aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/md/raid1.c
diff options
context:
space:
mode:
authorNeilBrown <neilb@suse.de>2012-07-03 03:45:31 -0400
committerNeilBrown <neilb@suse.de>2012-07-03 03:45:31 -0400
commitb357f04a67c2aeee828b240863cd3f21d6cb3179 (patch)
treeb8495f2c04fc40d5a2885fe4f7ff8d627cd55031 /drivers/md/raid1.c
parentf456309106e9657645c81bce1a6bb3230393564e (diff)
md: fix up plugging (again).
The value returned by "mddev_check_plug" is only valid until the next 'schedule' as that will unplug things. This could happen at any call to mempool_alloc. So just calling mddev_check_plug at the start doesn't really make sense. So call it just before, or just after, queuing things for the thread. As the action that happens at unplug is to wake the thread, this makes lots of sense. If we cannot add a plug (which requires a small GFP_ATOMIC alloc) we wake thread immediately. RAID5 is a bit different. Requests are queued for the thread and the thread is woken by release_stripe. So we don't need to wake the thread on failure. However the thread doesn't perform certain actions when there is any active plug, so it is important to install a plug before waking the thread. So for RAID5 we install the plug *before* queuing the request and waking the thread. Without this patch it is possible for raid1 or raid10 to queue a request without then waking the thread, resulting in the array locking up. Also change raid10 to only flush_pending_write when there are not active plugs, just like raid1. This patch is suitable for 3.0 or later. I plan to submit it to -stable, but I'll like to let it spend a few weeks in mainline first to be sure it is completely safe. Signed-off-by: NeilBrown <neilb@suse.de>
Diffstat (limited to 'drivers/md/raid1.c')
-rw-r--r--drivers/md/raid1.c7
1 files changed, 2 insertions, 5 deletions
diff --git a/drivers/md/raid1.c b/drivers/md/raid1.c
index 34b4665cb0b6..8c2754f835ef 100644
--- a/drivers/md/raid1.c
+++ b/drivers/md/raid1.c
@@ -883,7 +883,6 @@ static void make_request(struct mddev *mddev, struct bio * bio)
883 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 883 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
884 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 884 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
885 struct md_rdev *blocked_rdev; 885 struct md_rdev *blocked_rdev;
886 int plugged;
887 int first_clone; 886 int first_clone;
888 int sectors_handled; 887 int sectors_handled;
889 int max_sectors; 888 int max_sectors;
@@ -1034,7 +1033,6 @@ read_again:
1034 * the bad blocks. Each set of writes gets it's own r1bio 1033 * the bad blocks. Each set of writes gets it's own r1bio
1035 * with a set of bios attached. 1034 * with a set of bios attached.
1036 */ 1035 */
1037 plugged = mddev_check_plugged(mddev);
1038 1036
1039 disks = conf->raid_disks * 2; 1037 disks = conf->raid_disks * 2;
1040 retry_write: 1038 retry_write:
@@ -1191,6 +1189,8 @@ read_again:
1191 bio_list_add(&conf->pending_bio_list, mbio); 1189 bio_list_add(&conf->pending_bio_list, mbio);
1192 conf->pending_count++; 1190 conf->pending_count++;
1193 spin_unlock_irqrestore(&conf->device_lock, flags); 1191 spin_unlock_irqrestore(&conf->device_lock, flags);
1192 if (!mddev_check_plugged(mddev))
1193 md_wakeup_thread(mddev->thread);
1194 } 1194 }
1195 /* Mustn't call r1_bio_write_done before this next test, 1195 /* Mustn't call r1_bio_write_done before this next test,
1196 * as it could result in the bio being freed. 1196 * as it could result in the bio being freed.
@@ -1213,9 +1213,6 @@ read_again:
1213 1213
1214 /* In case raid1d snuck in to freeze_array */ 1214 /* In case raid1d snuck in to freeze_array */
1215 wake_up(&conf->wait_barrier); 1215 wake_up(&conf->wait_barrier);
1216
1217 if (do_sync || !bitmap || !plugged)
1218 md_wakeup_thread(mddev->thread);
1219} 1216}
1220 1217
1221static void status(struct seq_file *seq, struct mddev *mddev) 1218static void status(struct seq_file *seq, struct mddev *mddev)