diff options
author | Kiyoshi Ueda <k-ueda@ct.jp.nec.com> | 2009-06-22 05:12:35 -0400 |
---|---|---|
committer | Alasdair G Kergon <agk@redhat.com> | 2009-06-22 05:12:35 -0400 |
commit | cec47e3d4a861e1d942b3a580d0bbef2700d2bb2 (patch) | |
tree | 2f92b957d515a5d887fe0147984cda3203c8b8ea /drivers/md/dm.h | |
parent | f5db4af466e2dca0fe822019812d586ca910b00c (diff) |
dm: prepare for request based option
This patch adds core functions for request-based dm.
When struct mapped device (md) is initialized, md->queue has
an I/O scheduler and the following functions are used for
request-based dm as the queue functions:
make_request_fn: dm_make_request()
pref_fn: dm_prep_fn()
request_fn: dm_request_fn()
softirq_done_fn: dm_softirq_done()
lld_busy_fn: dm_lld_busy()
Actual initializations are done in another patch (PATCH 2).
Below is a brief summary of how request-based dm behaves, including:
- making request from bio
- cloning, mapping and dispatching request
- completing request and bio
- suspending md
- resuming md
bio to request
==============
md->queue->make_request_fn() (dm_make_request()) calls __make_request()
for a bio submitted to the md.
Then, the bio is kept in the queue as a new request or merged into
another request in the queue if possible.
Cloning and Mapping
===================
Cloning and mapping are done in md->queue->request_fn() (dm_request_fn()),
when requests are dispatched after they are sorted by the I/O scheduler.
dm_request_fn() checks busy state of underlying devices using
target's busy() function and stops dispatching requests to keep them
on the dm device's queue if busy.
It helps better I/O merging, since no merge is done for a request
once it is dispatched to underlying devices.
Actual cloning and mapping are done in dm_prep_fn() and map_request()
called from dm_request_fn().
dm_prep_fn() clones not only request but also bios of the request
so that dm can hold bio completion in error cases and prevent
the bio submitter from noticing the error.
(See the "Completion" section below for details.)
After the cloning, the clone is mapped by target's map_rq() function
and inserted to underlying device's queue using
blk_insert_cloned_request().
Completion
==========
Request completion can be hooked by rq->end_io(), but then, all bios
in the request will have been completed even error cases, and the bio
submitter will have noticed the error.
To prevent the bio completion in error cases, request-based dm clones
both bio and request and hooks both bio->bi_end_io() and rq->end_io():
bio->bi_end_io(): end_clone_bio()
rq->end_io(): end_clone_request()
Summary of the request completion flow is below:
blk_end_request() for a clone request
=> blk_update_request()
=> bio->bi_end_io() == end_clone_bio() for each clone bio
=> Free the clone bio
=> Success: Complete the original bio (blk_update_request())
Error: Don't complete the original bio
=> blk_finish_request()
=> rq->end_io() == end_clone_request()
=> blk_complete_request()
=> dm_softirq_done()
=> Free the clone request
=> Success: Complete the original request (blk_end_request())
Error: Requeue the original request
end_clone_bio() completes the original request on the size of
the original bio in successful cases.
Even if all bios in the original request are completed by that
completion, the original request must not be completed yet to keep
the ordering of request completion for the stacking.
So end_clone_bio() uses blk_update_request() instead of
blk_end_request().
In error cases, end_clone_bio() doesn't complete the original bio.
It just frees the cloned bio and gives over the error handling to
end_clone_request().
end_clone_request(), which is called with queue lock held, completes
the clone request and the original request in a softirq context
(dm_softirq_done()), which has no queue lock, to avoid a deadlock
issue on submission of another request during the completion:
- The submitted request may be mapped to the same device
- Request submission requires queue lock, but the queue lock
has been held by itself and it doesn't know that
The clone request has no clone bio when dm_softirq_done() is called.
So target drivers can't resubmit it again even error cases.
Instead, they can ask dm core for requeueing and remapping
the original request in that cases.
suspend
=======
Request-based dm uses stopping md->queue as suspend of the md.
For noflush suspend, just stops md->queue.
For flush suspend, inserts a marker request to the tail of md->queue.
And dispatches all requests in md->queue until the marker comes to
the front of md->queue. Then, stops dispatching request and waits
for the all dispatched requests to complete.
After that, completes the marker request, stops md->queue and
wake up the waiter on the suspend queue, md->wait.
resume
======
Starts md->queue.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Diffstat (limited to 'drivers/md/dm.h')
-rw-r--r-- | drivers/md/dm.h | 1 |
1 files changed, 1 insertions, 0 deletions
diff --git a/drivers/md/dm.h b/drivers/md/dm.h index 604e85caadf6..8dcabb1caff1 100644 --- a/drivers/md/dm.h +++ b/drivers/md/dm.h | |||
@@ -50,6 +50,7 @@ void dm_table_presuspend_targets(struct dm_table *t); | |||
50 | void dm_table_postsuspend_targets(struct dm_table *t); | 50 | void dm_table_postsuspend_targets(struct dm_table *t); |
51 | int dm_table_resume_targets(struct dm_table *t); | 51 | int dm_table_resume_targets(struct dm_table *t); |
52 | int dm_table_any_congested(struct dm_table *t, int bdi_bits); | 52 | int dm_table_any_congested(struct dm_table *t, int bdi_bits); |
53 | int dm_table_any_busy_target(struct dm_table *t); | ||
53 | 54 | ||
54 | /* | 55 | /* |
55 | * To check the return value from dm_table_find_target(). | 56 | * To check the return value from dm_table_find_target(). |