diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2011-05-20 16:28:01 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2011-05-20 16:28:01 -0400 |
commit | 82aff107f8c9194586f68e86412246629d05670a (patch) | |
tree | c4336e8bbd453235dafecba6b8dca24c8cbcb2e5 /drivers/misc/carma/carma-fpga.c | |
parent | d974d905cbfc1039a73ba0c7eea3f4d4e13c0624 (diff) | |
parent | 208b3a4c196e733b9cec006dc132cfc149b2810a (diff) |
Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (152 commits)
powerpc: Fix hard CPU IDs detection
powerpc/pmac: Update via-pmu to new syscore_ops
powerpc/kvm: Fix the build for 32-bit Book 3S (classic) processors
powerpc/kvm: Fix kvmppc_core_pending_dec
powerpc: Remove last piece of GEMINI
powerpc: Fix for Pegasos keyboard and mouse
powerpc: Make early memory scan more resilient to out of order nodes
powerpc/pseries/iommu: Cleanup ddw naming
powerpc/pseries/iommu: Find windows after kexec during boot
powerpc/pseries/iommu: Remove ddw property when destroying window
powerpc/pseries/iommu: Add additional checks when changing iommu mask
powerpc/pseries/iommu: Use correct return type in dupe_ddw_if_already_created
powerpc: Remove unused/obsolete CONFIG_XICS
misc: Add CARMA DATA-FPGA Programmer support
misc: Add CARMA DATA-FPGA Access Driver
powerpc: Make IRQ_NOREQUEST last to clear, first to set
powerpc: Integrated Flash controller device tree bindings
powerpc/85xx: Create dts of each core in CAMP mode for P1020RDB
powerpc/85xx: Fix PCIe IDSEL for Px020RDB
powerpc/85xx: P2020 DTS: re-organize dts files
...
Diffstat (limited to 'drivers/misc/carma/carma-fpga.c')
-rw-r--r-- | drivers/misc/carma/carma-fpga.c | 1433 |
1 files changed, 1433 insertions, 0 deletions
diff --git a/drivers/misc/carma/carma-fpga.c b/drivers/misc/carma/carma-fpga.c new file mode 100644 index 000000000000..3965821fef17 --- /dev/null +++ b/drivers/misc/carma/carma-fpga.c | |||
@@ -0,0 +1,1433 @@ | |||
1 | /* | ||
2 | * CARMA DATA-FPGA Access Driver | ||
3 | * | ||
4 | * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu> | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of the GNU General Public License as published by the | ||
8 | * Free Software Foundation; either version 2 of the License, or (at your | ||
9 | * option) any later version. | ||
10 | */ | ||
11 | |||
12 | /* | ||
13 | * FPGA Memory Dump Format | ||
14 | * | ||
15 | * FPGA #0 control registers (32 x 32-bit words) | ||
16 | * FPGA #1 control registers (32 x 32-bit words) | ||
17 | * FPGA #2 control registers (32 x 32-bit words) | ||
18 | * FPGA #3 control registers (32 x 32-bit words) | ||
19 | * SYSFPGA control registers (32 x 32-bit words) | ||
20 | * FPGA #0 correlation array (NUM_CORL0 correlation blocks) | ||
21 | * FPGA #1 correlation array (NUM_CORL1 correlation blocks) | ||
22 | * FPGA #2 correlation array (NUM_CORL2 correlation blocks) | ||
23 | * FPGA #3 correlation array (NUM_CORL3 correlation blocks) | ||
24 | * | ||
25 | * Each correlation array consists of: | ||
26 | * | ||
27 | * Correlation Data (2 x NUM_LAGSn x 32-bit words) | ||
28 | * Pipeline Metadata (2 x NUM_METAn x 32-bit words) | ||
29 | * Quantization Counters (2 x NUM_QCNTn x 32-bit words) | ||
30 | * | ||
31 | * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from | ||
32 | * the FPGA configuration registers. They do not change once the FPGA's | ||
33 | * have been programmed, they only change on re-programming. | ||
34 | */ | ||
35 | |||
36 | /* | ||
37 | * Basic Description: | ||
38 | * | ||
39 | * This driver is used to capture correlation spectra off of the four data | ||
40 | * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore | ||
41 | * this driver supports dynamic enable/disable of capture while the device | ||
42 | * remains open. | ||
43 | * | ||
44 | * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast | ||
45 | * capture rate, all buffers are pre-allocated to avoid any potentially long | ||
46 | * running memory allocations while capturing. | ||
47 | * | ||
48 | * There are two lists and one pointer which are used to keep track of the | ||
49 | * different states of data buffers. | ||
50 | * | ||
51 | * 1) free list | ||
52 | * This list holds all empty data buffers which are ready to receive data. | ||
53 | * | ||
54 | * 2) inflight pointer | ||
55 | * This pointer holds the currently inflight data buffer. This buffer is having | ||
56 | * data copied into it by the DMA engine. | ||
57 | * | ||
58 | * 3) used list | ||
59 | * This list holds data buffers which have been filled, and are waiting to be | ||
60 | * read by userspace. | ||
61 | * | ||
62 | * All buffers start life on the free list, then move successively to the | ||
63 | * inflight pointer, and then to the used list. After they have been read by | ||
64 | * userspace, they are moved back to the free list. The cycle repeats as long | ||
65 | * as necessary. | ||
66 | * | ||
67 | * It should be noted that all buffers are mapped and ready for DMA when they | ||
68 | * are on any of the three lists. They are only unmapped when they are in the | ||
69 | * process of being read by userspace. | ||
70 | */ | ||
71 | |||
72 | /* | ||
73 | * Notes on the IRQ masking scheme: | ||
74 | * | ||
75 | * The IRQ masking scheme here is different than most other hardware. The only | ||
76 | * way for the DATA-FPGAs to detect if the kernel has taken too long to copy | ||
77 | * the data is if the status registers are not cleared before the next | ||
78 | * correlation data dump is ready. | ||
79 | * | ||
80 | * The interrupt line is connected to the status registers, such that when they | ||
81 | * are cleared, the interrupt is de-asserted. Therein lies our problem. We need | ||
82 | * to schedule a long-running DMA operation and return from the interrupt | ||
83 | * handler quickly, but we cannot clear the status registers. | ||
84 | * | ||
85 | * To handle this, the system controller FPGA has the capability to connect the | ||
86 | * interrupt line to a user-controlled GPIO pin. This pin is driven high | ||
87 | * (unasserted) and left that way. To mask the interrupt, we change the | ||
88 | * interrupt source to the GPIO pin. Tada, we hid the interrupt. :) | ||
89 | */ | ||
90 | |||
91 | #include <linux/of_platform.h> | ||
92 | #include <linux/dma-mapping.h> | ||
93 | #include <linux/miscdevice.h> | ||
94 | #include <linux/interrupt.h> | ||
95 | #include <linux/dmaengine.h> | ||
96 | #include <linux/seq_file.h> | ||
97 | #include <linux/highmem.h> | ||
98 | #include <linux/debugfs.h> | ||
99 | #include <linux/kernel.h> | ||
100 | #include <linux/module.h> | ||
101 | #include <linux/poll.h> | ||
102 | #include <linux/init.h> | ||
103 | #include <linux/slab.h> | ||
104 | #include <linux/kref.h> | ||
105 | #include <linux/io.h> | ||
106 | |||
107 | #include <media/videobuf-dma-sg.h> | ||
108 | |||
109 | /* system controller registers */ | ||
110 | #define SYS_IRQ_SOURCE_CTL 0x24 | ||
111 | #define SYS_IRQ_OUTPUT_EN 0x28 | ||
112 | #define SYS_IRQ_OUTPUT_DATA 0x2C | ||
113 | #define SYS_IRQ_INPUT_DATA 0x30 | ||
114 | #define SYS_FPGA_CONFIG_STATUS 0x44 | ||
115 | |||
116 | /* GPIO IRQ line assignment */ | ||
117 | #define IRQ_CORL_DONE 0x10 | ||
118 | |||
119 | /* FPGA registers */ | ||
120 | #define MMAP_REG_VERSION 0x00 | ||
121 | #define MMAP_REG_CORL_CONF1 0x08 | ||
122 | #define MMAP_REG_CORL_CONF2 0x0C | ||
123 | #define MMAP_REG_STATUS 0x48 | ||
124 | |||
125 | #define SYS_FPGA_BLOCK 0xF0000000 | ||
126 | |||
127 | #define DATA_FPGA_START 0x400000 | ||
128 | #define DATA_FPGA_SIZE 0x80000 | ||
129 | |||
130 | static const char drv_name[] = "carma-fpga"; | ||
131 | |||
132 | #define NUM_FPGA 4 | ||
133 | |||
134 | #define MIN_DATA_BUFS 8 | ||
135 | #define MAX_DATA_BUFS 64 | ||
136 | |||
137 | struct fpga_info { | ||
138 | unsigned int num_lag_ram; | ||
139 | unsigned int blk_size; | ||
140 | }; | ||
141 | |||
142 | struct data_buf { | ||
143 | struct list_head entry; | ||
144 | struct videobuf_dmabuf vb; | ||
145 | size_t size; | ||
146 | }; | ||
147 | |||
148 | struct fpga_device { | ||
149 | /* character device */ | ||
150 | struct miscdevice miscdev; | ||
151 | struct device *dev; | ||
152 | struct mutex mutex; | ||
153 | |||
154 | /* reference count */ | ||
155 | struct kref ref; | ||
156 | |||
157 | /* FPGA registers and information */ | ||
158 | struct fpga_info info[NUM_FPGA]; | ||
159 | void __iomem *regs; | ||
160 | int irq; | ||
161 | |||
162 | /* FPGA Physical Address/Size Information */ | ||
163 | resource_size_t phys_addr; | ||
164 | size_t phys_size; | ||
165 | |||
166 | /* DMA structures */ | ||
167 | struct sg_table corl_table; | ||
168 | unsigned int corl_nents; | ||
169 | struct dma_chan *chan; | ||
170 | |||
171 | /* Protection for all members below */ | ||
172 | spinlock_t lock; | ||
173 | |||
174 | /* Device enable/disable flag */ | ||
175 | bool enabled; | ||
176 | |||
177 | /* Correlation data buffers */ | ||
178 | wait_queue_head_t wait; | ||
179 | struct list_head free; | ||
180 | struct list_head used; | ||
181 | struct data_buf *inflight; | ||
182 | |||
183 | /* Information about data buffers */ | ||
184 | unsigned int num_dropped; | ||
185 | unsigned int num_buffers; | ||
186 | size_t bufsize; | ||
187 | struct dentry *dbg_entry; | ||
188 | }; | ||
189 | |||
190 | struct fpga_reader { | ||
191 | struct fpga_device *priv; | ||
192 | struct data_buf *buf; | ||
193 | off_t buf_start; | ||
194 | }; | ||
195 | |||
196 | static void fpga_device_release(struct kref *ref) | ||
197 | { | ||
198 | struct fpga_device *priv = container_of(ref, struct fpga_device, ref); | ||
199 | |||
200 | /* the last reader has exited, cleanup the last bits */ | ||
201 | mutex_destroy(&priv->mutex); | ||
202 | kfree(priv); | ||
203 | } | ||
204 | |||
205 | /* | ||
206 | * Data Buffer Allocation Helpers | ||
207 | */ | ||
208 | |||
209 | /** | ||
210 | * data_free_buffer() - free a single data buffer and all allocated memory | ||
211 | * @buf: the buffer to free | ||
212 | * | ||
213 | * This will free all of the pages allocated to the given data buffer, and | ||
214 | * then free the structure itself | ||
215 | */ | ||
216 | static void data_free_buffer(struct data_buf *buf) | ||
217 | { | ||
218 | /* It is ok to free a NULL buffer */ | ||
219 | if (!buf) | ||
220 | return; | ||
221 | |||
222 | /* free all memory */ | ||
223 | videobuf_dma_free(&buf->vb); | ||
224 | kfree(buf); | ||
225 | } | ||
226 | |||
227 | /** | ||
228 | * data_alloc_buffer() - allocate and fill a data buffer with pages | ||
229 | * @bytes: the number of bytes required | ||
230 | * | ||
231 | * This allocates all space needed for a data buffer. It must be mapped before | ||
232 | * use in a DMA transaction using videobuf_dma_map(). | ||
233 | * | ||
234 | * Returns NULL on failure | ||
235 | */ | ||
236 | static struct data_buf *data_alloc_buffer(const size_t bytes) | ||
237 | { | ||
238 | unsigned int nr_pages; | ||
239 | struct data_buf *buf; | ||
240 | int ret; | ||
241 | |||
242 | /* calculate the number of pages necessary */ | ||
243 | nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE); | ||
244 | |||
245 | /* allocate the buffer structure */ | ||
246 | buf = kzalloc(sizeof(*buf), GFP_KERNEL); | ||
247 | if (!buf) | ||
248 | goto out_return; | ||
249 | |||
250 | /* initialize internal fields */ | ||
251 | INIT_LIST_HEAD(&buf->entry); | ||
252 | buf->size = bytes; | ||
253 | |||
254 | /* allocate the videobuf */ | ||
255 | videobuf_dma_init(&buf->vb); | ||
256 | ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages); | ||
257 | if (ret) | ||
258 | goto out_free_buf; | ||
259 | |||
260 | return buf; | ||
261 | |||
262 | out_free_buf: | ||
263 | kfree(buf); | ||
264 | out_return: | ||
265 | return NULL; | ||
266 | } | ||
267 | |||
268 | /** | ||
269 | * data_free_buffers() - free all allocated buffers | ||
270 | * @priv: the driver's private data structure | ||
271 | * | ||
272 | * Free all buffers allocated by the driver (except those currently in the | ||
273 | * process of being read by userspace). | ||
274 | * | ||
275 | * LOCKING: must hold dev->mutex | ||
276 | * CONTEXT: user | ||
277 | */ | ||
278 | static void data_free_buffers(struct fpga_device *priv) | ||
279 | { | ||
280 | struct data_buf *buf, *tmp; | ||
281 | |||
282 | /* the device should be stopped, no DMA in progress */ | ||
283 | BUG_ON(priv->inflight != NULL); | ||
284 | |||
285 | list_for_each_entry_safe(buf, tmp, &priv->free, entry) { | ||
286 | list_del_init(&buf->entry); | ||
287 | videobuf_dma_unmap(priv->dev, &buf->vb); | ||
288 | data_free_buffer(buf); | ||
289 | } | ||
290 | |||
291 | list_for_each_entry_safe(buf, tmp, &priv->used, entry) { | ||
292 | list_del_init(&buf->entry); | ||
293 | videobuf_dma_unmap(priv->dev, &buf->vb); | ||
294 | data_free_buffer(buf); | ||
295 | } | ||
296 | |||
297 | priv->num_buffers = 0; | ||
298 | priv->bufsize = 0; | ||
299 | } | ||
300 | |||
301 | /** | ||
302 | * data_alloc_buffers() - allocate 1 seconds worth of data buffers | ||
303 | * @priv: the driver's private data structure | ||
304 | * | ||
305 | * Allocate enough buffers for a whole second worth of data | ||
306 | * | ||
307 | * This routine will attempt to degrade nicely by succeeding even if a full | ||
308 | * second worth of data buffers could not be allocated, as long as a minimum | ||
309 | * number were allocated. In this case, it will print a message to the kernel | ||
310 | * log. | ||
311 | * | ||
312 | * The device must not be modifying any lists when this is called. | ||
313 | * | ||
314 | * CONTEXT: user | ||
315 | * LOCKING: must hold dev->mutex | ||
316 | * | ||
317 | * Returns 0 on success, -ERRNO otherwise | ||
318 | */ | ||
319 | static int data_alloc_buffers(struct fpga_device *priv) | ||
320 | { | ||
321 | struct data_buf *buf; | ||
322 | int i, ret; | ||
323 | |||
324 | for (i = 0; i < MAX_DATA_BUFS; i++) { | ||
325 | |||
326 | /* allocate a buffer */ | ||
327 | buf = data_alloc_buffer(priv->bufsize); | ||
328 | if (!buf) | ||
329 | break; | ||
330 | |||
331 | /* map it for DMA */ | ||
332 | ret = videobuf_dma_map(priv->dev, &buf->vb); | ||
333 | if (ret) { | ||
334 | data_free_buffer(buf); | ||
335 | break; | ||
336 | } | ||
337 | |||
338 | /* add it to the list of free buffers */ | ||
339 | list_add_tail(&buf->entry, &priv->free); | ||
340 | priv->num_buffers++; | ||
341 | } | ||
342 | |||
343 | /* Make sure we allocated the minimum required number of buffers */ | ||
344 | if (priv->num_buffers < MIN_DATA_BUFS) { | ||
345 | dev_err(priv->dev, "Unable to allocate enough data buffers\n"); | ||
346 | data_free_buffers(priv); | ||
347 | return -ENOMEM; | ||
348 | } | ||
349 | |||
350 | /* Warn if we are running in a degraded state, but do not fail */ | ||
351 | if (priv->num_buffers < MAX_DATA_BUFS) { | ||
352 | dev_warn(priv->dev, | ||
353 | "Unable to allocate %d buffers, using %d buffers instead\n", | ||
354 | MAX_DATA_BUFS, i); | ||
355 | } | ||
356 | |||
357 | return 0; | ||
358 | } | ||
359 | |||
360 | /* | ||
361 | * DMA Operations Helpers | ||
362 | */ | ||
363 | |||
364 | /** | ||
365 | * fpga_start_addr() - get the physical address a DATA-FPGA | ||
366 | * @priv: the driver's private data structure | ||
367 | * @fpga: the DATA-FPGA number (zero based) | ||
368 | */ | ||
369 | static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga) | ||
370 | { | ||
371 | return priv->phys_addr + 0x400000 + (0x80000 * fpga); | ||
372 | } | ||
373 | |||
374 | /** | ||
375 | * fpga_block_addr() - get the physical address of a correlation data block | ||
376 | * @priv: the driver's private data structure | ||
377 | * @fpga: the DATA-FPGA number (zero based) | ||
378 | * @blknum: the correlation block number (zero based) | ||
379 | */ | ||
380 | static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga, | ||
381 | unsigned int blknum) | ||
382 | { | ||
383 | return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum)); | ||
384 | } | ||
385 | |||
386 | #define REG_BLOCK_SIZE (32 * 4) | ||
387 | |||
388 | /** | ||
389 | * data_setup_corl_table() - create the scatterlist for correlation dumps | ||
390 | * @priv: the driver's private data structure | ||
391 | * | ||
392 | * Create the scatterlist for transferring a correlation dump from the | ||
393 | * DATA FPGAs. This structure will be reused for each buffer than needs | ||
394 | * to be filled with correlation data. | ||
395 | * | ||
396 | * Returns 0 on success, -ERRNO otherwise | ||
397 | */ | ||
398 | static int data_setup_corl_table(struct fpga_device *priv) | ||
399 | { | ||
400 | struct sg_table *table = &priv->corl_table; | ||
401 | struct scatterlist *sg; | ||
402 | struct fpga_info *info; | ||
403 | int i, j, ret; | ||
404 | |||
405 | /* Calculate the number of entries needed */ | ||
406 | priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE; | ||
407 | for (i = 0; i < NUM_FPGA; i++) | ||
408 | priv->corl_nents += priv->info[i].num_lag_ram; | ||
409 | |||
410 | /* Allocate the scatterlist table */ | ||
411 | ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL); | ||
412 | if (ret) { | ||
413 | dev_err(priv->dev, "unable to allocate DMA table\n"); | ||
414 | return ret; | ||
415 | } | ||
416 | |||
417 | /* Add the DATA FPGA registers to the scatterlist */ | ||
418 | sg = table->sgl; | ||
419 | for (i = 0; i < NUM_FPGA; i++) { | ||
420 | sg_dma_address(sg) = fpga_start_addr(priv, i); | ||
421 | sg_dma_len(sg) = REG_BLOCK_SIZE; | ||
422 | sg = sg_next(sg); | ||
423 | } | ||
424 | |||
425 | /* Add the SYS-FPGA registers to the scatterlist */ | ||
426 | sg_dma_address(sg) = SYS_FPGA_BLOCK; | ||
427 | sg_dma_len(sg) = REG_BLOCK_SIZE; | ||
428 | sg = sg_next(sg); | ||
429 | |||
430 | /* Add the FPGA correlation data blocks to the scatterlist */ | ||
431 | for (i = 0; i < NUM_FPGA; i++) { | ||
432 | info = &priv->info[i]; | ||
433 | for (j = 0; j < info->num_lag_ram; j++) { | ||
434 | sg_dma_address(sg) = fpga_block_addr(priv, i, j); | ||
435 | sg_dma_len(sg) = info->blk_size; | ||
436 | sg = sg_next(sg); | ||
437 | } | ||
438 | } | ||
439 | |||
440 | /* | ||
441 | * All physical addresses and lengths are present in the structure | ||
442 | * now. It can be reused for every FPGA DATA interrupt | ||
443 | */ | ||
444 | return 0; | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * FPGA Register Access Helpers | ||
449 | */ | ||
450 | |||
451 | static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga, | ||
452 | unsigned int reg, u32 val) | ||
453 | { | ||
454 | const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE); | ||
455 | iowrite32be(val, priv->regs + fpga_start + reg); | ||
456 | } | ||
457 | |||
458 | static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga, | ||
459 | unsigned int reg) | ||
460 | { | ||
461 | const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE); | ||
462 | return ioread32be(priv->regs + fpga_start + reg); | ||
463 | } | ||
464 | |||
465 | /** | ||
466 | * data_calculate_bufsize() - calculate the data buffer size required | ||
467 | * @priv: the driver's private data structure | ||
468 | * | ||
469 | * Calculate the total buffer size needed to hold a single block | ||
470 | * of correlation data | ||
471 | * | ||
472 | * CONTEXT: user | ||
473 | * | ||
474 | * Returns 0 on success, -ERRNO otherwise | ||
475 | */ | ||
476 | static int data_calculate_bufsize(struct fpga_device *priv) | ||
477 | { | ||
478 | u32 num_corl, num_lags, num_meta, num_qcnt, num_pack; | ||
479 | u32 conf1, conf2, version; | ||
480 | u32 num_lag_ram, blk_size; | ||
481 | int i; | ||
482 | |||
483 | /* Each buffer starts with the 5 FPGA register areas */ | ||
484 | priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE; | ||
485 | |||
486 | /* Read and store the configuration data for each FPGA */ | ||
487 | for (i = 0; i < NUM_FPGA; i++) { | ||
488 | version = fpga_read_reg(priv, i, MMAP_REG_VERSION); | ||
489 | conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1); | ||
490 | conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2); | ||
491 | |||
492 | /* minor version 2 and later */ | ||
493 | if ((version & 0x000000FF) >= 2) { | ||
494 | num_corl = (conf1 & 0x000000F0) >> 4; | ||
495 | num_pack = (conf1 & 0x00000F00) >> 8; | ||
496 | num_lags = (conf1 & 0x00FFF000) >> 12; | ||
497 | num_meta = (conf1 & 0x7F000000) >> 24; | ||
498 | num_qcnt = (conf2 & 0x00000FFF) >> 0; | ||
499 | } else { | ||
500 | num_corl = (conf1 & 0x000000F0) >> 4; | ||
501 | num_pack = 1; /* implied */ | ||
502 | num_lags = (conf1 & 0x000FFF00) >> 8; | ||
503 | num_meta = (conf1 & 0x7FF00000) >> 20; | ||
504 | num_qcnt = (conf2 & 0x00000FFF) >> 0; | ||
505 | } | ||
506 | |||
507 | num_lag_ram = (num_corl + num_pack - 1) / num_pack; | ||
508 | blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8; | ||
509 | |||
510 | priv->info[i].num_lag_ram = num_lag_ram; | ||
511 | priv->info[i].blk_size = blk_size; | ||
512 | priv->bufsize += num_lag_ram * blk_size; | ||
513 | |||
514 | dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl); | ||
515 | dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack); | ||
516 | dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags); | ||
517 | dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta); | ||
518 | dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt); | ||
519 | dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size); | ||
520 | } | ||
521 | |||
522 | dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize); | ||
523 | return 0; | ||
524 | } | ||
525 | |||
526 | /* | ||
527 | * Interrupt Handling | ||
528 | */ | ||
529 | |||
530 | /** | ||
531 | * data_disable_interrupts() - stop the device from generating interrupts | ||
532 | * @priv: the driver's private data structure | ||
533 | * | ||
534 | * Hide interrupts by switching to GPIO interrupt source | ||
535 | * | ||
536 | * LOCKING: must hold dev->lock | ||
537 | */ | ||
538 | static void data_disable_interrupts(struct fpga_device *priv) | ||
539 | { | ||
540 | /* hide the interrupt by switching the IRQ driver to GPIO */ | ||
541 | iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL); | ||
542 | } | ||
543 | |||
544 | /** | ||
545 | * data_enable_interrupts() - allow the device to generate interrupts | ||
546 | * @priv: the driver's private data structure | ||
547 | * | ||
548 | * Unhide interrupts by switching to the FPGA interrupt source. At the | ||
549 | * same time, clear the DATA-FPGA status registers. | ||
550 | * | ||
551 | * LOCKING: must hold dev->lock | ||
552 | */ | ||
553 | static void data_enable_interrupts(struct fpga_device *priv) | ||
554 | { | ||
555 | /* clear the actual FPGA corl_done interrupt */ | ||
556 | fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0); | ||
557 | fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0); | ||
558 | fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0); | ||
559 | fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0); | ||
560 | |||
561 | /* flush the writes */ | ||
562 | fpga_read_reg(priv, 0, MMAP_REG_STATUS); | ||
563 | |||
564 | /* switch back to the external interrupt source */ | ||
565 | iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL); | ||
566 | } | ||
567 | |||
568 | /** | ||
569 | * data_dma_cb() - DMAEngine callback for DMA completion | ||
570 | * @data: the driver's private data structure | ||
571 | * | ||
572 | * Complete a DMA transfer from the DATA-FPGA's | ||
573 | * | ||
574 | * This is called via the DMA callback mechanism, and will handle moving the | ||
575 | * completed DMA transaction to the used list, and then wake any processes | ||
576 | * waiting for new data | ||
577 | * | ||
578 | * CONTEXT: any, softirq expected | ||
579 | */ | ||
580 | static void data_dma_cb(void *data) | ||
581 | { | ||
582 | struct fpga_device *priv = data; | ||
583 | unsigned long flags; | ||
584 | |||
585 | spin_lock_irqsave(&priv->lock, flags); | ||
586 | |||
587 | /* If there is no inflight buffer, we've got a bug */ | ||
588 | BUG_ON(priv->inflight == NULL); | ||
589 | |||
590 | /* Move the inflight buffer onto the used list */ | ||
591 | list_move_tail(&priv->inflight->entry, &priv->used); | ||
592 | priv->inflight = NULL; | ||
593 | |||
594 | /* clear the FPGA status and re-enable interrupts */ | ||
595 | data_enable_interrupts(priv); | ||
596 | |||
597 | spin_unlock_irqrestore(&priv->lock, flags); | ||
598 | |||
599 | /* | ||
600 | * We've changed both the inflight and used lists, so we need | ||
601 | * to wake up any processes that are blocking for those events | ||
602 | */ | ||
603 | wake_up(&priv->wait); | ||
604 | } | ||
605 | |||
606 | /** | ||
607 | * data_submit_dma() - prepare and submit the required DMA to fill a buffer | ||
608 | * @priv: the driver's private data structure | ||
609 | * @buf: the data buffer | ||
610 | * | ||
611 | * Prepare and submit the necessary DMA transactions to fill a correlation | ||
612 | * data buffer. | ||
613 | * | ||
614 | * LOCKING: must hold dev->lock | ||
615 | * CONTEXT: hardirq only | ||
616 | * | ||
617 | * Returns 0 on success, -ERRNO otherwise | ||
618 | */ | ||
619 | static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf) | ||
620 | { | ||
621 | struct scatterlist *dst_sg, *src_sg; | ||
622 | unsigned int dst_nents, src_nents; | ||
623 | struct dma_chan *chan = priv->chan; | ||
624 | struct dma_async_tx_descriptor *tx; | ||
625 | dma_cookie_t cookie; | ||
626 | dma_addr_t dst, src; | ||
627 | |||
628 | dst_sg = buf->vb.sglist; | ||
629 | dst_nents = buf->vb.sglen; | ||
630 | |||
631 | src_sg = priv->corl_table.sgl; | ||
632 | src_nents = priv->corl_nents; | ||
633 | |||
634 | /* | ||
635 | * All buffers passed to this function should be ready and mapped | ||
636 | * for DMA already. Therefore, we don't need to do anything except | ||
637 | * submit it to the Freescale DMA Engine for processing | ||
638 | */ | ||
639 | |||
640 | /* setup the scatterlist to scatterlist transfer */ | ||
641 | tx = chan->device->device_prep_dma_sg(chan, | ||
642 | dst_sg, dst_nents, | ||
643 | src_sg, src_nents, | ||
644 | 0); | ||
645 | if (!tx) { | ||
646 | dev_err(priv->dev, "unable to prep scatterlist DMA\n"); | ||
647 | return -ENOMEM; | ||
648 | } | ||
649 | |||
650 | /* submit the transaction to the DMA controller */ | ||
651 | cookie = tx->tx_submit(tx); | ||
652 | if (dma_submit_error(cookie)) { | ||
653 | dev_err(priv->dev, "unable to submit scatterlist DMA\n"); | ||
654 | return -ENOMEM; | ||
655 | } | ||
656 | |||
657 | /* Prepare the re-read of the SYS-FPGA block */ | ||
658 | dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE); | ||
659 | src = SYS_FPGA_BLOCK; | ||
660 | tx = chan->device->device_prep_dma_memcpy(chan, dst, src, | ||
661 | REG_BLOCK_SIZE, | ||
662 | DMA_PREP_INTERRUPT); | ||
663 | if (!tx) { | ||
664 | dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n"); | ||
665 | return -ENOMEM; | ||
666 | } | ||
667 | |||
668 | /* Setup the callback */ | ||
669 | tx->callback = data_dma_cb; | ||
670 | tx->callback_param = priv; | ||
671 | |||
672 | /* submit the transaction to the DMA controller */ | ||
673 | cookie = tx->tx_submit(tx); | ||
674 | if (dma_submit_error(cookie)) { | ||
675 | dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n"); | ||
676 | return -ENOMEM; | ||
677 | } | ||
678 | |||
679 | return 0; | ||
680 | } | ||
681 | |||
682 | #define CORL_DONE 0x1 | ||
683 | #define CORL_ERR 0x2 | ||
684 | |||
685 | static irqreturn_t data_irq(int irq, void *dev_id) | ||
686 | { | ||
687 | struct fpga_device *priv = dev_id; | ||
688 | bool submitted = false; | ||
689 | struct data_buf *buf; | ||
690 | u32 status; | ||
691 | int i; | ||
692 | |||
693 | /* detect spurious interrupts via FPGA status */ | ||
694 | for (i = 0; i < 4; i++) { | ||
695 | status = fpga_read_reg(priv, i, MMAP_REG_STATUS); | ||
696 | if (!(status & (CORL_DONE | CORL_ERR))) { | ||
697 | dev_err(priv->dev, "spurious irq detected (FPGA)\n"); | ||
698 | return IRQ_NONE; | ||
699 | } | ||
700 | } | ||
701 | |||
702 | /* detect spurious interrupts via raw IRQ pin readback */ | ||
703 | status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA); | ||
704 | if (status & IRQ_CORL_DONE) { | ||
705 | dev_err(priv->dev, "spurious irq detected (IRQ)\n"); | ||
706 | return IRQ_NONE; | ||
707 | } | ||
708 | |||
709 | spin_lock(&priv->lock); | ||
710 | |||
711 | /* hide the interrupt by switching the IRQ driver to GPIO */ | ||
712 | data_disable_interrupts(priv); | ||
713 | |||
714 | /* If there are no free buffers, drop this data */ | ||
715 | if (list_empty(&priv->free)) { | ||
716 | priv->num_dropped++; | ||
717 | goto out; | ||
718 | } | ||
719 | |||
720 | buf = list_first_entry(&priv->free, struct data_buf, entry); | ||
721 | list_del_init(&buf->entry); | ||
722 | BUG_ON(buf->size != priv->bufsize); | ||
723 | |||
724 | /* Submit a DMA transfer to get the correlation data */ | ||
725 | if (data_submit_dma(priv, buf)) { | ||
726 | dev_err(priv->dev, "Unable to setup DMA transfer\n"); | ||
727 | list_move_tail(&buf->entry, &priv->free); | ||
728 | goto out; | ||
729 | } | ||
730 | |||
731 | /* Save the buffer for the DMA callback */ | ||
732 | priv->inflight = buf; | ||
733 | submitted = true; | ||
734 | |||
735 | /* Start the DMA Engine */ | ||
736 | dma_async_memcpy_issue_pending(priv->chan); | ||
737 | |||
738 | out: | ||
739 | /* If no DMA was submitted, re-enable interrupts */ | ||
740 | if (!submitted) | ||
741 | data_enable_interrupts(priv); | ||
742 | |||
743 | spin_unlock(&priv->lock); | ||
744 | return IRQ_HANDLED; | ||
745 | } | ||
746 | |||
747 | /* | ||
748 | * Realtime Device Enable Helpers | ||
749 | */ | ||
750 | |||
751 | /** | ||
752 | * data_device_enable() - enable the device for buffered dumping | ||
753 | * @priv: the driver's private data structure | ||
754 | * | ||
755 | * Enable the device for buffered dumping. Allocates buffers and hooks up | ||
756 | * the interrupt handler. When this finishes, data will come pouring in. | ||
757 | * | ||
758 | * LOCKING: must hold dev->mutex | ||
759 | * CONTEXT: user context only | ||
760 | * | ||
761 | * Returns 0 on success, -ERRNO otherwise | ||
762 | */ | ||
763 | static int data_device_enable(struct fpga_device *priv) | ||
764 | { | ||
765 | u32 val; | ||
766 | int ret; | ||
767 | |||
768 | /* multiple enables are safe: they do nothing */ | ||
769 | if (priv->enabled) | ||
770 | return 0; | ||
771 | |||
772 | /* check that the FPGAs are programmed */ | ||
773 | val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS); | ||
774 | if (!(val & (1 << 18))) { | ||
775 | dev_err(priv->dev, "DATA-FPGAs are not enabled\n"); | ||
776 | return -ENODATA; | ||
777 | } | ||
778 | |||
779 | /* read the FPGAs to calculate the buffer size */ | ||
780 | ret = data_calculate_bufsize(priv); | ||
781 | if (ret) { | ||
782 | dev_err(priv->dev, "unable to calculate buffer size\n"); | ||
783 | goto out_error; | ||
784 | } | ||
785 | |||
786 | /* allocate the correlation data buffers */ | ||
787 | ret = data_alloc_buffers(priv); | ||
788 | if (ret) { | ||
789 | dev_err(priv->dev, "unable to allocate buffers\n"); | ||
790 | goto out_error; | ||
791 | } | ||
792 | |||
793 | /* setup the source scatterlist for dumping correlation data */ | ||
794 | ret = data_setup_corl_table(priv); | ||
795 | if (ret) { | ||
796 | dev_err(priv->dev, "unable to setup correlation DMA table\n"); | ||
797 | goto out_error; | ||
798 | } | ||
799 | |||
800 | /* hookup the irq handler */ | ||
801 | ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv); | ||
802 | if (ret) { | ||
803 | dev_err(priv->dev, "unable to request IRQ handler\n"); | ||
804 | goto out_error; | ||
805 | } | ||
806 | |||
807 | /* switch to the external FPGA IRQ line */ | ||
808 | data_enable_interrupts(priv); | ||
809 | |||
810 | /* success, we're enabled */ | ||
811 | priv->enabled = true; | ||
812 | return 0; | ||
813 | |||
814 | out_error: | ||
815 | sg_free_table(&priv->corl_table); | ||
816 | priv->corl_nents = 0; | ||
817 | |||
818 | data_free_buffers(priv); | ||
819 | return ret; | ||
820 | } | ||
821 | |||
822 | /** | ||
823 | * data_device_disable() - disable the device for buffered dumping | ||
824 | * @priv: the driver's private data structure | ||
825 | * | ||
826 | * Disable the device for buffered dumping. Stops new DMA transactions from | ||
827 | * being generated, waits for all outstanding DMA to complete, and then frees | ||
828 | * all buffers. | ||
829 | * | ||
830 | * LOCKING: must hold dev->mutex | ||
831 | * CONTEXT: user only | ||
832 | * | ||
833 | * Returns 0 on success, -ERRNO otherwise | ||
834 | */ | ||
835 | static int data_device_disable(struct fpga_device *priv) | ||
836 | { | ||
837 | int ret; | ||
838 | |||
839 | /* allow multiple disable */ | ||
840 | if (!priv->enabled) | ||
841 | return 0; | ||
842 | |||
843 | /* switch to the internal GPIO IRQ line */ | ||
844 | data_disable_interrupts(priv); | ||
845 | |||
846 | /* unhook the irq handler */ | ||
847 | free_irq(priv->irq, priv); | ||
848 | |||
849 | /* | ||
850 | * wait for all outstanding DMA to complete | ||
851 | * | ||
852 | * Device interrupts are disabled, therefore another buffer cannot | ||
853 | * be marked inflight. | ||
854 | */ | ||
855 | ret = wait_event_interruptible(priv->wait, priv->inflight == NULL); | ||
856 | if (ret) | ||
857 | return ret; | ||
858 | |||
859 | /* free the correlation table */ | ||
860 | sg_free_table(&priv->corl_table); | ||
861 | priv->corl_nents = 0; | ||
862 | |||
863 | /* | ||
864 | * We are taking the spinlock not to protect priv->enabled, but instead | ||
865 | * to make sure that there are no readers in the process of altering | ||
866 | * the free or used lists while we are setting this flag. | ||
867 | */ | ||
868 | spin_lock_irq(&priv->lock); | ||
869 | priv->enabled = false; | ||
870 | spin_unlock_irq(&priv->lock); | ||
871 | |||
872 | /* free all buffers: the free and used lists are not being changed */ | ||
873 | data_free_buffers(priv); | ||
874 | return 0; | ||
875 | } | ||
876 | |||
877 | /* | ||
878 | * DEBUGFS Interface | ||
879 | */ | ||
880 | #ifdef CONFIG_DEBUG_FS | ||
881 | |||
882 | /* | ||
883 | * Count the number of entries in the given list | ||
884 | */ | ||
885 | static unsigned int list_num_entries(struct list_head *list) | ||
886 | { | ||
887 | struct list_head *entry; | ||
888 | unsigned int ret = 0; | ||
889 | |||
890 | list_for_each(entry, list) | ||
891 | ret++; | ||
892 | |||
893 | return ret; | ||
894 | } | ||
895 | |||
896 | static int data_debug_show(struct seq_file *f, void *offset) | ||
897 | { | ||
898 | struct fpga_device *priv = f->private; | ||
899 | int ret; | ||
900 | |||
901 | /* | ||
902 | * Lock the mutex first, so that we get an accurate value for enable | ||
903 | * Lock the spinlock next, to get accurate list counts | ||
904 | */ | ||
905 | ret = mutex_lock_interruptible(&priv->mutex); | ||
906 | if (ret) | ||
907 | return ret; | ||
908 | |||
909 | spin_lock_irq(&priv->lock); | ||
910 | |||
911 | seq_printf(f, "enabled: %d\n", priv->enabled); | ||
912 | seq_printf(f, "bufsize: %d\n", priv->bufsize); | ||
913 | seq_printf(f, "num_buffers: %d\n", priv->num_buffers); | ||
914 | seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free)); | ||
915 | seq_printf(f, "inflight: %d\n", priv->inflight != NULL); | ||
916 | seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used)); | ||
917 | seq_printf(f, "num_dropped: %d\n", priv->num_dropped); | ||
918 | |||
919 | spin_unlock_irq(&priv->lock); | ||
920 | mutex_unlock(&priv->mutex); | ||
921 | return 0; | ||
922 | } | ||
923 | |||
924 | static int data_debug_open(struct inode *inode, struct file *file) | ||
925 | { | ||
926 | return single_open(file, data_debug_show, inode->i_private); | ||
927 | } | ||
928 | |||
929 | static const struct file_operations data_debug_fops = { | ||
930 | .owner = THIS_MODULE, | ||
931 | .open = data_debug_open, | ||
932 | .read = seq_read, | ||
933 | .llseek = seq_lseek, | ||
934 | .release = single_release, | ||
935 | }; | ||
936 | |||
937 | static int data_debugfs_init(struct fpga_device *priv) | ||
938 | { | ||
939 | priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv, | ||
940 | &data_debug_fops); | ||
941 | if (IS_ERR(priv->dbg_entry)) | ||
942 | return PTR_ERR(priv->dbg_entry); | ||
943 | |||
944 | return 0; | ||
945 | } | ||
946 | |||
947 | static void data_debugfs_exit(struct fpga_device *priv) | ||
948 | { | ||
949 | debugfs_remove(priv->dbg_entry); | ||
950 | } | ||
951 | |||
952 | #else | ||
953 | |||
954 | static inline int data_debugfs_init(struct fpga_device *priv) | ||
955 | { | ||
956 | return 0; | ||
957 | } | ||
958 | |||
959 | static inline void data_debugfs_exit(struct fpga_device *priv) | ||
960 | { | ||
961 | } | ||
962 | |||
963 | #endif /* CONFIG_DEBUG_FS */ | ||
964 | |||
965 | /* | ||
966 | * SYSFS Attributes | ||
967 | */ | ||
968 | |||
969 | static ssize_t data_en_show(struct device *dev, struct device_attribute *attr, | ||
970 | char *buf) | ||
971 | { | ||
972 | struct fpga_device *priv = dev_get_drvdata(dev); | ||
973 | return snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled); | ||
974 | } | ||
975 | |||
976 | static ssize_t data_en_set(struct device *dev, struct device_attribute *attr, | ||
977 | const char *buf, size_t count) | ||
978 | { | ||
979 | struct fpga_device *priv = dev_get_drvdata(dev); | ||
980 | unsigned long enable; | ||
981 | int ret; | ||
982 | |||
983 | ret = strict_strtoul(buf, 0, &enable); | ||
984 | if (ret) { | ||
985 | dev_err(priv->dev, "unable to parse enable input\n"); | ||
986 | return -EINVAL; | ||
987 | } | ||
988 | |||
989 | ret = mutex_lock_interruptible(&priv->mutex); | ||
990 | if (ret) | ||
991 | return ret; | ||
992 | |||
993 | if (enable) | ||
994 | ret = data_device_enable(priv); | ||
995 | else | ||
996 | ret = data_device_disable(priv); | ||
997 | |||
998 | if (ret) { | ||
999 | dev_err(priv->dev, "device %s failed\n", | ||
1000 | enable ? "enable" : "disable"); | ||
1001 | count = ret; | ||
1002 | goto out_unlock; | ||
1003 | } | ||
1004 | |||
1005 | out_unlock: | ||
1006 | mutex_unlock(&priv->mutex); | ||
1007 | return count; | ||
1008 | } | ||
1009 | |||
1010 | static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set); | ||
1011 | |||
1012 | static struct attribute *data_sysfs_attrs[] = { | ||
1013 | &dev_attr_enable.attr, | ||
1014 | NULL, | ||
1015 | }; | ||
1016 | |||
1017 | static const struct attribute_group rt_sysfs_attr_group = { | ||
1018 | .attrs = data_sysfs_attrs, | ||
1019 | }; | ||
1020 | |||
1021 | /* | ||
1022 | * FPGA Realtime Data Character Device | ||
1023 | */ | ||
1024 | |||
1025 | static int data_open(struct inode *inode, struct file *filp) | ||
1026 | { | ||
1027 | /* | ||
1028 | * The miscdevice layer puts our struct miscdevice into the | ||
1029 | * filp->private_data field. We use this to find our private | ||
1030 | * data and then overwrite it with our own private structure. | ||
1031 | */ | ||
1032 | struct fpga_device *priv = container_of(filp->private_data, | ||
1033 | struct fpga_device, miscdev); | ||
1034 | struct fpga_reader *reader; | ||
1035 | int ret; | ||
1036 | |||
1037 | /* allocate private data */ | ||
1038 | reader = kzalloc(sizeof(*reader), GFP_KERNEL); | ||
1039 | if (!reader) | ||
1040 | return -ENOMEM; | ||
1041 | |||
1042 | reader->priv = priv; | ||
1043 | reader->buf = NULL; | ||
1044 | |||
1045 | filp->private_data = reader; | ||
1046 | ret = nonseekable_open(inode, filp); | ||
1047 | if (ret) { | ||
1048 | dev_err(priv->dev, "nonseekable-open failed\n"); | ||
1049 | kfree(reader); | ||
1050 | return ret; | ||
1051 | } | ||
1052 | |||
1053 | /* | ||
1054 | * success, increase the reference count of the private data structure | ||
1055 | * so that it doesn't disappear if the device is unbound | ||
1056 | */ | ||
1057 | kref_get(&priv->ref); | ||
1058 | return 0; | ||
1059 | } | ||
1060 | |||
1061 | static int data_release(struct inode *inode, struct file *filp) | ||
1062 | { | ||
1063 | struct fpga_reader *reader = filp->private_data; | ||
1064 | struct fpga_device *priv = reader->priv; | ||
1065 | |||
1066 | /* free the per-reader structure */ | ||
1067 | data_free_buffer(reader->buf); | ||
1068 | kfree(reader); | ||
1069 | filp->private_data = NULL; | ||
1070 | |||
1071 | /* decrement our reference count to the private data */ | ||
1072 | kref_put(&priv->ref, fpga_device_release); | ||
1073 | return 0; | ||
1074 | } | ||
1075 | |||
1076 | static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count, | ||
1077 | loff_t *f_pos) | ||
1078 | { | ||
1079 | struct fpga_reader *reader = filp->private_data; | ||
1080 | struct fpga_device *priv = reader->priv; | ||
1081 | struct list_head *used = &priv->used; | ||
1082 | struct data_buf *dbuf; | ||
1083 | size_t avail; | ||
1084 | void *data; | ||
1085 | int ret; | ||
1086 | |||
1087 | /* check if we already have a partial buffer */ | ||
1088 | if (reader->buf) { | ||
1089 | dbuf = reader->buf; | ||
1090 | goto have_buffer; | ||
1091 | } | ||
1092 | |||
1093 | spin_lock_irq(&priv->lock); | ||
1094 | |||
1095 | /* Block until there is at least one buffer on the used list */ | ||
1096 | while (list_empty(used)) { | ||
1097 | spin_unlock_irq(&priv->lock); | ||
1098 | |||
1099 | if (filp->f_flags & O_NONBLOCK) | ||
1100 | return -EAGAIN; | ||
1101 | |||
1102 | ret = wait_event_interruptible(priv->wait, !list_empty(used)); | ||
1103 | if (ret) | ||
1104 | return ret; | ||
1105 | |||
1106 | spin_lock_irq(&priv->lock); | ||
1107 | } | ||
1108 | |||
1109 | /* Grab the first buffer off of the used list */ | ||
1110 | dbuf = list_first_entry(used, struct data_buf, entry); | ||
1111 | list_del_init(&dbuf->entry); | ||
1112 | |||
1113 | spin_unlock_irq(&priv->lock); | ||
1114 | |||
1115 | /* Buffers are always mapped: unmap it */ | ||
1116 | videobuf_dma_unmap(priv->dev, &dbuf->vb); | ||
1117 | |||
1118 | /* save the buffer for later */ | ||
1119 | reader->buf = dbuf; | ||
1120 | reader->buf_start = 0; | ||
1121 | |||
1122 | have_buffer: | ||
1123 | /* Get the number of bytes available */ | ||
1124 | avail = dbuf->size - reader->buf_start; | ||
1125 | data = dbuf->vb.vaddr + reader->buf_start; | ||
1126 | |||
1127 | /* Get the number of bytes we can transfer */ | ||
1128 | count = min(count, avail); | ||
1129 | |||
1130 | /* Copy the data to the userspace buffer */ | ||
1131 | if (copy_to_user(ubuf, data, count)) | ||
1132 | return -EFAULT; | ||
1133 | |||
1134 | /* Update the amount of available space */ | ||
1135 | avail -= count; | ||
1136 | |||
1137 | /* | ||
1138 | * If there is still some data available, save the buffer for the | ||
1139 | * next userspace call to read() and return | ||
1140 | */ | ||
1141 | if (avail > 0) { | ||
1142 | reader->buf_start += count; | ||
1143 | reader->buf = dbuf; | ||
1144 | return count; | ||
1145 | } | ||
1146 | |||
1147 | /* | ||
1148 | * Get the buffer ready to be reused for DMA | ||
1149 | * | ||
1150 | * If it fails, we pretend that the read never happed and return | ||
1151 | * -EFAULT to userspace. The read will be retried. | ||
1152 | */ | ||
1153 | ret = videobuf_dma_map(priv->dev, &dbuf->vb); | ||
1154 | if (ret) { | ||
1155 | dev_err(priv->dev, "unable to remap buffer for DMA\n"); | ||
1156 | return -EFAULT; | ||
1157 | } | ||
1158 | |||
1159 | /* Lock against concurrent enable/disable */ | ||
1160 | spin_lock_irq(&priv->lock); | ||
1161 | |||
1162 | /* the reader is finished with this buffer */ | ||
1163 | reader->buf = NULL; | ||
1164 | |||
1165 | /* | ||
1166 | * One of two things has happened, the device is disabled, or the | ||
1167 | * device has been reconfigured underneath us. In either case, we | ||
1168 | * should just throw away the buffer. | ||
1169 | */ | ||
1170 | if (!priv->enabled || dbuf->size != priv->bufsize) { | ||
1171 | videobuf_dma_unmap(priv->dev, &dbuf->vb); | ||
1172 | data_free_buffer(dbuf); | ||
1173 | goto out_unlock; | ||
1174 | } | ||
1175 | |||
1176 | /* The buffer is safe to reuse, so add it back to the free list */ | ||
1177 | list_add_tail(&dbuf->entry, &priv->free); | ||
1178 | |||
1179 | out_unlock: | ||
1180 | spin_unlock_irq(&priv->lock); | ||
1181 | return count; | ||
1182 | } | ||
1183 | |||
1184 | static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl) | ||
1185 | { | ||
1186 | struct fpga_reader *reader = filp->private_data; | ||
1187 | struct fpga_device *priv = reader->priv; | ||
1188 | unsigned int mask = 0; | ||
1189 | |||
1190 | poll_wait(filp, &priv->wait, tbl); | ||
1191 | |||
1192 | if (!list_empty(&priv->used)) | ||
1193 | mask |= POLLIN | POLLRDNORM; | ||
1194 | |||
1195 | return mask; | ||
1196 | } | ||
1197 | |||
1198 | static int data_mmap(struct file *filp, struct vm_area_struct *vma) | ||
1199 | { | ||
1200 | struct fpga_reader *reader = filp->private_data; | ||
1201 | struct fpga_device *priv = reader->priv; | ||
1202 | unsigned long offset, vsize, psize, addr; | ||
1203 | |||
1204 | /* VMA properties */ | ||
1205 | offset = vma->vm_pgoff << PAGE_SHIFT; | ||
1206 | vsize = vma->vm_end - vma->vm_start; | ||
1207 | psize = priv->phys_size - offset; | ||
1208 | addr = (priv->phys_addr + offset) >> PAGE_SHIFT; | ||
1209 | |||
1210 | /* Check against the FPGA region's physical memory size */ | ||
1211 | if (vsize > psize) { | ||
1212 | dev_err(priv->dev, "requested mmap mapping too large\n"); | ||
1213 | return -EINVAL; | ||
1214 | } | ||
1215 | |||
1216 | /* IO memory (stop cacheing) */ | ||
1217 | vma->vm_flags |= VM_IO | VM_RESERVED; | ||
1218 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | ||
1219 | |||
1220 | return io_remap_pfn_range(vma, vma->vm_start, addr, vsize, | ||
1221 | vma->vm_page_prot); | ||
1222 | } | ||
1223 | |||
1224 | static const struct file_operations data_fops = { | ||
1225 | .owner = THIS_MODULE, | ||
1226 | .open = data_open, | ||
1227 | .release = data_release, | ||
1228 | .read = data_read, | ||
1229 | .poll = data_poll, | ||
1230 | .mmap = data_mmap, | ||
1231 | .llseek = no_llseek, | ||
1232 | }; | ||
1233 | |||
1234 | /* | ||
1235 | * OpenFirmware Device Subsystem | ||
1236 | */ | ||
1237 | |||
1238 | static bool dma_filter(struct dma_chan *chan, void *data) | ||
1239 | { | ||
1240 | /* | ||
1241 | * DMA Channel #0 is used for the FPGA Programmer, so ignore it | ||
1242 | * | ||
1243 | * This probably won't survive an unload/load cycle of the Freescale | ||
1244 | * DMAEngine driver, but that won't be a problem | ||
1245 | */ | ||
1246 | if (chan->chan_id == 0 && chan->device->dev_id == 0) | ||
1247 | return false; | ||
1248 | |||
1249 | return true; | ||
1250 | } | ||
1251 | |||
1252 | static int data_of_probe(struct platform_device *op, | ||
1253 | const struct of_device_id *match) | ||
1254 | { | ||
1255 | struct device_node *of_node = op->dev.of_node; | ||
1256 | struct device *this_device; | ||
1257 | struct fpga_device *priv; | ||
1258 | struct resource res; | ||
1259 | dma_cap_mask_t mask; | ||
1260 | int ret; | ||
1261 | |||
1262 | /* Allocate private data */ | ||
1263 | priv = kzalloc(sizeof(*priv), GFP_KERNEL); | ||
1264 | if (!priv) { | ||
1265 | dev_err(&op->dev, "Unable to allocate device private data\n"); | ||
1266 | ret = -ENOMEM; | ||
1267 | goto out_return; | ||
1268 | } | ||
1269 | |||
1270 | dev_set_drvdata(&op->dev, priv); | ||
1271 | priv->dev = &op->dev; | ||
1272 | kref_init(&priv->ref); | ||
1273 | mutex_init(&priv->mutex); | ||
1274 | |||
1275 | dev_set_drvdata(priv->dev, priv); | ||
1276 | spin_lock_init(&priv->lock); | ||
1277 | INIT_LIST_HEAD(&priv->free); | ||
1278 | INIT_LIST_HEAD(&priv->used); | ||
1279 | init_waitqueue_head(&priv->wait); | ||
1280 | |||
1281 | /* Setup the misc device */ | ||
1282 | priv->miscdev.minor = MISC_DYNAMIC_MINOR; | ||
1283 | priv->miscdev.name = drv_name; | ||
1284 | priv->miscdev.fops = &data_fops; | ||
1285 | |||
1286 | /* Get the physical address of the FPGA registers */ | ||
1287 | ret = of_address_to_resource(of_node, 0, &res); | ||
1288 | if (ret) { | ||
1289 | dev_err(&op->dev, "Unable to find FPGA physical address\n"); | ||
1290 | ret = -ENODEV; | ||
1291 | goto out_free_priv; | ||
1292 | } | ||
1293 | |||
1294 | priv->phys_addr = res.start; | ||
1295 | priv->phys_size = resource_size(&res); | ||
1296 | |||
1297 | /* ioremap the registers for use */ | ||
1298 | priv->regs = of_iomap(of_node, 0); | ||
1299 | if (!priv->regs) { | ||
1300 | dev_err(&op->dev, "Unable to ioremap registers\n"); | ||
1301 | ret = -ENOMEM; | ||
1302 | goto out_free_priv; | ||
1303 | } | ||
1304 | |||
1305 | dma_cap_zero(mask); | ||
1306 | dma_cap_set(DMA_MEMCPY, mask); | ||
1307 | dma_cap_set(DMA_INTERRUPT, mask); | ||
1308 | dma_cap_set(DMA_SLAVE, mask); | ||
1309 | dma_cap_set(DMA_SG, mask); | ||
1310 | |||
1311 | /* Request a DMA channel */ | ||
1312 | priv->chan = dma_request_channel(mask, dma_filter, NULL); | ||
1313 | if (!priv->chan) { | ||
1314 | dev_err(&op->dev, "Unable to request DMA channel\n"); | ||
1315 | ret = -ENODEV; | ||
1316 | goto out_unmap_regs; | ||
1317 | } | ||
1318 | |||
1319 | /* Find the correct IRQ number */ | ||
1320 | priv->irq = irq_of_parse_and_map(of_node, 0); | ||
1321 | if (priv->irq == NO_IRQ) { | ||
1322 | dev_err(&op->dev, "Unable to find IRQ line\n"); | ||
1323 | ret = -ENODEV; | ||
1324 | goto out_release_dma; | ||
1325 | } | ||
1326 | |||
1327 | /* Drive the GPIO for FPGA IRQ high (no interrupt) */ | ||
1328 | iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA); | ||
1329 | |||
1330 | /* Register the miscdevice */ | ||
1331 | ret = misc_register(&priv->miscdev); | ||
1332 | if (ret) { | ||
1333 | dev_err(&op->dev, "Unable to register miscdevice\n"); | ||
1334 | goto out_irq_dispose_mapping; | ||
1335 | } | ||
1336 | |||
1337 | /* Create the debugfs files */ | ||
1338 | ret = data_debugfs_init(priv); | ||
1339 | if (ret) { | ||
1340 | dev_err(&op->dev, "Unable to create debugfs files\n"); | ||
1341 | goto out_misc_deregister; | ||
1342 | } | ||
1343 | |||
1344 | /* Create the sysfs files */ | ||
1345 | this_device = priv->miscdev.this_device; | ||
1346 | dev_set_drvdata(this_device, priv); | ||
1347 | ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group); | ||
1348 | if (ret) { | ||
1349 | dev_err(&op->dev, "Unable to create sysfs files\n"); | ||
1350 | goto out_data_debugfs_exit; | ||
1351 | } | ||
1352 | |||
1353 | dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n"); | ||
1354 | return 0; | ||
1355 | |||
1356 | out_data_debugfs_exit: | ||
1357 | data_debugfs_exit(priv); | ||
1358 | out_misc_deregister: | ||
1359 | misc_deregister(&priv->miscdev); | ||
1360 | out_irq_dispose_mapping: | ||
1361 | irq_dispose_mapping(priv->irq); | ||
1362 | out_release_dma: | ||
1363 | dma_release_channel(priv->chan); | ||
1364 | out_unmap_regs: | ||
1365 | iounmap(priv->regs); | ||
1366 | out_free_priv: | ||
1367 | kref_put(&priv->ref, fpga_device_release); | ||
1368 | out_return: | ||
1369 | return ret; | ||
1370 | } | ||
1371 | |||
1372 | static int data_of_remove(struct platform_device *op) | ||
1373 | { | ||
1374 | struct fpga_device *priv = dev_get_drvdata(&op->dev); | ||
1375 | struct device *this_device = priv->miscdev.this_device; | ||
1376 | |||
1377 | /* remove all sysfs files, now the device cannot be re-enabled */ | ||
1378 | sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group); | ||
1379 | |||
1380 | /* remove all debugfs files */ | ||
1381 | data_debugfs_exit(priv); | ||
1382 | |||
1383 | /* disable the device from generating data */ | ||
1384 | data_device_disable(priv); | ||
1385 | |||
1386 | /* remove the character device to stop new readers from appearing */ | ||
1387 | misc_deregister(&priv->miscdev); | ||
1388 | |||
1389 | /* cleanup everything not needed by readers */ | ||
1390 | irq_dispose_mapping(priv->irq); | ||
1391 | dma_release_channel(priv->chan); | ||
1392 | iounmap(priv->regs); | ||
1393 | |||
1394 | /* release our reference */ | ||
1395 | kref_put(&priv->ref, fpga_device_release); | ||
1396 | return 0; | ||
1397 | } | ||
1398 | |||
1399 | static struct of_device_id data_of_match[] = { | ||
1400 | { .compatible = "carma,carma-fpga", }, | ||
1401 | {}, | ||
1402 | }; | ||
1403 | |||
1404 | static struct of_platform_driver data_of_driver = { | ||
1405 | .probe = data_of_probe, | ||
1406 | .remove = data_of_remove, | ||
1407 | .driver = { | ||
1408 | .name = drv_name, | ||
1409 | .of_match_table = data_of_match, | ||
1410 | .owner = THIS_MODULE, | ||
1411 | }, | ||
1412 | }; | ||
1413 | |||
1414 | /* | ||
1415 | * Module Init / Exit | ||
1416 | */ | ||
1417 | |||
1418 | static int __init data_init(void) | ||
1419 | { | ||
1420 | return of_register_platform_driver(&data_of_driver); | ||
1421 | } | ||
1422 | |||
1423 | static void __exit data_exit(void) | ||
1424 | { | ||
1425 | of_unregister_platform_driver(&data_of_driver); | ||
1426 | } | ||
1427 | |||
1428 | MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>"); | ||
1429 | MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver"); | ||
1430 | MODULE_LICENSE("GPL"); | ||
1431 | |||
1432 | module_init(data_init); | ||
1433 | module_exit(data_exit); | ||