diff options
author | Christoph Hellwig <hch@lst.de> | 2009-03-30 23:27:03 -0400 |
---|---|---|
committer | NeilBrown <neilb@suse.de> | 2009-03-30 23:27:03 -0400 |
commit | ef740c372dfd80e706dbf955d4e4aedda6c0c148 (patch) | |
tree | 8d9ef9db346ee1ba319a125c9de83cdde049510d /drivers/md/raid1.h | |
parent | 2a40a8aed083d988df6822bb9b1b08fb7ce21e1d (diff) |
md: move headers out of include/linux/raid/
Move the headers with the local structures for the disciplines and
bitmap.h into drivers/md/ so that they are more easily grepable for
hacking and not far away. md.h is left where it is for now as there
are some uses from the outside.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: NeilBrown <neilb@suse.de>
Diffstat (limited to 'drivers/md/raid1.h')
-rw-r--r-- | drivers/md/raid1.h | 134 |
1 files changed, 134 insertions, 0 deletions
diff --git a/drivers/md/raid1.h b/drivers/md/raid1.h new file mode 100644 index 000000000000..0a9ba7c3302e --- /dev/null +++ b/drivers/md/raid1.h | |||
@@ -0,0 +1,134 @@ | |||
1 | #ifndef _RAID1_H | ||
2 | #define _RAID1_H | ||
3 | |||
4 | #include <linux/raid/md.h> | ||
5 | |||
6 | typedef struct mirror_info mirror_info_t; | ||
7 | |||
8 | struct mirror_info { | ||
9 | mdk_rdev_t *rdev; | ||
10 | sector_t head_position; | ||
11 | }; | ||
12 | |||
13 | /* | ||
14 | * memory pools need a pointer to the mddev, so they can force an unplug | ||
15 | * when memory is tight, and a count of the number of drives that the | ||
16 | * pool was allocated for, so they know how much to allocate and free. | ||
17 | * mddev->raid_disks cannot be used, as it can change while a pool is active | ||
18 | * These two datums are stored in a kmalloced struct. | ||
19 | */ | ||
20 | |||
21 | struct pool_info { | ||
22 | mddev_t *mddev; | ||
23 | int raid_disks; | ||
24 | }; | ||
25 | |||
26 | |||
27 | typedef struct r1bio_s r1bio_t; | ||
28 | |||
29 | struct r1_private_data_s { | ||
30 | mddev_t *mddev; | ||
31 | mirror_info_t *mirrors; | ||
32 | int raid_disks; | ||
33 | int last_used; | ||
34 | sector_t next_seq_sect; | ||
35 | spinlock_t device_lock; | ||
36 | |||
37 | struct list_head retry_list; | ||
38 | /* queue pending writes and submit them on unplug */ | ||
39 | struct bio_list pending_bio_list; | ||
40 | /* queue of writes that have been unplugged */ | ||
41 | struct bio_list flushing_bio_list; | ||
42 | |||
43 | /* for use when syncing mirrors: */ | ||
44 | |||
45 | spinlock_t resync_lock; | ||
46 | int nr_pending; | ||
47 | int nr_waiting; | ||
48 | int nr_queued; | ||
49 | int barrier; | ||
50 | sector_t next_resync; | ||
51 | int fullsync; /* set to 1 if a full sync is needed, | ||
52 | * (fresh device added). | ||
53 | * Cleared when a sync completes. | ||
54 | */ | ||
55 | |||
56 | wait_queue_head_t wait_barrier; | ||
57 | |||
58 | struct pool_info *poolinfo; | ||
59 | |||
60 | struct page *tmppage; | ||
61 | |||
62 | mempool_t *r1bio_pool; | ||
63 | mempool_t *r1buf_pool; | ||
64 | }; | ||
65 | |||
66 | typedef struct r1_private_data_s conf_t; | ||
67 | |||
68 | /* | ||
69 | * this is the only point in the RAID code where we violate | ||
70 | * C type safety. mddev->private is an 'opaque' pointer. | ||
71 | */ | ||
72 | #define mddev_to_conf(mddev) ((conf_t *) mddev->private) | ||
73 | |||
74 | /* | ||
75 | * this is our 'private' RAID1 bio. | ||
76 | * | ||
77 | * it contains information about what kind of IO operations were started | ||
78 | * for this RAID1 operation, and about their status: | ||
79 | */ | ||
80 | |||
81 | struct r1bio_s { | ||
82 | atomic_t remaining; /* 'have we finished' count, | ||
83 | * used from IRQ handlers | ||
84 | */ | ||
85 | atomic_t behind_remaining; /* number of write-behind ios remaining | ||
86 | * in this BehindIO request | ||
87 | */ | ||
88 | sector_t sector; | ||
89 | int sectors; | ||
90 | unsigned long state; | ||
91 | mddev_t *mddev; | ||
92 | /* | ||
93 | * original bio going to /dev/mdx | ||
94 | */ | ||
95 | struct bio *master_bio; | ||
96 | /* | ||
97 | * if the IO is in READ direction, then this is where we read | ||
98 | */ | ||
99 | int read_disk; | ||
100 | |||
101 | struct list_head retry_list; | ||
102 | struct bitmap_update *bitmap_update; | ||
103 | /* | ||
104 | * if the IO is in WRITE direction, then multiple bios are used. | ||
105 | * We choose the number when they are allocated. | ||
106 | */ | ||
107 | struct bio *bios[0]; | ||
108 | /* DO NOT PUT ANY NEW FIELDS HERE - bios array is contiguously alloced*/ | ||
109 | }; | ||
110 | |||
111 | /* when we get a read error on a read-only array, we redirect to another | ||
112 | * device without failing the first device, or trying to over-write to | ||
113 | * correct the read error. To keep track of bad blocks on a per-bio | ||
114 | * level, we store IO_BLOCKED in the appropriate 'bios' pointer | ||
115 | */ | ||
116 | #define IO_BLOCKED ((struct bio*)1) | ||
117 | |||
118 | /* bits for r1bio.state */ | ||
119 | #define R1BIO_Uptodate 0 | ||
120 | #define R1BIO_IsSync 1 | ||
121 | #define R1BIO_Degraded 2 | ||
122 | #define R1BIO_BehindIO 3 | ||
123 | #define R1BIO_Barrier 4 | ||
124 | #define R1BIO_BarrierRetry 5 | ||
125 | /* For write-behind requests, we call bi_end_io when | ||
126 | * the last non-write-behind device completes, providing | ||
127 | * any write was successful. Otherwise we call when | ||
128 | * any write-behind write succeeds, otherwise we call | ||
129 | * with failure when last write completes (and all failed). | ||
130 | * Record that bi_end_io was called with this flag... | ||
131 | */ | ||
132 | #define R1BIO_Returned 6 | ||
133 | |||
134 | #endif | ||