diff options
author | Joe Thornber <ejt@redhat.com> | 2013-03-01 17:45:51 -0500 |
---|---|---|
committer | Alasdair G Kergon <agk@redhat.com> | 2013-03-01 17:45:51 -0500 |
commit | f283635281132af7bc7b90af3c105b8c0f73b9c7 (patch) | |
tree | 5ea66de48bc1f93a34b301986fa5455e53ac5a4c /drivers/md/dm-cache-policy-mq.c | |
parent | c6b4fcbad044e6fffcc75bba160e720eb8d67d17 (diff) |
dm cache: add mq policy
A cache policy that uses a multiqueue ordered by recent hit
count to select which blocks should be promoted and demoted.
This is meant to be a general purpose policy. It prioritises
reads over writes.
Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Diffstat (limited to 'drivers/md/dm-cache-policy-mq.c')
-rw-r--r-- | drivers/md/dm-cache-policy-mq.c | 1195 |
1 files changed, 1195 insertions, 0 deletions
diff --git a/drivers/md/dm-cache-policy-mq.c b/drivers/md/dm-cache-policy-mq.c new file mode 100644 index 000000000000..964153255076 --- /dev/null +++ b/drivers/md/dm-cache-policy-mq.c | |||
@@ -0,0 +1,1195 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2012 Red Hat. All rights reserved. | ||
3 | * | ||
4 | * This file is released under the GPL. | ||
5 | */ | ||
6 | |||
7 | #include "dm-cache-policy.h" | ||
8 | #include "dm.h" | ||
9 | |||
10 | #include <linux/hash.h> | ||
11 | #include <linux/module.h> | ||
12 | #include <linux/mutex.h> | ||
13 | #include <linux/slab.h> | ||
14 | #include <linux/vmalloc.h> | ||
15 | |||
16 | #define DM_MSG_PREFIX "cache-policy-mq" | ||
17 | #define MQ_VERSION "1.0.0" | ||
18 | |||
19 | static struct kmem_cache *mq_entry_cache; | ||
20 | |||
21 | /*----------------------------------------------------------------*/ | ||
22 | |||
23 | static unsigned next_power(unsigned n, unsigned min) | ||
24 | { | ||
25 | return roundup_pow_of_two(max(n, min)); | ||
26 | } | ||
27 | |||
28 | /*----------------------------------------------------------------*/ | ||
29 | |||
30 | static unsigned long *alloc_bitset(unsigned nr_entries) | ||
31 | { | ||
32 | size_t s = sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG); | ||
33 | return vzalloc(s); | ||
34 | } | ||
35 | |||
36 | static void free_bitset(unsigned long *bits) | ||
37 | { | ||
38 | vfree(bits); | ||
39 | } | ||
40 | |||
41 | /*----------------------------------------------------------------*/ | ||
42 | |||
43 | /* | ||
44 | * Large, sequential ios are probably better left on the origin device since | ||
45 | * spindles tend to have good bandwidth. | ||
46 | * | ||
47 | * The io_tracker tries to spot when the io is in one of these sequential | ||
48 | * modes. | ||
49 | * | ||
50 | * Two thresholds to switch between random and sequential io mode are defaulting | ||
51 | * as follows and can be adjusted via the constructor and message interfaces. | ||
52 | */ | ||
53 | #define RANDOM_THRESHOLD_DEFAULT 4 | ||
54 | #define SEQUENTIAL_THRESHOLD_DEFAULT 512 | ||
55 | |||
56 | enum io_pattern { | ||
57 | PATTERN_SEQUENTIAL, | ||
58 | PATTERN_RANDOM | ||
59 | }; | ||
60 | |||
61 | struct io_tracker { | ||
62 | enum io_pattern pattern; | ||
63 | |||
64 | unsigned nr_seq_samples; | ||
65 | unsigned nr_rand_samples; | ||
66 | unsigned thresholds[2]; | ||
67 | |||
68 | dm_oblock_t last_end_oblock; | ||
69 | }; | ||
70 | |||
71 | static void iot_init(struct io_tracker *t, | ||
72 | int sequential_threshold, int random_threshold) | ||
73 | { | ||
74 | t->pattern = PATTERN_RANDOM; | ||
75 | t->nr_seq_samples = 0; | ||
76 | t->nr_rand_samples = 0; | ||
77 | t->last_end_oblock = 0; | ||
78 | t->thresholds[PATTERN_RANDOM] = random_threshold; | ||
79 | t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold; | ||
80 | } | ||
81 | |||
82 | static enum io_pattern iot_pattern(struct io_tracker *t) | ||
83 | { | ||
84 | return t->pattern; | ||
85 | } | ||
86 | |||
87 | static void iot_update_stats(struct io_tracker *t, struct bio *bio) | ||
88 | { | ||
89 | if (bio->bi_sector == from_oblock(t->last_end_oblock) + 1) | ||
90 | t->nr_seq_samples++; | ||
91 | else { | ||
92 | /* | ||
93 | * Just one non-sequential IO is enough to reset the | ||
94 | * counters. | ||
95 | */ | ||
96 | if (t->nr_seq_samples) { | ||
97 | t->nr_seq_samples = 0; | ||
98 | t->nr_rand_samples = 0; | ||
99 | } | ||
100 | |||
101 | t->nr_rand_samples++; | ||
102 | } | ||
103 | |||
104 | t->last_end_oblock = to_oblock(bio->bi_sector + bio_sectors(bio) - 1); | ||
105 | } | ||
106 | |||
107 | static void iot_check_for_pattern_switch(struct io_tracker *t) | ||
108 | { | ||
109 | switch (t->pattern) { | ||
110 | case PATTERN_SEQUENTIAL: | ||
111 | if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) { | ||
112 | t->pattern = PATTERN_RANDOM; | ||
113 | t->nr_seq_samples = t->nr_rand_samples = 0; | ||
114 | } | ||
115 | break; | ||
116 | |||
117 | case PATTERN_RANDOM: | ||
118 | if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) { | ||
119 | t->pattern = PATTERN_SEQUENTIAL; | ||
120 | t->nr_seq_samples = t->nr_rand_samples = 0; | ||
121 | } | ||
122 | break; | ||
123 | } | ||
124 | } | ||
125 | |||
126 | static void iot_examine_bio(struct io_tracker *t, struct bio *bio) | ||
127 | { | ||
128 | iot_update_stats(t, bio); | ||
129 | iot_check_for_pattern_switch(t); | ||
130 | } | ||
131 | |||
132 | /*----------------------------------------------------------------*/ | ||
133 | |||
134 | |||
135 | /* | ||
136 | * This queue is divided up into different levels. Allowing us to push | ||
137 | * entries to the back of any of the levels. Think of it as a partially | ||
138 | * sorted queue. | ||
139 | */ | ||
140 | #define NR_QUEUE_LEVELS 16u | ||
141 | |||
142 | struct queue { | ||
143 | struct list_head qs[NR_QUEUE_LEVELS]; | ||
144 | }; | ||
145 | |||
146 | static void queue_init(struct queue *q) | ||
147 | { | ||
148 | unsigned i; | ||
149 | |||
150 | for (i = 0; i < NR_QUEUE_LEVELS; i++) | ||
151 | INIT_LIST_HEAD(q->qs + i); | ||
152 | } | ||
153 | |||
154 | /* | ||
155 | * Insert an entry to the back of the given level. | ||
156 | */ | ||
157 | static void queue_push(struct queue *q, unsigned level, struct list_head *elt) | ||
158 | { | ||
159 | list_add_tail(elt, q->qs + level); | ||
160 | } | ||
161 | |||
162 | static void queue_remove(struct list_head *elt) | ||
163 | { | ||
164 | list_del(elt); | ||
165 | } | ||
166 | |||
167 | /* | ||
168 | * Shifts all regions down one level. This has no effect on the order of | ||
169 | * the queue. | ||
170 | */ | ||
171 | static void queue_shift_down(struct queue *q) | ||
172 | { | ||
173 | unsigned level; | ||
174 | |||
175 | for (level = 1; level < NR_QUEUE_LEVELS; level++) | ||
176 | list_splice_init(q->qs + level, q->qs + level - 1); | ||
177 | } | ||
178 | |||
179 | /* | ||
180 | * Gives us the oldest entry of the lowest popoulated level. If the first | ||
181 | * level is emptied then we shift down one level. | ||
182 | */ | ||
183 | static struct list_head *queue_pop(struct queue *q) | ||
184 | { | ||
185 | unsigned level; | ||
186 | struct list_head *r; | ||
187 | |||
188 | for (level = 0; level < NR_QUEUE_LEVELS; level++) | ||
189 | if (!list_empty(q->qs + level)) { | ||
190 | r = q->qs[level].next; | ||
191 | list_del(r); | ||
192 | |||
193 | /* have we just emptied the bottom level? */ | ||
194 | if (level == 0 && list_empty(q->qs)) | ||
195 | queue_shift_down(q); | ||
196 | |||
197 | return r; | ||
198 | } | ||
199 | |||
200 | return NULL; | ||
201 | } | ||
202 | |||
203 | static struct list_head *list_pop(struct list_head *lh) | ||
204 | { | ||
205 | struct list_head *r = lh->next; | ||
206 | |||
207 | BUG_ON(!r); | ||
208 | list_del_init(r); | ||
209 | |||
210 | return r; | ||
211 | } | ||
212 | |||
213 | /*----------------------------------------------------------------*/ | ||
214 | |||
215 | /* | ||
216 | * Describes a cache entry. Used in both the cache and the pre_cache. | ||
217 | */ | ||
218 | struct entry { | ||
219 | struct hlist_node hlist; | ||
220 | struct list_head list; | ||
221 | dm_oblock_t oblock; | ||
222 | dm_cblock_t cblock; /* valid iff in_cache */ | ||
223 | |||
224 | /* | ||
225 | * FIXME: pack these better | ||
226 | */ | ||
227 | bool in_cache:1; | ||
228 | unsigned hit_count; | ||
229 | unsigned generation; | ||
230 | unsigned tick; | ||
231 | }; | ||
232 | |||
233 | struct mq_policy { | ||
234 | struct dm_cache_policy policy; | ||
235 | |||
236 | /* protects everything */ | ||
237 | struct mutex lock; | ||
238 | dm_cblock_t cache_size; | ||
239 | struct io_tracker tracker; | ||
240 | |||
241 | /* | ||
242 | * We maintain two queues of entries. The cache proper contains | ||
243 | * the currently active mappings. Whereas the pre_cache tracks | ||
244 | * blocks that are being hit frequently and potential candidates | ||
245 | * for promotion to the cache. | ||
246 | */ | ||
247 | struct queue pre_cache; | ||
248 | struct queue cache; | ||
249 | |||
250 | /* | ||
251 | * Keeps track of time, incremented by the core. We use this to | ||
252 | * avoid attributing multiple hits within the same tick. | ||
253 | * | ||
254 | * Access to tick_protected should be done with the spin lock held. | ||
255 | * It's copied to tick at the start of the map function (within the | ||
256 | * mutex). | ||
257 | */ | ||
258 | spinlock_t tick_lock; | ||
259 | unsigned tick_protected; | ||
260 | unsigned tick; | ||
261 | |||
262 | /* | ||
263 | * A count of the number of times the map function has been called | ||
264 | * and found an entry in the pre_cache or cache. Currently used to | ||
265 | * calculate the generation. | ||
266 | */ | ||
267 | unsigned hit_count; | ||
268 | |||
269 | /* | ||
270 | * A generation is a longish period that is used to trigger some | ||
271 | * book keeping effects. eg, decrementing hit counts on entries. | ||
272 | * This is needed to allow the cache to evolve as io patterns | ||
273 | * change. | ||
274 | */ | ||
275 | unsigned generation; | ||
276 | unsigned generation_period; /* in lookups (will probably change) */ | ||
277 | |||
278 | /* | ||
279 | * Entries in the pre_cache whose hit count passes the promotion | ||
280 | * threshold move to the cache proper. Working out the correct | ||
281 | * value for the promotion_threshold is crucial to this policy. | ||
282 | */ | ||
283 | unsigned promote_threshold; | ||
284 | |||
285 | /* | ||
286 | * We need cache_size entries for the cache, and choose to have | ||
287 | * cache_size entries for the pre_cache too. One motivation for | ||
288 | * using the same size is to make the hit counts directly | ||
289 | * comparable between pre_cache and cache. | ||
290 | */ | ||
291 | unsigned nr_entries; | ||
292 | unsigned nr_entries_allocated; | ||
293 | struct list_head free; | ||
294 | |||
295 | /* | ||
296 | * Cache blocks may be unallocated. We store this info in a | ||
297 | * bitset. | ||
298 | */ | ||
299 | unsigned long *allocation_bitset; | ||
300 | unsigned nr_cblocks_allocated; | ||
301 | unsigned find_free_nr_words; | ||
302 | unsigned find_free_last_word; | ||
303 | |||
304 | /* | ||
305 | * The hash table allows us to quickly find an entry by origin | ||
306 | * block. Both pre_cache and cache entries are in here. | ||
307 | */ | ||
308 | unsigned nr_buckets; | ||
309 | dm_block_t hash_bits; | ||
310 | struct hlist_head *table; | ||
311 | }; | ||
312 | |||
313 | /*----------------------------------------------------------------*/ | ||
314 | /* Free/alloc mq cache entry structures. */ | ||
315 | static void takeout_queue(struct list_head *lh, struct queue *q) | ||
316 | { | ||
317 | unsigned level; | ||
318 | |||
319 | for (level = 0; level < NR_QUEUE_LEVELS; level++) | ||
320 | list_splice(q->qs + level, lh); | ||
321 | } | ||
322 | |||
323 | static void free_entries(struct mq_policy *mq) | ||
324 | { | ||
325 | struct entry *e, *tmp; | ||
326 | |||
327 | takeout_queue(&mq->free, &mq->pre_cache); | ||
328 | takeout_queue(&mq->free, &mq->cache); | ||
329 | |||
330 | list_for_each_entry_safe(e, tmp, &mq->free, list) | ||
331 | kmem_cache_free(mq_entry_cache, e); | ||
332 | } | ||
333 | |||
334 | static int alloc_entries(struct mq_policy *mq, unsigned elts) | ||
335 | { | ||
336 | unsigned u = mq->nr_entries; | ||
337 | |||
338 | INIT_LIST_HEAD(&mq->free); | ||
339 | mq->nr_entries_allocated = 0; | ||
340 | |||
341 | while (u--) { | ||
342 | struct entry *e = kmem_cache_zalloc(mq_entry_cache, GFP_KERNEL); | ||
343 | |||
344 | if (!e) { | ||
345 | free_entries(mq); | ||
346 | return -ENOMEM; | ||
347 | } | ||
348 | |||
349 | |||
350 | list_add(&e->list, &mq->free); | ||
351 | } | ||
352 | |||
353 | return 0; | ||
354 | } | ||
355 | |||
356 | /*----------------------------------------------------------------*/ | ||
357 | |||
358 | /* | ||
359 | * Simple hash table implementation. Should replace with the standard hash | ||
360 | * table that's making its way upstream. | ||
361 | */ | ||
362 | static void hash_insert(struct mq_policy *mq, struct entry *e) | ||
363 | { | ||
364 | unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits); | ||
365 | |||
366 | hlist_add_head(&e->hlist, mq->table + h); | ||
367 | } | ||
368 | |||
369 | static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock) | ||
370 | { | ||
371 | unsigned h = hash_64(from_oblock(oblock), mq->hash_bits); | ||
372 | struct hlist_head *bucket = mq->table + h; | ||
373 | struct entry *e; | ||
374 | |||
375 | hlist_for_each_entry(e, bucket, hlist) | ||
376 | if (e->oblock == oblock) { | ||
377 | hlist_del(&e->hlist); | ||
378 | hlist_add_head(&e->hlist, bucket); | ||
379 | return e; | ||
380 | } | ||
381 | |||
382 | return NULL; | ||
383 | } | ||
384 | |||
385 | static void hash_remove(struct entry *e) | ||
386 | { | ||
387 | hlist_del(&e->hlist); | ||
388 | } | ||
389 | |||
390 | /*----------------------------------------------------------------*/ | ||
391 | |||
392 | /* | ||
393 | * Allocates a new entry structure. The memory is allocated in one lump, | ||
394 | * so we just handing it out here. Returns NULL if all entries have | ||
395 | * already been allocated. Cannot fail otherwise. | ||
396 | */ | ||
397 | static struct entry *alloc_entry(struct mq_policy *mq) | ||
398 | { | ||
399 | struct entry *e; | ||
400 | |||
401 | if (mq->nr_entries_allocated >= mq->nr_entries) { | ||
402 | BUG_ON(!list_empty(&mq->free)); | ||
403 | return NULL; | ||
404 | } | ||
405 | |||
406 | e = list_entry(list_pop(&mq->free), struct entry, list); | ||
407 | INIT_LIST_HEAD(&e->list); | ||
408 | INIT_HLIST_NODE(&e->hlist); | ||
409 | |||
410 | mq->nr_entries_allocated++; | ||
411 | return e; | ||
412 | } | ||
413 | |||
414 | /*----------------------------------------------------------------*/ | ||
415 | |||
416 | /* | ||
417 | * Mark cache blocks allocated or not in the bitset. | ||
418 | */ | ||
419 | static void alloc_cblock(struct mq_policy *mq, dm_cblock_t cblock) | ||
420 | { | ||
421 | BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size)); | ||
422 | BUG_ON(test_bit(from_cblock(cblock), mq->allocation_bitset)); | ||
423 | |||
424 | set_bit(from_cblock(cblock), mq->allocation_bitset); | ||
425 | mq->nr_cblocks_allocated++; | ||
426 | } | ||
427 | |||
428 | static void free_cblock(struct mq_policy *mq, dm_cblock_t cblock) | ||
429 | { | ||
430 | BUG_ON(from_cblock(cblock) > from_cblock(mq->cache_size)); | ||
431 | BUG_ON(!test_bit(from_cblock(cblock), mq->allocation_bitset)); | ||
432 | |||
433 | clear_bit(from_cblock(cblock), mq->allocation_bitset); | ||
434 | mq->nr_cblocks_allocated--; | ||
435 | } | ||
436 | |||
437 | static bool any_free_cblocks(struct mq_policy *mq) | ||
438 | { | ||
439 | return mq->nr_cblocks_allocated < from_cblock(mq->cache_size); | ||
440 | } | ||
441 | |||
442 | /* | ||
443 | * Fills result out with a cache block that isn't in use, or return | ||
444 | * -ENOSPC. This does _not_ mark the cblock as allocated, the caller is | ||
445 | * reponsible for that. | ||
446 | */ | ||
447 | static int __find_free_cblock(struct mq_policy *mq, unsigned begin, unsigned end, | ||
448 | dm_cblock_t *result, unsigned *last_word) | ||
449 | { | ||
450 | int r = -ENOSPC; | ||
451 | unsigned w; | ||
452 | |||
453 | for (w = begin; w < end; w++) { | ||
454 | /* | ||
455 | * ffz is undefined if no zero exists | ||
456 | */ | ||
457 | if (mq->allocation_bitset[w] != ~0UL) { | ||
458 | *last_word = w; | ||
459 | *result = to_cblock((w * BITS_PER_LONG) + ffz(mq->allocation_bitset[w])); | ||
460 | if (from_cblock(*result) < from_cblock(mq->cache_size)) | ||
461 | r = 0; | ||
462 | |||
463 | break; | ||
464 | } | ||
465 | } | ||
466 | |||
467 | return r; | ||
468 | } | ||
469 | |||
470 | static int find_free_cblock(struct mq_policy *mq, dm_cblock_t *result) | ||
471 | { | ||
472 | int r; | ||
473 | |||
474 | if (!any_free_cblocks(mq)) | ||
475 | return -ENOSPC; | ||
476 | |||
477 | r = __find_free_cblock(mq, mq->find_free_last_word, mq->find_free_nr_words, result, &mq->find_free_last_word); | ||
478 | if (r == -ENOSPC && mq->find_free_last_word) | ||
479 | r = __find_free_cblock(mq, 0, mq->find_free_last_word, result, &mq->find_free_last_word); | ||
480 | |||
481 | return r; | ||
482 | } | ||
483 | |||
484 | /*----------------------------------------------------------------*/ | ||
485 | |||
486 | /* | ||
487 | * Now we get to the meat of the policy. This section deals with deciding | ||
488 | * when to to add entries to the pre_cache and cache, and move between | ||
489 | * them. | ||
490 | */ | ||
491 | |||
492 | /* | ||
493 | * The queue level is based on the log2 of the hit count. | ||
494 | */ | ||
495 | static unsigned queue_level(struct entry *e) | ||
496 | { | ||
497 | return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u); | ||
498 | } | ||
499 | |||
500 | /* | ||
501 | * Inserts the entry into the pre_cache or the cache. Ensures the cache | ||
502 | * block is marked as allocated if necc. Inserts into the hash table. Sets the | ||
503 | * tick which records when the entry was last moved about. | ||
504 | */ | ||
505 | static void push(struct mq_policy *mq, struct entry *e) | ||
506 | { | ||
507 | e->tick = mq->tick; | ||
508 | hash_insert(mq, e); | ||
509 | |||
510 | if (e->in_cache) { | ||
511 | alloc_cblock(mq, e->cblock); | ||
512 | queue_push(&mq->cache, queue_level(e), &e->list); | ||
513 | } else | ||
514 | queue_push(&mq->pre_cache, queue_level(e), &e->list); | ||
515 | } | ||
516 | |||
517 | /* | ||
518 | * Removes an entry from pre_cache or cache. Removes from the hash table. | ||
519 | * Frees off the cache block if necc. | ||
520 | */ | ||
521 | static void del(struct mq_policy *mq, struct entry *e) | ||
522 | { | ||
523 | queue_remove(&e->list); | ||
524 | hash_remove(e); | ||
525 | if (e->in_cache) | ||
526 | free_cblock(mq, e->cblock); | ||
527 | } | ||
528 | |||
529 | /* | ||
530 | * Like del, except it removes the first entry in the queue (ie. the least | ||
531 | * recently used). | ||
532 | */ | ||
533 | static struct entry *pop(struct mq_policy *mq, struct queue *q) | ||
534 | { | ||
535 | struct entry *e = container_of(queue_pop(q), struct entry, list); | ||
536 | |||
537 | if (e) { | ||
538 | hash_remove(e); | ||
539 | |||
540 | if (e->in_cache) | ||
541 | free_cblock(mq, e->cblock); | ||
542 | } | ||
543 | |||
544 | return e; | ||
545 | } | ||
546 | |||
547 | /* | ||
548 | * Has this entry already been updated? | ||
549 | */ | ||
550 | static bool updated_this_tick(struct mq_policy *mq, struct entry *e) | ||
551 | { | ||
552 | return mq->tick == e->tick; | ||
553 | } | ||
554 | |||
555 | /* | ||
556 | * The promotion threshold is adjusted every generation. As are the counts | ||
557 | * of the entries. | ||
558 | * | ||
559 | * At the moment the threshold is taken by averaging the hit counts of some | ||
560 | * of the entries in the cache (the first 20 entries of the first level). | ||
561 | * | ||
562 | * We can be much cleverer than this though. For example, each promotion | ||
563 | * could bump up the threshold helping to prevent churn. Much more to do | ||
564 | * here. | ||
565 | */ | ||
566 | |||
567 | #define MAX_TO_AVERAGE 20 | ||
568 | |||
569 | static void check_generation(struct mq_policy *mq) | ||
570 | { | ||
571 | unsigned total = 0, nr = 0, count = 0, level; | ||
572 | struct list_head *head; | ||
573 | struct entry *e; | ||
574 | |||
575 | if ((mq->hit_count >= mq->generation_period) && | ||
576 | (mq->nr_cblocks_allocated == from_cblock(mq->cache_size))) { | ||
577 | |||
578 | mq->hit_count = 0; | ||
579 | mq->generation++; | ||
580 | |||
581 | for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) { | ||
582 | head = mq->cache.qs + level; | ||
583 | list_for_each_entry(e, head, list) { | ||
584 | nr++; | ||
585 | total += e->hit_count; | ||
586 | |||
587 | if (++count >= MAX_TO_AVERAGE) | ||
588 | break; | ||
589 | } | ||
590 | } | ||
591 | |||
592 | mq->promote_threshold = nr ? total / nr : 1; | ||
593 | if (mq->promote_threshold * nr < total) | ||
594 | mq->promote_threshold++; | ||
595 | } | ||
596 | } | ||
597 | |||
598 | /* | ||
599 | * Whenever we use an entry we bump up it's hit counter, and push it to the | ||
600 | * back to it's current level. | ||
601 | */ | ||
602 | static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e) | ||
603 | { | ||
604 | if (updated_this_tick(mq, e)) | ||
605 | return; | ||
606 | |||
607 | e->hit_count++; | ||
608 | mq->hit_count++; | ||
609 | check_generation(mq); | ||
610 | |||
611 | /* generation adjustment, to stop the counts increasing forever. */ | ||
612 | /* FIXME: divide? */ | ||
613 | /* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */ | ||
614 | e->generation = mq->generation; | ||
615 | |||
616 | del(mq, e); | ||
617 | push(mq, e); | ||
618 | } | ||
619 | |||
620 | /* | ||
621 | * Demote the least recently used entry from the cache to the pre_cache. | ||
622 | * Returns the new cache entry to use, and the old origin block it was | ||
623 | * mapped to. | ||
624 | * | ||
625 | * We drop the hit count on the demoted entry back to 1 to stop it bouncing | ||
626 | * straight back into the cache if it's subsequently hit. There are | ||
627 | * various options here, and more experimentation would be good: | ||
628 | * | ||
629 | * - just forget about the demoted entry completely (ie. don't insert it | ||
630 | into the pre_cache). | ||
631 | * - divide the hit count rather that setting to some hard coded value. | ||
632 | * - set the hit count to a hard coded value other than 1, eg, is it better | ||
633 | * if it goes in at level 2? | ||
634 | */ | ||
635 | static dm_cblock_t demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock) | ||
636 | { | ||
637 | dm_cblock_t result; | ||
638 | struct entry *demoted = pop(mq, &mq->cache); | ||
639 | |||
640 | BUG_ON(!demoted); | ||
641 | result = demoted->cblock; | ||
642 | *oblock = demoted->oblock; | ||
643 | demoted->in_cache = false; | ||
644 | demoted->hit_count = 1; | ||
645 | push(mq, demoted); | ||
646 | |||
647 | return result; | ||
648 | } | ||
649 | |||
650 | /* | ||
651 | * We modify the basic promotion_threshold depending on the specific io. | ||
652 | * | ||
653 | * If the origin block has been discarded then there's no cost to copy it | ||
654 | * to the cache. | ||
655 | * | ||
656 | * We bias towards reads, since they can be demoted at no cost if they | ||
657 | * haven't been dirtied. | ||
658 | */ | ||
659 | #define DISCARDED_PROMOTE_THRESHOLD 1 | ||
660 | #define READ_PROMOTE_THRESHOLD 4 | ||
661 | #define WRITE_PROMOTE_THRESHOLD 8 | ||
662 | |||
663 | static unsigned adjusted_promote_threshold(struct mq_policy *mq, | ||
664 | bool discarded_oblock, int data_dir) | ||
665 | { | ||
666 | if (discarded_oblock && any_free_cblocks(mq) && data_dir == WRITE) | ||
667 | /* | ||
668 | * We don't need to do any copying at all, so give this a | ||
669 | * very low threshold. In practice this only triggers | ||
670 | * during initial population after a format. | ||
671 | */ | ||
672 | return DISCARDED_PROMOTE_THRESHOLD; | ||
673 | |||
674 | return data_dir == READ ? | ||
675 | (mq->promote_threshold + READ_PROMOTE_THRESHOLD) : | ||
676 | (mq->promote_threshold + WRITE_PROMOTE_THRESHOLD); | ||
677 | } | ||
678 | |||
679 | static bool should_promote(struct mq_policy *mq, struct entry *e, | ||
680 | bool discarded_oblock, int data_dir) | ||
681 | { | ||
682 | return e->hit_count >= | ||
683 | adjusted_promote_threshold(mq, discarded_oblock, data_dir); | ||
684 | } | ||
685 | |||
686 | static int cache_entry_found(struct mq_policy *mq, | ||
687 | struct entry *e, | ||
688 | struct policy_result *result) | ||
689 | { | ||
690 | requeue_and_update_tick(mq, e); | ||
691 | |||
692 | if (e->in_cache) { | ||
693 | result->op = POLICY_HIT; | ||
694 | result->cblock = e->cblock; | ||
695 | } | ||
696 | |||
697 | return 0; | ||
698 | } | ||
699 | |||
700 | /* | ||
701 | * Moves and entry from the pre_cache to the cache. The main work is | ||
702 | * finding which cache block to use. | ||
703 | */ | ||
704 | static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e, | ||
705 | struct policy_result *result) | ||
706 | { | ||
707 | dm_cblock_t cblock; | ||
708 | |||
709 | if (find_free_cblock(mq, &cblock) == -ENOSPC) { | ||
710 | result->op = POLICY_REPLACE; | ||
711 | cblock = demote_cblock(mq, &result->old_oblock); | ||
712 | } else | ||
713 | result->op = POLICY_NEW; | ||
714 | |||
715 | result->cblock = e->cblock = cblock; | ||
716 | |||
717 | del(mq, e); | ||
718 | e->in_cache = true; | ||
719 | push(mq, e); | ||
720 | |||
721 | return 0; | ||
722 | } | ||
723 | |||
724 | static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e, | ||
725 | bool can_migrate, bool discarded_oblock, | ||
726 | int data_dir, struct policy_result *result) | ||
727 | { | ||
728 | int r = 0; | ||
729 | bool updated = updated_this_tick(mq, e); | ||
730 | |||
731 | requeue_and_update_tick(mq, e); | ||
732 | |||
733 | if ((!discarded_oblock && updated) || | ||
734 | !should_promote(mq, e, discarded_oblock, data_dir)) | ||
735 | result->op = POLICY_MISS; | ||
736 | else if (!can_migrate) | ||
737 | r = -EWOULDBLOCK; | ||
738 | else | ||
739 | r = pre_cache_to_cache(mq, e, result); | ||
740 | |||
741 | return r; | ||
742 | } | ||
743 | |||
744 | static void insert_in_pre_cache(struct mq_policy *mq, | ||
745 | dm_oblock_t oblock) | ||
746 | { | ||
747 | struct entry *e = alloc_entry(mq); | ||
748 | |||
749 | if (!e) | ||
750 | /* | ||
751 | * There's no spare entry structure, so we grab the least | ||
752 | * used one from the pre_cache. | ||
753 | */ | ||
754 | e = pop(mq, &mq->pre_cache); | ||
755 | |||
756 | if (unlikely(!e)) { | ||
757 | DMWARN("couldn't pop from pre cache"); | ||
758 | return; | ||
759 | } | ||
760 | |||
761 | e->in_cache = false; | ||
762 | e->oblock = oblock; | ||
763 | e->hit_count = 1; | ||
764 | e->generation = mq->generation; | ||
765 | push(mq, e); | ||
766 | } | ||
767 | |||
768 | static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock, | ||
769 | struct policy_result *result) | ||
770 | { | ||
771 | struct entry *e; | ||
772 | dm_cblock_t cblock; | ||
773 | |||
774 | if (find_free_cblock(mq, &cblock) == -ENOSPC) { | ||
775 | result->op = POLICY_MISS; | ||
776 | insert_in_pre_cache(mq, oblock); | ||
777 | return; | ||
778 | } | ||
779 | |||
780 | e = alloc_entry(mq); | ||
781 | if (unlikely(!e)) { | ||
782 | result->op = POLICY_MISS; | ||
783 | return; | ||
784 | } | ||
785 | |||
786 | e->oblock = oblock; | ||
787 | e->cblock = cblock; | ||
788 | e->in_cache = true; | ||
789 | e->hit_count = 1; | ||
790 | e->generation = mq->generation; | ||
791 | push(mq, e); | ||
792 | |||
793 | result->op = POLICY_NEW; | ||
794 | result->cblock = e->cblock; | ||
795 | } | ||
796 | |||
797 | static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock, | ||
798 | bool can_migrate, bool discarded_oblock, | ||
799 | int data_dir, struct policy_result *result) | ||
800 | { | ||
801 | if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) == 1) { | ||
802 | if (can_migrate) | ||
803 | insert_in_cache(mq, oblock, result); | ||
804 | else | ||
805 | return -EWOULDBLOCK; | ||
806 | } else { | ||
807 | insert_in_pre_cache(mq, oblock); | ||
808 | result->op = POLICY_MISS; | ||
809 | } | ||
810 | |||
811 | return 0; | ||
812 | } | ||
813 | |||
814 | /* | ||
815 | * Looks the oblock up in the hash table, then decides whether to put in | ||
816 | * pre_cache, or cache etc. | ||
817 | */ | ||
818 | static int map(struct mq_policy *mq, dm_oblock_t oblock, | ||
819 | bool can_migrate, bool discarded_oblock, | ||
820 | int data_dir, struct policy_result *result) | ||
821 | { | ||
822 | int r = 0; | ||
823 | struct entry *e = hash_lookup(mq, oblock); | ||
824 | |||
825 | if (e && e->in_cache) | ||
826 | r = cache_entry_found(mq, e, result); | ||
827 | else if (iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL) | ||
828 | result->op = POLICY_MISS; | ||
829 | else if (e) | ||
830 | r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock, | ||
831 | data_dir, result); | ||
832 | else | ||
833 | r = no_entry_found(mq, oblock, can_migrate, discarded_oblock, | ||
834 | data_dir, result); | ||
835 | |||
836 | if (r == -EWOULDBLOCK) | ||
837 | result->op = POLICY_MISS; | ||
838 | |||
839 | return r; | ||
840 | } | ||
841 | |||
842 | /*----------------------------------------------------------------*/ | ||
843 | |||
844 | /* | ||
845 | * Public interface, via the policy struct. See dm-cache-policy.h for a | ||
846 | * description of these. | ||
847 | */ | ||
848 | |||
849 | static struct mq_policy *to_mq_policy(struct dm_cache_policy *p) | ||
850 | { | ||
851 | return container_of(p, struct mq_policy, policy); | ||
852 | } | ||
853 | |||
854 | static void mq_destroy(struct dm_cache_policy *p) | ||
855 | { | ||
856 | struct mq_policy *mq = to_mq_policy(p); | ||
857 | |||
858 | free_bitset(mq->allocation_bitset); | ||
859 | kfree(mq->table); | ||
860 | free_entries(mq); | ||
861 | kfree(mq); | ||
862 | } | ||
863 | |||
864 | static void copy_tick(struct mq_policy *mq) | ||
865 | { | ||
866 | unsigned long flags; | ||
867 | |||
868 | spin_lock_irqsave(&mq->tick_lock, flags); | ||
869 | mq->tick = mq->tick_protected; | ||
870 | spin_unlock_irqrestore(&mq->tick_lock, flags); | ||
871 | } | ||
872 | |||
873 | static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock, | ||
874 | bool can_block, bool can_migrate, bool discarded_oblock, | ||
875 | struct bio *bio, struct policy_result *result) | ||
876 | { | ||
877 | int r; | ||
878 | struct mq_policy *mq = to_mq_policy(p); | ||
879 | |||
880 | result->op = POLICY_MISS; | ||
881 | |||
882 | if (can_block) | ||
883 | mutex_lock(&mq->lock); | ||
884 | else if (!mutex_trylock(&mq->lock)) | ||
885 | return -EWOULDBLOCK; | ||
886 | |||
887 | copy_tick(mq); | ||
888 | |||
889 | iot_examine_bio(&mq->tracker, bio); | ||
890 | r = map(mq, oblock, can_migrate, discarded_oblock, | ||
891 | bio_data_dir(bio), result); | ||
892 | |||
893 | mutex_unlock(&mq->lock); | ||
894 | |||
895 | return r; | ||
896 | } | ||
897 | |||
898 | static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) | ||
899 | { | ||
900 | int r; | ||
901 | struct mq_policy *mq = to_mq_policy(p); | ||
902 | struct entry *e; | ||
903 | |||
904 | if (!mutex_trylock(&mq->lock)) | ||
905 | return -EWOULDBLOCK; | ||
906 | |||
907 | e = hash_lookup(mq, oblock); | ||
908 | if (e && e->in_cache) { | ||
909 | *cblock = e->cblock; | ||
910 | r = 0; | ||
911 | } else | ||
912 | r = -ENOENT; | ||
913 | |||
914 | mutex_unlock(&mq->lock); | ||
915 | |||
916 | return r; | ||
917 | } | ||
918 | |||
919 | static int mq_load_mapping(struct dm_cache_policy *p, | ||
920 | dm_oblock_t oblock, dm_cblock_t cblock, | ||
921 | uint32_t hint, bool hint_valid) | ||
922 | { | ||
923 | struct mq_policy *mq = to_mq_policy(p); | ||
924 | struct entry *e; | ||
925 | |||
926 | e = alloc_entry(mq); | ||
927 | if (!e) | ||
928 | return -ENOMEM; | ||
929 | |||
930 | e->cblock = cblock; | ||
931 | e->oblock = oblock; | ||
932 | e->in_cache = true; | ||
933 | e->hit_count = hint_valid ? hint : 1; | ||
934 | e->generation = mq->generation; | ||
935 | push(mq, e); | ||
936 | |||
937 | return 0; | ||
938 | } | ||
939 | |||
940 | static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn, | ||
941 | void *context) | ||
942 | { | ||
943 | struct mq_policy *mq = to_mq_policy(p); | ||
944 | int r = 0; | ||
945 | struct entry *e; | ||
946 | unsigned level; | ||
947 | |||
948 | mutex_lock(&mq->lock); | ||
949 | |||
950 | for (level = 0; level < NR_QUEUE_LEVELS; level++) | ||
951 | list_for_each_entry(e, &mq->cache.qs[level], list) { | ||
952 | r = fn(context, e->cblock, e->oblock, e->hit_count); | ||
953 | if (r) | ||
954 | goto out; | ||
955 | } | ||
956 | |||
957 | out: | ||
958 | mutex_unlock(&mq->lock); | ||
959 | |||
960 | return r; | ||
961 | } | ||
962 | |||
963 | static void remove_mapping(struct mq_policy *mq, dm_oblock_t oblock) | ||
964 | { | ||
965 | struct entry *e = hash_lookup(mq, oblock); | ||
966 | |||
967 | BUG_ON(!e || !e->in_cache); | ||
968 | |||
969 | del(mq, e); | ||
970 | e->in_cache = false; | ||
971 | push(mq, e); | ||
972 | } | ||
973 | |||
974 | static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) | ||
975 | { | ||
976 | struct mq_policy *mq = to_mq_policy(p); | ||
977 | |||
978 | mutex_lock(&mq->lock); | ||
979 | remove_mapping(mq, oblock); | ||
980 | mutex_unlock(&mq->lock); | ||
981 | } | ||
982 | |||
983 | static void force_mapping(struct mq_policy *mq, | ||
984 | dm_oblock_t current_oblock, dm_oblock_t new_oblock) | ||
985 | { | ||
986 | struct entry *e = hash_lookup(mq, current_oblock); | ||
987 | |||
988 | BUG_ON(!e || !e->in_cache); | ||
989 | |||
990 | del(mq, e); | ||
991 | e->oblock = new_oblock; | ||
992 | push(mq, e); | ||
993 | } | ||
994 | |||
995 | static void mq_force_mapping(struct dm_cache_policy *p, | ||
996 | dm_oblock_t current_oblock, dm_oblock_t new_oblock) | ||
997 | { | ||
998 | struct mq_policy *mq = to_mq_policy(p); | ||
999 | |||
1000 | mutex_lock(&mq->lock); | ||
1001 | force_mapping(mq, current_oblock, new_oblock); | ||
1002 | mutex_unlock(&mq->lock); | ||
1003 | } | ||
1004 | |||
1005 | static dm_cblock_t mq_residency(struct dm_cache_policy *p) | ||
1006 | { | ||
1007 | struct mq_policy *mq = to_mq_policy(p); | ||
1008 | |||
1009 | /* FIXME: lock mutex, not sure we can block here */ | ||
1010 | return to_cblock(mq->nr_cblocks_allocated); | ||
1011 | } | ||
1012 | |||
1013 | static void mq_tick(struct dm_cache_policy *p) | ||
1014 | { | ||
1015 | struct mq_policy *mq = to_mq_policy(p); | ||
1016 | unsigned long flags; | ||
1017 | |||
1018 | spin_lock_irqsave(&mq->tick_lock, flags); | ||
1019 | mq->tick_protected++; | ||
1020 | spin_unlock_irqrestore(&mq->tick_lock, flags); | ||
1021 | } | ||
1022 | |||
1023 | static int mq_set_config_value(struct dm_cache_policy *p, | ||
1024 | const char *key, const char *value) | ||
1025 | { | ||
1026 | struct mq_policy *mq = to_mq_policy(p); | ||
1027 | enum io_pattern pattern; | ||
1028 | unsigned long tmp; | ||
1029 | |||
1030 | if (!strcasecmp(key, "random_threshold")) | ||
1031 | pattern = PATTERN_RANDOM; | ||
1032 | else if (!strcasecmp(key, "sequential_threshold")) | ||
1033 | pattern = PATTERN_SEQUENTIAL; | ||
1034 | else | ||
1035 | return -EINVAL; | ||
1036 | |||
1037 | if (kstrtoul(value, 10, &tmp)) | ||
1038 | return -EINVAL; | ||
1039 | |||
1040 | mq->tracker.thresholds[pattern] = tmp; | ||
1041 | |||
1042 | return 0; | ||
1043 | } | ||
1044 | |||
1045 | static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen) | ||
1046 | { | ||
1047 | ssize_t sz = 0; | ||
1048 | struct mq_policy *mq = to_mq_policy(p); | ||
1049 | |||
1050 | DMEMIT("4 random_threshold %u sequential_threshold %u", | ||
1051 | mq->tracker.thresholds[PATTERN_RANDOM], | ||
1052 | mq->tracker.thresholds[PATTERN_SEQUENTIAL]); | ||
1053 | |||
1054 | return 0; | ||
1055 | } | ||
1056 | |||
1057 | /* Init the policy plugin interface function pointers. */ | ||
1058 | static void init_policy_functions(struct mq_policy *mq) | ||
1059 | { | ||
1060 | mq->policy.destroy = mq_destroy; | ||
1061 | mq->policy.map = mq_map; | ||
1062 | mq->policy.lookup = mq_lookup; | ||
1063 | mq->policy.load_mapping = mq_load_mapping; | ||
1064 | mq->policy.walk_mappings = mq_walk_mappings; | ||
1065 | mq->policy.remove_mapping = mq_remove_mapping; | ||
1066 | mq->policy.writeback_work = NULL; | ||
1067 | mq->policy.force_mapping = mq_force_mapping; | ||
1068 | mq->policy.residency = mq_residency; | ||
1069 | mq->policy.tick = mq_tick; | ||
1070 | mq->policy.emit_config_values = mq_emit_config_values; | ||
1071 | mq->policy.set_config_value = mq_set_config_value; | ||
1072 | } | ||
1073 | |||
1074 | static struct dm_cache_policy *mq_create(dm_cblock_t cache_size, | ||
1075 | sector_t origin_size, | ||
1076 | sector_t cache_block_size) | ||
1077 | { | ||
1078 | int r; | ||
1079 | struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); | ||
1080 | |||
1081 | if (!mq) | ||
1082 | return NULL; | ||
1083 | |||
1084 | init_policy_functions(mq); | ||
1085 | iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT); | ||
1086 | |||
1087 | mq->cache_size = cache_size; | ||
1088 | mq->tick_protected = 0; | ||
1089 | mq->tick = 0; | ||
1090 | mq->hit_count = 0; | ||
1091 | mq->generation = 0; | ||
1092 | mq->promote_threshold = 0; | ||
1093 | mutex_init(&mq->lock); | ||
1094 | spin_lock_init(&mq->tick_lock); | ||
1095 | mq->find_free_nr_words = dm_div_up(from_cblock(mq->cache_size), BITS_PER_LONG); | ||
1096 | mq->find_free_last_word = 0; | ||
1097 | |||
1098 | queue_init(&mq->pre_cache); | ||
1099 | queue_init(&mq->cache); | ||
1100 | mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U); | ||
1101 | |||
1102 | mq->nr_entries = 2 * from_cblock(cache_size); | ||
1103 | r = alloc_entries(mq, mq->nr_entries); | ||
1104 | if (r) | ||
1105 | goto bad_cache_alloc; | ||
1106 | |||
1107 | mq->nr_entries_allocated = 0; | ||
1108 | mq->nr_cblocks_allocated = 0; | ||
1109 | |||
1110 | mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16); | ||
1111 | mq->hash_bits = ffs(mq->nr_buckets) - 1; | ||
1112 | mq->table = kzalloc(sizeof(*mq->table) * mq->nr_buckets, GFP_KERNEL); | ||
1113 | if (!mq->table) | ||
1114 | goto bad_alloc_table; | ||
1115 | |||
1116 | mq->allocation_bitset = alloc_bitset(from_cblock(cache_size)); | ||
1117 | if (!mq->allocation_bitset) | ||
1118 | goto bad_alloc_bitset; | ||
1119 | |||
1120 | return &mq->policy; | ||
1121 | |||
1122 | bad_alloc_bitset: | ||
1123 | kfree(mq->table); | ||
1124 | bad_alloc_table: | ||
1125 | free_entries(mq); | ||
1126 | bad_cache_alloc: | ||
1127 | kfree(mq); | ||
1128 | |||
1129 | return NULL; | ||
1130 | } | ||
1131 | |||
1132 | /*----------------------------------------------------------------*/ | ||
1133 | |||
1134 | static struct dm_cache_policy_type mq_policy_type = { | ||
1135 | .name = "mq", | ||
1136 | .hint_size = 4, | ||
1137 | .owner = THIS_MODULE, | ||
1138 | .create = mq_create | ||
1139 | }; | ||
1140 | |||
1141 | static struct dm_cache_policy_type default_policy_type = { | ||
1142 | .name = "default", | ||
1143 | .hint_size = 4, | ||
1144 | .owner = THIS_MODULE, | ||
1145 | .create = mq_create | ||
1146 | }; | ||
1147 | |||
1148 | static int __init mq_init(void) | ||
1149 | { | ||
1150 | int r; | ||
1151 | |||
1152 | mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry", | ||
1153 | sizeof(struct entry), | ||
1154 | __alignof__(struct entry), | ||
1155 | 0, NULL); | ||
1156 | if (!mq_entry_cache) | ||
1157 | goto bad; | ||
1158 | |||
1159 | r = dm_cache_policy_register(&mq_policy_type); | ||
1160 | if (r) { | ||
1161 | DMERR("register failed %d", r); | ||
1162 | goto bad_register_mq; | ||
1163 | } | ||
1164 | |||
1165 | r = dm_cache_policy_register(&default_policy_type); | ||
1166 | if (!r) { | ||
1167 | DMINFO("version " MQ_VERSION " loaded"); | ||
1168 | return 0; | ||
1169 | } | ||
1170 | |||
1171 | DMERR("register failed (as default) %d", r); | ||
1172 | |||
1173 | dm_cache_policy_unregister(&mq_policy_type); | ||
1174 | bad_register_mq: | ||
1175 | kmem_cache_destroy(mq_entry_cache); | ||
1176 | bad: | ||
1177 | return -ENOMEM; | ||
1178 | } | ||
1179 | |||
1180 | static void __exit mq_exit(void) | ||
1181 | { | ||
1182 | dm_cache_policy_unregister(&mq_policy_type); | ||
1183 | dm_cache_policy_unregister(&default_policy_type); | ||
1184 | |||
1185 | kmem_cache_destroy(mq_entry_cache); | ||
1186 | } | ||
1187 | |||
1188 | module_init(mq_init); | ||
1189 | module_exit(mq_exit); | ||
1190 | |||
1191 | MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); | ||
1192 | MODULE_LICENSE("GPL"); | ||
1193 | MODULE_DESCRIPTION("mq cache policy"); | ||
1194 | |||
1195 | MODULE_ALIAS("dm-cache-default"); | ||