diff options
author | Kent Overstreet <koverstreet@google.com> | 2013-03-23 19:11:31 -0400 |
---|---|---|
committer | Kent Overstreet <koverstreet@google.com> | 2013-03-23 19:11:31 -0400 |
commit | cafe563591446cf80bfbc2fe3bc72a2e36cf1060 (patch) | |
tree | c8ae27b13dcdb0219634376ca5e667df32b1173a /drivers/md/bcache/bset.c | |
parent | ea6749c705d9e629ed03c7336cc929fc6014b834 (diff) |
bcache: A block layer cache
Does writethrough and writeback caching, handles unclean shutdown, and
has a bunch of other nifty features motivated by real world usage.
See the wiki at http://bcache.evilpiepirate.org for more.
Signed-off-by: Kent Overstreet <koverstreet@google.com>
Diffstat (limited to 'drivers/md/bcache/bset.c')
-rw-r--r-- | drivers/md/bcache/bset.c | 1190 |
1 files changed, 1190 insertions, 0 deletions
diff --git a/drivers/md/bcache/bset.c b/drivers/md/bcache/bset.c new file mode 100644 index 000000000000..bb0f7ae14b3c --- /dev/null +++ b/drivers/md/bcache/bset.c | |||
@@ -0,0 +1,1190 @@ | |||
1 | /* | ||
2 | * Code for working with individual keys, and sorted sets of keys with in a | ||
3 | * btree node | ||
4 | * | ||
5 | * Copyright 2012 Google, Inc. | ||
6 | */ | ||
7 | |||
8 | #include "bcache.h" | ||
9 | #include "btree.h" | ||
10 | #include "debug.h" | ||
11 | |||
12 | #include <linux/random.h> | ||
13 | |||
14 | /* Keylists */ | ||
15 | |||
16 | void bch_keylist_copy(struct keylist *dest, struct keylist *src) | ||
17 | { | ||
18 | *dest = *src; | ||
19 | |||
20 | if (src->list == src->d) { | ||
21 | size_t n = (uint64_t *) src->top - src->d; | ||
22 | dest->top = (struct bkey *) &dest->d[n]; | ||
23 | dest->list = dest->d; | ||
24 | } | ||
25 | } | ||
26 | |||
27 | int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c) | ||
28 | { | ||
29 | unsigned oldsize = (uint64_t *) l->top - l->list; | ||
30 | unsigned newsize = oldsize + 2 + nptrs; | ||
31 | uint64_t *new; | ||
32 | |||
33 | /* The journalling code doesn't handle the case where the keys to insert | ||
34 | * is bigger than an empty write: If we just return -ENOMEM here, | ||
35 | * bio_insert() and bio_invalidate() will insert the keys created so far | ||
36 | * and finish the rest when the keylist is empty. | ||
37 | */ | ||
38 | if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) | ||
39 | return -ENOMEM; | ||
40 | |||
41 | newsize = roundup_pow_of_two(newsize); | ||
42 | |||
43 | if (newsize <= KEYLIST_INLINE || | ||
44 | roundup_pow_of_two(oldsize) == newsize) | ||
45 | return 0; | ||
46 | |||
47 | new = krealloc(l->list == l->d ? NULL : l->list, | ||
48 | sizeof(uint64_t) * newsize, GFP_NOIO); | ||
49 | |||
50 | if (!new) | ||
51 | return -ENOMEM; | ||
52 | |||
53 | if (l->list == l->d) | ||
54 | memcpy(new, l->list, sizeof(uint64_t) * KEYLIST_INLINE); | ||
55 | |||
56 | l->list = new; | ||
57 | l->top = (struct bkey *) (&l->list[oldsize]); | ||
58 | |||
59 | return 0; | ||
60 | } | ||
61 | |||
62 | struct bkey *bch_keylist_pop(struct keylist *l) | ||
63 | { | ||
64 | struct bkey *k = l->bottom; | ||
65 | |||
66 | if (k == l->top) | ||
67 | return NULL; | ||
68 | |||
69 | while (bkey_next(k) != l->top) | ||
70 | k = bkey_next(k); | ||
71 | |||
72 | return l->top = k; | ||
73 | } | ||
74 | |||
75 | /* Pointer validation */ | ||
76 | |||
77 | bool __bch_ptr_invalid(struct cache_set *c, int level, const struct bkey *k) | ||
78 | { | ||
79 | unsigned i; | ||
80 | |||
81 | if (level && (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))) | ||
82 | goto bad; | ||
83 | |||
84 | if (!level && KEY_SIZE(k) > KEY_OFFSET(k)) | ||
85 | goto bad; | ||
86 | |||
87 | if (!KEY_SIZE(k)) | ||
88 | return true; | ||
89 | |||
90 | for (i = 0; i < KEY_PTRS(k); i++) | ||
91 | if (ptr_available(c, k, i)) { | ||
92 | struct cache *ca = PTR_CACHE(c, k, i); | ||
93 | size_t bucket = PTR_BUCKET_NR(c, k, i); | ||
94 | size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); | ||
95 | |||
96 | if (KEY_SIZE(k) + r > c->sb.bucket_size || | ||
97 | bucket < ca->sb.first_bucket || | ||
98 | bucket >= ca->sb.nbuckets) | ||
99 | goto bad; | ||
100 | } | ||
101 | |||
102 | return false; | ||
103 | bad: | ||
104 | cache_bug(c, "spotted bad key %s: %s", pkey(k), bch_ptr_status(c, k)); | ||
105 | return true; | ||
106 | } | ||
107 | |||
108 | bool bch_ptr_bad(struct btree *b, const struct bkey *k) | ||
109 | { | ||
110 | struct bucket *g; | ||
111 | unsigned i, stale; | ||
112 | |||
113 | if (!bkey_cmp(k, &ZERO_KEY) || | ||
114 | !KEY_PTRS(k) || | ||
115 | bch_ptr_invalid(b, k)) | ||
116 | return true; | ||
117 | |||
118 | if (KEY_PTRS(k) && PTR_DEV(k, 0) == PTR_CHECK_DEV) | ||
119 | return true; | ||
120 | |||
121 | for (i = 0; i < KEY_PTRS(k); i++) | ||
122 | if (ptr_available(b->c, k, i)) { | ||
123 | g = PTR_BUCKET(b->c, k, i); | ||
124 | stale = ptr_stale(b->c, k, i); | ||
125 | |||
126 | btree_bug_on(stale > 96, b, | ||
127 | "key too stale: %i, need_gc %u", | ||
128 | stale, b->c->need_gc); | ||
129 | |||
130 | btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k), | ||
131 | b, "stale dirty pointer"); | ||
132 | |||
133 | if (stale) | ||
134 | return true; | ||
135 | |||
136 | #ifdef CONFIG_BCACHE_EDEBUG | ||
137 | if (!mutex_trylock(&b->c->bucket_lock)) | ||
138 | continue; | ||
139 | |||
140 | if (b->level) { | ||
141 | if (KEY_DIRTY(k) || | ||
142 | g->prio != BTREE_PRIO || | ||
143 | (b->c->gc_mark_valid && | ||
144 | GC_MARK(g) != GC_MARK_METADATA)) | ||
145 | goto bug; | ||
146 | |||
147 | } else { | ||
148 | if (g->prio == BTREE_PRIO) | ||
149 | goto bug; | ||
150 | |||
151 | if (KEY_DIRTY(k) && | ||
152 | b->c->gc_mark_valid && | ||
153 | GC_MARK(g) != GC_MARK_DIRTY) | ||
154 | goto bug; | ||
155 | } | ||
156 | mutex_unlock(&b->c->bucket_lock); | ||
157 | #endif | ||
158 | } | ||
159 | |||
160 | return false; | ||
161 | #ifdef CONFIG_BCACHE_EDEBUG | ||
162 | bug: | ||
163 | mutex_unlock(&b->c->bucket_lock); | ||
164 | btree_bug(b, "inconsistent pointer %s: bucket %li pin %i " | ||
165 | "prio %i gen %i last_gc %i mark %llu gc_gen %i", pkey(k), | ||
166 | PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin), | ||
167 | g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen); | ||
168 | return true; | ||
169 | #endif | ||
170 | } | ||
171 | |||
172 | /* Key/pointer manipulation */ | ||
173 | |||
174 | void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, | ||
175 | unsigned i) | ||
176 | { | ||
177 | BUG_ON(i > KEY_PTRS(src)); | ||
178 | |||
179 | /* Only copy the header, key, and one pointer. */ | ||
180 | memcpy(dest, src, 2 * sizeof(uint64_t)); | ||
181 | dest->ptr[0] = src->ptr[i]; | ||
182 | SET_KEY_PTRS(dest, 1); | ||
183 | /* We didn't copy the checksum so clear that bit. */ | ||
184 | SET_KEY_CSUM(dest, 0); | ||
185 | } | ||
186 | |||
187 | bool __bch_cut_front(const struct bkey *where, struct bkey *k) | ||
188 | { | ||
189 | unsigned i, len = 0; | ||
190 | |||
191 | if (bkey_cmp(where, &START_KEY(k)) <= 0) | ||
192 | return false; | ||
193 | |||
194 | if (bkey_cmp(where, k) < 0) | ||
195 | len = KEY_OFFSET(k) - KEY_OFFSET(where); | ||
196 | else | ||
197 | bkey_copy_key(k, where); | ||
198 | |||
199 | for (i = 0; i < KEY_PTRS(k); i++) | ||
200 | SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); | ||
201 | |||
202 | BUG_ON(len > KEY_SIZE(k)); | ||
203 | SET_KEY_SIZE(k, len); | ||
204 | return true; | ||
205 | } | ||
206 | |||
207 | bool __bch_cut_back(const struct bkey *where, struct bkey *k) | ||
208 | { | ||
209 | unsigned len = 0; | ||
210 | |||
211 | if (bkey_cmp(where, k) >= 0) | ||
212 | return false; | ||
213 | |||
214 | BUG_ON(KEY_INODE(where) != KEY_INODE(k)); | ||
215 | |||
216 | if (bkey_cmp(where, &START_KEY(k)) > 0) | ||
217 | len = KEY_OFFSET(where) - KEY_START(k); | ||
218 | |||
219 | bkey_copy_key(k, where); | ||
220 | |||
221 | BUG_ON(len > KEY_SIZE(k)); | ||
222 | SET_KEY_SIZE(k, len); | ||
223 | return true; | ||
224 | } | ||
225 | |||
226 | static uint64_t merge_chksums(struct bkey *l, struct bkey *r) | ||
227 | { | ||
228 | return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) & | ||
229 | ~((uint64_t)1 << 63); | ||
230 | } | ||
231 | |||
232 | /* Tries to merge l and r: l should be lower than r | ||
233 | * Returns true if we were able to merge. If we did merge, l will be the merged | ||
234 | * key, r will be untouched. | ||
235 | */ | ||
236 | bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r) | ||
237 | { | ||
238 | unsigned i; | ||
239 | |||
240 | if (key_merging_disabled(b->c)) | ||
241 | return false; | ||
242 | |||
243 | if (KEY_PTRS(l) != KEY_PTRS(r) || | ||
244 | KEY_DIRTY(l) != KEY_DIRTY(r) || | ||
245 | bkey_cmp(l, &START_KEY(r))) | ||
246 | return false; | ||
247 | |||
248 | for (i = 0; i < KEY_PTRS(l); i++) | ||
249 | if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || | ||
250 | PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) | ||
251 | return false; | ||
252 | |||
253 | /* Keys with no pointers aren't restricted to one bucket and could | ||
254 | * overflow KEY_SIZE | ||
255 | */ | ||
256 | if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) { | ||
257 | SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l)); | ||
258 | SET_KEY_SIZE(l, USHRT_MAX); | ||
259 | |||
260 | bch_cut_front(l, r); | ||
261 | return false; | ||
262 | } | ||
263 | |||
264 | if (KEY_CSUM(l)) { | ||
265 | if (KEY_CSUM(r)) | ||
266 | l->ptr[KEY_PTRS(l)] = merge_chksums(l, r); | ||
267 | else | ||
268 | SET_KEY_CSUM(l, 0); | ||
269 | } | ||
270 | |||
271 | SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r)); | ||
272 | SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r)); | ||
273 | |||
274 | return true; | ||
275 | } | ||
276 | |||
277 | /* Binary tree stuff for auxiliary search trees */ | ||
278 | |||
279 | static unsigned inorder_next(unsigned j, unsigned size) | ||
280 | { | ||
281 | if (j * 2 + 1 < size) { | ||
282 | j = j * 2 + 1; | ||
283 | |||
284 | while (j * 2 < size) | ||
285 | j *= 2; | ||
286 | } else | ||
287 | j >>= ffz(j) + 1; | ||
288 | |||
289 | return j; | ||
290 | } | ||
291 | |||
292 | static unsigned inorder_prev(unsigned j, unsigned size) | ||
293 | { | ||
294 | if (j * 2 < size) { | ||
295 | j = j * 2; | ||
296 | |||
297 | while (j * 2 + 1 < size) | ||
298 | j = j * 2 + 1; | ||
299 | } else | ||
300 | j >>= ffs(j); | ||
301 | |||
302 | return j; | ||
303 | } | ||
304 | |||
305 | /* I have no idea why this code works... and I'm the one who wrote it | ||
306 | * | ||
307 | * However, I do know what it does: | ||
308 | * Given a binary tree constructed in an array (i.e. how you normally implement | ||
309 | * a heap), it converts a node in the tree - referenced by array index - to the | ||
310 | * index it would have if you did an inorder traversal. | ||
311 | * | ||
312 | * Also tested for every j, size up to size somewhere around 6 million. | ||
313 | * | ||
314 | * The binary tree starts at array index 1, not 0 | ||
315 | * extra is a function of size: | ||
316 | * extra = (size - rounddown_pow_of_two(size - 1)) << 1; | ||
317 | */ | ||
318 | static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) | ||
319 | { | ||
320 | unsigned b = fls(j); | ||
321 | unsigned shift = fls(size - 1) - b; | ||
322 | |||
323 | j ^= 1U << (b - 1); | ||
324 | j <<= 1; | ||
325 | j |= 1; | ||
326 | j <<= shift; | ||
327 | |||
328 | if (j > extra) | ||
329 | j -= (j - extra) >> 1; | ||
330 | |||
331 | return j; | ||
332 | } | ||
333 | |||
334 | static unsigned to_inorder(unsigned j, struct bset_tree *t) | ||
335 | { | ||
336 | return __to_inorder(j, t->size, t->extra); | ||
337 | } | ||
338 | |||
339 | static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) | ||
340 | { | ||
341 | unsigned shift; | ||
342 | |||
343 | if (j > extra) | ||
344 | j += j - extra; | ||
345 | |||
346 | shift = ffs(j); | ||
347 | |||
348 | j >>= shift; | ||
349 | j |= roundup_pow_of_two(size) >> shift; | ||
350 | |||
351 | return j; | ||
352 | } | ||
353 | |||
354 | static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) | ||
355 | { | ||
356 | return __inorder_to_tree(j, t->size, t->extra); | ||
357 | } | ||
358 | |||
359 | #if 0 | ||
360 | void inorder_test(void) | ||
361 | { | ||
362 | unsigned long done = 0; | ||
363 | ktime_t start = ktime_get(); | ||
364 | |||
365 | for (unsigned size = 2; | ||
366 | size < 65536000; | ||
367 | size++) { | ||
368 | unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; | ||
369 | unsigned i = 1, j = rounddown_pow_of_two(size - 1); | ||
370 | |||
371 | if (!(size % 4096)) | ||
372 | printk(KERN_NOTICE "loop %u, %llu per us\n", size, | ||
373 | done / ktime_us_delta(ktime_get(), start)); | ||
374 | |||
375 | while (1) { | ||
376 | if (__inorder_to_tree(i, size, extra) != j) | ||
377 | panic("size %10u j %10u i %10u", size, j, i); | ||
378 | |||
379 | if (__to_inorder(j, size, extra) != i) | ||
380 | panic("size %10u j %10u i %10u", size, j, i); | ||
381 | |||
382 | if (j == rounddown_pow_of_two(size) - 1) | ||
383 | break; | ||
384 | |||
385 | BUG_ON(inorder_prev(inorder_next(j, size), size) != j); | ||
386 | |||
387 | j = inorder_next(j, size); | ||
388 | i++; | ||
389 | } | ||
390 | |||
391 | done += size - 1; | ||
392 | } | ||
393 | } | ||
394 | #endif | ||
395 | |||
396 | /* | ||
397 | * Cacheline/offset <-> bkey pointer arithmatic: | ||
398 | * | ||
399 | * t->tree is a binary search tree in an array; each node corresponds to a key | ||
400 | * in one cacheline in t->set (BSET_CACHELINE bytes). | ||
401 | * | ||
402 | * This means we don't have to store the full index of the key that a node in | ||
403 | * the binary tree points to; to_inorder() gives us the cacheline, and then | ||
404 | * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. | ||
405 | * | ||
406 | * cacheline_to_bkey() and friends abstract out all the pointer arithmatic to | ||
407 | * make this work. | ||
408 | * | ||
409 | * To construct the bfloat for an arbitrary key we need to know what the key | ||
410 | * immediately preceding it is: we have to check if the two keys differ in the | ||
411 | * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size | ||
412 | * of the previous key so we can walk backwards to it from t->tree[j]'s key. | ||
413 | */ | ||
414 | |||
415 | static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, | ||
416 | unsigned offset) | ||
417 | { | ||
418 | return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; | ||
419 | } | ||
420 | |||
421 | static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) | ||
422 | { | ||
423 | return ((void *) k - (void *) t->data) / BSET_CACHELINE; | ||
424 | } | ||
425 | |||
426 | static unsigned bkey_to_cacheline_offset(struct bkey *k) | ||
427 | { | ||
428 | return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t); | ||
429 | } | ||
430 | |||
431 | static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) | ||
432 | { | ||
433 | return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); | ||
434 | } | ||
435 | |||
436 | static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) | ||
437 | { | ||
438 | return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); | ||
439 | } | ||
440 | |||
441 | /* | ||
442 | * For the write set - the one we're currently inserting keys into - we don't | ||
443 | * maintain a full search tree, we just keep a simple lookup table in t->prev. | ||
444 | */ | ||
445 | static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) | ||
446 | { | ||
447 | return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); | ||
448 | } | ||
449 | |||
450 | static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) | ||
451 | { | ||
452 | #ifdef CONFIG_X86_64 | ||
453 | asm("shrd %[shift],%[high],%[low]" | ||
454 | : [low] "+Rm" (low) | ||
455 | : [high] "R" (high), | ||
456 | [shift] "ci" (shift) | ||
457 | : "cc"); | ||
458 | #else | ||
459 | low >>= shift; | ||
460 | low |= (high << 1) << (63U - shift); | ||
461 | #endif | ||
462 | return low; | ||
463 | } | ||
464 | |||
465 | static inline unsigned bfloat_mantissa(const struct bkey *k, | ||
466 | struct bkey_float *f) | ||
467 | { | ||
468 | const uint64_t *p = &k->low - (f->exponent >> 6); | ||
469 | return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; | ||
470 | } | ||
471 | |||
472 | static void make_bfloat(struct bset_tree *t, unsigned j) | ||
473 | { | ||
474 | struct bkey_float *f = &t->tree[j]; | ||
475 | struct bkey *m = tree_to_bkey(t, j); | ||
476 | struct bkey *p = tree_to_prev_bkey(t, j); | ||
477 | |||
478 | struct bkey *l = is_power_of_2(j) | ||
479 | ? t->data->start | ||
480 | : tree_to_prev_bkey(t, j >> ffs(j)); | ||
481 | |||
482 | struct bkey *r = is_power_of_2(j + 1) | ||
483 | ? node(t->data, t->data->keys - bkey_u64s(&t->end)) | ||
484 | : tree_to_bkey(t, j >> (ffz(j) + 1)); | ||
485 | |||
486 | BUG_ON(m < l || m > r); | ||
487 | BUG_ON(bkey_next(p) != m); | ||
488 | |||
489 | if (KEY_INODE(l) != KEY_INODE(r)) | ||
490 | f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; | ||
491 | else | ||
492 | f->exponent = fls64(r->low ^ l->low); | ||
493 | |||
494 | f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); | ||
495 | |||
496 | /* | ||
497 | * Setting f->exponent = 127 flags this node as failed, and causes the | ||
498 | * lookup code to fall back to comparing against the original key. | ||
499 | */ | ||
500 | |||
501 | if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) | ||
502 | f->mantissa = bfloat_mantissa(m, f) - 1; | ||
503 | else | ||
504 | f->exponent = 127; | ||
505 | } | ||
506 | |||
507 | static void bset_alloc_tree(struct btree *b, struct bset_tree *t) | ||
508 | { | ||
509 | if (t != b->sets) { | ||
510 | unsigned j = roundup(t[-1].size, | ||
511 | 64 / sizeof(struct bkey_float)); | ||
512 | |||
513 | t->tree = t[-1].tree + j; | ||
514 | t->prev = t[-1].prev + j; | ||
515 | } | ||
516 | |||
517 | while (t < b->sets + MAX_BSETS) | ||
518 | t++->size = 0; | ||
519 | } | ||
520 | |||
521 | static void bset_build_unwritten_tree(struct btree *b) | ||
522 | { | ||
523 | struct bset_tree *t = b->sets + b->nsets; | ||
524 | |||
525 | bset_alloc_tree(b, t); | ||
526 | |||
527 | if (t->tree != b->sets->tree + bset_tree_space(b)) { | ||
528 | t->prev[0] = bkey_to_cacheline_offset(t->data->start); | ||
529 | t->size = 1; | ||
530 | } | ||
531 | } | ||
532 | |||
533 | static void bset_build_written_tree(struct btree *b) | ||
534 | { | ||
535 | struct bset_tree *t = b->sets + b->nsets; | ||
536 | struct bkey *k = t->data->start; | ||
537 | unsigned j, cacheline = 1; | ||
538 | |||
539 | bset_alloc_tree(b, t); | ||
540 | |||
541 | t->size = min_t(unsigned, | ||
542 | bkey_to_cacheline(t, end(t->data)), | ||
543 | b->sets->tree + bset_tree_space(b) - t->tree); | ||
544 | |||
545 | if (t->size < 2) { | ||
546 | t->size = 0; | ||
547 | return; | ||
548 | } | ||
549 | |||
550 | t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; | ||
551 | |||
552 | /* First we figure out where the first key in each cacheline is */ | ||
553 | for (j = inorder_next(0, t->size); | ||
554 | j; | ||
555 | j = inorder_next(j, t->size)) { | ||
556 | while (bkey_to_cacheline(t, k) != cacheline) | ||
557 | k = bkey_next(k); | ||
558 | |||
559 | t->prev[j] = bkey_u64s(k); | ||
560 | k = bkey_next(k); | ||
561 | cacheline++; | ||
562 | t->tree[j].m = bkey_to_cacheline_offset(k); | ||
563 | } | ||
564 | |||
565 | while (bkey_next(k) != end(t->data)) | ||
566 | k = bkey_next(k); | ||
567 | |||
568 | t->end = *k; | ||
569 | |||
570 | /* Then we build the tree */ | ||
571 | for (j = inorder_next(0, t->size); | ||
572 | j; | ||
573 | j = inorder_next(j, t->size)) | ||
574 | make_bfloat(t, j); | ||
575 | } | ||
576 | |||
577 | void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k) | ||
578 | { | ||
579 | struct bset_tree *t; | ||
580 | unsigned inorder, j = 1; | ||
581 | |||
582 | for (t = b->sets; t <= &b->sets[b->nsets]; t++) | ||
583 | if (k < end(t->data)) | ||
584 | goto found_set; | ||
585 | |||
586 | BUG(); | ||
587 | found_set: | ||
588 | if (!t->size || !bset_written(b, t)) | ||
589 | return; | ||
590 | |||
591 | inorder = bkey_to_cacheline(t, k); | ||
592 | |||
593 | if (k == t->data->start) | ||
594 | goto fix_left; | ||
595 | |||
596 | if (bkey_next(k) == end(t->data)) { | ||
597 | t->end = *k; | ||
598 | goto fix_right; | ||
599 | } | ||
600 | |||
601 | j = inorder_to_tree(inorder, t); | ||
602 | |||
603 | if (j && | ||
604 | j < t->size && | ||
605 | k == tree_to_bkey(t, j)) | ||
606 | fix_left: do { | ||
607 | make_bfloat(t, j); | ||
608 | j = j * 2; | ||
609 | } while (j < t->size); | ||
610 | |||
611 | j = inorder_to_tree(inorder + 1, t); | ||
612 | |||
613 | if (j && | ||
614 | j < t->size && | ||
615 | k == tree_to_prev_bkey(t, j)) | ||
616 | fix_right: do { | ||
617 | make_bfloat(t, j); | ||
618 | j = j * 2 + 1; | ||
619 | } while (j < t->size); | ||
620 | } | ||
621 | |||
622 | void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k) | ||
623 | { | ||
624 | struct bset_tree *t = &b->sets[b->nsets]; | ||
625 | unsigned shift = bkey_u64s(k); | ||
626 | unsigned j = bkey_to_cacheline(t, k); | ||
627 | |||
628 | /* We're getting called from btree_split() or btree_gc, just bail out */ | ||
629 | if (!t->size) | ||
630 | return; | ||
631 | |||
632 | /* k is the key we just inserted; we need to find the entry in the | ||
633 | * lookup table for the first key that is strictly greater than k: | ||
634 | * it's either k's cacheline or the next one | ||
635 | */ | ||
636 | if (j < t->size && | ||
637 | table_to_bkey(t, j) <= k) | ||
638 | j++; | ||
639 | |||
640 | /* Adjust all the lookup table entries, and find a new key for any that | ||
641 | * have gotten too big | ||
642 | */ | ||
643 | for (; j < t->size; j++) { | ||
644 | t->prev[j] += shift; | ||
645 | |||
646 | if (t->prev[j] > 7) { | ||
647 | k = table_to_bkey(t, j - 1); | ||
648 | |||
649 | while (k < cacheline_to_bkey(t, j, 0)) | ||
650 | k = bkey_next(k); | ||
651 | |||
652 | t->prev[j] = bkey_to_cacheline_offset(k); | ||
653 | } | ||
654 | } | ||
655 | |||
656 | if (t->size == b->sets->tree + bset_tree_space(b) - t->tree) | ||
657 | return; | ||
658 | |||
659 | /* Possibly add a new entry to the end of the lookup table */ | ||
660 | |||
661 | for (k = table_to_bkey(t, t->size - 1); | ||
662 | k != end(t->data); | ||
663 | k = bkey_next(k)) | ||
664 | if (t->size == bkey_to_cacheline(t, k)) { | ||
665 | t->prev[t->size] = bkey_to_cacheline_offset(k); | ||
666 | t->size++; | ||
667 | } | ||
668 | } | ||
669 | |||
670 | void bch_bset_init_next(struct btree *b) | ||
671 | { | ||
672 | struct bset *i = write_block(b); | ||
673 | |||
674 | if (i != b->sets[0].data) { | ||
675 | b->sets[++b->nsets].data = i; | ||
676 | i->seq = b->sets[0].data->seq; | ||
677 | } else | ||
678 | get_random_bytes(&i->seq, sizeof(uint64_t)); | ||
679 | |||
680 | i->magic = bset_magic(b->c); | ||
681 | i->version = 0; | ||
682 | i->keys = 0; | ||
683 | |||
684 | bset_build_unwritten_tree(b); | ||
685 | } | ||
686 | |||
687 | struct bset_search_iter { | ||
688 | struct bkey *l, *r; | ||
689 | }; | ||
690 | |||
691 | static struct bset_search_iter bset_search_write_set(struct btree *b, | ||
692 | struct bset_tree *t, | ||
693 | const struct bkey *search) | ||
694 | { | ||
695 | unsigned li = 0, ri = t->size; | ||
696 | |||
697 | BUG_ON(!b->nsets && | ||
698 | t->size < bkey_to_cacheline(t, end(t->data))); | ||
699 | |||
700 | while (li + 1 != ri) { | ||
701 | unsigned m = (li + ri) >> 1; | ||
702 | |||
703 | if (bkey_cmp(table_to_bkey(t, m), search) > 0) | ||
704 | ri = m; | ||
705 | else | ||
706 | li = m; | ||
707 | } | ||
708 | |||
709 | return (struct bset_search_iter) { | ||
710 | table_to_bkey(t, li), | ||
711 | ri < t->size ? table_to_bkey(t, ri) : end(t->data) | ||
712 | }; | ||
713 | } | ||
714 | |||
715 | static struct bset_search_iter bset_search_tree(struct btree *b, | ||
716 | struct bset_tree *t, | ||
717 | const struct bkey *search) | ||
718 | { | ||
719 | struct bkey *l, *r; | ||
720 | struct bkey_float *f; | ||
721 | unsigned inorder, j, n = 1; | ||
722 | |||
723 | do { | ||
724 | unsigned p = n << 4; | ||
725 | p &= ((int) (p - t->size)) >> 31; | ||
726 | |||
727 | prefetch(&t->tree[p]); | ||
728 | |||
729 | j = n; | ||
730 | f = &t->tree[j]; | ||
731 | |||
732 | /* | ||
733 | * n = (f->mantissa > bfloat_mantissa()) | ||
734 | * ? j * 2 | ||
735 | * : j * 2 + 1; | ||
736 | * | ||
737 | * We need to subtract 1 from f->mantissa for the sign bit trick | ||
738 | * to work - that's done in make_bfloat() | ||
739 | */ | ||
740 | if (likely(f->exponent != 127)) | ||
741 | n = j * 2 + (((unsigned) | ||
742 | (f->mantissa - | ||
743 | bfloat_mantissa(search, f))) >> 31); | ||
744 | else | ||
745 | n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) | ||
746 | ? j * 2 | ||
747 | : j * 2 + 1; | ||
748 | } while (n < t->size); | ||
749 | |||
750 | inorder = to_inorder(j, t); | ||
751 | |||
752 | /* | ||
753 | * n would have been the node we recursed to - the low bit tells us if | ||
754 | * we recursed left or recursed right. | ||
755 | */ | ||
756 | if (n & 1) { | ||
757 | l = cacheline_to_bkey(t, inorder, f->m); | ||
758 | |||
759 | if (++inorder != t->size) { | ||
760 | f = &t->tree[inorder_next(j, t->size)]; | ||
761 | r = cacheline_to_bkey(t, inorder, f->m); | ||
762 | } else | ||
763 | r = end(t->data); | ||
764 | } else { | ||
765 | r = cacheline_to_bkey(t, inorder, f->m); | ||
766 | |||
767 | if (--inorder) { | ||
768 | f = &t->tree[inorder_prev(j, t->size)]; | ||
769 | l = cacheline_to_bkey(t, inorder, f->m); | ||
770 | } else | ||
771 | l = t->data->start; | ||
772 | } | ||
773 | |||
774 | return (struct bset_search_iter) {l, r}; | ||
775 | } | ||
776 | |||
777 | struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t, | ||
778 | const struct bkey *search) | ||
779 | { | ||
780 | struct bset_search_iter i; | ||
781 | |||
782 | /* | ||
783 | * First, we search for a cacheline, then lastly we do a linear search | ||
784 | * within that cacheline. | ||
785 | * | ||
786 | * To search for the cacheline, there's three different possibilities: | ||
787 | * * The set is too small to have a search tree, so we just do a linear | ||
788 | * search over the whole set. | ||
789 | * * The set is the one we're currently inserting into; keeping a full | ||
790 | * auxiliary search tree up to date would be too expensive, so we | ||
791 | * use a much simpler lookup table to do a binary search - | ||
792 | * bset_search_write_set(). | ||
793 | * * Or we use the auxiliary search tree we constructed earlier - | ||
794 | * bset_search_tree() | ||
795 | */ | ||
796 | |||
797 | if (unlikely(!t->size)) { | ||
798 | i.l = t->data->start; | ||
799 | i.r = end(t->data); | ||
800 | } else if (bset_written(b, t)) { | ||
801 | /* | ||
802 | * Each node in the auxiliary search tree covers a certain range | ||
803 | * of bits, and keys above and below the set it covers might | ||
804 | * differ outside those bits - so we have to special case the | ||
805 | * start and end - handle that here: | ||
806 | */ | ||
807 | |||
808 | if (unlikely(bkey_cmp(search, &t->end) >= 0)) | ||
809 | return end(t->data); | ||
810 | |||
811 | if (unlikely(bkey_cmp(search, t->data->start) < 0)) | ||
812 | return t->data->start; | ||
813 | |||
814 | i = bset_search_tree(b, t, search); | ||
815 | } else | ||
816 | i = bset_search_write_set(b, t, search); | ||
817 | |||
818 | #ifdef CONFIG_BCACHE_EDEBUG | ||
819 | BUG_ON(bset_written(b, t) && | ||
820 | i.l != t->data->start && | ||
821 | bkey_cmp(tree_to_prev_bkey(t, | ||
822 | inorder_to_tree(bkey_to_cacheline(t, i.l), t)), | ||
823 | search) > 0); | ||
824 | |||
825 | BUG_ON(i.r != end(t->data) && | ||
826 | bkey_cmp(i.r, search) <= 0); | ||
827 | #endif | ||
828 | |||
829 | while (likely(i.l != i.r) && | ||
830 | bkey_cmp(i.l, search) <= 0) | ||
831 | i.l = bkey_next(i.l); | ||
832 | |||
833 | return i.l; | ||
834 | } | ||
835 | |||
836 | /* Btree iterator */ | ||
837 | |||
838 | static inline bool btree_iter_cmp(struct btree_iter_set l, | ||
839 | struct btree_iter_set r) | ||
840 | { | ||
841 | int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k)); | ||
842 | |||
843 | return c ? c > 0 : l.k < r.k; | ||
844 | } | ||
845 | |||
846 | static inline bool btree_iter_end(struct btree_iter *iter) | ||
847 | { | ||
848 | return !iter->used; | ||
849 | } | ||
850 | |||
851 | void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, | ||
852 | struct bkey *end) | ||
853 | { | ||
854 | if (k != end) | ||
855 | BUG_ON(!heap_add(iter, | ||
856 | ((struct btree_iter_set) { k, end }), | ||
857 | btree_iter_cmp)); | ||
858 | } | ||
859 | |||
860 | struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter, | ||
861 | struct bkey *search, struct bset_tree *start) | ||
862 | { | ||
863 | struct bkey *ret = NULL; | ||
864 | iter->size = ARRAY_SIZE(iter->data); | ||
865 | iter->used = 0; | ||
866 | |||
867 | for (; start <= &b->sets[b->nsets]; start++) { | ||
868 | ret = bch_bset_search(b, start, search); | ||
869 | bch_btree_iter_push(iter, ret, end(start->data)); | ||
870 | } | ||
871 | |||
872 | return ret; | ||
873 | } | ||
874 | |||
875 | struct bkey *bch_btree_iter_next(struct btree_iter *iter) | ||
876 | { | ||
877 | struct btree_iter_set unused; | ||
878 | struct bkey *ret = NULL; | ||
879 | |||
880 | if (!btree_iter_end(iter)) { | ||
881 | ret = iter->data->k; | ||
882 | iter->data->k = bkey_next(iter->data->k); | ||
883 | |||
884 | if (iter->data->k > iter->data->end) { | ||
885 | __WARN(); | ||
886 | iter->data->k = iter->data->end; | ||
887 | } | ||
888 | |||
889 | if (iter->data->k == iter->data->end) | ||
890 | heap_pop(iter, unused, btree_iter_cmp); | ||
891 | else | ||
892 | heap_sift(iter, 0, btree_iter_cmp); | ||
893 | } | ||
894 | |||
895 | return ret; | ||
896 | } | ||
897 | |||
898 | struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, | ||
899 | struct btree *b, ptr_filter_fn fn) | ||
900 | { | ||
901 | struct bkey *ret; | ||
902 | |||
903 | do { | ||
904 | ret = bch_btree_iter_next(iter); | ||
905 | } while (ret && fn(b, ret)); | ||
906 | |||
907 | return ret; | ||
908 | } | ||
909 | |||
910 | struct bkey *bch_next_recurse_key(struct btree *b, struct bkey *search) | ||
911 | { | ||
912 | struct btree_iter iter; | ||
913 | |||
914 | bch_btree_iter_init(b, &iter, search); | ||
915 | return bch_btree_iter_next_filter(&iter, b, bch_ptr_bad); | ||
916 | } | ||
917 | |||
918 | /* Mergesort */ | ||
919 | |||
920 | static void btree_sort_fixup(struct btree_iter *iter) | ||
921 | { | ||
922 | while (iter->used > 1) { | ||
923 | struct btree_iter_set *top = iter->data, *i = top + 1; | ||
924 | struct bkey *k; | ||
925 | |||
926 | if (iter->used > 2 && | ||
927 | btree_iter_cmp(i[0], i[1])) | ||
928 | i++; | ||
929 | |||
930 | for (k = i->k; | ||
931 | k != i->end && bkey_cmp(top->k, &START_KEY(k)) > 0; | ||
932 | k = bkey_next(k)) | ||
933 | if (top->k > i->k) | ||
934 | __bch_cut_front(top->k, k); | ||
935 | else if (KEY_SIZE(k)) | ||
936 | bch_cut_back(&START_KEY(k), top->k); | ||
937 | |||
938 | if (top->k < i->k || k == i->k) | ||
939 | break; | ||
940 | |||
941 | heap_sift(iter, i - top, btree_iter_cmp); | ||
942 | } | ||
943 | } | ||
944 | |||
945 | static void btree_mergesort(struct btree *b, struct bset *out, | ||
946 | struct btree_iter *iter, | ||
947 | bool fixup, bool remove_stale) | ||
948 | { | ||
949 | struct bkey *k, *last = NULL; | ||
950 | bool (*bad)(struct btree *, const struct bkey *) = remove_stale | ||
951 | ? bch_ptr_bad | ||
952 | : bch_ptr_invalid; | ||
953 | |||
954 | while (!btree_iter_end(iter)) { | ||
955 | if (fixup && !b->level) | ||
956 | btree_sort_fixup(iter); | ||
957 | |||
958 | k = bch_btree_iter_next(iter); | ||
959 | if (bad(b, k)) | ||
960 | continue; | ||
961 | |||
962 | if (!last) { | ||
963 | last = out->start; | ||
964 | bkey_copy(last, k); | ||
965 | } else if (b->level || | ||
966 | !bch_bkey_try_merge(b, last, k)) { | ||
967 | last = bkey_next(last); | ||
968 | bkey_copy(last, k); | ||
969 | } | ||
970 | } | ||
971 | |||
972 | out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; | ||
973 | |||
974 | pr_debug("sorted %i keys", out->keys); | ||
975 | bch_check_key_order(b, out); | ||
976 | } | ||
977 | |||
978 | static void __btree_sort(struct btree *b, struct btree_iter *iter, | ||
979 | unsigned start, unsigned order, bool fixup) | ||
980 | { | ||
981 | uint64_t start_time; | ||
982 | bool remove_stale = !b->written; | ||
983 | struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO, | ||
984 | order); | ||
985 | if (!out) { | ||
986 | mutex_lock(&b->c->sort_lock); | ||
987 | out = b->c->sort; | ||
988 | order = ilog2(bucket_pages(b->c)); | ||
989 | } | ||
990 | |||
991 | start_time = local_clock(); | ||
992 | |||
993 | btree_mergesort(b, out, iter, fixup, remove_stale); | ||
994 | b->nsets = start; | ||
995 | |||
996 | if (!fixup && !start && b->written) | ||
997 | bch_btree_verify(b, out); | ||
998 | |||
999 | if (!start && order == b->page_order) { | ||
1000 | /* | ||
1001 | * Our temporary buffer is the same size as the btree node's | ||
1002 | * buffer, we can just swap buffers instead of doing a big | ||
1003 | * memcpy() | ||
1004 | */ | ||
1005 | |||
1006 | out->magic = bset_magic(b->c); | ||
1007 | out->seq = b->sets[0].data->seq; | ||
1008 | out->version = b->sets[0].data->version; | ||
1009 | swap(out, b->sets[0].data); | ||
1010 | |||
1011 | if (b->c->sort == b->sets[0].data) | ||
1012 | b->c->sort = out; | ||
1013 | } else { | ||
1014 | b->sets[start].data->keys = out->keys; | ||
1015 | memcpy(b->sets[start].data->start, out->start, | ||
1016 | (void *) end(out) - (void *) out->start); | ||
1017 | } | ||
1018 | |||
1019 | if (out == b->c->sort) | ||
1020 | mutex_unlock(&b->c->sort_lock); | ||
1021 | else | ||
1022 | free_pages((unsigned long) out, order); | ||
1023 | |||
1024 | if (b->written) | ||
1025 | bset_build_written_tree(b); | ||
1026 | |||
1027 | if (!start) { | ||
1028 | spin_lock(&b->c->sort_time_lock); | ||
1029 | time_stats_update(&b->c->sort_time, start_time); | ||
1030 | spin_unlock(&b->c->sort_time_lock); | ||
1031 | } | ||
1032 | } | ||
1033 | |||
1034 | void bch_btree_sort_partial(struct btree *b, unsigned start) | ||
1035 | { | ||
1036 | size_t oldsize = 0, order = b->page_order, keys = 0; | ||
1037 | struct btree_iter iter; | ||
1038 | __bch_btree_iter_init(b, &iter, NULL, &b->sets[start]); | ||
1039 | |||
1040 | BUG_ON(b->sets[b->nsets].data == write_block(b) && | ||
1041 | (b->sets[b->nsets].size || b->nsets)); | ||
1042 | |||
1043 | if (b->written) | ||
1044 | oldsize = bch_count_data(b); | ||
1045 | |||
1046 | if (start) { | ||
1047 | unsigned i; | ||
1048 | |||
1049 | for (i = start; i <= b->nsets; i++) | ||
1050 | keys += b->sets[i].data->keys; | ||
1051 | |||
1052 | order = roundup_pow_of_two(__set_bytes(b->sets->data, keys)) / PAGE_SIZE; | ||
1053 | if (order) | ||
1054 | order = ilog2(order); | ||
1055 | } | ||
1056 | |||
1057 | __btree_sort(b, &iter, start, order, false); | ||
1058 | |||
1059 | EBUG_ON(b->written && bch_count_data(b) != oldsize); | ||
1060 | } | ||
1061 | |||
1062 | void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter) | ||
1063 | { | ||
1064 | BUG_ON(!b->written); | ||
1065 | __btree_sort(b, iter, 0, b->page_order, true); | ||
1066 | } | ||
1067 | |||
1068 | void bch_btree_sort_into(struct btree *b, struct btree *new) | ||
1069 | { | ||
1070 | uint64_t start_time = local_clock(); | ||
1071 | |||
1072 | struct btree_iter iter; | ||
1073 | bch_btree_iter_init(b, &iter, NULL); | ||
1074 | |||
1075 | btree_mergesort(b, new->sets->data, &iter, false, true); | ||
1076 | |||
1077 | spin_lock(&b->c->sort_time_lock); | ||
1078 | time_stats_update(&b->c->sort_time, start_time); | ||
1079 | spin_unlock(&b->c->sort_time_lock); | ||
1080 | |||
1081 | bkey_copy_key(&new->key, &b->key); | ||
1082 | new->sets->size = 0; | ||
1083 | } | ||
1084 | |||
1085 | void bch_btree_sort_lazy(struct btree *b) | ||
1086 | { | ||
1087 | if (b->nsets) { | ||
1088 | unsigned i, j, keys = 0, total; | ||
1089 | |||
1090 | for (i = 0; i <= b->nsets; i++) | ||
1091 | keys += b->sets[i].data->keys; | ||
1092 | |||
1093 | total = keys; | ||
1094 | |||
1095 | for (j = 0; j < b->nsets; j++) { | ||
1096 | if (keys * 2 < total || | ||
1097 | keys < 1000) { | ||
1098 | bch_btree_sort_partial(b, j); | ||
1099 | return; | ||
1100 | } | ||
1101 | |||
1102 | keys -= b->sets[j].data->keys; | ||
1103 | } | ||
1104 | |||
1105 | /* Must sort if b->nsets == 3 or we'll overflow */ | ||
1106 | if (b->nsets >= (MAX_BSETS - 1) - b->level) { | ||
1107 | bch_btree_sort(b); | ||
1108 | return; | ||
1109 | } | ||
1110 | } | ||
1111 | |||
1112 | bset_build_written_tree(b); | ||
1113 | } | ||
1114 | |||
1115 | /* Sysfs stuff */ | ||
1116 | |||
1117 | struct bset_stats { | ||
1118 | size_t nodes; | ||
1119 | size_t sets_written, sets_unwritten; | ||
1120 | size_t bytes_written, bytes_unwritten; | ||
1121 | size_t floats, failed; | ||
1122 | }; | ||
1123 | |||
1124 | static int bch_btree_bset_stats(struct btree *b, struct btree_op *op, | ||
1125 | struct bset_stats *stats) | ||
1126 | { | ||
1127 | struct bkey *k; | ||
1128 | unsigned i; | ||
1129 | |||
1130 | stats->nodes++; | ||
1131 | |||
1132 | for (i = 0; i <= b->nsets; i++) { | ||
1133 | struct bset_tree *t = &b->sets[i]; | ||
1134 | size_t bytes = t->data->keys * sizeof(uint64_t); | ||
1135 | size_t j; | ||
1136 | |||
1137 | if (bset_written(b, t)) { | ||
1138 | stats->sets_written++; | ||
1139 | stats->bytes_written += bytes; | ||
1140 | |||
1141 | stats->floats += t->size - 1; | ||
1142 | |||
1143 | for (j = 1; j < t->size; j++) | ||
1144 | if (t->tree[j].exponent == 127) | ||
1145 | stats->failed++; | ||
1146 | } else { | ||
1147 | stats->sets_unwritten++; | ||
1148 | stats->bytes_unwritten += bytes; | ||
1149 | } | ||
1150 | } | ||
1151 | |||
1152 | if (b->level) { | ||
1153 | struct btree_iter iter; | ||
1154 | |||
1155 | for_each_key_filter(b, k, &iter, bch_ptr_bad) { | ||
1156 | int ret = btree(bset_stats, k, b, op, stats); | ||
1157 | if (ret) | ||
1158 | return ret; | ||
1159 | } | ||
1160 | } | ||
1161 | |||
1162 | return 0; | ||
1163 | } | ||
1164 | |||
1165 | int bch_bset_print_stats(struct cache_set *c, char *buf) | ||
1166 | { | ||
1167 | struct btree_op op; | ||
1168 | struct bset_stats t; | ||
1169 | int ret; | ||
1170 | |||
1171 | bch_btree_op_init_stack(&op); | ||
1172 | memset(&t, 0, sizeof(struct bset_stats)); | ||
1173 | |||
1174 | ret = btree_root(bset_stats, c, &op, &t); | ||
1175 | if (ret) | ||
1176 | return ret; | ||
1177 | |||
1178 | return snprintf(buf, PAGE_SIZE, | ||
1179 | "btree nodes: %zu\n" | ||
1180 | "written sets: %zu\n" | ||
1181 | "unwritten sets: %zu\n" | ||
1182 | "written key bytes: %zu\n" | ||
1183 | "unwritten key bytes: %zu\n" | ||
1184 | "floats: %zu\n" | ||
1185 | "failed: %zu\n", | ||
1186 | t.nodes, | ||
1187 | t.sets_written, t.sets_unwritten, | ||
1188 | t.bytes_written, t.bytes_unwritten, | ||
1189 | t.floats, t.failed); | ||
1190 | } | ||