aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/lguest/segments.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-08-09 06:46:45 -0400
committerIngo Molnar <mingo@elte.hu>2009-08-09 06:46:49 -0400
commite3560336be655c6791316482fe288b119f34c427 (patch)
tree43ca9a6b489aaa3918b773f78a7eda37458ef0a8 /drivers/lguest/segments.c
parent26528e773ecc74fb1b61b7275f86f761cbb340ec (diff)
parent7b2aa037e878c939676675969983284a02958ae3 (diff)
Merge branch 'linus' into tracing/urgent
Merge reason: Merge up to almost-rc6 to pick up latest perfcounters (on which we'll queue up a dependent fix) Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'drivers/lguest/segments.c')
-rw-r--r--drivers/lguest/segments.c106
1 files changed, 69 insertions, 37 deletions
diff --git a/drivers/lguest/segments.c b/drivers/lguest/segments.c
index 482ed5a18750..951c57b0a7e0 100644
--- a/drivers/lguest/segments.c
+++ b/drivers/lguest/segments.c
@@ -1,4 +1,5 @@
1/*P:600 The x86 architecture has segments, which involve a table of descriptors 1/*P:600
2 * The x86 architecture has segments, which involve a table of descriptors
2 * which can be used to do funky things with virtual address interpretation. 3 * which can be used to do funky things with virtual address interpretation.
3 * We originally used to use segments so the Guest couldn't alter the 4 * We originally used to use segments so the Guest couldn't alter the
4 * Guest<->Host Switcher, and then we had to trim Guest segments, and restore 5 * Guest<->Host Switcher, and then we had to trim Guest segments, and restore
@@ -8,7 +9,8 @@
8 * 9 *
9 * In these modern times, the segment handling code consists of simple sanity 10 * In these modern times, the segment handling code consists of simple sanity
10 * checks, and the worst you'll experience reading this code is butterfly-rash 11 * checks, and the worst you'll experience reading this code is butterfly-rash
11 * from frolicking through its parklike serenity. :*/ 12 * from frolicking through its parklike serenity.
13:*/
12#include "lg.h" 14#include "lg.h"
13 15
14/*H:600 16/*H:600
@@ -41,10 +43,12 @@
41 * begin. 43 * begin.
42 */ 44 */
43 45
44/* There are several entries we don't let the Guest set. The TSS entry is the 46/*
47 * There are several entries we don't let the Guest set. The TSS entry is the
45 * "Task State Segment" which controls all kinds of delicate things. The 48 * "Task State Segment" which controls all kinds of delicate things. The
46 * LGUEST_CS and LGUEST_DS entries are reserved for the Switcher, and the 49 * LGUEST_CS and LGUEST_DS entries are reserved for the Switcher, and the
47 * the Guest can't be trusted to deal with double faults. */ 50 * the Guest can't be trusted to deal with double faults.
51 */
48static bool ignored_gdt(unsigned int num) 52static bool ignored_gdt(unsigned int num)
49{ 53{
50 return (num == GDT_ENTRY_TSS 54 return (num == GDT_ENTRY_TSS
@@ -53,42 +57,52 @@ static bool ignored_gdt(unsigned int num)
53 || num == GDT_ENTRY_DOUBLEFAULT_TSS); 57 || num == GDT_ENTRY_DOUBLEFAULT_TSS);
54} 58}
55 59
56/*H:630 Once the Guest gave us new GDT entries, we fix them up a little. We 60/*H:630
61 * Once the Guest gave us new GDT entries, we fix them up a little. We
57 * don't care if they're invalid: the worst that can happen is a General 62 * don't care if they're invalid: the worst that can happen is a General
58 * Protection Fault in the Switcher when it restores a Guest segment register 63 * Protection Fault in the Switcher when it restores a Guest segment register
59 * which tries to use that entry. Then we kill the Guest for causing such a 64 * which tries to use that entry. Then we kill the Guest for causing such a
60 * mess: the message will be "unhandled trap 256". */ 65 * mess: the message will be "unhandled trap 256".
66 */
61static void fixup_gdt_table(struct lg_cpu *cpu, unsigned start, unsigned end) 67static void fixup_gdt_table(struct lg_cpu *cpu, unsigned start, unsigned end)
62{ 68{
63 unsigned int i; 69 unsigned int i;
64 70
65 for (i = start; i < end; i++) { 71 for (i = start; i < end; i++) {
66 /* We never copy these ones to real GDT, so we don't care what 72 /*
67 * they say */ 73 * We never copy these ones to real GDT, so we don't care what
74 * they say
75 */
68 if (ignored_gdt(i)) 76 if (ignored_gdt(i))
69 continue; 77 continue;
70 78
71 /* Segment descriptors contain a privilege level: the Guest is 79 /*
80 * Segment descriptors contain a privilege level: the Guest is
72 * sometimes careless and leaves this as 0, even though it's 81 * sometimes careless and leaves this as 0, even though it's
73 * running at privilege level 1. If so, we fix it here. */ 82 * running at privilege level 1. If so, we fix it here.
83 */
74 if ((cpu->arch.gdt[i].b & 0x00006000) == 0) 84 if ((cpu->arch.gdt[i].b & 0x00006000) == 0)
75 cpu->arch.gdt[i].b |= (GUEST_PL << 13); 85 cpu->arch.gdt[i].b |= (GUEST_PL << 13);
76 86
77 /* Each descriptor has an "accessed" bit. If we don't set it 87 /*
88 * Each descriptor has an "accessed" bit. If we don't set it
78 * now, the CPU will try to set it when the Guest first loads 89 * now, the CPU will try to set it when the Guest first loads
79 * that entry into a segment register. But the GDT isn't 90 * that entry into a segment register. But the GDT isn't
80 * writable by the Guest, so bad things can happen. */ 91 * writable by the Guest, so bad things can happen.
92 */
81 cpu->arch.gdt[i].b |= 0x00000100; 93 cpu->arch.gdt[i].b |= 0x00000100;
82 } 94 }
83} 95}
84 96
85/*H:610 Like the IDT, we never simply use the GDT the Guest gives us. We keep 97/*H:610
98 * Like the IDT, we never simply use the GDT the Guest gives us. We keep
86 * a GDT for each CPU, and copy across the Guest's entries each time we want to 99 * a GDT for each CPU, and copy across the Guest's entries each time we want to
87 * run the Guest on that CPU. 100 * run the Guest on that CPU.
88 * 101 *
89 * This routine is called at boot or modprobe time for each CPU to set up the 102 * This routine is called at boot or modprobe time for each CPU to set up the
90 * constant GDT entries: the ones which are the same no matter what Guest we're 103 * constant GDT entries: the ones which are the same no matter what Guest we're
91 * running. */ 104 * running.
105 */
92void setup_default_gdt_entries(struct lguest_ro_state *state) 106void setup_default_gdt_entries(struct lguest_ro_state *state)
93{ 107{
94 struct desc_struct *gdt = state->guest_gdt; 108 struct desc_struct *gdt = state->guest_gdt;
@@ -98,30 +112,37 @@ void setup_default_gdt_entries(struct lguest_ro_state *state)
98 gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT; 112 gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
99 gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT; 113 gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
100 114
101 /* The TSS segment refers to the TSS entry for this particular CPU. 115 /*
116 * The TSS segment refers to the TSS entry for this particular CPU.
102 * Forgive the magic flags: the 0x8900 means the entry is Present, it's 117 * Forgive the magic flags: the 0x8900 means the entry is Present, it's
103 * privilege level 0 Available 386 TSS system segment, and the 0x67 118 * privilege level 0 Available 386 TSS system segment, and the 0x67
104 * means Saturn is eclipsed by Mercury in the twelfth house. */ 119 * means Saturn is eclipsed by Mercury in the twelfth house.
120 */
105 gdt[GDT_ENTRY_TSS].a = 0x00000067 | (tss << 16); 121 gdt[GDT_ENTRY_TSS].a = 0x00000067 | (tss << 16);
106 gdt[GDT_ENTRY_TSS].b = 0x00008900 | (tss & 0xFF000000) 122 gdt[GDT_ENTRY_TSS].b = 0x00008900 | (tss & 0xFF000000)
107 | ((tss >> 16) & 0x000000FF); 123 | ((tss >> 16) & 0x000000FF);
108} 124}
109 125
110/* This routine sets up the initial Guest GDT for booting. All entries start 126/*
111 * as 0 (unusable). */ 127 * This routine sets up the initial Guest GDT for booting. All entries start
128 * as 0 (unusable).
129 */
112void setup_guest_gdt(struct lg_cpu *cpu) 130void setup_guest_gdt(struct lg_cpu *cpu)
113{ 131{
114 /* Start with full 0-4G segments... */ 132 /*
133 * Start with full 0-4G segments...except the Guest is allowed to use
134 * them, so set the privilege level appropriately in the flags.
135 */
115 cpu->arch.gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT; 136 cpu->arch.gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT;
116 cpu->arch.gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT; 137 cpu->arch.gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT;
117 /* ...except the Guest is allowed to use them, so set the privilege
118 * level appropriately in the flags. */
119 cpu->arch.gdt[GDT_ENTRY_KERNEL_CS].b |= (GUEST_PL << 13); 138 cpu->arch.gdt[GDT_ENTRY_KERNEL_CS].b |= (GUEST_PL << 13);
120 cpu->arch.gdt[GDT_ENTRY_KERNEL_DS].b |= (GUEST_PL << 13); 139 cpu->arch.gdt[GDT_ENTRY_KERNEL_DS].b |= (GUEST_PL << 13);
121} 140}
122 141
123/*H:650 An optimization of copy_gdt(), for just the three "thead-local storage" 142/*H:650
124 * entries. */ 143 * An optimization of copy_gdt(), for just the three "thead-local storage"
144 * entries.
145 */
125void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt) 146void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt)
126{ 147{
127 unsigned int i; 148 unsigned int i;
@@ -130,26 +151,34 @@ void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt)
130 gdt[i] = cpu->arch.gdt[i]; 151 gdt[i] = cpu->arch.gdt[i];
131} 152}
132 153
133/*H:640 When the Guest is run on a different CPU, or the GDT entries have 154/*H:640
134 * changed, copy_gdt() is called to copy the Guest's GDT entries across to this 155 * When the Guest is run on a different CPU, or the GDT entries have changed,
135 * CPU's GDT. */ 156 * copy_gdt() is called to copy the Guest's GDT entries across to this CPU's
157 * GDT.
158 */
136void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt) 159void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt)
137{ 160{
138 unsigned int i; 161 unsigned int i;
139 162
140 /* The default entries from setup_default_gdt_entries() are not 163 /*
141 * replaced. See ignored_gdt() above. */ 164 * The default entries from setup_default_gdt_entries() are not
165 * replaced. See ignored_gdt() above.
166 */
142 for (i = 0; i < GDT_ENTRIES; i++) 167 for (i = 0; i < GDT_ENTRIES; i++)
143 if (!ignored_gdt(i)) 168 if (!ignored_gdt(i))
144 gdt[i] = cpu->arch.gdt[i]; 169 gdt[i] = cpu->arch.gdt[i];
145} 170}
146 171
147/*H:620 This is where the Guest asks us to load a new GDT entry 172/*H:620
148 * (LHCALL_LOAD_GDT_ENTRY). We tweak the entry and copy it in. */ 173 * This is where the Guest asks us to load a new GDT entry
174 * (LHCALL_LOAD_GDT_ENTRY). We tweak the entry and copy it in.
175 */
149void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi) 176void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi)
150{ 177{
151 /* We assume the Guest has the same number of GDT entries as the 178 /*
152 * Host, otherwise we'd have to dynamically allocate the Guest GDT. */ 179 * We assume the Guest has the same number of GDT entries as the
180 * Host, otherwise we'd have to dynamically allocate the Guest GDT.
181 */
153 if (num >= ARRAY_SIZE(cpu->arch.gdt)) 182 if (num >= ARRAY_SIZE(cpu->arch.gdt))
154 kill_guest(cpu, "too many gdt entries %i", num); 183 kill_guest(cpu, "too many gdt entries %i", num);
155 184
@@ -157,15 +186,19 @@ void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi)
157 cpu->arch.gdt[num].a = lo; 186 cpu->arch.gdt[num].a = lo;
158 cpu->arch.gdt[num].b = hi; 187 cpu->arch.gdt[num].b = hi;
159 fixup_gdt_table(cpu, num, num+1); 188 fixup_gdt_table(cpu, num, num+1);
160 /* Mark that the GDT changed so the core knows it has to copy it again, 189 /*
161 * even if the Guest is run on the same CPU. */ 190 * Mark that the GDT changed so the core knows it has to copy it again,
191 * even if the Guest is run on the same CPU.
192 */
162 cpu->changed |= CHANGED_GDT; 193 cpu->changed |= CHANGED_GDT;
163} 194}
164 195
165/* This is the fast-track version for just changing the three TLS entries. 196/*
197 * This is the fast-track version for just changing the three TLS entries.
166 * Remember that this happens on every context switch, so it's worth 198 * Remember that this happens on every context switch, so it's worth
167 * optimizing. But wouldn't it be neater to have a single hypercall to cover 199 * optimizing. But wouldn't it be neater to have a single hypercall to cover
168 * both cases? */ 200 * both cases?
201 */
169void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls) 202void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls)
170{ 203{
171 struct desc_struct *tls = &cpu->arch.gdt[GDT_ENTRY_TLS_MIN]; 204 struct desc_struct *tls = &cpu->arch.gdt[GDT_ENTRY_TLS_MIN];
@@ -175,7 +208,6 @@ void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls)
175 /* Note that just the TLS entries have changed. */ 208 /* Note that just the TLS entries have changed. */
176 cpu->changed |= CHANGED_GDT_TLS; 209 cpu->changed |= CHANGED_GDT_TLS;
177} 210}
178/*:*/
179 211
180/*H:660 212/*H:660
181 * With this, we have finished the Host. 213 * With this, we have finished the Host.