aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/md/raid6main.c
diff options
context:
space:
mode:
authorGreg Kroah-Hartman <gregkh@suse.de>2006-01-06 15:59:59 -0500
committerGreg Kroah-Hartman <gregkh@suse.de>2006-01-06 15:59:59 -0500
commitccf18968b1bbc2fb117190a1984ac2a826dac228 (patch)
tree7bc8fbf5722aecf1e84fa50c31c657864cba1daa /drivers/md/raid6main.c
parente91c021c487110386a07facd0396e6c3b7cf9c1f (diff)
parentd99cf9d679a520d67f81d805b7cb91c68e1847f0 (diff)
Merge ../torvalds-2.6/
Diffstat (limited to 'drivers/md/raid6main.c')
-rw-r--r--drivers/md/raid6main.c348
1 files changed, 213 insertions, 135 deletions
diff --git a/drivers/md/raid6main.c b/drivers/md/raid6main.c
index 0000d162d198..8c823d686a60 100644
--- a/drivers/md/raid6main.c
+++ b/drivers/md/raid6main.c
@@ -40,12 +40,10 @@
40#define STRIPE_SHIFT (PAGE_SHIFT - 9) 40#define STRIPE_SHIFT (PAGE_SHIFT - 9)
41#define STRIPE_SECTORS (STRIPE_SIZE>>9) 41#define STRIPE_SECTORS (STRIPE_SIZE>>9)
42#define IO_THRESHOLD 1 42#define IO_THRESHOLD 1
43#define HASH_PAGES 1 43#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
44#define HASH_PAGES_ORDER 0
45#define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *))
46#define HASH_MASK (NR_HASH - 1) 44#define HASH_MASK (NR_HASH - 1)
47 45
48#define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]) 46#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
49 47
50/* bio's attached to a stripe+device for I/O are linked together in bi_sector 48/* bio's attached to a stripe+device for I/O are linked together in bi_sector
51 * order without overlap. There may be several bio's per stripe+device, and 49 * order without overlap. There may be several bio's per stripe+device, and
@@ -132,29 +130,21 @@ static void release_stripe(struct stripe_head *sh)
132 spin_unlock_irqrestore(&conf->device_lock, flags); 130 spin_unlock_irqrestore(&conf->device_lock, flags);
133} 131}
134 132
135static void remove_hash(struct stripe_head *sh) 133static inline void remove_hash(struct stripe_head *sh)
136{ 134{
137 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); 135 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
138 136
139 if (sh->hash_pprev) { 137 hlist_del_init(&sh->hash);
140 if (sh->hash_next)
141 sh->hash_next->hash_pprev = sh->hash_pprev;
142 *sh->hash_pprev = sh->hash_next;
143 sh->hash_pprev = NULL;
144 }
145} 138}
146 139
147static __inline__ void insert_hash(raid6_conf_t *conf, struct stripe_head *sh) 140static inline void insert_hash(raid6_conf_t *conf, struct stripe_head *sh)
148{ 141{
149 struct stripe_head **shp = &stripe_hash(conf, sh->sector); 142 struct hlist_head *hp = stripe_hash(conf, sh->sector);
150 143
151 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); 144 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
152 145
153 CHECK_DEVLOCK(); 146 CHECK_DEVLOCK();
154 if ((sh->hash_next = *shp) != NULL) 147 hlist_add_head(&sh->hash, hp);
155 (*shp)->hash_pprev = &sh->hash_next;
156 *shp = sh;
157 sh->hash_pprev = shp;
158} 148}
159 149
160 150
@@ -186,7 +176,7 @@ static void shrink_buffers(struct stripe_head *sh, int num)
186 if (!p) 176 if (!p)
187 continue; 177 continue;
188 sh->dev[i].page = NULL; 178 sh->dev[i].page = NULL;
189 page_cache_release(p); 179 put_page(p);
190 } 180 }
191} 181}
192 182
@@ -247,10 +237,11 @@ static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_i
247static struct stripe_head *__find_stripe(raid6_conf_t *conf, sector_t sector) 237static struct stripe_head *__find_stripe(raid6_conf_t *conf, sector_t sector)
248{ 238{
249 struct stripe_head *sh; 239 struct stripe_head *sh;
240 struct hlist_node *hn;
250 241
251 CHECK_DEVLOCK(); 242 CHECK_DEVLOCK();
252 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector); 243 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
253 for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next) 244 hlist_for_each_entry (sh, hn, stripe_hash(conf, sector), hash)
254 if (sh->sector == sector) 245 if (sh->sector == sector)
255 return sh; 246 return sh;
256 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector); 247 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
@@ -367,8 +358,8 @@ static void shrink_stripes(raid6_conf_t *conf)
367 conf->slab_cache = NULL; 358 conf->slab_cache = NULL;
368} 359}
369 360
370static int raid6_end_read_request (struct bio * bi, unsigned int bytes_done, 361static int raid6_end_read_request(struct bio * bi, unsigned int bytes_done,
371 int error) 362 int error)
372{ 363{
373 struct stripe_head *sh = bi->bi_private; 364 struct stripe_head *sh = bi->bi_private;
374 raid6_conf_t *conf = sh->raid_conf; 365 raid6_conf_t *conf = sh->raid_conf;
@@ -420,9 +411,35 @@ static int raid6_end_read_request (struct bio * bi, unsigned int bytes_done,
420#else 411#else
421 set_bit(R5_UPTODATE, &sh->dev[i].flags); 412 set_bit(R5_UPTODATE, &sh->dev[i].flags);
422#endif 413#endif
414 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
415 printk(KERN_INFO "raid6: read error corrected!!\n");
416 clear_bit(R5_ReadError, &sh->dev[i].flags);
417 clear_bit(R5_ReWrite, &sh->dev[i].flags);
418 }
419 if (atomic_read(&conf->disks[i].rdev->read_errors))
420 atomic_set(&conf->disks[i].rdev->read_errors, 0);
423 } else { 421 } else {
424 md_error(conf->mddev, conf->disks[i].rdev); 422 int retry = 0;
425 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 423 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
424 atomic_inc(&conf->disks[i].rdev->read_errors);
425 if (conf->mddev->degraded)
426 printk(KERN_WARNING "raid6: read error not correctable.\n");
427 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
428 /* Oh, no!!! */
429 printk(KERN_WARNING "raid6: read error NOT corrected!!\n");
430 else if (atomic_read(&conf->disks[i].rdev->read_errors)
431 > conf->max_nr_stripes)
432 printk(KERN_WARNING
433 "raid6: Too many read errors, failing device.\n");
434 else
435 retry = 1;
436 if (retry)
437 set_bit(R5_ReadError, &sh->dev[i].flags);
438 else {
439 clear_bit(R5_ReadError, &sh->dev[i].flags);
440 clear_bit(R5_ReWrite, &sh->dev[i].flags);
441 md_error(conf->mddev, conf->disks[i].rdev);
442 }
426 } 443 }
427 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 444 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
428#if 0 445#if 0
@@ -805,7 +822,7 @@ static void compute_parity(struct stripe_head *sh, int method)
805} 822}
806 823
807/* Compute one missing block */ 824/* Compute one missing block */
808static void compute_block_1(struct stripe_head *sh, int dd_idx) 825static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
809{ 826{
810 raid6_conf_t *conf = sh->raid_conf; 827 raid6_conf_t *conf = sh->raid_conf;
811 int i, count, disks = conf->raid_disks; 828 int i, count, disks = conf->raid_disks;
@@ -821,7 +838,7 @@ static void compute_block_1(struct stripe_head *sh, int dd_idx)
821 compute_parity(sh, UPDATE_PARITY); 838 compute_parity(sh, UPDATE_PARITY);
822 } else { 839 } else {
823 ptr[0] = page_address(sh->dev[dd_idx].page); 840 ptr[0] = page_address(sh->dev[dd_idx].page);
824 memset(ptr[0], 0, STRIPE_SIZE); 841 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
825 count = 1; 842 count = 1;
826 for (i = disks ; i--; ) { 843 for (i = disks ; i--; ) {
827 if (i == dd_idx || i == qd_idx) 844 if (i == dd_idx || i == qd_idx)
@@ -838,7 +855,8 @@ static void compute_block_1(struct stripe_head *sh, int dd_idx)
838 } 855 }
839 if (count != 1) 856 if (count != 1)
840 xor_block(count, STRIPE_SIZE, ptr); 857 xor_block(count, STRIPE_SIZE, ptr);
841 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 858 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
859 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
842 } 860 }
843} 861}
844 862
@@ -871,7 +889,7 @@ static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
871 return; 889 return;
872 } else { 890 } else {
873 /* We're missing D+Q; recompute D from P */ 891 /* We're missing D+Q; recompute D from P */
874 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1); 892 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
875 compute_parity(sh, UPDATE_PARITY); /* Is this necessary? */ 893 compute_parity(sh, UPDATE_PARITY); /* Is this necessary? */
876 return; 894 return;
877 } 895 }
@@ -982,6 +1000,12 @@ static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, in
982} 1000}
983 1001
984 1002
1003static int page_is_zero(struct page *p)
1004{
1005 char *a = page_address(p);
1006 return ((*(u32*)a) == 0 &&
1007 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1008}
985/* 1009/*
986 * handle_stripe - do things to a stripe. 1010 * handle_stripe - do things to a stripe.
987 * 1011 *
@@ -1000,7 +1024,7 @@ static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, in
1000 * 1024 *
1001 */ 1025 */
1002 1026
1003static void handle_stripe(struct stripe_head *sh) 1027static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
1004{ 1028{
1005 raid6_conf_t *conf = sh->raid_conf; 1029 raid6_conf_t *conf = sh->raid_conf;
1006 int disks = conf->raid_disks; 1030 int disks = conf->raid_disks;
@@ -1027,11 +1051,11 @@ static void handle_stripe(struct stripe_head *sh)
1027 syncing = test_bit(STRIPE_SYNCING, &sh->state); 1051 syncing = test_bit(STRIPE_SYNCING, &sh->state);
1028 /* Now to look around and see what can be done */ 1052 /* Now to look around and see what can be done */
1029 1053
1054 rcu_read_lock();
1030 for (i=disks; i--; ) { 1055 for (i=disks; i--; ) {
1031 mdk_rdev_t *rdev; 1056 mdk_rdev_t *rdev;
1032 dev = &sh->dev[i]; 1057 dev = &sh->dev[i];
1033 clear_bit(R5_Insync, &dev->flags); 1058 clear_bit(R5_Insync, &dev->flags);
1034 clear_bit(R5_Syncio, &dev->flags);
1035 1059
1036 PRINTK("check %d: state 0x%lx read %p write %p written %p\n", 1060 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1037 i, dev->flags, dev->toread, dev->towrite, dev->written); 1061 i, dev->flags, dev->toread, dev->towrite, dev->written);
@@ -1070,14 +1094,21 @@ static void handle_stripe(struct stripe_head *sh)
1070 non_overwrite++; 1094 non_overwrite++;
1071 } 1095 }
1072 if (dev->written) written++; 1096 if (dev->written) written++;
1073 rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */ 1097 rdev = rcu_dereference(conf->disks[i].rdev);
1074 if (!rdev || !test_bit(In_sync, &rdev->flags)) { 1098 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1099 /* The ReadError flag will just be confusing now */
1100 clear_bit(R5_ReadError, &dev->flags);
1101 clear_bit(R5_ReWrite, &dev->flags);
1102 }
1103 if (!rdev || !test_bit(In_sync, &rdev->flags)
1104 || test_bit(R5_ReadError, &dev->flags)) {
1075 if ( failed < 2 ) 1105 if ( failed < 2 )
1076 failed_num[failed] = i; 1106 failed_num[failed] = i;
1077 failed++; 1107 failed++;
1078 } else 1108 } else
1079 set_bit(R5_Insync, &dev->flags); 1109 set_bit(R5_Insync, &dev->flags);
1080 } 1110 }
1111 rcu_read_unlock();
1081 PRINTK("locked=%d uptodate=%d to_read=%d" 1112 PRINTK("locked=%d uptodate=%d to_read=%d"
1082 " to_write=%d failed=%d failed_num=%d,%d\n", 1113 " to_write=%d failed=%d failed_num=%d,%d\n",
1083 locked, uptodate, to_read, to_write, failed, 1114 locked, uptodate, to_read, to_write, failed,
@@ -1088,6 +1119,17 @@ static void handle_stripe(struct stripe_head *sh)
1088 if (failed > 2 && to_read+to_write+written) { 1119 if (failed > 2 && to_read+to_write+written) {
1089 for (i=disks; i--; ) { 1120 for (i=disks; i--; ) {
1090 int bitmap_end = 0; 1121 int bitmap_end = 0;
1122
1123 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1124 mdk_rdev_t *rdev;
1125 rcu_read_lock();
1126 rdev = rcu_dereference(conf->disks[i].rdev);
1127 if (rdev && test_bit(In_sync, &rdev->flags))
1128 /* multiple read failures in one stripe */
1129 md_error(conf->mddev, rdev);
1130 rcu_read_unlock();
1131 }
1132
1091 spin_lock_irq(&conf->device_lock); 1133 spin_lock_irq(&conf->device_lock);
1092 /* fail all writes first */ 1134 /* fail all writes first */
1093 bi = sh->dev[i].towrite; 1135 bi = sh->dev[i].towrite;
@@ -1123,7 +1165,8 @@ static void handle_stripe(struct stripe_head *sh)
1123 } 1165 }
1124 1166
1125 /* fail any reads if this device is non-operational */ 1167 /* fail any reads if this device is non-operational */
1126 if (!test_bit(R5_Insync, &sh->dev[i].flags)) { 1168 if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1169 test_bit(R5_ReadError, &sh->dev[i].flags)) {
1127 bi = sh->dev[i].toread; 1170 bi = sh->dev[i].toread;
1128 sh->dev[i].toread = NULL; 1171 sh->dev[i].toread = NULL;
1129 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1172 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
@@ -1228,7 +1271,7 @@ static void handle_stripe(struct stripe_head *sh)
1228 if (uptodate == disks-1) { 1271 if (uptodate == disks-1) {
1229 PRINTK("Computing stripe %llu block %d\n", 1272 PRINTK("Computing stripe %llu block %d\n",
1230 (unsigned long long)sh->sector, i); 1273 (unsigned long long)sh->sector, i);
1231 compute_block_1(sh, i); 1274 compute_block_1(sh, i, 0);
1232 uptodate++; 1275 uptodate++;
1233 } else if ( uptodate == disks-2 && failed >= 2 ) { 1276 } else if ( uptodate == disks-2 && failed >= 2 ) {
1234 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */ 1277 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
@@ -1259,9 +1302,6 @@ static void handle_stripe(struct stripe_head *sh)
1259 locked++; 1302 locked++;
1260 PRINTK("Reading block %d (sync=%d)\n", 1303 PRINTK("Reading block %d (sync=%d)\n",
1261 i, syncing); 1304 i, syncing);
1262 if (syncing)
1263 md_sync_acct(conf->disks[i].rdev->bdev,
1264 STRIPE_SECTORS);
1265 } 1305 }
1266 } 1306 }
1267 } 1307 }
@@ -1323,7 +1363,7 @@ static void handle_stripe(struct stripe_head *sh)
1323 /* We have failed blocks and need to compute them */ 1363 /* We have failed blocks and need to compute them */
1324 switch ( failed ) { 1364 switch ( failed ) {
1325 case 0: BUG(); 1365 case 0: BUG();
1326 case 1: compute_block_1(sh, failed_num[0]); break; 1366 case 1: compute_block_1(sh, failed_num[0], 0); break;
1327 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break; 1367 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
1328 default: BUG(); /* This request should have been failed? */ 1368 default: BUG(); /* This request should have been failed? */
1329 } 1369 }
@@ -1338,12 +1378,10 @@ static void handle_stripe(struct stripe_head *sh)
1338 (unsigned long long)sh->sector, i); 1378 (unsigned long long)sh->sector, i);
1339 locked++; 1379 locked++;
1340 set_bit(R5_Wantwrite, &sh->dev[i].flags); 1380 set_bit(R5_Wantwrite, &sh->dev[i].flags);
1341#if 0 /**** FIX: I don't understand the logic here... ****/
1342 if (!test_bit(R5_Insync, &sh->dev[i].flags)
1343 || ((i==pd_idx || i==qd_idx) && failed == 0)) /* FIX? */
1344 set_bit(STRIPE_INSYNC, &sh->state);
1345#endif
1346 } 1381 }
1382 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
1383 set_bit(STRIPE_INSYNC, &sh->state);
1384
1347 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 1385 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1348 atomic_dec(&conf->preread_active_stripes); 1386 atomic_dec(&conf->preread_active_stripes);
1349 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 1387 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
@@ -1356,84 +1394,119 @@ static void handle_stripe(struct stripe_head *sh)
1356 * Any reads will already have been scheduled, so we just see if enough data 1394 * Any reads will already have been scheduled, so we just see if enough data
1357 * is available 1395 * is available
1358 */ 1396 */
1359 if (syncing && locked == 0 && 1397 if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
1360 !test_bit(STRIPE_INSYNC, &sh->state) && failed <= 2) { 1398 int update_p = 0, update_q = 0;
1361 set_bit(STRIPE_HANDLE, &sh->state); 1399 struct r5dev *dev;
1362#if 0 /* RAID-6: Don't support CHECK PARITY yet */
1363 if (failed == 0) {
1364 char *pagea;
1365 if (uptodate != disks)
1366 BUG();
1367 compute_parity(sh, CHECK_PARITY);
1368 uptodate--;
1369 pagea = page_address(sh->dev[pd_idx].page);
1370 if ((*(u32*)pagea) == 0 &&
1371 !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) {
1372 /* parity is correct (on disc, not in buffer any more) */
1373 set_bit(STRIPE_INSYNC, &sh->state);
1374 }
1375 }
1376#endif
1377 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1378 int failed_needupdate[2];
1379 struct r5dev *adev, *bdev;
1380
1381 if ( failed < 1 )
1382 failed_num[0] = pd_idx;
1383 if ( failed < 2 )
1384 failed_num[1] = (failed_num[0] == qd_idx) ? pd_idx : qd_idx;
1385 1400
1386 failed_needupdate[0] = !test_bit(R5_UPTODATE, &sh->dev[failed_num[0]].flags); 1401 set_bit(STRIPE_HANDLE, &sh->state);
1387 failed_needupdate[1] = !test_bit(R5_UPTODATE, &sh->dev[failed_num[1]].flags);
1388 1402
1389 PRINTK("sync: failed=%d num=%d,%d fnu=%u%u\n", 1403 BUG_ON(failed>2);
1390 failed, failed_num[0], failed_num[1], failed_needupdate[0], failed_needupdate[1]); 1404 BUG_ON(uptodate < disks);
1405 /* Want to check and possibly repair P and Q.
1406 * However there could be one 'failed' device, in which
1407 * case we can only check one of them, possibly using the
1408 * other to generate missing data
1409 */
1391 1410
1392#if 0 /* RAID-6: This code seems to require that CHECK_PARITY destroys the uptodateness of the parity */ 1411 /* If !tmp_page, we cannot do the calculations,
1393 /* should be able to compute the missing block(s) and write to spare */ 1412 * but as we have set STRIPE_HANDLE, we will soon be called
1394 if ( failed_needupdate[0] ^ failed_needupdate[1] ) { 1413 * by stripe_handle with a tmp_page - just wait until then.
1395 if (uptodate+1 != disks) 1414 */
1396 BUG(); 1415 if (tmp_page) {
1397 compute_block_1(sh, failed_needupdate[0] ? failed_num[0] : failed_num[1]); 1416 if (failed == q_failed) {
1398 uptodate++; 1417 /* The only possible failed device holds 'Q', so it makes
1399 } else if ( failed_needupdate[0] & failed_needupdate[1] ) { 1418 * sense to check P (If anything else were failed, we would
1400 if (uptodate+2 != disks) 1419 * have used P to recreate it).
1401 BUG(); 1420 */
1402 compute_block_2(sh, failed_num[0], failed_num[1]); 1421 compute_block_1(sh, pd_idx, 1);
1403 uptodate += 2; 1422 if (!page_is_zero(sh->dev[pd_idx].page)) {
1423 compute_block_1(sh,pd_idx,0);
1424 update_p = 1;
1425 }
1426 }
1427 if (!q_failed && failed < 2) {
1428 /* q is not failed, and we didn't use it to generate
1429 * anything, so it makes sense to check it
1430 */
1431 memcpy(page_address(tmp_page),
1432 page_address(sh->dev[qd_idx].page),
1433 STRIPE_SIZE);
1434 compute_parity(sh, UPDATE_PARITY);
1435 if (memcmp(page_address(tmp_page),
1436 page_address(sh->dev[qd_idx].page),
1437 STRIPE_SIZE)!= 0) {
1438 clear_bit(STRIPE_INSYNC, &sh->state);
1439 update_q = 1;
1440 }
1441 }
1442 if (update_p || update_q) {
1443 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1444 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1445 /* don't try to repair!! */
1446 update_p = update_q = 0;
1404 } 1447 }
1405#else
1406 compute_block_2(sh, failed_num[0], failed_num[1]);
1407 uptodate += failed_needupdate[0] + failed_needupdate[1];
1408#endif
1409 1448
1410 if (uptodate != disks) 1449 /* now write out any block on a failed drive,
1411 BUG(); 1450 * or P or Q if they need it
1451 */
1412 1452
1413 PRINTK("Marking for sync stripe %llu blocks %d,%d\n", 1453 if (failed == 2) {
1414 (unsigned long long)sh->sector, failed_num[0], failed_num[1]); 1454 dev = &sh->dev[failed_num[1]];
1455 locked++;
1456 set_bit(R5_LOCKED, &dev->flags);
1457 set_bit(R5_Wantwrite, &dev->flags);
1458 }
1459 if (failed >= 1) {
1460 dev = &sh->dev[failed_num[0]];
1461 locked++;
1462 set_bit(R5_LOCKED, &dev->flags);
1463 set_bit(R5_Wantwrite, &dev->flags);
1464 }
1415 1465
1416 /**** FIX: Should we really do both of these unconditionally? ****/ 1466 if (update_p) {
1417 adev = &sh->dev[failed_num[0]]; 1467 dev = &sh->dev[pd_idx];
1418 locked += !test_bit(R5_LOCKED, &adev->flags); 1468 locked ++;
1419 set_bit(R5_LOCKED, &adev->flags); 1469 set_bit(R5_LOCKED, &dev->flags);
1420 set_bit(R5_Wantwrite, &adev->flags); 1470 set_bit(R5_Wantwrite, &dev->flags);
1421 bdev = &sh->dev[failed_num[1]]; 1471 }
1422 locked += !test_bit(R5_LOCKED, &bdev->flags); 1472 if (update_q) {
1423 set_bit(R5_LOCKED, &bdev->flags); 1473 dev = &sh->dev[qd_idx];
1474 locked++;
1475 set_bit(R5_LOCKED, &dev->flags);
1476 set_bit(R5_Wantwrite, &dev->flags);
1477 }
1424 clear_bit(STRIPE_DEGRADED, &sh->state); 1478 clear_bit(STRIPE_DEGRADED, &sh->state);
1425 set_bit(R5_Wantwrite, &bdev->flags);
1426 1479
1427 set_bit(STRIPE_INSYNC, &sh->state); 1480 set_bit(STRIPE_INSYNC, &sh->state);
1428 set_bit(R5_Syncio, &adev->flags);
1429 set_bit(R5_Syncio, &bdev->flags);
1430 } 1481 }
1431 } 1482 }
1483
1432 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 1484 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1433 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 1485 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1434 clear_bit(STRIPE_SYNCING, &sh->state); 1486 clear_bit(STRIPE_SYNCING, &sh->state);
1435 } 1487 }
1436 1488
1489 /* If the failed drives are just a ReadError, then we might need
1490 * to progress the repair/check process
1491 */
1492 if (failed <= 2 && ! conf->mddev->ro)
1493 for (i=0; i<failed;i++) {
1494 dev = &sh->dev[failed_num[i]];
1495 if (test_bit(R5_ReadError, &dev->flags)
1496 && !test_bit(R5_LOCKED, &dev->flags)
1497 && test_bit(R5_UPTODATE, &dev->flags)
1498 ) {
1499 if (!test_bit(R5_ReWrite, &dev->flags)) {
1500 set_bit(R5_Wantwrite, &dev->flags);
1501 set_bit(R5_ReWrite, &dev->flags);
1502 set_bit(R5_LOCKED, &dev->flags);
1503 } else {
1504 /* let's read it back */
1505 set_bit(R5_Wantread, &dev->flags);
1506 set_bit(R5_LOCKED, &dev->flags);
1507 }
1508 }
1509 }
1437 spin_unlock(&sh->lock); 1510 spin_unlock(&sh->lock);
1438 1511
1439 while ((bi=return_bi)) { 1512 while ((bi=return_bi)) {
@@ -1472,7 +1545,7 @@ static void handle_stripe(struct stripe_head *sh)
1472 rcu_read_unlock(); 1545 rcu_read_unlock();
1473 1546
1474 if (rdev) { 1547 if (rdev) {
1475 if (test_bit(R5_Syncio, &sh->dev[i].flags)) 1548 if (syncing)
1476 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1549 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1477 1550
1478 bi->bi_bdev = rdev->bdev; 1551 bi->bi_bdev = rdev->bdev;
@@ -1489,6 +1562,9 @@ static void handle_stripe(struct stripe_head *sh)
1489 bi->bi_io_vec[0].bv_offset = 0; 1562 bi->bi_io_vec[0].bv_offset = 0;
1490 bi->bi_size = STRIPE_SIZE; 1563 bi->bi_size = STRIPE_SIZE;
1491 bi->bi_next = NULL; 1564 bi->bi_next = NULL;
1565 if (rw == WRITE &&
1566 test_bit(R5_ReWrite, &sh->dev[i].flags))
1567 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1492 generic_make_request(bi); 1568 generic_make_request(bi);
1493 } else { 1569 } else {
1494 if (rw == 1) 1570 if (rw == 1)
@@ -1664,7 +1740,7 @@ static int make_request (request_queue_t *q, struct bio * bi)
1664 } 1740 }
1665 finish_wait(&conf->wait_for_overlap, &w); 1741 finish_wait(&conf->wait_for_overlap, &w);
1666 raid6_plug_device(conf); 1742 raid6_plug_device(conf);
1667 handle_stripe(sh); 1743 handle_stripe(sh, NULL);
1668 release_stripe(sh); 1744 release_stripe(sh);
1669 } else { 1745 } else {
1670 /* cannot get stripe for read-ahead, just give-up */ 1746 /* cannot get stripe for read-ahead, just give-up */
@@ -1728,6 +1804,7 @@ static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, i
1728 return rv; 1804 return rv;
1729 } 1805 }
1730 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1806 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1807 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1731 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 1808 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
1732 /* we can skip this block, and probably more */ 1809 /* we can skip this block, and probably more */
1733 sync_blocks /= STRIPE_SECTORS; 1810 sync_blocks /= STRIPE_SECTORS;
@@ -1765,7 +1842,7 @@ static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, i
1765 clear_bit(STRIPE_INSYNC, &sh->state); 1842 clear_bit(STRIPE_INSYNC, &sh->state);
1766 spin_unlock(&sh->lock); 1843 spin_unlock(&sh->lock);
1767 1844
1768 handle_stripe(sh); 1845 handle_stripe(sh, NULL);
1769 release_stripe(sh); 1846 release_stripe(sh);
1770 1847
1771 return STRIPE_SECTORS; 1848 return STRIPE_SECTORS;
@@ -1821,7 +1898,7 @@ static void raid6d (mddev_t *mddev)
1821 spin_unlock_irq(&conf->device_lock); 1898 spin_unlock_irq(&conf->device_lock);
1822 1899
1823 handled++; 1900 handled++;
1824 handle_stripe(sh); 1901 handle_stripe(sh, conf->spare_page);
1825 release_stripe(sh); 1902 release_stripe(sh);
1826 1903
1827 spin_lock_irq(&conf->device_lock); 1904 spin_lock_irq(&conf->device_lock);
@@ -1848,17 +1925,19 @@ static int run(mddev_t *mddev)
1848 return -EIO; 1925 return -EIO;
1849 } 1926 }
1850 1927
1851 mddev->private = kmalloc (sizeof (raid6_conf_t) 1928 mddev->private = kzalloc(sizeof (raid6_conf_t)
1852 + mddev->raid_disks * sizeof(struct disk_info), 1929 + mddev->raid_disks * sizeof(struct disk_info),
1853 GFP_KERNEL); 1930 GFP_KERNEL);
1854 if ((conf = mddev->private) == NULL) 1931 if ((conf = mddev->private) == NULL)
1855 goto abort; 1932 goto abort;
1856 memset (conf, 0, sizeof (*conf) + mddev->raid_disks * sizeof(struct disk_info) );
1857 conf->mddev = mddev; 1933 conf->mddev = mddev;
1858 1934
1859 if ((conf->stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL) 1935 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1936 goto abort;
1937
1938 conf->spare_page = alloc_page(GFP_KERNEL);
1939 if (!conf->spare_page)
1860 goto abort; 1940 goto abort;
1861 memset(conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE);
1862 1941
1863 spin_lock_init(&conf->device_lock); 1942 spin_lock_init(&conf->device_lock);
1864 init_waitqueue_head(&conf->wait_for_stripe); 1943 init_waitqueue_head(&conf->wait_for_stripe);
@@ -1929,13 +2008,18 @@ static int run(mddev_t *mddev)
1929 goto abort; 2008 goto abort;
1930 } 2009 }
1931 2010
1932#if 0 /* FIX: For now */
1933 if (mddev->degraded > 0 && 2011 if (mddev->degraded > 0 &&
1934 mddev->recovery_cp != MaxSector) { 2012 mddev->recovery_cp != MaxSector) {
1935 printk(KERN_ERR "raid6: cannot start dirty degraded array for %s\n", mdname(mddev)); 2013 if (mddev->ok_start_degraded)
1936 goto abort; 2014 printk(KERN_WARNING "raid6: starting dirty degraded array:%s"
2015 "- data corruption possible.\n",
2016 mdname(mddev));
2017 else {
2018 printk(KERN_ERR "raid6: cannot start dirty degraded array"
2019 " for %s\n", mdname(mddev));
2020 goto abort;
2021 }
1937 } 2022 }
1938#endif
1939 2023
1940 { 2024 {
1941 mddev->thread = md_register_thread(raid6d, mddev, "%s_raid6"); 2025 mddev->thread = md_register_thread(raid6d, mddev, "%s_raid6");
@@ -1977,7 +2061,7 @@ static int run(mddev_t *mddev)
1977 */ 2061 */
1978 { 2062 {
1979 int stripe = (mddev->raid_disks-2) * mddev->chunk_size 2063 int stripe = (mddev->raid_disks-2) * mddev->chunk_size
1980 / PAGE_CACHE_SIZE; 2064 / PAGE_SIZE;
1981 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 2065 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
1982 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 2066 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
1983 } 2067 }
@@ -1985,18 +2069,14 @@ static int run(mddev_t *mddev)
1985 /* Ok, everything is just fine now */ 2069 /* Ok, everything is just fine now */
1986 mddev->array_size = mddev->size * (mddev->raid_disks - 2); 2070 mddev->array_size = mddev->size * (mddev->raid_disks - 2);
1987 2071
1988 if (mddev->bitmap)
1989 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1990
1991 mddev->queue->unplug_fn = raid6_unplug_device; 2072 mddev->queue->unplug_fn = raid6_unplug_device;
1992 mddev->queue->issue_flush_fn = raid6_issue_flush; 2073 mddev->queue->issue_flush_fn = raid6_issue_flush;
1993 return 0; 2074 return 0;
1994abort: 2075abort:
1995 if (conf) { 2076 if (conf) {
1996 print_raid6_conf(conf); 2077 print_raid6_conf(conf);
1997 if (conf->stripe_hashtbl) 2078 safe_put_page(conf->spare_page);
1998 free_pages((unsigned long) conf->stripe_hashtbl, 2079 kfree(conf->stripe_hashtbl);
1999 HASH_PAGES_ORDER);
2000 kfree(conf); 2080 kfree(conf);
2001 } 2081 }
2002 mddev->private = NULL; 2082 mddev->private = NULL;
@@ -2013,7 +2093,7 @@ static int stop (mddev_t *mddev)
2013 md_unregister_thread(mddev->thread); 2093 md_unregister_thread(mddev->thread);
2014 mddev->thread = NULL; 2094 mddev->thread = NULL;
2015 shrink_stripes(conf); 2095 shrink_stripes(conf);
2016 free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER); 2096 kfree(conf->stripe_hashtbl);
2017 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2097 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2018 kfree(conf); 2098 kfree(conf);
2019 mddev->private = NULL; 2099 mddev->private = NULL;
@@ -2040,12 +2120,13 @@ static void print_sh (struct seq_file *seq, struct stripe_head *sh)
2040static void printall (struct seq_file *seq, raid6_conf_t *conf) 2120static void printall (struct seq_file *seq, raid6_conf_t *conf)
2041{ 2121{
2042 struct stripe_head *sh; 2122 struct stripe_head *sh;
2123 struct hlist_node *hn;
2043 int i; 2124 int i;
2044 2125
2045 spin_lock_irq(&conf->device_lock); 2126 spin_lock_irq(&conf->device_lock);
2046 for (i = 0; i < NR_HASH; i++) { 2127 for (i = 0; i < NR_HASH; i++) {
2047 sh = conf->stripe_hashtbl[i]; 2128 sh = conf->stripe_hashtbl[i];
2048 for (; sh; sh = sh->hash_next) { 2129 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
2049 if (sh->raid_conf != conf) 2130 if (sh->raid_conf != conf)
2050 continue; 2131 continue;
2051 print_sh(seq, sh); 2132 print_sh(seq, sh);
@@ -2223,17 +2304,12 @@ static void raid6_quiesce(mddev_t *mddev, int state)
2223 spin_unlock_irq(&conf->device_lock); 2304 spin_unlock_irq(&conf->device_lock);
2224 break; 2305 break;
2225 } 2306 }
2226 if (mddev->thread) {
2227 if (mddev->bitmap)
2228 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2229 else
2230 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2231 md_wakeup_thread(mddev->thread);
2232 }
2233} 2307}
2234static mdk_personality_t raid6_personality= 2308
2309static struct mdk_personality raid6_personality =
2235{ 2310{
2236 .name = "raid6", 2311 .name = "raid6",
2312 .level = 6,
2237 .owner = THIS_MODULE, 2313 .owner = THIS_MODULE,
2238 .make_request = make_request, 2314 .make_request = make_request,
2239 .run = run, 2315 .run = run,
@@ -2248,7 +2324,7 @@ static mdk_personality_t raid6_personality=
2248 .quiesce = raid6_quiesce, 2324 .quiesce = raid6_quiesce,
2249}; 2325};
2250 2326
2251static int __init raid6_init (void) 2327static int __init raid6_init(void)
2252{ 2328{
2253 int e; 2329 int e;
2254 2330
@@ -2256,15 +2332,17 @@ static int __init raid6_init (void)
2256 if ( e ) 2332 if ( e )
2257 return e; 2333 return e;
2258 2334
2259 return register_md_personality (RAID6, &raid6_personality); 2335 return register_md_personality(&raid6_personality);
2260} 2336}
2261 2337
2262static void raid6_exit (void) 2338static void raid6_exit (void)
2263{ 2339{
2264 unregister_md_personality (RAID6); 2340 unregister_md_personality(&raid6_personality);
2265} 2341}
2266 2342
2267module_init(raid6_init); 2343module_init(raid6_init);
2268module_exit(raid6_exit); 2344module_exit(raid6_exit);
2269MODULE_LICENSE("GPL"); 2345MODULE_LICENSE("GPL");
2270MODULE_ALIAS("md-personality-8"); /* RAID6 */ 2346MODULE_ALIAS("md-personality-8"); /* RAID6 */
2347MODULE_ALIAS("md-raid6");
2348MODULE_ALIAS("md-level-6");