | add_timer(&part->dropped_IPI_timer); | ||
635 | xpc_part_deref(part); | ||
636 | } | ||
637 | } | ||
638 | |||
639 | |||
640 | void | ||
641 | xpc_activate_kthreads(struct xpc_channel *ch, int needed) | ||
642 | { | ||
643 | int idle = atomic_read(&ch->kthreads_idle); | ||
644 | int assigned = atomic_read(&ch->kthreads_assigned); | ||
645 | int wakeup; | ||
646 | |||
647 | |||
648 | DBUG_ON(needed <= 0); | ||
649 | |||
650 | if (idle > 0) { | ||
651 | wakeup = (needed > idle) ? idle : needed; | ||
652 | needed -= wakeup; | ||
653 | |||
654 | dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " | ||
655 | "channel=%d\n", wakeup, ch->partid, ch->number); | ||
656 | |||
657 | /* only wakeup the requested number of kthreads */ | ||
658 | wake_up_nr(&ch->idle_wq, wakeup); | ||
659 | } | ||
660 | |||
661 | if (needed <= 0) { | ||
662 | return; | ||
663 | } | ||
664 | |||
665 | if (needed + assigned > ch->kthreads_assigned_limit) { | ||
666 | needed = ch->kthreads_assigned_limit - assigned; | ||
667 | // >>>should never be less than 0 | ||
668 | if (needed <= 0) { | ||
669 | return; | ||
670 | } | ||
671 | } | ||
672 | |||
673 | dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", | ||
674 | needed, ch->partid, ch->number); | ||
675 | |||
676 | xpc_create_kthreads(ch, needed, 0); | ||
677 | } | ||
678 | |||
679 | |||
680 | /* | ||
681 | * This function is where XPC's kthreads wait for messages to deliver. | ||
682 | */ | ||
683 | static void | ||
684 | xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) | ||
685 | { | ||
686 | do { | ||
687 | /* deliver messages to their intended recipients */ | ||
688 | |||
689 | while ((volatile s64) ch->w_local_GP.get < | ||
690 | (volatile s64) ch->w_remote_GP.put && | ||
691 | !((volatile u32) ch->flags & | ||
692 | XPC_C_DISCONNECTING)) { | ||
693 | xpc_deliver_msg(ch); | ||
694 | } | ||
695 | |||
696 | if (atomic_inc_return(&ch->kthreads_idle) > | ||
697 | ch->kthreads_idle_limit) { | ||
698 | /* too many idle kthreads on this channel */ | ||
699 | atomic_dec(&ch->kthreads_idle); | ||
700 | break; | ||
701 | } | ||
702 | |||
703 | dev_dbg(xpc_chan, "idle kthread calling " | ||
704 | "wait_event_interruptible_exclusive()\n"); | ||
705 | |||
706 | (void) wait_event_interruptible_exclusive(ch->idle_wq, | ||
707 | ((volatile s64) ch->w_local_GP.get < | ||
708 | (volatile s64) ch->w_remote_GP.put || | ||
709 | ((volatile u32) ch->flags & | ||
710 | XPC_C_DISCONNECTING))); | ||
711 | |||
712 | atomic_dec(&ch->kthreads_idle); | ||
713 | |||
714 | } while (!((volatile u32) ch->flags & XPC_C_DISCONNECTING)); | ||
715 | } | ||
716 | |||
717 | |||
718 | static int | ||
719 | xpc_daemonize_kthread(void *args) | ||
720 | { | ||
721 | partid_t partid = XPC_UNPACK_ARG1(args); | ||
722 | u16 ch_number = XPC_UNPACK_ARG2(args); | ||
723 | struct xpc_partition *part = &xpc_partitions[partid]; | ||
724 | struct xpc_channel *ch; | ||
725 | int n_needed; | ||
726 | unsigned long irq_flags; | ||
727 | |||
728 | |||
729 | daemonize("xpc%02dc%d", partid, ch_number); | ||
730 | |||
731 | dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", | ||
732 | partid, ch_number); | ||
733 | |||
734 | ch = &part->channels[ch_number]; | ||
735 | |||
736 | if (!(ch->flags & XPC_C_DISCONNECTING)) { | ||
737 | |||
738 | /* let registerer know that connection has been established */ | ||
739 | |||
740 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
741 | if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { | ||
742 | ch->flags |= XPC_C_CONNECTEDCALLOUT; | ||
743 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
744 | |||
745 | xpc_connected_callout(ch); | ||
746 | |||
747 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
748 | ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; | ||
749 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
750 | |||
751 | /* | ||
752 | * It is possible that while the callout was being | ||
753 | * made that the remote partition sent some messages. | ||
754 | * If that is the case, we may need to activate | ||
755 | * additional kthreads to help deliver them. We only | ||
756 | * need one less than total #of messages to deliver. | ||
757 | */ | ||
758 | n_needed = ch->w_remote_GP.put - ch->w_local_GP.get - 1; | ||
759 | if (n_needed > 0 && | ||
760 | !(ch->flags & XPC_C_DISCONNECTING)) { | ||
761 | xpc_activate_kthreads(ch, n_needed); | ||
762 | } | ||
763 | } else { | ||
764 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
765 | } | ||
766 | |||
767 | xpc_kthread_waitmsgs(part, ch); | ||
768 | } | ||
769 | |||
770 | /* let registerer know that connection is disconnecting */ | ||
771 | |||
772 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
773 | if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && | ||
774 | !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { | ||
775 | ch->flags |= XPC_C_DISCONNECTINGCALLOUT; | ||
776 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
777 | |||
778 | xpc_disconnect_callout(ch, xpcDisconnecting); | ||
779 | |||
780 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
781 | ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; | ||
782 | } | ||
783 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
784 | |||
785 | if (atomic_dec_return(&ch->kthreads_assigned) == 0) { | ||
786 | if (atomic_dec_return(&part->nchannels_engaged) == 0) { | ||
787 | xpc_mark_partition_disengaged(part); | ||
788 | xpc_IPI_send_disengage(part); | ||
789 | } | ||
790 | } | ||
791 | |||
792 | xpc_msgqueue_deref(ch); | ||
793 | |||
794 | dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", | ||
795 | partid, ch_number); | ||
796 | |||
797 | xpc_part_deref(part); | ||
798 | return 0; | ||
799 | } | ||
800 | |||
801 | |||
802 | /* | ||
803 | * For each partition that XPC has established communications with, there is | ||
804 | * a minimum of one kernel thread assigned to perform any operation that | ||
805 | * may potentially sleep or block (basically the callouts to the asynchronous | ||
806 | * functions registered via xpc_connect()). | ||
807 | * | ||
808 | * Additional kthreads are created and destroyed by XPC as the workload | ||
809 | * demands. | ||
810 | * | ||
811 | * A kthread is assigned to one of the active channels that exists for a given | ||
812 | * partition. | ||
813 | */ | ||
814 | void | ||
815 | xpc_create_kthreads(struct xpc_channel *ch, int needed, | ||
816 | int ignore_disconnecting) | ||
817 | { | ||
818 | unsigned long irq_flags; | ||
819 | pid_t pid; | ||
820 | u64 args = XPC_PACK_ARGS(ch->partid, ch->number); | ||
821 | struct xpc_partition *part = &xpc_partitions[ch->partid]; | ||
822 | |||
823 | |||
824 | while (needed-- > 0) { | ||
825 | |||
826 | /* | ||
827 | * The following is done on behalf of the newly created | ||
828 | * kthread. That kthread is responsible for doing the | ||
829 | * counterpart to the following before it exits. | ||
830 | */ | ||
831 | if (ignore_disconnecting) { | ||
832 | if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { | ||
833 | /* kthreads assigned had gone to zero */ | ||
834 | BUG_ON(!(ch->flags & | ||
835 | XPC_C_DISCONNECTINGCALLOUT_MADE)); | ||
836 | break; | ||
837 | } | ||
838 | |||
839 | } else if (ch->flags & XPC_C_DISCONNECTING) { | ||
840 | break; | ||
841 | |||
842 | } else if (atomic_inc_return(&ch->kthreads_assigned) == 1) { | ||
843 | if (atomic_inc_return(&part->nchannels_engaged) == 1) | ||
844 | xpc_mark_partition_engaged(part); | ||
845 | } | ||
846 | (void) xpc_part_ref(part); | ||
847 | xpc_msgqueue_ref(ch); | ||
848 | |||
849 | pid = kernel_thread(xpc_daemonize_kthread, (void *) args, 0); | ||
850 | if (pid < 0) { | ||
851 | /* the fork failed */ | ||
852 | |||
853 | /* | ||
854 | * NOTE: if (ignore_disconnecting && | ||
855 | * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, | ||
856 | * then we'll deadlock if all other kthreads assigned | ||
857 | * to this channel are blocked in the channel's | ||
858 | * registerer, because the only thing that will unblock | ||
859 | * them is the xpcDisconnecting callout that this | ||
860 | * failed kernel_thread would have made. | ||
861 | */ | ||
862 | |||
863 | if (atomic_dec_return(&ch->kthreads_assigned) == 0 && | ||
864 | atomic_dec_return(&part->nchannels_engaged) == 0) { | ||
865 | xpc_mark_partition_disengaged(part); | ||
866 | xpc_IPI_send_disengage(part); | ||
867 | } | ||
868 | xpc_msgqueue_deref(ch); | ||
869 | xpc_part_deref(part); | ||
870 | |||
871 | if (atomic_read(&ch->kthreads_assigned) < | ||
872 | ch->kthreads_idle_limit) { | ||
873 | /* | ||
874 | * Flag this as an error only if we have an | ||
875 | * insufficient #of kthreads for the channel | ||
876 | * to function. | ||
877 | */ | ||
878 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
879 | XPC_DISCONNECT_CHANNEL(ch, xpcLackOfResources, | ||
880 | &irq_flags); | ||
881 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
882 | } | ||
883 | break; | ||
884 | } | ||
885 | |||
886 | ch->kthreads_created++; // >>> temporary debug only!!! | ||
887 | } | ||
888 | } | ||
889 | |||
890 | |||
891 | void | ||
892 | xpc_disconnect_wait(int ch_number) | ||
893 | { | ||
894 | unsigned long irq_flags; | ||
895 | partid_t partid; | ||
896 | struct xpc_partition *part; | ||
897 | struct xpc_channel *ch; | ||
898 | int wakeup_channel_mgr; | ||
899 | |||
900 | |||
901 | /* now wait for all callouts to the caller's function to cease */ | ||
902 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
903 | part = &xpc_partitions[partid]; | ||
904 | |||
905 | if (!xpc_part_ref(part)) { | ||
906 | continue; | ||
907 | } | ||
908 | |||
909 | ch = &part->channels[ch_number]; | ||
910 | |||
911 | if (!(ch->flags & XPC_C_WDISCONNECT)) { | ||
912 | xpc_part_deref(part); | ||
913 | continue; | ||
914 | } | ||
915 | |||
916 | wait_for_completion(&ch->wdisconnect_wait); | ||
917 | |||
918 | spin_lock_irqsave(&ch->lock, irq_flags); | ||
919 | DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); | ||
920 | wakeup_channel_mgr = 0; | ||
921 | |||
922 | if (ch->delayed_IPI_flags) { | ||
923 | if (part->act_state != XPC_P_DEACTIVATING) { | ||
924 | spin_lock(&part->IPI_lock); | ||
925 | XPC_SET_IPI_FLAGS(part->local_IPI_amo, | ||
926 | ch->number, ch->delayed_IPI_flags); | ||
927 | spin_unlock(&part->IPI_lock); | ||
928 | wakeup_channel_mgr = 1; | ||
929 | } | ||
930 | ch->delayed_IPI_flags = 0; | ||
931 | } | ||
932 | |||
933 | ch->flags &= ~XPC_C_WDISCONNECT; | ||
934 | spin_unlock_irqrestore(&ch->lock, irq_flags); | ||
935 | |||
936 | if (wakeup_channel_mgr) { | ||
937 | xpc_wakeup_channel_mgr(part); | ||
938 | } | ||
939 | |||
940 | xpc_part_deref(part); | ||
941 | } | ||
942 | } | ||
943 | |||
944 | |||
945 | static void | ||
946 | xpc_do_exit(enum xpc_retval reason) | ||
947 | { | ||
948 | partid_t partid; | ||
949 | int active_part_count, printed_waiting_msg = 0; | ||
950 | struct xpc_partition *part; | ||
951 | unsigned long printmsg_time, disengage_request_timeout = 0; | ||
952 | |||
953 | |||
954 | /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ | ||
955 | DBUG_ON(xpc_exiting == 1); | ||
956 | |||
957 | /* | ||
958 | * Let the heartbeat checker thread and the discovery thread | ||
959 | * (if one is running) know that they should exit. Also wake up | ||
960 | * the heartbeat checker thread in case it's sleeping. | ||
961 | */ | ||
962 | xpc_exiting = 1; | ||
963 | wake_up_interruptible(&xpc_act_IRQ_wq); | ||
964 | |||
965 | /* ignore all incoming interrupts */ | ||
966 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
967 | |||
968 | /* wait for the discovery thread to exit */ | ||
969 | wait_for_completion(&xpc_discovery_exited); | ||
970 | |||
971 | /* wait for the heartbeat checker thread to exit */ | ||
972 | wait_for_completion(&xpc_hb_checker_exited); | ||
973 | |||
974 | |||
975 | /* sleep for a 1/3 of a second or so */ | ||
976 | (void) msleep_interruptible(300); | ||
977 | |||
978 | |||
979 | /* wait for all partitions to become inactive */ | ||
980 | |||
981 | printmsg_time = jiffies + (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ); | ||
982 | xpc_disengage_request_timedout = 0; | ||
983 | |||
984 | do { | ||
985 | active_part_count = 0; | ||
986 | |||
987 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
988 | part = &xpc_partitions[partid]; | ||
989 | |||
990 | if (xpc_partition_disengaged(part) && | ||
991 | part->act_state == XPC_P_INACTIVE) { | ||
992 | continue; | ||
993 | } | ||
994 | |||
995 | active_part_count++; | ||
996 | |||
997 | XPC_DEACTIVATE_PARTITION(part, reason); | ||
998 | |||
999 | if (part->disengage_request_timeout > | ||
1000 | disengage_request_timeout) { | ||
1001 | disengage_request_timeout = | ||
1002 | part->disengage_request_timeout; | ||
1003 | } | ||
1004 | } | ||
1005 | |||
1006 | if (xpc_partition_engaged(-1UL)) { | ||
1007 | if (time_after(jiffies, printmsg_time)) { | ||
1008 | dev_info(xpc_part, "waiting for remote " | ||
1009 | "partitions to disengage, timeout in " | ||
1010 | "%ld seconds\n", | ||
1011 | (disengage_request_timeout - jiffies) | ||
1012 | / HZ); | ||
1013 | printmsg_time = jiffies + | ||
1014 | (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ); | ||
1015 | printed_waiting_msg = 1; | ||
1016 | } | ||
1017 | |||
1018 | } else if (active_part_count > 0) { | ||
1019 | if (printed_waiting_msg) { | ||
1020 | dev_info(xpc_part, "waiting for local partition" | ||
1021 | " to disengage\n"); | ||
1022 | printed_waiting_msg = 0; | ||
1023 | } | ||
1024 | |||
1025 | } else { | ||
1026 | if (!xpc_disengage_request_timedout) { | ||
1027 | dev_info(xpc_part, "all partitions have " | ||
1028 | "disengaged\n"); | ||
1029 | } | ||
1030 | break; | ||
1031 | } | ||
1032 | |||
1033 | /* sleep for a 1/3 of a second or so */ | ||
1034 | (void) msleep_interruptible(300); | ||
1035 | |||
1036 | } while (1); | ||
1037 | |||
1038 | DBUG_ON(xpc_partition_engaged(-1UL)); | ||
1039 | |||
1040 | |||
1041 | /* indicate to others that our reserved page is uninitialized */ | ||
1042 | xpc_rsvd_page->vars_pa = 0; | ||
1043 | |||
1044 | /* now it's time to eliminate our heartbeat */ | ||
1045 | del_timer_sync(&xpc_hb_timer); | ||
1046 | DBUG_ON(xpc_vars->heartbeating_to_mask != 0); | ||
1047 | |||
1048 | if (reason == xpcUnloading) { | ||
1049 | /* take ourselves off of the reboot_notifier_list */ | ||
1050 | (void) unregister_reboot_notifier(&xpc_reboot_notifier); | ||
1051 | |||
1052 | /* take ourselves off of the die_notifier list */ | ||
1053 | (void) unregister_die_notifier(&xpc_die_notifier); | ||
1054 | } | ||
1055 | |||
1056 | /* close down protections for IPI operations */ | ||
1057 | xpc_restrict_IPI_ops(); | ||
1058 | |||
1059 | |||
1060 | /* clear the interface to XPC's functions */ | ||
1061 | xpc_clear_interface(); | ||
1062 | |||
1063 | if (xpc_sysctl) { | ||
1064 | unregister_sysctl_table(xpc_sysctl); | ||
1065 | } | ||
1066 | |||
1067 | kfree(xpc_remote_copy_buffer_base); | ||
1068 | } | ||
1069 | |||
1070 | |||
1071 | /* | ||
1072 | * This function is called when the system is being rebooted. | ||
1073 | */ | ||
1074 | static int | ||
1075 | xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) | ||
1076 | { | ||
1077 | enum xpc_retval reason; | ||
1078 | |||
1079 | |||
1080 | switch (event) { | ||
1081 | case SYS_RESTART: | ||
1082 | reason = xpcSystemReboot; | ||
1083 | break; | ||
1084 | case SYS_HALT: | ||
1085 | reason = xpcSystemHalt; | ||
1086 | break; | ||
1087 | case SYS_POWER_OFF: | ||
1088 | reason = xpcSystemPoweroff; | ||
1089 | break; | ||
1090 | default: | ||
1091 | reason = xpcSystemGoingDown; | ||
1092 | } | ||
1093 | |||
1094 | xpc_do_exit(reason); | ||
1095 | return NOTIFY_DONE; | ||
1096 | } | ||
1097 | |||
1098 | |||
1099 | /* | ||
1100 | * Notify other partitions to disengage from all references to our memory. | ||
1101 | */ | ||
1102 | static void | ||
1103 | xpc_die_disengage(void) | ||
1104 | { | ||
1105 | struct xpc_partition *part; | ||
1106 | partid_t partid; | ||
1107 | unsigned long engaged; | ||
1108 | long time, printmsg_time, disengage_request_timeout; | ||
1109 | |||
1110 | |||
1111 | /* keep xpc_hb_checker thread from doing anything (just in case) */ | ||
1112 | xpc_exiting = 1; | ||
1113 | |||
1114 | xpc_vars->heartbeating_to_mask = 0; /* indicate we're deactivated */ | ||
1115 | |||
1116 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1117 | part = &xpc_partitions[partid]; | ||
1118 | |||
1119 | if (!XPC_SUPPORTS_DISENGAGE_REQUEST(part-> | ||
1120 | remote_vars_version)) { | ||
1121 | |||
1122 | /* just in case it was left set by an earlier XPC */ | ||
1123 | xpc_clear_partition_engaged(1UL << partid); | ||
1124 | continue; | ||
1125 | } | ||
1126 | |||
1127 | if (xpc_partition_engaged(1UL << partid) || | ||
1128 | part->act_state != XPC_P_INACTIVE) { | ||
1129 | xpc_request_partition_disengage(part); | ||
1130 | xpc_mark_partition_disengaged(part); | ||
1131 | xpc_IPI_send_disengage(part); | ||
1132 | } | ||
1133 | } | ||
1134 | |||
1135 | time = rtc_time(); | ||
1136 | printmsg_time = time + | ||
1137 | (XPC_DISENGAGE_PRINTMSG_INTERVAL * sn_rtc_cycles_per_second); | ||
1138 | disengage_request_timeout = time + | ||
1139 | (xpc_disengage_request_timelimit * sn_rtc_cycles_per_second); | ||
1140 | |||
1141 | /* wait for all other partitions to disengage from us */ | ||
1142 | |||
1143 | while (1) { | ||
1144 | engaged = xpc_partition_engaged(-1UL); | ||
1145 | if (!engaged) { | ||
1146 | dev_info(xpc_part, "all partitions have disengaged\n"); | ||
1147 | break; | ||
1148 | } | ||
1149 | |||
1150 | time = rtc_time(); | ||
1151 | if (time >= disengage_request_timeout) { | ||
1152 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1153 | if (engaged & (1UL << partid)) { | ||
1154 | dev_info(xpc_part, "disengage from " | ||
1155 | "remote partition %d timed " | ||
1156 | "out\n", partid); | ||
1157 | } | ||
1158 | } | ||
1159 | break; | ||
1160 | } | ||
1161 | |||
1162 | if (time >= printmsg_time) { | ||
1163 | dev_info(xpc_part, "waiting for remote partitions to " | ||
1164 | "disengage, timeout in %ld seconds\n", | ||
1165 | (disengage_request_timeout - time) / | ||
1166 | sn_rtc_cycles_per_second); | ||
1167 | printmsg_time = time + | ||
1168 | (XPC_DISENGAGE_PRINTMSG_INTERVAL * | ||
1169 | sn_rtc_cycles_per_second); | ||
1170 | } | ||
1171 | } | ||
1172 | } | ||
1173 | |||
1174 | |||
1175 | /* | ||
1176 | * This function is called when the system is being restarted or halted due | ||
1177 | * to some sort of system failure. If this is the case we need to notify the | ||
1178 | * other partitions to disengage from all references to our memory. | ||
1179 | * This function can also be called when our heartbeater could be offlined | ||
1180 | * for a time. In this case we need to notify other partitions to not worry | ||
1181 | * about the lack of a heartbeat. | ||
1182 | */ | ||
1183 | static int | ||
1184 | xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) | ||
1185 | { | ||
1186 | switch (event) { | ||
1187 | case DIE_MACHINE_RESTART: | ||
1188 | case DIE_MACHINE_HALT: | ||
1189 | xpc_die_disengage(); | ||
1190 | break; | ||
1191 | |||
1192 | case DIE_KDEBUG_ENTER: | ||
1193 | /* Should lack of heartbeat be ignored by other partitions? */ | ||
1194 | if (!xpc_kdebug_ignore) { | ||
1195 | break; | ||
1196 | } | ||
1197 | /* fall through */ | ||
1198 | case DIE_MCA_MONARCH_ENTER: | ||
1199 | case DIE_INIT_MONARCH_ENTER: | ||
1200 | xpc_vars->heartbeat++; | ||
1201 | xpc_vars->heartbeat_offline = 1; | ||
1202 | break; | ||
1203 | |||
1204 | case DIE_KDEBUG_LEAVE: | ||
1205 | /* Is lack of heartbeat being ignored by other partitions? */ | ||
1206 | if (!xpc_kdebug_ignore) { | ||
1207 | break; | ||
1208 | } | ||
1209 | /* fall through */ | ||
1210 | case DIE_MCA_MONARCH_LEAVE: | ||
1211 | case DIE_INIT_MONARCH_LEAVE: | ||
1212 | xpc_vars->heartbeat++; | ||
1213 | xpc_vars->heartbeat_offline = 0; | ||
1214 | break; | ||
1215 | } | ||
1216 | |||
1217 | return NOTIFY_DONE; | ||
1218 | } | ||
1219 | |||
1220 | |||
1221 | int __init | ||
1222 | xpc_init(void) | ||
1223 | { | ||
1224 | int ret; | ||
1225 | partid_t partid; | ||
1226 | struct xpc_partition *part; | ||
1227 | pid_t pid; | ||
1228 | size_t buf_size; | ||
1229 | |||
1230 | |||
1231 | if (!ia64_platform_is("sn2")) { | ||
1232 | return -ENODEV; | ||
1233 | } | ||
1234 | |||
1235 | |||
1236 | buf_size = max(XPC_RP_VARS_SIZE, | ||
1237 | XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES); | ||
1238 | xpc_remote_copy_buffer = xpc_kmalloc_cacheline_aligned(buf_size, | ||
1239 | GFP_KERNEL, &xpc_remote_copy_buffer_base); | ||
1240 | if (xpc_remote_copy_buffer == NULL) | ||
1241 | return -ENOMEM; | ||
1242 | |||
1243 | snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part"); | ||
1244 | snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan"); | ||
1245 | |||
1246 | xpc_sysctl = register_sysctl_table(xpc_sys_dir); | ||
1247 | |||
1248 | /* | ||
1249 | * The first few fields of each entry of xpc_partitions[] need to | ||
1250 | * be initialized now so that calls to xpc_connect() and | ||
1251 | * xpc_disconnect() can be made prior to the activation of any remote | ||
1252 | * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE | ||
1253 | * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING | ||
1254 | * PARTITION HAS BEEN ACTIVATED. | ||
1255 | */ | ||
1256 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
1257 | part = &xpc_partitions[partid]; | ||
1258 | |||
1259 | DBUG_ON((u64) part != L1_CACHE_ALIGN((u64) part)); | ||
1260 | |||
1261 | part->act_IRQ_rcvd = 0; | ||
1262 | spin_lock_init(&part->act_lock); | ||
1263 | part->act_state = XPC_P_INACTIVE; | ||
1264 | XPC_SET_REASON(part, 0, 0); | ||
1265 | |||
1266 | init_timer(&part->disengage_request_timer); | ||
1267 | part->disengage_request_timer.function = | ||
1268 | xpc_timeout_partition_disengage_request; | ||
1269 | part->disengage_request_timer.data = (unsigned long) part; | ||
1270 | |||
1271 | part->setup_state = XPC_P_UNSET; | ||
1272 | init_waitqueue_head(&part->teardown_wq); | ||
1273 | atomic_set(&part->references, 0); | ||
1274 | } | ||
1275 | |||
1276 | /* | ||
1277 | * Open up protections for IPI operations (and AMO operations on | ||
1278 | * Shub 1.1 systems). | ||
1279 | */ | ||
1280 | xpc_allow_IPI_ops(); | ||
1281 | |||
1282 | /* | ||
1283 | * Interrupts being processed will increment this atomic variable and | ||
1284 | * awaken the heartbeat thread which will process the interrupts. | ||
1285 | */ | ||
1286 | atomic_set(&xpc_act_IRQ_rcvd, 0); | ||
1287 | |||
1288 | /* | ||
1289 | * This is safe to do before the xpc_hb_checker thread has started | ||
1290 | * because the handler releases a wait queue. If an interrupt is | ||
1291 | * received before the thread is waiting, it will not go to sleep, | ||
1292 | * but rather immediately process the interrupt. | ||
1293 | */ | ||
1294 | ret = request_irq(SGI_XPC_ACTIVATE, xpc_act_IRQ_handler, 0, | ||
1295 | "xpc hb", NULL); | ||
1296 | if (ret != 0) { | ||
1297 | dev_err(xpc_part, "can't register ACTIVATE IRQ handler, " | ||
1298 | "errno=%d\n", -ret); | ||
1299 | |||
1300 | xpc_restrict_IPI_ops(); | ||
1301 | |||
1302 | if (xpc_sysctl) { | ||
1303 | unregister_sysctl_table(xpc_sysctl); | ||
1304 | } | ||
1305 | |||
1306 | kfree(xpc_remote_copy_buffer_base); | ||
1307 | return -EBUSY; | ||
1308 | } | ||
1309 | |||
1310 | /* | ||
1311 | * Fill the partition reserved page with the information needed by | ||
1312 | * other partitions to discover we are alive and establish initial | ||
1313 | * communications. | ||
1314 | */ | ||
1315 | xpc_rsvd_page = xpc_rsvd_page_init(); | ||
1316 | if (xpc_rsvd_page == NULL) { | ||
1317 | dev_err(xpc_part, "could not setup our reserved page\n"); | ||
1318 | |||
1319 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
1320 | xpc_restrict_IPI_ops(); | ||
1321 | |||
1322 | if (xpc_sysctl) { | ||
1323 | unregister_sysctl_table(xpc_sysctl); | ||
1324 | } | ||
1325 | |||
1326 | kfree(xpc_remote_copy_buffer_base); | ||
1327 | return -EBUSY; | ||
1328 | } | ||
1329 | |||
1330 | |||
1331 | /* add ourselves to the reboot_notifier_list */ | ||
1332 | ret = register_reboot_notifier(&xpc_reboot_notifier); | ||
1333 | if (ret != 0) { | ||
1334 | dev_warn(xpc_part, "can't register reboot notifier\n"); | ||
1335 | } | ||
1336 | |||
1337 | /* add ourselves to the die_notifier list */ | ||
1338 | ret = register_die_notifier(&xpc_die_notifier); | ||
1339 | if (ret != 0) { | ||
1340 | dev_warn(xpc_part, "can't register die notifier\n"); | ||
1341 | } | ||
1342 | |||
1343 | init_timer(&xpc_hb_timer); | ||
1344 | xpc_hb_timer.function = xpc_hb_beater; | ||
1345 | |||
1346 | /* | ||
1347 | * The real work-horse behind xpc. This processes incoming | ||
1348 | * interrupts and monitors remote heartbeats. | ||
1349 | */ | ||
1350 | pid = kernel_thread(xpc_hb_checker, NULL, 0); | ||
1351 | if (pid < 0) { | ||
1352 | dev_err(xpc_part, "failed while forking hb check thread\n"); | ||
1353 | |||
1354 | /* indicate to others that our reserved page is uninitialized */ | ||
1355 | xpc_rsvd_page->vars_pa = 0; | ||
1356 | |||
1357 | /* take ourselves off of the reboot_notifier_list */ | ||
1358 | (void) unregister_reboot_notifier(&xpc_reboot_notifier); | ||
1359 | |||
1360 | /* take ourselves off of the die_notifier list */ | ||
1361 | (void) unregister_die_notifier(&xpc_die_notifier); | ||
1362 | |||
1363 | del_timer_sync(&xpc_hb_timer); | ||
1364 | free_irq(SGI_XPC_ACTIVATE, NULL); | ||
1365 | xpc_restrict_IPI_ops(); | ||
1366 | |||
1367 | if (xpc_sysctl) { | ||
1368 | unregister_sysctl_table(xpc_sysctl); | ||
1369 | } | ||
1370 | |||
1371 | kfree(xpc_remote_copy_buffer_base); | ||
1372 | return -EBUSY; | ||
1373 | } | ||
1374 | |||
1375 | |||
1376 | /* | ||
1377 | * Startup a thread that will attempt to discover other partitions to | ||
1378 | * activate based on info provided by SAL. This new thread is short | ||
1379 | * lived and will exit once discovery is complete. | ||
1380 | */ | ||
1381 | pid = kernel_thread(xpc_initiate_discovery, NULL, 0); | ||
1382 | if (pid < 0) { | ||
1383 | dev_err(xpc_part, "failed while forking discovery thread\n"); | ||
1384 | |||
1385 | /* mark this new thread as a non-starter */ | ||
1386 | complete(&xpc_discovery_exited); | ||
1387 | |||
1388 | xpc_do_exit(xpcUnloading); | ||
1389 | return -EBUSY; | ||
1390 | } | ||
1391 | |||
1392 | |||
1393 | /* set the interface to point at XPC's functions */ | ||
1394 | xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, | ||
1395 | xpc_initiate_allocate, xpc_initiate_send, | ||
1396 | xpc_initiate_send_notify, xpc_initiate_received, | ||
1397 | xpc_initiate_partid_to_nasids); | ||
1398 | |||
1399 | return 0; | ||
1400 | } | ||
1401 | module_init(xpc_init); | ||
1402 | |||
1403 | |||
1404 | void __exit | ||
1405 | xpc_exit(void) | ||
1406 | { | ||
1407 | xpc_do_exit(xpcUnloading); | ||
1408 | } | ||
1409 | module_exit(xpc_exit); | ||
1410 | |||
1411 | |||
1412 | MODULE_AUTHOR("Silicon Graphics, Inc."); | ||
1413 | MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); | ||
1414 | MODULE_LICENSE("GPL"); | ||
1415 | |||
1416 | module_param(xpc_hb_interval, int, 0); | ||
1417 | MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " | ||
1418 | "heartbeat increments."); | ||
1419 | |||
1420 | module_param(xpc_hb_check_interval, int, 0); | ||
1421 | MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " | ||
1422 | "heartbeat checks."); | ||
1423 | |||
1424 | module_param(xpc_disengage_request_timelimit, int, 0); | ||
1425 | MODULE_PARM_DESC(xpc_disengage_request_timelimit, "Number of seconds to wait " | ||
1426 | "for disengage request to complete."); | ||
1427 | |||
1428 | module_param(xpc_kdebug_ignore, int, 0); | ||
1429 | MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " | ||
1430 | "other partitions when dropping into kdebug."); | ||
1431 | |||
diff --git a/drivers/misc/sgi-xp/xpc_partition.c b/drivers/misc/sgi-xp/xpc_partition.c new file mode 100644 index 000000000000..7412dc7351cd --- /dev/null +++ b/drivers/misc/sgi-xp/xpc_partition.c | |||
@@ -0,0 +1,1239 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition Communication (XPC) partition support. | ||
12 | * | ||
13 | * This is the part of XPC that detects the presence/absence of | ||
14 | * other partitions. It provides a heartbeat and monitors the | ||
15 | * heartbeats of other partitions. | ||
16 | * | ||
17 | */ | ||
18 | |||
19 | |||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/sysctl.h> | ||
22 | #include <linux/cache.h> | ||
23 | #include <linux/mmzone.h> | ||
24 | #include <linux/nodemask.h> | ||
25 | #include <asm/uncached.h> | ||
26 | #include <asm/sn/bte.h> | ||
27 | #include <asm/sn/intr.h> | ||
28 | #include <asm/sn/sn_sal.h> | ||
29 | #include <asm/sn/nodepda.h> | ||
30 | #include <asm/sn/addrs.h> | ||
31 | #include "xpc.h" | ||
32 | |||
33 | |||
34 | /* XPC is exiting flag */ | ||
35 | int xpc_exiting; | ||
36 | |||
37 | |||
38 | /* SH_IPI_ACCESS shub register value on startup */ | ||
39 | static u64 xpc_sh1_IPI_access; | ||
40 | static u64 xpc_sh2_IPI_access0; | ||
41 | static u64 xpc_sh2_IPI_access1; | ||
42 | static u64 xpc_sh2_IPI_access2; | ||
43 | static u64 xpc_sh2_IPI_access3; | ||
44 | |||
45 | |||
46 | /* original protection values for each node */ | ||
47 | u64 xpc_prot_vec[MAX_NUMNODES]; | ||
48 | |||
49 | |||
50 | /* this partition's reserved page pointers */ | ||
51 | struct xpc_rsvd_page *xpc_rsvd_page; | ||
52 | static u64 *xpc_part_nasids; | ||
53 | static u64 *xpc_mach_nasids; | ||
54 | struct xpc_vars *xpc_vars; | ||
55 | struct xpc_vars_part *xpc_vars_part; | ||
56 | |||
57 | static int xp_nasid_mask_bytes; /* actual size in bytes of nasid mask */ | ||
58 | static int xp_nasid_mask_words; /* actual size in words of nasid mask */ | ||
59 | |||
60 | |||
61 | /* | ||
62 | * For performance reasons, each entry of xpc_partitions[] is cacheline | ||
63 | * aligned. And xpc_partitions[] is padded with an additional entry at the | ||
64 | * end so that the last legitimate entry doesn't share its cacheline with | ||
65 | * another variable. | ||
66 | */ | ||
67 | struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; | ||
68 | |||
69 | |||
70 | /* | ||
71 | * Generic buffer used to store a local copy of portions of a remote | ||
72 | * partition's reserved page (either its header and part_nasids mask, | ||
73 | * or its vars). | ||
74 | */ | ||
75 | char *xpc_remote_copy_buffer; | ||
76 | void *xpc_remote_copy_buffer_base; | ||
77 | |||
78 | |||
79 | /* | ||
80 | * Guarantee that the kmalloc'd memory is cacheline aligned. | ||
81 | */ | ||
82 | void * | ||
83 | xpc_kmalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) | ||
84 | { | ||
85 | /* see if kmalloc will give us cachline aligned memory by default */ | ||
86 | *base = kmalloc(size, flags); | ||
87 | if (*base == NULL) { | ||
88 | return NULL; | ||
89 | } | ||
90 | if ((u64) *base == L1_CACHE_ALIGN((u64) *base)) { | ||
91 | return *base; | ||
92 | } | ||
93 | kfree(*base); | ||
94 | |||
95 | /* nope, we'll have to do it ourselves */ | ||
96 | *base = kmalloc(size + L1_CACHE_BYTES, flags); | ||
97 | if (*base == NULL) { | ||
98 | return NULL; | ||
99 | } | ||
100 | return (void *) L1_CACHE_ALIGN((u64) *base); | ||
101 | } | ||
102 | |||
103 | |||
104 | /* | ||
105 | * Given a nasid, get the physical address of the partition's reserved page | ||
106 | * for that nasid. This function returns 0 on any error. | ||
107 | */ | ||
108 | static u64 | ||
109 | xpc_get_rsvd_page_pa(int nasid) | ||
110 | { | ||
111 | bte_result_t bte_res; | ||
112 | s64 status; | ||
113 | u64 cookie = 0; | ||
114 | u64 rp_pa = nasid; /* seed with nasid */ | ||
115 | u64 len = 0; | ||
116 | u64 buf = buf; | ||
117 | u64 buf_len = 0; | ||
118 | void *buf_base = NULL; | ||
119 | |||
120 | |||
121 | while (1) { | ||
122 | |||
123 | status = sn_partition_reserved_page_pa(buf, &cookie, &rp_pa, | ||
124 | &len); | ||
125 | |||
126 | dev_dbg(xpc_part, "SAL returned with status=%li, cookie=" | ||
127 | "0x%016lx, address=0x%016lx, len=0x%016lx\n", | ||
128 | status, cookie, rp_pa, len); | ||
129 | |||
130 | if (status != SALRET_MORE_PASSES) { | ||
131 | break; | ||
132 | } | ||
133 | |||
134 | if (L1_CACHE_ALIGN(len) > buf_len) { | ||
135 | kfree(buf_base); | ||
136 | buf_len = L1_CACHE_ALIGN(len); | ||
137 | buf = (u64) xpc_kmalloc_cacheline_aligned(buf_len, | ||
138 | GFP_KERNEL, &buf_base); | ||
139 | if (buf_base == NULL) { | ||
140 | dev_err(xpc_part, "unable to kmalloc " | ||
141 | "len=0x%016lx\n", buf_len); | ||
142 | status = SALRET_ERROR; | ||
143 | break; | ||
144 | } | ||
145 | } | ||
146 | |||
147 | bte_res = xp_bte_copy(rp_pa, buf, buf_len, | ||
148 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
149 | if (bte_res != BTE_SUCCESS) { | ||
150 | dev_dbg(xpc_part, "xp_bte_copy failed %i\n", bte_res); | ||
151 | status = SALRET_ERROR; | ||
152 | break; | ||
153 | } | ||
154 | } | ||
155 | |||
156 | kfree(buf_base); | ||
157 | |||
158 | if (status != SALRET_OK) { | ||
159 | rp_pa = 0; | ||
160 | } | ||
161 | dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa); | ||
162 | return rp_pa; | ||
163 | } | ||
164 | |||
165 | |||
166 | /* | ||
167 | * Fill the partition reserved page with the information needed by | ||
168 | * other partitions to discover we are alive and establish initial | ||
169 | * communications. | ||
170 | */ | ||
171 | struct xpc_rsvd_page * | ||
172 | xpc_rsvd_page_init(void) | ||
173 | { | ||
174 | struct xpc_rsvd_page *rp; | ||
175 | AMO_t *amos_page; | ||
176 | u64 rp_pa, nasid_array = 0; | ||
177 | int i, ret; | ||
178 | |||
179 | |||
180 | /* get the local reserved page's address */ | ||
181 | |||
182 | preempt_disable(); | ||
183 | rp_pa = xpc_get_rsvd_page_pa(cpuid_to_nasid(smp_processor_id())); | ||
184 | preempt_enable(); | ||
185 | if (rp_pa == 0) { | ||
186 | dev_err(xpc_part, "SAL failed to locate the reserved page\n"); | ||
187 | return NULL; | ||
188 | } | ||
189 | rp = (struct xpc_rsvd_page *) __va(rp_pa); | ||
190 | |||
191 | if (rp->partid != sn_partition_id) { | ||
192 | dev_err(xpc_part, "the reserved page's partid of %d should be " | ||
193 | "%d\n", rp->partid, sn_partition_id); | ||
194 | return NULL; | ||
195 | } | ||
196 | |||
197 | rp->version = XPC_RP_VERSION; | ||
198 | |||
199 | /* establish the actual sizes of the nasid masks */ | ||
200 | if (rp->SAL_version == 1) { | ||
201 | /* SAL_version 1 didn't set the nasids_size field */ | ||
202 | rp->nasids_size = 128; | ||
203 | } | ||
204 | xp_nasid_mask_bytes = rp->nasids_size; | ||
205 | xp_nasid_mask_words = xp_nasid_mask_bytes / 8; | ||
206 | |||
207 | /* setup the pointers to the various items in the reserved page */ | ||
208 | xpc_part_nasids = XPC_RP_PART_NASIDS(rp); | ||
209 | xpc_mach_nasids = XPC_RP_MACH_NASIDS(rp); | ||
210 | xpc_vars = XPC_RP_VARS(rp); | ||
211 | xpc_vars_part = XPC_RP_VARS_PART(rp); | ||
212 | |||
213 | /* | ||
214 | * Before clearing xpc_vars, see if a page of AMOs had been previously | ||
215 | * allocated. If not we'll need to allocate one and set permissions | ||
216 | * so that cross-partition AMOs are allowed. | ||
217 | * | ||
218 | * The allocated AMO page needs MCA reporting to remain disabled after | ||
219 | * XPC has unloaded. To make this work, we keep a copy of the pointer | ||
220 | * to this page (i.e., amos_page) in the struct xpc_vars structure, | ||
221 | * which is pointed to by the reserved page, and re-use that saved copy | ||
222 | * on subsequent loads of XPC. This AMO page is never freed, and its | ||
223 | * memory protections are never restricted. | ||
224 | */ | ||
225 | if ((amos_page = xpc_vars->amos_page) == NULL) { | ||
226 | amos_page = (AMO_t *) TO_AMO(uncached_alloc_page(0)); | ||
227 | if (amos_page == NULL) { | ||
228 | dev_err(xpc_part, "can't allocate page of AMOs\n"); | ||
229 | return NULL; | ||
230 | } | ||
231 | |||
232 | /* | ||
233 | * Open up AMO-R/W to cpu. This is done for Shub 1.1 systems | ||
234 | * when xpc_allow_IPI_ops() is called via xpc_hb_init(). | ||
235 | */ | ||
236 | if (!enable_shub_wars_1_1()) { | ||
237 | ret = sn_change_memprotect(ia64_tpa((u64) amos_page), | ||
238 | PAGE_SIZE, SN_MEMPROT_ACCESS_CLASS_1, | ||
239 | &nasid_array); | ||
240 | if (ret != 0) { | ||
241 | dev_err(xpc_part, "can't change memory " | ||
242 | "protections\n"); | ||
243 | uncached_free_page(__IA64_UNCACHED_OFFSET | | ||
244 | TO_PHYS((u64) amos_page)); | ||
245 | return NULL; | ||
246 | } | ||
247 | } | ||
248 | } else if (!IS_AMO_ADDRESS((u64) amos_page)) { | ||
249 | /* | ||
250 | * EFI's XPBOOT can also set amos_page in the reserved page, | ||
251 | * but it happens to leave it as an uncached physical address | ||
252 | * and we need it to be an uncached virtual, so we'll have to | ||
253 | * convert it. | ||
254 | */ | ||
255 | if (!IS_AMO_PHYS_ADDRESS((u64) amos_page)) { | ||
256 | dev_err(xpc_part, "previously used amos_page address " | ||
257 | "is bad = 0x%p\n", (void *) amos_page); | ||
258 | return NULL; | ||
259 | } | ||
260 | amos_page = (AMO_t *) TO_AMO((u64) amos_page); | ||
261 | } | ||
262 | |||
263 | /* clear xpc_vars */ | ||
264 | memset(xpc_vars, 0, sizeof(struct xpc_vars)); | ||
265 | |||
266 | xpc_vars->version = XPC_V_VERSION; | ||
267 | xpc_vars->act_nasid = cpuid_to_nasid(0); | ||
268 | xpc_vars->act_phys_cpuid = cpu_physical_id(0); | ||
269 | xpc_vars->vars_part_pa = __pa(xpc_vars_part); | ||
270 | xpc_vars->amos_page_pa = ia64_tpa((u64) amos_page); | ||
271 | xpc_vars->amos_page = amos_page; /* save for next load of XPC */ | ||
272 | |||
273 | |||
274 | /* clear xpc_vars_part */ | ||
275 | memset((u64 *) xpc_vars_part, 0, sizeof(struct xpc_vars_part) * | ||
276 | XP_MAX_PARTITIONS); | ||
277 | |||
278 | /* initialize the activate IRQ related AMO variables */ | ||
279 | for (i = 0; i < xp_nasid_mask_words; i++) { | ||
280 | (void) xpc_IPI_init(XPC_ACTIVATE_IRQ_AMOS + i); | ||
281 | } | ||
282 | |||
283 | /* initialize the engaged remote partitions related AMO variables */ | ||
284 | (void) xpc_IPI_init(XPC_ENGAGED_PARTITIONS_AMO); | ||
285 | (void) xpc_IPI_init(XPC_DISENGAGE_REQUEST_AMO); | ||
286 | |||
287 | /* timestamp of when reserved page was setup by XPC */ | ||
288 | rp->stamp = CURRENT_TIME; | ||
289 | |||
290 | /* | ||
291 | * This signifies to the remote partition that our reserved | ||
292 | * page is initialized. | ||
293 | */ | ||
294 | rp->vars_pa = __pa(xpc_vars); | ||
295 | |||
296 | return rp; | ||
297 | } | ||
298 | |||
299 | |||
300 | /* | ||
301 | * Change protections to allow IPI operations (and AMO operations on | ||
302 | * Shub 1.1 systems). | ||
303 | */ | ||
304 | void | ||
305 | xpc_allow_IPI_ops(void) | ||
306 | { | ||
307 | int node; | ||
308 | int nasid; | ||
309 | |||
310 | |||
311 | // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. | ||
312 | |||
313 | if (is_shub2()) { | ||
314 | xpc_sh2_IPI_access0 = | ||
315 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS0)); | ||
316 | xpc_sh2_IPI_access1 = | ||
317 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS1)); | ||
318 | xpc_sh2_IPI_access2 = | ||
319 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS2)); | ||
320 | xpc_sh2_IPI_access3 = | ||
321 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS3)); | ||
322 | |||
323 | for_each_online_node(node) { | ||
324 | nasid = cnodeid_to_nasid(node); | ||
325 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
326 | -1UL); | ||
327 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
328 | -1UL); | ||
329 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
330 | -1UL); | ||
331 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
332 | -1UL); | ||
333 | } | ||
334 | |||
335 | } else { | ||
336 | xpc_sh1_IPI_access = | ||
337 | (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_IPI_ACCESS)); | ||
338 | |||
339 | for_each_online_node(node) { | ||
340 | nasid = cnodeid_to_nasid(node); | ||
341 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
342 | -1UL); | ||
343 | |||
344 | /* | ||
345 | * Since the BIST collides with memory operations on | ||
346 | * SHUB 1.1 sn_change_memprotect() cannot be used. | ||
347 | */ | ||
348 | if (enable_shub_wars_1_1()) { | ||
349 | /* open up everything */ | ||
350 | xpc_prot_vec[node] = (u64) HUB_L((u64 *) | ||
351 | GLOBAL_MMR_ADDR(nasid, | ||
352 | SH1_MD_DQLP_MMR_DIR_PRIVEC0)); | ||
353 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, | ||
354 | SH1_MD_DQLP_MMR_DIR_PRIVEC0), | ||
355 | -1UL); | ||
356 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, | ||
357 | SH1_MD_DQRP_MMR_DIR_PRIVEC0), | ||
358 | -1UL); | ||
359 | } | ||
360 | } | ||
361 | } | ||
362 | } | ||
363 | |||
364 | |||
365 | /* | ||
366 | * Restrict protections to disallow IPI operations (and AMO operations on | ||
367 | * Shub 1.1 systems). | ||
368 | */ | ||
369 | void | ||
370 | xpc_restrict_IPI_ops(void) | ||
371 | { | ||
372 | int node; | ||
373 | int nasid; | ||
374 | |||
375 | |||
376 | // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. | ||
377 | |||
378 | if (is_shub2()) { | ||
379 | |||
380 | for_each_online_node(node) { | ||
381 | nasid = cnodeid_to_nasid(node); | ||
382 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), | ||
383 | xpc_sh2_IPI_access0); | ||
384 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), | ||
385 | xpc_sh2_IPI_access1); | ||
386 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), | ||
387 | xpc_sh2_IPI_access2); | ||
388 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), | ||
389 | xpc_sh2_IPI_access3); | ||
390 | } | ||
391 | |||
392 | } else { | ||
393 | |||
394 | for_each_online_node(node) { | ||
395 | nasid = cnodeid_to_nasid(node); | ||
396 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), | ||
397 | xpc_sh1_IPI_access); | ||
398 | |||
399 | if (enable_shub_wars_1_1()) { | ||
400 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, | ||
401 | SH1_MD_DQLP_MMR_DIR_PRIVEC0), | ||
402 | xpc_prot_vec[node]); | ||
403 | HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, | ||
404 | SH1_MD_DQRP_MMR_DIR_PRIVEC0), | ||
405 | xpc_prot_vec[node]); | ||
406 | } | ||
407 | } | ||
408 | } | ||
409 | } | ||
410 | |||
411 | |||
412 | /* | ||
413 | * At periodic intervals, scan through all active partitions and ensure | ||
414 | * their heartbeat is still active. If not, the partition is deactivated. | ||
415 | */ | ||
416 | void | ||
417 | xpc_check_remote_hb(void) | ||
418 | { | ||
419 | struct xpc_vars *remote_vars; | ||
420 | struct xpc_partition *part; | ||
421 | partid_t partid; | ||
422 | bte_result_t bres; | ||
423 | |||
424 | |||
425 | remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; | ||
426 | |||
427 | for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { | ||
428 | |||
429 | if (xpc_exiting) { | ||
430 | break; | ||
431 | } | ||
432 | |||
433 | if (partid == sn_partition_id) { | ||
434 | continue; | ||
435 | } | ||
436 | |||
437 | part = &xpc_partitions[partid]; | ||
438 | |||
439 | if (part->act_state == XPC_P_INACTIVE || | ||
440 | part->act_state == XPC_P_DEACTIVATING) { | ||
441 | continue; | ||
442 | } | ||
443 | |||
444 | /* pull the remote_hb cache line */ | ||
445 | bres = xp_bte_copy(part->remote_vars_pa, | ||
446 | (u64) remote_vars, | ||
447 | XPC_RP_VARS_SIZE, | ||
448 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
449 | if (bres != BTE_SUCCESS) { | ||
450 | XPC_DEACTIVATE_PARTITION(part, | ||
451 | xpc_map_bte_errors(bres)); | ||
452 | continue; | ||
453 | } | ||
454 | |||
455 | dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat" | ||
456 | " = %ld, heartbeat_offline = %ld, HB_mask = 0x%lx\n", | ||
457 | partid, remote_vars->heartbeat, part->last_heartbeat, | ||
458 | remote_vars->heartbeat_offline, | ||
459 | remote_vars->heartbeating_to_mask); | ||
460 | |||
461 | if (((remote_vars->heartbeat == part->last_heartbeat) && | ||
462 | (remote_vars->heartbeat_offline == 0)) || | ||
463 | !xpc_hb_allowed(sn_partition_id, remote_vars)) { | ||
464 | |||
465 | XPC_DEACTIVATE_PARTITION(part, xpcNoHeartbeat); | ||
466 | continue; | ||
467 | } | ||
468 | |||
469 | part->last_heartbeat = remote_vars->heartbeat; | ||
470 | } | ||
471 | } | ||
472 | |||
473 | |||
474 | /* | ||
475 | * Get a copy of a portion of the remote partition's rsvd page. | ||
476 | * | ||
477 | * remote_rp points to a buffer that is cacheline aligned for BTE copies and | ||
478 | * is large enough to contain a copy of their reserved page header and | ||
479 | * part_nasids mask. | ||
480 | */ | ||
481 | static enum xpc_retval | ||
482 | xpc_get_remote_rp(int nasid, u64 *discovered_nasids, | ||
483 | struct xpc_rsvd_page *remote_rp, u64 *remote_rp_pa) | ||
484 | { | ||
485 | int bres, i; | ||
486 | |||
487 | |||
488 | /* get the reserved page's physical address */ | ||
489 | |||
490 | *remote_rp_pa = xpc_get_rsvd_page_pa(nasid); | ||
491 | if (*remote_rp_pa == 0) { | ||
492 | return xpcNoRsvdPageAddr; | ||
493 | } | ||
494 | |||
495 | |||
496 | /* pull over the reserved page header and part_nasids mask */ | ||
497 | bres = xp_bte_copy(*remote_rp_pa, (u64) remote_rp, | ||
498 | XPC_RP_HEADER_SIZE + xp_nasid_mask_bytes, | ||
499 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
500 | if (bres != BTE_SUCCESS) { | ||
501 | return xpc_map_bte_errors(bres); | ||
502 | } | ||
503 | |||
504 | |||
505 | if (discovered_nasids != NULL) { | ||
506 | u64 *remote_part_nasids = XPC_RP_PART_NASIDS(remote_rp); | ||
507 | |||
508 | |||
509 | for (i = 0; i < xp_nasid_mask_words; i++) { | ||
510 | discovered_nasids[i] |= remote_part_nasids[i]; | ||
511 | } | ||
512 | } | ||
513 | |||
514 | |||
515 | /* check that the partid is for another partition */ | ||
516 | |||
517 | if (remote_rp->partid < 1 || | ||
518 | remote_rp->partid > (XP_MAX_PARTITIONS - 1)) { | ||
519 | return xpcInvalidPartid; | ||
520 | } | ||
521 | |||
522 | if (remote_rp->partid == sn_partition_id) { | ||
523 | return xpcLocalPartid; | ||
524 | } | ||
525 | |||
526 | |||
527 | if (XPC_VERSION_MAJOR(remote_rp->version) != | ||
528 | XPC_VERSION_MAJOR(XPC_RP_VERSION)) { | ||
529 | return xpcBadVersion; | ||
530 | } | ||
531 | |||
532 | return xpcSuccess; | ||
533 | } | ||
534 | |||
535 | |||
536 | /* | ||
537 | * Get a copy of the remote partition's XPC variables from the reserved page. | ||
538 | * | ||
539 | * remote_vars points to a buffer that is cacheline aligned for BTE copies and | ||
540 | * assumed to be of size XPC_RP_VARS_SIZE. | ||
541 | */ | ||
542 | static enum xpc_retval | ||
543 | xpc_get_remote_vars(u64 remote_vars_pa, struct xpc_vars *remote_vars) | ||
544 | { | ||
545 | int bres; | ||
546 | |||
547 | |||
548 | if (remote_vars_pa == 0) { | ||
549 | return xpcVarsNotSet; | ||
550 | } | ||
551 | |||
552 | /* pull over the cross partition variables */ | ||
553 | bres = xp_bte_copy(remote_vars_pa, (u64) remote_vars, XPC_RP_VARS_SIZE, | ||
554 | (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
555 | if (bres != BTE_SUCCESS) { | ||
556 | return xpc_map_bte_errors(bres); | ||
557 | } | ||
558 | |||
559 | if (XPC_VERSION_MAJOR(remote_vars->version) != | ||
560 | XPC_VERSION_MAJOR(XPC_V_VERSION)) { | ||
561 | return xpcBadVersion; | ||
562 | } | ||
563 | |||
564 | return xpcSuccess; | ||
565 | } | ||
566 | |||
567 | |||
568 | /* | ||
569 | * Update the remote partition's info. | ||
570 | */ | ||
571 | static void | ||
572 | xpc_update_partition_info(struct xpc_partition *part, u8 remote_rp_version, | ||
573 | struct timespec *remote_rp_stamp, u64 remote_rp_pa, | ||
574 | u64 remote_vars_pa, struct xpc_vars *remote_vars) | ||
575 | { | ||
576 | part->remote_rp_version = remote_rp_version; | ||
577 | dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n", | ||
578 | part->remote_rp_version); | ||
579 | |||
580 | part->remote_rp_stamp = *remote_rp_stamp; | ||
581 | dev_dbg(xpc_part, " remote_rp_stamp (tv_sec = 0x%lx tv_nsec = 0x%lx\n", | ||
582 | part->remote_rp_stamp.tv_sec, part->remote_rp_stamp.tv_nsec); | ||
583 | |||
584 | part->remote_rp_pa = remote_rp_pa; | ||
585 | dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa); | ||
586 | |||
587 | part->remote_vars_pa = remote_vars_pa; | ||
588 | dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n", | ||
589 | part->remote_vars_pa); | ||
590 | |||
591 | part->last_heartbeat = remote_vars->heartbeat; | ||
592 | dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n", | ||
593 | part->last_heartbeat); | ||
594 | |||
595 | part->remote_vars_part_pa = remote_vars->vars_part_pa; | ||
596 | dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n", | ||
597 | part->remote_vars_part_pa); | ||
598 | |||
599 | part->remote_act_nasid = remote_vars->act_nasid; | ||
600 | dev_dbg(xpc_part, " remote_act_nasid = 0x%x\n", | ||
601 | part->remote_act_nasid); | ||
602 | |||
603 | part->remote_act_phys_cpuid = remote_vars->act_phys_cpuid; | ||
604 | dev_dbg(xpc_part, " remote_act_phys_cpuid = 0x%x\n", | ||
605 | part->remote_act_phys_cpuid); | ||
606 | |||
607 | part->remote_amos_page_pa = remote_vars->amos_page_pa; | ||
608 | dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n", | ||
609 | part->remote_amos_page_pa); | ||
610 | |||
611 | part->remote_vars_version = remote_vars->version; | ||
612 | dev_dbg(xpc_part, " remote_vars_version = 0x%x\n", | ||
613 | part->remote_vars_version); | ||
614 | } | ||
615 | |||
616 | |||
617 | /* | ||
618 | * Prior code has determined the nasid which generated an IPI. Inspect | ||
619 | * that nasid to determine if its partition needs to be activated or | ||
620 | * deactivated. | ||
621 | * | ||
622 | * A partition is consider "awaiting activation" if our partition | ||
623 | * flags indicate it is not active and it has a heartbeat. A | ||
624 | * partition is considered "awaiting deactivation" if our partition | ||
625 | * flags indicate it is active but it has no heartbeat or it is not | ||
626 | * sending its heartbeat to us. | ||
627 | * | ||
628 | * To determine the heartbeat, the remote nasid must have a properly | ||
629 | * initialized reserved page. | ||
630 | */ | ||
631 | static void | ||
632 | xpc_identify_act_IRQ_req(int nasid) | ||
633 | { | ||
634 | struct xpc_rsvd_page *remote_rp; | ||
635 | struct xpc_vars *remote_vars; | ||
636 | u64 remote_rp_pa; | ||
637 | u64 remote_vars_pa; | ||
638 | int remote_rp_version; | ||
639 | int reactivate = 0; | ||
640 | int stamp_diff; | ||
641 | struct timespec remote_rp_stamp = { 0, 0 }; | ||
642 | partid_t partid; | ||
643 | struct xpc_partition *part; | ||
644 | enum xpc_retval ret; | ||
645 | |||
646 | |||
647 | /* pull over the reserved page structure */ | ||
648 | |||
649 | remote_rp = (struct xpc_rsvd_page *) xpc_remote_copy_buffer; | ||
650 | |||
651 | ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa); | ||
652 | if (ret != xpcSuccess) { | ||
653 | dev_warn(xpc_part, "unable to get reserved page from nasid %d, " | ||
654 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
655 | return; | ||
656 | } | ||
657 | |||
658 | remote_vars_pa = remote_rp->vars_pa; | ||
659 | remote_rp_version = remote_rp->version; | ||
660 | if (XPC_SUPPORTS_RP_STAMP(remote_rp_version)) { | ||
661 | remote_rp_stamp = remote_rp->stamp; | ||
662 | } | ||
663 | partid = remote_rp->partid; | ||
664 | part = &xpc_partitions[partid]; | ||
665 | |||
666 | |||
667 | /* pull over the cross partition variables */ | ||
668 | |||
669 | remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; | ||
670 | |||
671 | ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); | ||
672 | if (ret != xpcSuccess) { | ||
673 | |||
674 | dev_warn(xpc_part, "unable to get XPC variables from nasid %d, " | ||
675 | "which sent interrupt, reason=%d\n", nasid, ret); | ||
676 | |||
677 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
678 | return; | ||
679 | } | ||
680 | |||
681 | |||
682 | part->act_IRQ_rcvd++; | ||
683 | |||
684 | dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = " | ||
685 | "%ld:0x%lx\n", (int) nasid, (int) partid, part->act_IRQ_rcvd, | ||
686 | remote_vars->heartbeat, remote_vars->heartbeating_to_mask); | ||
687 | |||
688 | if (xpc_partition_disengaged(part) && | ||
689 | part->act_state == XPC_P_INACTIVE) { | ||
690 | |||
691 | xpc_update_partition_info(part, remote_rp_version, | ||
692 | &remote_rp_stamp, remote_rp_pa, | ||
693 | remote_vars_pa, remote_vars); | ||
694 | |||
695 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) { | ||
696 | if (xpc_partition_disengage_requested(1UL << partid)) { | ||
697 | /* | ||
698 | * Other side is waiting on us to disengage, | ||
699 | * even though we already have. | ||
700 | */ | ||
701 | return; | ||
702 | } | ||
703 | } else { | ||
704 | /* other side doesn't support disengage requests */ | ||
705 | xpc_clear_partition_disengage_request(1UL << partid); | ||
706 | } | ||
707 | |||
708 | xpc_activate_partition(part); | ||
709 | return; | ||
710 | } | ||
711 | |||
712 | DBUG_ON(part->remote_rp_version == 0); | ||
713 | DBUG_ON(part->remote_vars_version == 0); | ||
714 | |||
715 | if (!XPC_SUPPORTS_RP_STAMP(part->remote_rp_version)) { | ||
716 | DBUG_ON(XPC_SUPPORTS_DISENGAGE_REQUEST(part-> | ||
717 | remote_vars_version)); | ||
718 | |||
719 | if (!XPC_SUPPORTS_RP_STAMP(remote_rp_version)) { | ||
720 | DBUG_ON(XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars-> | ||
721 | version)); | ||
722 | /* see if the other side rebooted */ | ||
723 | if (part->remote_amos_page_pa == | ||
724 | remote_vars->amos_page_pa && | ||
725 | xpc_hb_allowed(sn_partition_id, | ||
726 | remote_vars)) { | ||
727 | /* doesn't look that way, so ignore the IPI */ | ||
728 | return; | ||
729 | } | ||
730 | } | ||
731 | |||
732 | /* | ||
733 | * Other side rebooted and previous XPC didn't support the | ||
734 | * disengage request, so we don't need to do anything special. | ||
735 | */ | ||
736 | |||
737 | xpc_update_partition_info(part, remote_rp_version, | ||
738 | &remote_rp_stamp, remote_rp_pa, | ||
739 | remote_vars_pa, remote_vars); | ||
740 | part->reactivate_nasid = nasid; | ||
741 | XPC_DEACTIVATE_PARTITION(part, xpcReactivating); | ||
742 | return; | ||
743 | } | ||
744 | |||
745 | DBUG_ON(!XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)); | ||
746 | |||
747 | if (!XPC_SUPPORTS_RP_STAMP(remote_rp_version)) { | ||
748 | DBUG_ON(!XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars->version)); | ||
749 | |||
750 | /* | ||
751 | * Other side rebooted and previous XPC did support the | ||
752 | * disengage request, but the new one doesn't. | ||
753 | */ | ||
754 | |||
755 | xpc_clear_partition_engaged(1UL << partid); | ||
756 | xpc_clear_partition_disengage_request(1UL << partid); | ||
757 | |||
758 | xpc_update_partition_info(part, remote_rp_version, | ||
759 | &remote_rp_stamp, remote_rp_pa, | ||
760 | remote_vars_pa, remote_vars); | ||
761 | reactivate = 1; | ||
762 | |||
763 | } else { | ||
764 | DBUG_ON(!XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars->version)); | ||
765 | |||
766 | stamp_diff = xpc_compare_stamps(&part->remote_rp_stamp, | ||
767 | &remote_rp_stamp); | ||
768 | if (stamp_diff != 0) { | ||
769 | DBUG_ON(stamp_diff >= 0); | ||
770 | |||
771 | /* | ||
772 | * Other side rebooted and the previous XPC did support | ||
773 | * the disengage request, as does the new one. | ||
774 | */ | ||
775 | |||
776 | DBUG_ON(xpc_partition_engaged(1UL << partid)); | ||
777 | DBUG_ON(xpc_partition_disengage_requested(1UL << | ||
778 | partid)); | ||
779 | |||
780 | xpc_update_partition_info(part, remote_rp_version, | ||
781 | &remote_rp_stamp, remote_rp_pa, | ||
782 | remote_vars_pa, remote_vars); | ||
783 | reactivate = 1; | ||
784 | } | ||
785 | } | ||
786 | |||
787 | if (part->disengage_request_timeout > 0 && | ||
788 | !xpc_partition_disengaged(part)) { | ||
789 | /* still waiting on other side to disengage from us */ | ||
790 | return; | ||
791 | } | ||
792 | |||
793 | if (reactivate) { | ||
794 | part->reactivate_nasid = nasid; | ||
795 | XPC_DEACTIVATE_PARTITION(part, xpcReactivating); | ||
796 | |||
797 | } else if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version) && | ||
798 | xpc_partition_disengage_requested(1UL << partid)) { | ||
799 | XPC_DEACTIVATE_PARTITION(part, xpcOtherGoingDown); | ||
800 | } | ||
801 | } | ||
802 | |||
803 | |||
804 | /* | ||
805 | * Loop through the activation AMO variables and process any bits | ||
806 | * which are set. Each bit indicates a nasid sending a partition | ||
807 | * activation or deactivation request. | ||
808 | * | ||
809 | * Return #of IRQs detected. | ||
810 | */ | ||
811 | int | ||
812 | xpc_identify_act_IRQ_sender(void) | ||
813 | { | ||
814 | int word, bit; | ||
815 | u64 nasid_mask; | ||
816 | u64 nasid; /* remote nasid */ | ||
817 | int n_IRQs_detected = 0; | ||
818 | AMO_t *act_amos; | ||
819 | |||
820 | |||
821 | act_amos = xpc_vars->amos_page + XPC_ACTIVATE_IRQ_AMOS; | ||
822 | |||
823 | |||
824 | /* scan through act AMO variable looking for non-zero entries */ | ||
825 | for (word = 0; word < xp_nasid_mask_words; word++) { | ||
826 | |||
827 | if (xpc_exiting) { | ||
828 | break; | ||
829 | } | ||
830 | |||
831 | nasid_mask = xpc_IPI_receive(&act_amos[word]); | ||
832 | if (nasid_mask == 0) { | ||
833 | /* no IRQs from nasids in this variable */ | ||
834 | continue; | ||
835 | } | ||
836 | |||
837 | dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word, | ||
838 | nasid_mask); | ||
839 | |||
840 | |||
841 | /* | ||
842 | * If this nasid has been added to the machine since | ||
843 | * our partition was reset, this will retain the | ||
844 | * remote nasid in our reserved pages machine mask. | ||
845 | * This is used in the event of module reload. | ||
846 | */ | ||
847 | xpc_mach_nasids[word] |= nasid_mask; | ||
848 | |||
849 | |||
850 | /* locate the nasid(s) which sent interrupts */ | ||
851 | |||
852 | for (bit = 0; bit < (8 * sizeof(u64)); bit++) { | ||
853 | if (nasid_mask & (1UL << bit)) { | ||
854 | n_IRQs_detected++; | ||
855 | nasid = XPC_NASID_FROM_W_B(word, bit); | ||
856 | dev_dbg(xpc_part, "interrupt from nasid %ld\n", | ||
857 | nasid); | ||
858 | xpc_identify_act_IRQ_req(nasid); | ||
859 | } | ||
860 | } | ||
861 | } | ||
862 | return n_IRQs_detected; | ||
863 | } | ||
864 | |||
865 | |||
866 | /* | ||
867 | * See if the other side has responded to a partition disengage request | ||
868 | * from us. | ||
869 | */ | ||
870 | int | ||
871 | xpc_partition_disengaged(struct xpc_partition *part) | ||
872 | { | ||
873 | partid_t partid = XPC_PARTID(part); | ||
874 | int disengaged; | ||
875 | |||
876 | |||
877 | disengaged = (xpc_partition_engaged(1UL << partid) == 0); | ||
878 | if (part->disengage_request_timeout) { | ||
879 | if (!disengaged) { | ||
880 | if (time_before(jiffies, part->disengage_request_timeout)) { | ||
881 | /* timelimit hasn't been reached yet */ | ||
882 | return 0; | ||
883 | } | ||
884 | |||
885 | /* | ||
886 | * Other side hasn't responded to our disengage | ||
887 | * request in a timely fashion, so assume it's dead. | ||
888 | */ | ||
889 | |||
890 | dev_info(xpc_part, "disengage from remote partition %d " | ||
891 | "timed out\n", partid); | ||
892 | xpc_disengage_request_timedout = 1; | ||
893 | xpc_clear_partition_engaged(1UL << partid); | ||
894 | disengaged = 1; | ||
895 | } | ||
896 | part->disengage_request_timeout = 0; | ||
897 | |||
898 | /* cancel the timer function, provided it's not us */ | ||
899 | if (!in_interrupt()) { | ||
900 | del_singleshot_timer_sync(&part-> | ||
901 | disengage_request_timer); | ||
902 | } | ||
903 | |||
904 | DBUG_ON(part->act_state != XPC_P_DEACTIVATING && | ||
905 | part->act_state != XPC_P_INACTIVE); | ||
906 | if (part->act_state != XPC_P_INACTIVE) { | ||
907 | xpc_wakeup_channel_mgr(part); | ||
908 | } | ||
909 | |||
910 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) { | ||
911 | xpc_cancel_partition_disengage_request(part); | ||
912 | } | ||
913 | } | ||
914 | return disengaged; | ||
915 | } | ||
916 | |||
917 | |||
918 | /* | ||
919 | * Mark specified partition as active. | ||
920 | */ | ||
921 | enum xpc_retval | ||
922 | xpc_mark_partition_active(struct xpc_partition *part) | ||
923 | { | ||
924 | unsigned long irq_flags; | ||
925 | enum xpc_retval ret; | ||
926 | |||
927 | |||
928 | dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part)); | ||
929 | |||
930 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
931 | if (part->act_state == XPC_P_ACTIVATING) { | ||
932 | part->act_state = XPC_P_ACTIVE; | ||
933 | ret = xpcSuccess; | ||
934 | } else { | ||
935 | DBUG_ON(part->reason == xpcSuccess); | ||
936 | ret = part->reason; | ||
937 | } | ||
938 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
939 | |||
940 | return ret; | ||
941 | } | ||
942 | |||
943 | |||
944 | /* | ||
945 | * Notify XPC that the partition is down. | ||
946 | */ | ||
947 | void | ||
948 | xpc_deactivate_partition(const int line, struct xpc_partition *part, | ||
949 | enum xpc_retval reason) | ||
950 | { | ||
951 | unsigned long irq_flags; | ||
952 | |||
953 | |||
954 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
955 | |||
956 | if (part->act_state == XPC_P_INACTIVE) { | ||
957 | XPC_SET_REASON(part, reason, line); | ||
958 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
959 | if (reason == xpcReactivating) { | ||
960 | /* we interrupt ourselves to reactivate partition */ | ||
961 | xpc_IPI_send_reactivate(part); | ||
962 | } | ||
963 | return; | ||
964 | } | ||
965 | if (part->act_state == XPC_P_DEACTIVATING) { | ||
966 | if ((part->reason == xpcUnloading && reason != xpcUnloading) || | ||
967 | reason == xpcReactivating) { | ||
968 | XPC_SET_REASON(part, reason, line); | ||
969 | } | ||
970 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
971 | return; | ||
972 | } | ||
973 | |||
974 | part->act_state = XPC_P_DEACTIVATING; | ||
975 | XPC_SET_REASON(part, reason, line); | ||
976 | |||
977 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
978 | |||
979 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(part->remote_vars_version)) { | ||
980 | xpc_request_partition_disengage(part); | ||
981 | xpc_IPI_send_disengage(part); | ||
982 | |||
983 | /* set a timelimit on the disengage request */ | ||
984 | part->disengage_request_timeout = jiffies + | ||
985 | (xpc_disengage_request_timelimit * HZ); | ||
986 | part->disengage_request_timer.expires = | ||
987 | part->disengage_request_timeout; | ||
988 | add_timer(&part->disengage_request_timer); | ||
989 | } | ||
990 | |||
991 | dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", | ||
992 | XPC_PARTID(part), reason); | ||
993 | |||
994 | xpc_partition_going_down(part, reason); | ||
995 | } | ||
996 | |||
997 | |||
998 | /* | ||
999 | * Mark specified partition as inactive. | ||
1000 | */ | ||
1001 | void | ||
1002 | xpc_mark_partition_inactive(struct xpc_partition *part) | ||
1003 | { | ||
1004 | unsigned long irq_flags; | ||
1005 | |||
1006 | |||
1007 | dev_dbg(xpc_part, "setting partition %d to INACTIVE\n", | ||
1008 | XPC_PARTID(part)); | ||
1009 | |||
1010 | spin_lock_irqsave(&part->act_lock, irq_flags); | ||
1011 | part->act_state = XPC_P_INACTIVE; | ||
1012 | spin_unlock_irqrestore(&part->act_lock, irq_flags); | ||
1013 | part->remote_rp_pa = 0; | ||
1014 | } | ||
1015 | |||
1016 | |||
1017 | /* | ||
1018 | * SAL has provided a partition and machine mask. The partition mask | ||
1019 | * contains a bit for each even nasid in our partition. The machine | ||
1020 | * mask contains a bit for each even nasid in the entire machine. | ||
1021 | * | ||
1022 | * Using those two bit arrays, we can determine which nasids are | ||
1023 | * known in the machine. Each should also have a reserved page | ||
1024 | * initialized if they are available for partitioning. | ||
1025 | */ | ||
1026 | void | ||
1027 | xpc_discovery(void) | ||
1028 | { | ||
1029 | void *remote_rp_base; | ||
1030 | struct xpc_rsvd_page *remote_rp; | ||
1031 | struct xpc_vars *remote_vars; | ||
1032 | u64 remote_rp_pa; | ||
1033 | u64 remote_vars_pa; | ||
1034 | int region; | ||
1035 | int region_size; | ||
1036 | int max_regions; | ||
1037 | int nasid; | ||
1038 | struct xpc_rsvd_page *rp; | ||
1039 | partid_t partid; | ||
1040 | struct xpc_partition *part; | ||
1041 | u64 *discovered_nasids; | ||
1042 | enum xpc_retval ret; | ||
1043 | |||
1044 | |||
1045 | remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RP_HEADER_SIZE + | ||
1046 | xp_nasid_mask_bytes, | ||
1047 | GFP_KERNEL, &remote_rp_base); | ||
1048 | if (remote_rp == NULL) { | ||
1049 | return; | ||
1050 | } | ||
1051 | remote_vars = (struct xpc_vars *) remote_rp; | ||
1052 | |||
1053 | |||
1054 | discovered_nasids = kzalloc(sizeof(u64) * xp_nasid_mask_words, | ||
1055 | GFP_KERNEL); | ||
1056 | if (discovered_nasids == NULL) { | ||
1057 | kfree(remote_rp_base); | ||
1058 | return; | ||
1059 | } | ||
1060 | |||
1061 | rp = (struct xpc_rsvd_page *) xpc_rsvd_page; | ||
1062 | |||
1063 | /* | ||
1064 | * The term 'region' in this context refers to the minimum number of | ||
1065 | * nodes that can comprise an access protection grouping. The access | ||
1066 | * protection is in regards to memory, IOI and IPI. | ||
1067 | */ | ||
1068 | max_regions = 64; | ||
1069 | region_size = sn_region_size; | ||
1070 | |||
1071 | switch (region_size) { | ||
1072 | case 128: | ||
1073 | max_regions *= 2; | ||
1074 | case 64: | ||
1075 | max_regions *= 2; | ||
1076 | case 32: | ||
1077 | max_regions *= 2; | ||
1078 | region_size = 16; | ||
1079 | DBUG_ON(!is_shub2()); | ||
1080 | } | ||
1081 | |||
1082 | for (region = 0; region < max_regions; region++) { | ||
1083 | |||
1084 | if ((volatile int) xpc_exiting) { | ||
1085 | break; | ||
1086 | } | ||
1087 | |||
1088 | dev_dbg(xpc_part, "searching region %d\n", region); | ||
1089 | |||
1090 | for (nasid = (region * region_size * 2); | ||
1091 | nasid < ((region + 1) * region_size * 2); | ||
1092 | nasid += 2) { | ||
1093 | |||
1094 | if ((volatile int) xpc_exiting) { | ||
1095 | break; | ||
1096 | } | ||
1097 | |||
1098 | dev_dbg(xpc_part, "checking nasid %d\n", nasid); | ||
1099 | |||
1100 | |||
1101 | if (XPC_NASID_IN_ARRAY(nasid, xpc_part_nasids)) { | ||
1102 | dev_dbg(xpc_part, "PROM indicates Nasid %d is " | ||
1103 | "part of the local partition; skipping " | ||
1104 | "region\n", nasid); | ||
1105 | break; | ||
1106 | } | ||
1107 | |||
1108 | if (!(XPC_NASID_IN_ARRAY(nasid, xpc_mach_nasids))) { | ||
1109 | dev_dbg(xpc_part, "PROM indicates Nasid %d was " | ||
1110 | "not on Numa-Link network at reset\n", | ||
1111 | nasid); | ||
1112 | continue; | ||
1113 | } | ||
1114 | |||
1115 | if (XPC_NASID_IN_ARRAY(nasid, discovered_nasids)) { | ||
1116 | dev_dbg(xpc_part, "Nasid %d is part of a " | ||
1117 | "partition which was previously " | ||
1118 | "discovered\n", nasid); | ||
1119 | continue; | ||
1120 | } | ||
1121 | |||
1122 | |||
1123 | /* pull over the reserved page structure */ | ||
1124 | |||
1125 | ret = xpc_get_remote_rp(nasid, discovered_nasids, | ||
1126 | remote_rp, &remote_rp_pa); | ||
1127 | if (ret != xpcSuccess) { | ||
1128 | dev_dbg(xpc_part, "unable to get reserved page " | ||
1129 | "from nasid %d, reason=%d\n", nasid, | ||
1130 | ret); | ||
1131 | |||
1132 | if (ret == xpcLocalPartid) { | ||
1133 | break; | ||
1134 | } | ||
1135 | continue; | ||
1136 | } | ||
1137 | |||
1138 | remote_vars_pa = remote_rp->vars_pa; | ||
1139 | |||
1140 | partid = remote_rp->partid; | ||
1141 | part = &xpc_partitions[partid]; | ||
1142 | |||
1143 | |||
1144 | /* pull over the cross partition variables */ | ||
1145 | |||
1146 | ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); | ||
1147 | if (ret != xpcSuccess) { | ||
1148 | dev_dbg(xpc_part, "unable to get XPC variables " | ||
1149 | "from nasid %d, reason=%d\n", nasid, | ||
1150 | ret); | ||
1151 | |||
1152 | XPC_DEACTIVATE_PARTITION(part, ret); | ||
1153 | continue; | ||
1154 | } | ||
1155 | |||
1156 | if (part->act_state != XPC_P_INACTIVE) { | ||
1157 | dev_dbg(xpc_part, "partition %d on nasid %d is " | ||
1158 | "already activating\n", partid, nasid); | ||
1159 | break; | ||
1160 | } | ||
1161 | |||
1162 | /* | ||
1163 | * Register the remote partition's AMOs with SAL so it | ||
1164 | * can handle and cleanup errors within that address | ||
1165 | * range should the remote partition go down. We don't | ||
1166 | * unregister this range because it is difficult to | ||
1167 | * tell when outstanding writes to the remote partition | ||
1168 | * are finished and thus when it is thus safe to | ||
1169 | * unregister. This should not result in wasted space | ||
1170 | * in the SAL xp_addr_region table because we should | ||
1171 | * get the same page for remote_act_amos_pa after | ||
1172 | * module reloads and system reboots. | ||
1173 | */ | ||
1174 | if (sn_register_xp_addr_region( | ||
1175 | remote_vars->amos_page_pa, | ||
1176 | PAGE_SIZE, 1) < 0) { | ||
1177 | dev_dbg(xpc_part, "partition %d failed to " | ||
1178 | "register xp_addr region 0x%016lx\n", | ||
1179 | partid, remote_vars->amos_page_pa); | ||
1180 | |||
1181 | XPC_SET_REASON(part, xpcPhysAddrRegFailed, | ||
1182 | __LINE__); | ||
1183 | break; | ||
1184 | } | ||
1185 | |||
1186 | /* | ||
1187 | * The remote nasid is valid and available. | ||
1188 | * Send an interrupt to that nasid to notify | ||
1189 | * it that we are ready to begin activation. | ||
1190 | */ | ||
1191 | dev_dbg(xpc_part, "sending an interrupt to AMO 0x%lx, " | ||
1192 | "nasid %d, phys_cpuid 0x%x\n", | ||
1193 | remote_vars->amos_page_pa, | ||
1194 | remote_vars->act_nasid, | ||
1195 | remote_vars->act_phys_cpuid); | ||
1196 | |||
1197 | if (XPC_SUPPORTS_DISENGAGE_REQUEST(remote_vars-> | ||
1198 | version)) { | ||
1199 | part->remote_amos_page_pa = | ||
1200 | remote_vars->amos_page_pa; | ||
1201 | xpc_mark_partition_disengaged(part); | ||
1202 | xpc_cancel_partition_disengage_request(part); | ||
1203 | } | ||
1204 | xpc_IPI_send_activate(remote_vars); | ||
1205 | } | ||
1206 | } | ||
1207 | |||
1208 | kfree(discovered_nasids); | ||
1209 | kfree(remote_rp_base); | ||
1210 | } | ||
1211 | |||
1212 | |||
1213 | /* | ||
1214 | * Given a partid, get the nasids owned by that partition from the | ||
1215 | * remote partition's reserved page. | ||
1216 | */ | ||
1217 | enum xpc_retval | ||
1218 | xpc_initiate_partid_to_nasids(partid_t partid, void *nasid_mask) | ||
1219 | { | ||
1220 | struct xpc_partition *part; | ||
1221 | u64 part_nasid_pa; | ||
1222 | int bte_res; | ||
1223 | |||
1224 | |||
1225 | part = &xpc_partitions[partid]; | ||
1226 | if (part->remote_rp_pa == 0) { | ||
1227 | return xpcPartitionDown; | ||
1228 | } | ||
1229 | |||
1230 | memset(nasid_mask, 0, XP_NASID_MASK_BYTES); | ||
1231 | |||
1232 | part_nasid_pa = (u64) XPC_RP_PART_NASIDS(part->remote_rp_pa); | ||
1233 | |||
1234 | bte_res = xp_bte_copy(part_nasid_pa, (u64) nasid_mask, | ||
1235 | xp_nasid_mask_bytes, (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
1236 | |||
1237 | return xpc_map_bte_errors(bte_res); | ||
1238 | } | ||
1239 | |||
diff --git a/drivers/misc/sgi-xp/xpnet.c b/drivers/misc/sgi-xp/xpnet.c new file mode 100644 index 000000000000..38552f37e53d --- /dev/null +++ b/drivers/misc/sgi-xp/xpnet.c | |||
@@ -0,0 +1,718 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1999-2008 Silicon Graphics, Inc. All rights reserved. | ||
7 | */ | ||
8 | |||
9 | |||
10 | /* | ||
11 | * Cross Partition Network Interface (XPNET) support | ||
12 | * | ||
13 | * XPNET provides a virtual network layered on top of the Cross | ||
14 | * Partition communication layer. | ||
15 | * | ||
16 | * XPNET provides direct point-to-point and broadcast-like support | ||
17 | * for an ethernet-like device. The ethernet broadcast medium is | ||
18 | * replaced with a point-to-point message structure which passes | ||
19 | * pointers to a DMA-capable block that a remote partition should | ||
20 | * retrieve and pass to the upper level networking layer. | ||
21 | * | ||
22 | */ | ||
23 | |||
24 | |||
25 | #include <linux/module.h> | ||
26 | #include <linux/kernel.h> | ||
27 | #include <linux/init.h> | ||
28 | #include <linux/ioport.h> | ||
29 | #include <linux/netdevice.h> | ||
30 | #include <linux/etherdevice.h> | ||
31 | #include <linux/delay.h> | ||
32 | #include <linux/ethtool.h> | ||
33 | #include <linux/mii.h> | ||
34 | #include <linux/smp.h> | ||
35 | #include <linux/string.h> | ||
36 | #include <asm/sn/bte.h> | ||
37 | #include <asm/sn/io.h> | ||
38 | #include <asm/sn/sn_sal.h> | ||
39 | #include <asm/types.h> | ||
40 | #include <asm/atomic.h> | ||
41 | #include "xp.h" | ||
42 | |||
43 | |||
44 | /* | ||
45 | * The message payload transferred by XPC. | ||
46 | * | ||
47 | * buf_pa is the physical address where the DMA should pull from. | ||
48 | * | ||
49 | * NOTE: for performance reasons, buf_pa should _ALWAYS_ begin on a | ||
50 | * cacheline boundary. To accomplish this, we record the number of | ||
51 | * bytes from the beginning of the first cacheline to the first useful | ||
52 | * byte of the skb (leadin_ignore) and the number of bytes from the | ||
53 | * last useful byte of the skb to the end of the last cacheline | ||
54 | * (tailout_ignore). | ||
55 | * | ||
56 | * size is the number of bytes to transfer which includes the skb->len | ||
57 | * (useful bytes of the senders skb) plus the leadin and tailout | ||
58 | */ | ||
59 | struct xpnet_message { | ||
60 | u16 version; /* Version for this message */ | ||
61 | u16 embedded_bytes; /* #of bytes embedded in XPC message */ | ||
62 | u32 magic; /* Special number indicating this is xpnet */ | ||
63 | u64 buf_pa; /* phys address of buffer to retrieve */ | ||
64 | u32 size; /* #of bytes in buffer */ | ||
65 | u8 leadin_ignore; /* #of bytes to ignore at the beginning */ | ||
66 | u8 tailout_ignore; /* #of bytes to ignore at the end */ | ||
67 | unsigned char data; /* body of small packets */ | ||
68 | }; | ||
69 | |||
70 | /* | ||
71 | * Determine the size of our message, the cacheline aligned size, | ||
72 | * and then the number of message will request from XPC. | ||
73 | * | ||
74 | * XPC expects each message to exist in an individual cacheline. | ||
75 | */ | ||
76 | #define XPNET_MSG_SIZE (L1_CACHE_BYTES - XPC_MSG_PAYLOAD_OFFSET) | ||
77 | #define XPNET_MSG_DATA_MAX \ | ||
78 | (XPNET_MSG_SIZE - (u64)(&((struct xpnet_message *)0)->data)) | ||
79 | #define XPNET_MSG_ALIGNED_SIZE (L1_CACHE_ALIGN(XPNET_MSG_SIZE)) | ||
80 | #define XPNET_MSG_NENTRIES (PAGE_SIZE / XPNET_MSG_ALIGNED_SIZE) | ||
81 | |||
82 | |||
83 | #define XPNET_MAX_KTHREADS (XPNET_MSG_NENTRIES + 1) | ||
84 | #define XPNET_MAX_IDLE_KTHREADS (XPNET_MSG_NENTRIES + 1) | ||
85 | |||
86 | /* | ||
87 | * Version number of XPNET implementation. XPNET can always talk to versions | ||
88 | * with same major #, and never talk to versions with a different version. | ||
89 | */ | ||
90 | #define _XPNET_VERSION(_major, _minor) (((_major) << 4) | (_minor)) | ||
91 | #define XPNET_VERSION_MAJOR(_v) ((_v) >> 4) | ||
92 | #define XPNET_VERSION_MINOR(_v) ((_v) & 0xf) | ||
93 | |||
94 | #define XPNET_VERSION _XPNET_VERSION(1,0) /* version 1.0 */ | ||
95 | #define XPNET_VERSION_EMBED _XPNET_VERSION(1,1) /* version 1.1 */ | ||
96 | #define XPNET_MAGIC 0x88786984 /* "XNET" */ | ||
97 | |||
98 | #define XPNET_VALID_MSG(_m) \ | ||
99 | ((XPNET_VERSION_MAJOR(_m->version) == XPNET_VERSION_MAJOR(XPNET_VERSION)) \ | ||
100 | && (msg->magic == XPNET_MAGIC)) | ||
101 | |||
102 | #define XPNET_DEVICE_NAME "xp0" | ||
103 | |||
104 | |||
105 | /* | ||
106 | * When messages are queued with xpc_send_notify, a kmalloc'd buffer | ||
107 | * of the following type is passed as a notification cookie. When the | ||
108 | * notification function is called, we use the cookie to decide | ||
109 | * whether all outstanding message sends have completed. The skb can | ||
110 | * then be released. | ||
111 | */ | ||
112 | struct xpnet_pending_msg { | ||
113 | struct list_head free_list; | ||
114 | struct sk_buff *skb; | ||
115 | atomic_t use_count; | ||
116 | }; | ||
117 | |||
118 | /* driver specific structure pointed to by the device structure */ | ||
119 | struct xpnet_dev_private { | ||
120 | struct net_device_stats stats; | ||
121 | }; | ||
122 | |||
123 | struct net_device *xpnet_device; | ||
124 | |||
125 | /* | ||
126 | * When we are notified of other partitions activating, we add them to | ||
127 | * our bitmask of partitions to which we broadcast. | ||
128 | */ | ||
129 | static u64 xpnet_broadcast_partitions; | ||
130 | /* protect above */ | ||
131 | static DEFINE_SPINLOCK(xpnet_broadcast_lock); | ||
132 | |||
133 | /* | ||
134 | * Since the Block Transfer Engine (BTE) is being used for the transfer | ||
135 | * and it relies upon cache-line size transfers, we need to reserve at | ||
136 | * least one cache-line for head and tail alignment. The BTE is | ||
137 | * limited to 8MB transfers. | ||
138 | * | ||
139 | * Testing has shown that changing MTU to greater than 64KB has no effect | ||
140 | * on TCP as the two sides negotiate a Max Segment Size that is limited | ||
141 | * to 64K. Other protocols May use packets greater than this, but for | ||
142 | * now, the default is 64KB. | ||
143 | */ | ||
144 | #define XPNET_MAX_MTU (0x800000UL - L1_CACHE_BYTES) | ||
145 | /* 32KB has been determined to be the ideal */ | ||
146 | #define XPNET_DEF_MTU (0x8000UL) | ||
147 | |||
148 | |||
149 | /* | ||
150 | * The partition id is encapsulated in the MAC address. The following | ||
151 | * define locates the octet the partid is in. | ||
152 | */ | ||
153 | #define XPNET_PARTID_OCTET 1 | ||
154 | #define XPNET_LICENSE_OCTET 2 | ||
155 | |||
156 | |||
157 | /* | ||
158 | * Define the XPNET debug device structure that is to be used with dev_dbg(), | ||
159 | * dev_err(), dev_warn(), and dev_info(). | ||
160 | */ | ||
161 | struct device_driver xpnet_dbg_name = { | ||
162 | .name = "xpnet" | ||
163 | }; | ||
164 | |||
165 | struct device xpnet_dbg_subname = { | ||
166 | .bus_id = {0}, /* set to "" */ | ||
167 | .driver = &xpnet_dbg_name | ||
168 | }; | ||
169 | |||
170 | struct device *xpnet = &xpnet_dbg_subname; | ||
171 | |||
172 | /* | ||
173 | * Packet was recevied by XPC and forwarded to us. | ||
174 | */ | ||
175 | static void | ||
176 | xpnet_receive(partid_t partid, int channel, struct xpnet_message *msg) | ||
177 | { | ||
178 | struct sk_buff *skb; | ||
179 | bte_result_t bret; | ||
180 | struct xpnet_dev_private *priv = | ||
181 | (struct xpnet_dev_private *) xpnet_device->priv; | ||
182 | |||
183 | |||
184 | if (!XPNET_VALID_MSG(msg)) { | ||
185 | /* | ||
186 | * Packet with a different XPC version. Ignore. | ||
187 | */ | ||
188 | xpc_received(partid, channel, (void *) msg); | ||
189 | |||
190 | priv->stats.rx_errors++; | ||
191 | |||
192 | return; | ||
193 | } | ||
194 | dev_dbg(xpnet, "received 0x%lx, %d, %d, %d\n", msg->buf_pa, msg->size, | ||
195 | msg->leadin_ignore, msg->tailout_ignore); | ||
196 | |||
197 | |||
198 | /* reserve an extra cache line */ | ||
199 | skb = dev_alloc_skb(msg->size + L1_CACHE_BYTES); | ||
200 | if (!skb) { | ||
201 | dev_err(xpnet, "failed on dev_alloc_skb(%d)\n", | ||
202 | msg->size + L1_CACHE_BYTES); | ||
203 | |||
204 | xpc_received(partid, channel, (void *) msg); | ||
205 | |||
206 | priv->stats.rx_errors++; | ||
207 | |||
208 | return; | ||
209 | } | ||
210 | |||
211 | /* | ||
212 | * The allocated skb has some reserved space. | ||
213 | * In order to use bte_copy, we need to get the | ||
214 | * skb->data pointer moved forward. | ||
215 | */ | ||
216 | skb_reserve(skb, (L1_CACHE_BYTES - ((u64)skb->data & | ||
217 | (L1_CACHE_BYTES - 1)) + | ||
218 | msg->leadin_ignore)); | ||
219 | |||
220 | /* | ||
221 | * Update the tail pointer to indicate data actually | ||
222 | * transferred. | ||
223 | */ | ||
224 | skb_put(skb, (msg->size - msg->leadin_ignore - msg->tailout_ignore)); | ||
225 | |||
226 | /* | ||
227 | * Move the data over from the other side. | ||
228 | */ | ||
229 | if ((XPNET_VERSION_MINOR(msg->version) == 1) && | ||
230 | (msg->embedded_bytes != 0)) { | ||
231 | dev_dbg(xpnet, "copying embedded message. memcpy(0x%p, 0x%p, " | ||
232 | "%lu)\n", skb->data, &msg->data, | ||
233 | (size_t) msg->embedded_bytes); | ||
234 | |||
235 | skb_copy_to_linear_data(skb, &msg->data, (size_t)msg->embedded_bytes); | ||
236 | } else { | ||
237 | dev_dbg(xpnet, "transferring buffer to the skb->data area;\n\t" | ||
238 | "bte_copy(0x%p, 0x%p, %hu)\n", (void *)msg->buf_pa, | ||
239 | (void *)__pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)), | ||
240 | msg->size); | ||
241 | |||
242 | bret = bte_copy(msg->buf_pa, | ||
243 | __pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)), | ||
244 | msg->size, (BTE_NOTIFY | BTE_WACQUIRE), NULL); | ||
245 | |||
246 | if (bret != BTE_SUCCESS) { | ||
247 | // >>> Need better way of cleaning skb. Currently skb | ||
248 | // >>> appears in_use and we can't just call | ||
249 | // >>> dev_kfree_skb. | ||
250 | dev_err(xpnet, "bte_copy(0x%p, 0x%p, 0x%hx) returned " | ||
251 | "error=0x%x\n", (void *)msg->buf_pa, | ||
252 | (void *)__pa((u64)skb->data & | ||
253 | ~(L1_CACHE_BYTES - 1)), | ||
254 | msg->size, bret); | ||
255 | |||
256 | xpc_received(partid, channel, (void *) msg); | ||
257 | |||
258 | priv->stats.rx_errors++; | ||
259 | |||
260 | return; | ||
261 | } | ||
262 | } | ||
263 | |||
264 | dev_dbg(xpnet, "<skb->head=0x%p skb->data=0x%p skb->tail=0x%p " | ||
265 | "skb->end=0x%p skb->len=%d\n", (void *) skb->head, | ||
266 | (void *)skb->data, skb_tail_pointer(skb), skb_end_pointer(skb), | ||
267 | skb->len); | ||
268 | |||
269 | skb->protocol = eth_type_trans(skb, xpnet_device); | ||
270 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
271 | |||
272 | dev_dbg(xpnet, "passing skb to network layer\n" | ||
273 | KERN_DEBUG "\tskb->head=0x%p skb->data=0x%p skb->tail=0x%p " | ||
274 | "skb->end=0x%p skb->len=%d\n", | ||
275 | (void *)skb->head, (void *)skb->data, skb_tail_pointer(skb), | ||
276 | skb_end_pointer(skb), skb->len); | ||
277 | |||
278 | |||
279 | xpnet_device->last_rx = jiffies; | ||
280 | priv->stats.rx_packets++; | ||
281 | priv->stats.rx_bytes += skb->len + ETH_HLEN; | ||
282 | |||
283 | netif_rx_ni(skb); | ||
284 | xpc_received(partid, channel, (void *) msg); | ||
285 | } | ||
286 | |||
287 | |||
288 | /* | ||
289 | * This is the handler which XPC calls during any sort of change in | ||
290 | * state or message reception on a connection. | ||
291 | */ | ||
292 | static void | ||
293 | xpnet_connection_activity(enum xpc_retval reason, partid_t partid, int channel, | ||
294 | void *data, void *key) | ||
295 | { | ||
296 | long bp; | ||
297 | |||
298 | |||
299 | DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); | ||
300 | DBUG_ON(channel != XPC_NET_CHANNEL); | ||
301 | |||
302 | switch(reason) { | ||
303 | case xpcMsgReceived: /* message received */ | ||
304 | DBUG_ON(data == NULL); | ||
305 | |||
306 | xpnet_receive(partid, channel, (struct xpnet_message *) data); | ||
307 | break; | ||
308 | |||
309 | case xpcConnected: /* connection completed to a partition */ | ||
310 | spin_lock_bh(&xpnet_broadcast_lock); | ||
311 | xpnet_broadcast_partitions |= 1UL << (partid -1 ); | ||
312 | bp = xpnet_broadcast_partitions; | ||
313 | spin_unlock_bh(&xpnet_broadcast_lock); | ||
314 | |||
315 | netif_carrier_on(xpnet_device); | ||
316 | |||
317 | dev_dbg(xpnet, "%s connection created to partition %d; " | ||
318 | "xpnet_broadcast_partitions=0x%lx\n", | ||
319 | xpnet_device->name, partid, bp); | ||
320 | break; | ||
321 | |||
322 | default: | ||
323 | spin_lock_bh(&xpnet_broadcast_lock); | ||
324 | xpnet_broadcast_partitions &= ~(1UL << (partid -1 )); | ||
325 | bp = xpnet_broadcast_partitions; | ||
326 | spin_unlock_bh(&xpnet_broadcast_lock); | ||
327 | |||
328 | if (bp == 0) { | ||
329 | netif_carrier_off(xpnet_device); | ||
330 | } | ||
331 | |||
332 | dev_dbg(xpnet, "%s disconnected from partition %d; " | ||
333 | "xpnet_broadcast_partitions=0x%lx\n", | ||
334 | xpnet_device->name, partid, bp); | ||
335 | break; | ||
336 | |||
337 | } | ||
338 | } | ||
339 | |||
340 | |||
341 | static int | ||
342 | xpnet_dev_open(struct net_device *dev) | ||
343 | { | ||
344 | enum xpc_retval ret; | ||
345 | |||
346 | |||
347 | dev_dbg(xpnet, "calling xpc_connect(%d, 0x%p, NULL, %ld, %ld, %ld, " | ||
348 | "%ld)\n", XPC_NET_CHANNEL, xpnet_connection_activity, | ||
349 | XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, XPNET_MAX_KTHREADS, | ||
350 | XPNET_MAX_IDLE_KTHREADS); | ||
351 | |||
352 | ret = xpc_connect(XPC_NET_CHANNEL, xpnet_connection_activity, NULL, | ||
353 | XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, | ||
354 | XPNET_MAX_KTHREADS, XPNET_MAX_IDLE_KTHREADS); | ||
355 | if (ret != xpcSuccess) { | ||
356 | dev_err(xpnet, "ifconfig up of %s failed on XPC connect, " | ||
357 | "ret=%d\n", dev->name, ret); | ||
358 | |||
359 | return -ENOMEM; | ||
360 | } | ||
361 | |||
362 | dev_dbg(xpnet, "ifconfig up of %s; XPC connected\n", dev->name); | ||
363 | |||
364 | return 0; | ||
365 | } | ||
366 | |||
367 | |||
368 | static int | ||
369 | xpnet_dev_stop(struct net_device *dev) | ||
370 | { | ||
371 | xpc_disconnect(XPC_NET_CHANNEL); | ||
372 | |||
373 | dev_dbg(xpnet, "ifconfig down of %s; XPC disconnected\n", dev->name); | ||
374 | |||
375 | return 0; | ||
376 | } | ||
377 | |||
378 | |||
379 | static int | ||
380 | xpnet_dev_change_mtu(struct net_device *dev, int new_mtu) | ||
381 | { | ||
382 | /* 68 comes from min TCP+IP+MAC header */ | ||
383 | if ((new_mtu < 68) || (new_mtu > XPNET_MAX_MTU)) { | ||
384 | dev_err(xpnet, "ifconfig %s mtu %d failed; value must be " | ||
385 | "between 68 and %ld\n", dev->name, new_mtu, | ||
386 | XPNET_MAX_MTU); | ||
387 | return -EINVAL; | ||
388 | } | ||
389 | |||
390 | dev->mtu = new_mtu; | ||
391 | dev_dbg(xpnet, "ifconfig %s mtu set to %d\n", dev->name, new_mtu); | ||
392 | return 0; | ||
393 | } | ||
394 | |||
395 | |||
396 | /* | ||
397 | * Required for the net_device structure. | ||
398 | */ | ||
399 | static int | ||
400 | xpnet_dev_set_config(struct net_device *dev, struct ifmap *new_map) | ||
401 | { | ||
402 | return 0; | ||
403 | } | ||
404 | |||
405 | |||
406 | /* | ||
407 | * Return statistics to the caller. | ||
408 | */ | ||
409 | static struct net_device_stats * | ||
410 | xpnet_dev_get_stats(struct net_device *dev) | ||
411 | { | ||
412 | struct xpnet_dev_private *priv; | ||
413 | |||
414 | |||
415 | priv = (struct xpnet_dev_private *) dev->priv; | ||
416 | |||
417 | return &priv->stats; | ||
418 | } | ||
419 | |||
420 | |||
421 | /* | ||
422 | * Notification that the other end has received the message and | ||
423 | * DMA'd the skb information. At this point, they are done with | ||
424 | * our side. When all recipients are done processing, we | ||
425 | * release the skb and then release our pending message structure. | ||
426 | */ | ||
427 | static void | ||
428 | xpnet_send_completed(enum xpc_retval reason, partid_t partid, int channel, | ||
429 | void *__qm) | ||
430 | { | ||
431 | struct xpnet_pending_msg *queued_msg = | ||
432 | (struct xpnet_pending_msg *) __qm; | ||
433 | |||
434 | |||
435 | DBUG_ON(queued_msg == NULL); | ||
436 | |||
437 | dev_dbg(xpnet, "message to %d notified with reason %d\n", | ||
438 | partid, reason); | ||
439 | |||
440 | if (atomic_dec_return(&queued_msg->use_count) == 0) { | ||
441 | dev_dbg(xpnet, "all acks for skb->head=-x%p\n", | ||
442 | (void *) queued_msg->skb->head); | ||
443 | |||
444 | dev_kfree_skb_any(queued_msg->skb); | ||
445 | kfree(queued_msg); | ||
446 | } | ||
447 | } | ||
448 | |||
449 | |||
450 | /* | ||
451 | * Network layer has formatted a packet (skb) and is ready to place it | ||
452 | * "on the wire". Prepare and send an xpnet_message to all partitions | ||
453 | * which have connected with us and are targets of this packet. | ||
454 | * | ||
455 | * MAC-NOTE: For the XPNET driver, the MAC address contains the | ||
456 | * destination partition_id. If the destination partition id word | ||
457 | * is 0xff, this packet is to broadcast to all partitions. | ||
458 | */ | ||
459 | static int | ||
460 | xpnet_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | ||
461 | { | ||
462 | struct xpnet_pending_msg *queued_msg; | ||
463 | enum xpc_retval ret; | ||
464 | struct xpnet_message *msg; | ||
465 | u64 start_addr, end_addr; | ||
466 | long dp; | ||
467 | u8 second_mac_octet; | ||
468 | partid_t dest_partid; | ||
469 | struct xpnet_dev_private *priv; | ||
470 | u16 embedded_bytes; | ||
471 | |||
472 | |||
473 | priv = (struct xpnet_dev_private *) dev->priv; | ||
474 | |||
475 | |||
476 | dev_dbg(xpnet, ">skb->head=0x%p skb->data=0x%p skb->tail=0x%p " | ||
477 | "skb->end=0x%p skb->len=%d\n", (void *) skb->head, | ||
478 | (void *)skb->data, skb_tail_pointer(skb), skb_end_pointer(skb), | ||
479 | skb->len); | ||
480 | |||
481 | |||
482 | /* | ||
483 | * The xpnet_pending_msg tracks how many outstanding | ||
484 | * xpc_send_notifies are relying on this skb. When none | ||
485 | * remain, release the skb. | ||
486 | */ | ||
487 | queued_msg = kmalloc(sizeof(struct xpnet_pending_msg), GFP_ATOMIC); | ||
488 | if (queued_msg == NULL) { | ||
489 | dev_warn(xpnet, "failed to kmalloc %ld bytes; dropping " | ||
490 | "packet\n", sizeof(struct xpnet_pending_msg)); | ||
491 | |||
492 | priv->stats.tx_errors++; | ||
493 | |||
494 | return -ENOMEM; | ||
495 | } | ||
496 | |||
497 | |||
498 | /* get the beginning of the first cacheline and end of last */ | ||
499 | start_addr = ((u64) skb->data & ~(L1_CACHE_BYTES - 1)); | ||
500 | end_addr = L1_CACHE_ALIGN((u64)skb_tail_pointer(skb)); | ||
501 | |||
502 | /* calculate how many bytes to embed in the XPC message */ | ||
503 | embedded_bytes = 0; | ||
504 | if (unlikely(skb->len <= XPNET_MSG_DATA_MAX)) { | ||
505 | /* skb->data does fit so embed */ | ||
506 | embedded_bytes = skb->len; | ||
507 | } | ||
508 | |||
509 | |||
510 | /* | ||
511 | * Since the send occurs asynchronously, we set the count to one | ||
512 | * and begin sending. Any sends that happen to complete before | ||
513 | * we are done sending will not free the skb. We will be left | ||
514 | * with that task during exit. This also handles the case of | ||
515 | * a packet destined for a partition which is no longer up. | ||
516 | */ | ||
517 | atomic_set(&queued_msg->use_count, 1); | ||
518 | queued_msg->skb = skb; | ||
519 | |||
520 | |||
521 | second_mac_octet = skb->data[XPNET_PARTID_OCTET]; | ||
522 | if (second_mac_octet == 0xff) { | ||
523 | /* we are being asked to broadcast to all partitions */ | ||
524 | dp = xpnet_broadcast_partitions; | ||
525 | } else if (second_mac_octet != 0) { | ||
526 | dp = xpnet_broadcast_partitions & | ||
527 | (1UL << (second_mac_octet - 1)); | ||
528 | } else { | ||
529 | /* 0 is an invalid partid. Ignore */ | ||
530 | dp = 0; | ||
531 | } | ||
532 | dev_dbg(xpnet, "destination Partitions mask (dp) = 0x%lx\n", dp); | ||
533 | |||
534 | /* | ||
535 | * If we wanted to allow promiscuous mode to work like an | ||
536 | * unswitched network, this would be a good point to OR in a | ||
537 | * mask of partitions which should be receiving all packets. | ||
538 | */ | ||
539 | |||
540 | /* | ||
541 | * Main send loop. | ||
542 | */ | ||
543 | for (dest_partid = 1; dp && dest_partid < XP_MAX_PARTITIONS; | ||
544 | dest_partid++) { | ||
545 | |||
546 | |||
547 | if (!(dp & (1UL << (dest_partid - 1)))) { | ||
548 | /* not destined for this partition */ | ||
549 | continue; | ||
550 | } | ||
551 | |||
552 | /* remove this partition from the destinations mask */ | ||
553 | dp &= ~(1UL << (dest_partid - 1)); | ||
554 | |||
555 | |||
556 | /* found a partition to send to */ | ||
557 | |||
558 | ret = xpc_allocate(dest_partid, XPC_NET_CHANNEL, | ||
559 | XPC_NOWAIT, (void **)&msg); | ||
560 | if (unlikely(ret != xpcSuccess)) { | ||
561 | continue; | ||
562 | } | ||
563 | |||
564 | msg->embedded_bytes = embedded_bytes; | ||
565 | if (unlikely(embedded_bytes != 0)) { | ||
566 | msg->version = XPNET_VERSION_EMBED; | ||
567 | dev_dbg(xpnet, "calling memcpy(0x%p, 0x%p, 0x%lx)\n", | ||
568 | &msg->data, skb->data, (size_t) embedded_bytes); | ||
569 | skb_copy_from_linear_data(skb, &msg->data, | ||
570 | (size_t)embedded_bytes); | ||
571 | } else { | ||
572 | msg->version = XPNET_VERSION; | ||
573 | } | ||
574 | msg->magic = XPNET_MAGIC; | ||
575 | msg->size = end_addr - start_addr; | ||
576 | msg->leadin_ignore = (u64) skb->data - start_addr; | ||
577 | msg->tailout_ignore = end_addr - (u64)skb_tail_pointer(skb); | ||
578 | msg->buf_pa = __pa(start_addr); | ||
579 | |||
580 | dev_dbg(xpnet, "sending XPC message to %d:%d\n" | ||
581 | KERN_DEBUG "msg->buf_pa=0x%lx, msg->size=%u, " | ||
582 | "msg->leadin_ignore=%u, msg->tailout_ignore=%u\n", | ||
583 | dest_partid, XPC_NET_CHANNEL, msg->buf_pa, msg->size, | ||
584 | msg->leadin_ignore, msg->tailout_ignore); | ||
585 | |||
586 | |||
587 | atomic_inc(&queued_msg->use_count); | ||
588 | |||
589 | ret = xpc_send_notify(dest_partid, XPC_NET_CHANNEL, msg, | ||
590 | xpnet_send_completed, queued_msg); | ||
591 | if (unlikely(ret != xpcSuccess)) { | ||
592 | atomic_dec(&queued_msg->use_count); | ||
593 | continue; | ||
594 | } | ||
595 | |||
596 | } | ||
597 | |||
598 | if (atomic_dec_return(&queued_msg->use_count) == 0) { | ||
599 | dev_dbg(xpnet, "no partitions to receive packet destined for " | ||
600 | "%d\n", dest_partid); | ||
601 | |||
602 | |||
603 | dev_kfree_skb(skb); | ||
604 | kfree(queued_msg); | ||
605 | } | ||
606 | |||
607 | priv->stats.tx_packets++; | ||
608 | priv->stats.tx_bytes += skb->len; | ||
609 | |||
610 | return 0; | ||
611 | } | ||
612 | |||
613 | |||
614 | /* | ||
615 | * Deal with transmit timeouts coming from the network layer. | ||
616 | */ | ||
617 | static void | ||
618 | xpnet_dev_tx_timeout (struct net_device *dev) | ||
619 | { | ||
620 | struct xpnet_dev_private *priv; | ||
621 | |||
622 | |||
623 | priv = (struct xpnet_dev_private *) dev->priv; | ||
624 | |||
625 | priv->stats.tx_errors++; | ||
626 | return; | ||
627 | } | ||
628 | |||
629 | |||
630 | static int __init | ||
631 | xpnet_init(void) | ||
632 | { | ||
633 | int i; | ||
634 | u32 license_num; | ||
635 | int result = -ENOMEM; | ||
636 | |||
637 | |||
638 | if (!ia64_platform_is("sn2")) { | ||
639 | return -ENODEV; | ||
640 | } | ||
641 | |||
642 | dev_info(xpnet, "registering network device %s\n", XPNET_DEVICE_NAME); | ||
643 | |||
644 | /* | ||
645 | * use ether_setup() to init the majority of our device | ||
646 | * structure and then override the necessary pieces. | ||
647 | */ | ||
648 | xpnet_device = alloc_netdev(sizeof(struct xpnet_dev_private), | ||
649 | XPNET_DEVICE_NAME, ether_setup); | ||
650 | if (xpnet_device == NULL) { | ||
651 | return -ENOMEM; | ||
652 | } | ||
653 | |||
654 | netif_carrier_off(xpnet_device); | ||
655 | |||
656 | xpnet_device->mtu = XPNET_DEF_MTU; | ||
657 | xpnet_device->change_mtu = xpnet_dev_change_mtu; | ||
658 | xpnet_device->open = xpnet_dev_open; | ||
659 | xpnet_device->get_stats = xpnet_dev_get_stats; | ||
660 | xpnet_device->stop = xpnet_dev_stop; | ||
661 | xpnet_device->hard_start_xmit = xpnet_dev_hard_start_xmit; | ||
662 | xpnet_device->tx_timeout = xpnet_dev_tx_timeout; | ||
663 | xpnet_device->set_config = xpnet_dev_set_config; | ||
664 | |||
665 | /* | ||
666 | * Multicast assumes the LSB of the first octet is set for multicast | ||
667 | * MAC addresses. We chose the first octet of the MAC to be unlikely | ||
668 | * to collide with any vendor's officially issued MAC. | ||
669 | */ | ||
670 | xpnet_device->dev_addr[0] = 0xfe; | ||
671 | xpnet_device->dev_addr[XPNET_PARTID_OCTET] = sn_partition_id; | ||
672 | license_num = sn_partition_serial_number_val(); | ||
673 | for (i = 3; i >= 0; i--) { | ||
674 | xpnet_device->dev_addr[XPNET_LICENSE_OCTET + i] = | ||
675 | license_num & 0xff; | ||
676 | license_num = license_num >> 8; | ||
677 | } | ||
678 | |||
679 | /* | ||
680 | * ether_setup() sets this to a multicast device. We are | ||
681 | * really not supporting multicast at this time. | ||
682 | */ | ||
683 | xpnet_device->flags &= ~IFF_MULTICAST; | ||
684 | |||
685 | /* | ||
686 | * No need to checksum as it is a DMA transfer. The BTE will | ||
687 | * report an error if the data is not retrievable and the | ||
688 | * packet will be dropped. | ||
689 | */ | ||
690 | xpnet_device->features = NETIF_F_NO_CSUM; | ||
691 | |||
692 | result = register_netdev(xpnet_device); | ||
693 | if (result != 0) { | ||
694 | free_netdev(xpnet_device); | ||
695 | } | ||
696 | |||
697 | return result; | ||
698 | } | ||
699 | module_init(xpnet_init); | ||
700 | |||
701 | |||
702 | static void __exit | ||
703 | xpnet_exit(void) | ||
704 | { | ||
705 | dev_info(xpnet, "unregistering network device %s\n", | ||
706 | xpnet_device[0].name); | ||
707 | |||
708 | unregister_netdev(xpnet_device); | ||
709 | |||
710 | free_netdev(xpnet_device); | ||
711 | } | ||
712 | module_exit(xpnet_exit); | ||
713 | |||
714 | |||
715 | MODULE_AUTHOR("Silicon Graphics, Inc."); | ||
716 | MODULE_DESCRIPTION("Cross Partition Network adapter (XPNET)"); | ||
717 | MODULE_LICENSE("GPL"); | ||
718 | |||