aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/lguest/page_tables.c
diff options
context:
space:
mode:
authorMatias Zabaljauregui <zabaljauregui@gmail.com>2009-06-13 00:27:07 -0400
committerRusty Russell <rusty@rustcorp.com.au>2009-06-12 08:57:08 -0400
commitacdd0b6292b282c4511897ac2691a47befbf1c6a (patch)
tree1bfcfc32b11d35e99fec5bbf52b19d6ee038f25e /drivers/lguest/page_tables.c
parentcefcad1773197523e11e18b669f245e6a8d32058 (diff)
lguest: PAE support
This version requires that host and guest have the same PAE status. NX cap is not offered to the guest, yet. Signed-off-by: Matias Zabaljauregui <zabaljauregui@gmail.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Diffstat (limited to 'drivers/lguest/page_tables.c')
-rw-r--r--drivers/lguest/page_tables.c351
1 files changed, 313 insertions, 38 deletions
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c
index 6a54d76b6236..5e2c26adcf06 100644
--- a/drivers/lguest/page_tables.c
+++ b/drivers/lguest/page_tables.c
@@ -53,6 +53,17 @@
53 * page. */ 53 * page. */
54#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1) 54#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
55 55
56/* For PAE we need the PMD index as well. We use the last 2MB, so we
57 * will need the last pmd entry of the last pmd page. */
58#ifdef CONFIG_X86_PAE
59#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
60#define RESERVE_MEM 2U
61#define CHECK_GPGD_MASK _PAGE_PRESENT
62#else
63#define RESERVE_MEM 4U
64#define CHECK_GPGD_MASK _PAGE_TABLE
65#endif
66
56/* We actually need a separate PTE page for each CPU. Remember that after the 67/* We actually need a separate PTE page for each CPU. Remember that after the
57 * Switcher code itself comes two pages for each CPU, and we don't want this 68 * Switcher code itself comes two pages for each CPU, and we don't want this
58 * CPU's guest to see the pages of any other CPU. */ 69 * CPU's guest to see the pages of any other CPU. */
@@ -73,23 +84,58 @@ static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
73{ 84{
74 unsigned int index = pgd_index(vaddr); 85 unsigned int index = pgd_index(vaddr);
75 86
87#ifndef CONFIG_X86_PAE
76 /* We kill any Guest trying to touch the Switcher addresses. */ 88 /* We kill any Guest trying to touch the Switcher addresses. */
77 if (index >= SWITCHER_PGD_INDEX) { 89 if (index >= SWITCHER_PGD_INDEX) {
78 kill_guest(cpu, "attempt to access switcher pages"); 90 kill_guest(cpu, "attempt to access switcher pages");
79 index = 0; 91 index = 0;
80 } 92 }
93#endif
81 /* Return a pointer index'th pgd entry for the i'th page table. */ 94 /* Return a pointer index'th pgd entry for the i'th page table. */
82 return &cpu->lg->pgdirs[i].pgdir[index]; 95 return &cpu->lg->pgdirs[i].pgdir[index];
83} 96}
84 97
98#ifdef CONFIG_X86_PAE
99/* This routine then takes the PGD entry given above, which contains the
100 * address of the PMD page. It then returns a pointer to the PMD entry for the
101 * given address. */
102static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
103{
104 unsigned int index = pmd_index(vaddr);
105 pmd_t *page;
106
107 /* We kill any Guest trying to touch the Switcher addresses. */
108 if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
109 index >= SWITCHER_PMD_INDEX) {
110 kill_guest(cpu, "attempt to access switcher pages");
111 index = 0;
112 }
113
114 /* You should never call this if the PGD entry wasn't valid */
115 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
116 page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
117
118 return &page[index];
119}
120#endif
121
85/* This routine then takes the page directory entry returned above, which 122/* This routine then takes the page directory entry returned above, which
86 * contains the address of the page table entry (PTE) page. It then returns a 123 * contains the address of the page table entry (PTE) page. It then returns a
87 * pointer to the PTE entry for the given address. */ 124 * pointer to the PTE entry for the given address. */
88static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr) 125static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
89{ 126{
127#ifdef CONFIG_X86_PAE
128 pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
129 pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
130
131 /* You should never call this if the PMD entry wasn't valid */
132 BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
133#else
90 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT); 134 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
91 /* You should never call this if the PGD entry wasn't valid */ 135 /* You should never call this if the PGD entry wasn't valid */
92 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT)); 136 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
137#endif
138
93 return &page[pte_index(vaddr)]; 139 return &page[pte_index(vaddr)];
94} 140}
95 141
@@ -101,10 +147,31 @@ static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
101 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t); 147 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
102} 148}
103 149
104static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr) 150#ifdef CONFIG_X86_PAE
151static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
105{ 152{
106 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT; 153 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
107 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT)); 154 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
155 return gpage + pmd_index(vaddr) * sizeof(pmd_t);
156}
157#endif
158
159static unsigned long gpte_addr(struct lg_cpu *cpu,
160 pgd_t gpgd, unsigned long vaddr)
161{
162#ifdef CONFIG_X86_PAE
163 pmd_t gpmd;
164#endif
165 unsigned long gpage;
166
167 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
168#ifdef CONFIG_X86_PAE
169 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
170 gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
171 BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
172#else
173 gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
174#endif
108 return gpage + pte_index(vaddr) * sizeof(pte_t); 175 return gpage + pte_index(vaddr) * sizeof(pte_t);
109} 176}
110/*:*/ 177/*:*/
@@ -184,11 +251,20 @@ static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
184 251
185static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd) 252static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
186{ 253{
187 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || 254 if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
188 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) 255 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
189 kill_guest(cpu, "bad page directory entry"); 256 kill_guest(cpu, "bad page directory entry");
190} 257}
191 258
259#ifdef CONFIG_X86_PAE
260static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
261{
262 if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
263 (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
264 kill_guest(cpu, "bad page middle directory entry");
265}
266#endif
267
192/*H:330 268/*H:330
193 * (i) Looking up a page table entry when the Guest faults. 269 * (i) Looking up a page table entry when the Guest faults.
194 * 270 *
@@ -207,6 +283,11 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
207 pte_t gpte; 283 pte_t gpte;
208 pte_t *spte; 284 pte_t *spte;
209 285
286#ifdef CONFIG_X86_PAE
287 pmd_t *spmd;
288 pmd_t gpmd;
289#endif
290
210 /* First step: get the top-level Guest page table entry. */ 291 /* First step: get the top-level Guest page table entry. */
211 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); 292 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
212 /* Toplevel not present? We can't map it in. */ 293 /* Toplevel not present? We can't map it in. */
@@ -228,12 +309,40 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
228 check_gpgd(cpu, gpgd); 309 check_gpgd(cpu, gpgd);
229 /* And we copy the flags to the shadow PGD entry. The page 310 /* And we copy the flags to the shadow PGD entry. The page
230 * number in the shadow PGD is the page we just allocated. */ 311 * number in the shadow PGD is the page we just allocated. */
231 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd)); 312 set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
232 } 313 }
233 314
315#ifdef CONFIG_X86_PAE
316 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
317 /* middle level not present? We can't map it in. */
318 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
319 return false;
320
321 /* Now look at the matching shadow entry. */
322 spmd = spmd_addr(cpu, *spgd, vaddr);
323
324 if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
325 /* No shadow entry: allocate a new shadow PTE page. */
326 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
327
328 /* This is not really the Guest's fault, but killing it is
329 * simple for this corner case. */
330 if (!ptepage) {
331 kill_guest(cpu, "out of memory allocating pte page");
332 return false;
333 }
334
335 /* We check that the Guest pmd is OK. */
336 check_gpmd(cpu, gpmd);
337
338 /* And we copy the flags to the shadow PMD entry. The page
339 * number in the shadow PMD is the page we just allocated. */
340 native_set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
341 }
342#endif
234 /* OK, now we look at the lower level in the Guest page table: keep its 343 /* OK, now we look at the lower level in the Guest page table: keep its
235 * address, because we might update it later. */ 344 * address, because we might update it later. */
236 gpte_ptr = gpte_addr(gpgd, vaddr); 345 gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
237 gpte = lgread(cpu, gpte_ptr, pte_t); 346 gpte = lgread(cpu, gpte_ptr, pte_t);
238 347
239 /* If this page isn't in the Guest page tables, we can't page it in. */ 348 /* If this page isn't in the Guest page tables, we can't page it in. */
@@ -259,7 +368,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
259 gpte = pte_mkdirty(gpte); 368 gpte = pte_mkdirty(gpte);
260 369
261 /* Get the pointer to the shadow PTE entry we're going to set. */ 370 /* Get the pointer to the shadow PTE entry we're going to set. */
262 spte = spte_addr(*spgd, vaddr); 371 spte = spte_addr(cpu, *spgd, vaddr);
263 /* If there was a valid shadow PTE entry here before, we release it. 372 /* If there was a valid shadow PTE entry here before, we release it.
264 * This can happen with a write to a previously read-only entry. */ 373 * This can happen with a write to a previously read-only entry. */
265 release_pte(*spte); 374 release_pte(*spte);
@@ -301,14 +410,23 @@ static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
301 pgd_t *spgd; 410 pgd_t *spgd;
302 unsigned long flags; 411 unsigned long flags;
303 412
413#ifdef CONFIG_X86_PAE
414 pmd_t *spmd;
415#endif
304 /* Look at the current top level entry: is it present? */ 416 /* Look at the current top level entry: is it present? */
305 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr); 417 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
306 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) 418 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
307 return false; 419 return false;
308 420
421#ifdef CONFIG_X86_PAE
422 spmd = spmd_addr(cpu, *spgd, vaddr);
423 if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
424 return false;
425#endif
426
309 /* Check the flags on the pte entry itself: it must be present and 427 /* Check the flags on the pte entry itself: it must be present and
310 * writable. */ 428 * writable. */
311 flags = pte_flags(*(spte_addr(*spgd, vaddr))); 429 flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
312 430
313 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); 431 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
314} 432}
@@ -322,6 +440,41 @@ void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
322 kill_guest(cpu, "bad stack page %#lx", vaddr); 440 kill_guest(cpu, "bad stack page %#lx", vaddr);
323} 441}
324 442
443#ifdef CONFIG_X86_PAE
444static void release_pmd(pmd_t *spmd)
445{
446 /* If the entry's not present, there's nothing to release. */
447 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
448 unsigned int i;
449 pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
450 /* For each entry in the page, we might need to release it. */
451 for (i = 0; i < PTRS_PER_PTE; i++)
452 release_pte(ptepage[i]);
453 /* Now we can free the page of PTEs */
454 free_page((long)ptepage);
455 /* And zero out the PMD entry so we never release it twice. */
456 native_set_pmd(spmd, __pmd(0));
457 }
458}
459
460static void release_pgd(pgd_t *spgd)
461{
462 /* If the entry's not present, there's nothing to release. */
463 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
464 unsigned int i;
465 pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
466
467 for (i = 0; i < PTRS_PER_PMD; i++)
468 release_pmd(&pmdpage[i]);
469
470 /* Now we can free the page of PMDs */
471 free_page((long)pmdpage);
472 /* And zero out the PGD entry so we never release it twice. */
473 set_pgd(spgd, __pgd(0));
474 }
475}
476
477#else /* !CONFIG_X86_PAE */
325/*H:450 If we chase down the release_pgd() code, it looks like this: */ 478/*H:450 If we chase down the release_pgd() code, it looks like this: */
326static void release_pgd(pgd_t *spgd) 479static void release_pgd(pgd_t *spgd)
327{ 480{
@@ -341,7 +494,7 @@ static void release_pgd(pgd_t *spgd)
341 *spgd = __pgd(0); 494 *spgd = __pgd(0);
342 } 495 }
343} 496}
344 497#endif
345/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings() 498/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
346 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page. 499 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
347 * It simply releases every PTE page from 0 up to the Guest's kernel address. */ 500 * It simply releases every PTE page from 0 up to the Guest's kernel address. */
@@ -370,6 +523,9 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
370 pgd_t gpgd; 523 pgd_t gpgd;
371 pte_t gpte; 524 pte_t gpte;
372 525
526#ifdef CONFIG_X86_PAE
527 pmd_t gpmd;
528#endif
373 /* First step: get the top-level Guest page table entry. */ 529 /* First step: get the top-level Guest page table entry. */
374 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); 530 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
375 /* Toplevel not present? We can't map it in. */ 531 /* Toplevel not present? We can't map it in. */
@@ -378,7 +534,13 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
378 return -1UL; 534 return -1UL;
379 } 535 }
380 536
381 gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t); 537 gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
538#ifdef CONFIG_X86_PAE
539 gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
540 if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
541 kill_guest(cpu, "Bad address %#lx", vaddr);
542#endif
543 gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
382 if (!(pte_flags(gpte) & _PAGE_PRESENT)) 544 if (!(pte_flags(gpte) & _PAGE_PRESENT))
383 kill_guest(cpu, "Bad address %#lx", vaddr); 545 kill_guest(cpu, "Bad address %#lx", vaddr);
384 546
@@ -405,6 +567,9 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
405 int *blank_pgdir) 567 int *blank_pgdir)
406{ 568{
407 unsigned int next; 569 unsigned int next;
570#ifdef CONFIG_X86_PAE
571 pmd_t *pmd_table;
572#endif
408 573
409 /* We pick one entry at random to throw out. Choosing the Least 574 /* We pick one entry at random to throw out. Choosing the Least
410 * Recently Used might be better, but this is easy. */ 575 * Recently Used might be better, but this is easy. */
@@ -416,10 +581,27 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
416 /* If the allocation fails, just keep using the one we have */ 581 /* If the allocation fails, just keep using the one we have */
417 if (!cpu->lg->pgdirs[next].pgdir) 582 if (!cpu->lg->pgdirs[next].pgdir)
418 next = cpu->cpu_pgd; 583 next = cpu->cpu_pgd;
419 else 584 else {
420 /* This is a blank page, so there are no kernel 585#ifdef CONFIG_X86_PAE
421 * mappings: caller must map the stack! */ 586 /* In PAE mode, allocate a pmd page and populate the
587 * last pgd entry. */
588 pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
589 if (!pmd_table) {
590 free_page((long)cpu->lg->pgdirs[next].pgdir);
591 set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
592 next = cpu->cpu_pgd;
593 } else {
594 set_pgd(cpu->lg->pgdirs[next].pgdir +
595 SWITCHER_PGD_INDEX,
596 __pgd(__pa(pmd_table) | _PAGE_PRESENT));
597 /* This is a blank page, so there are no kernel
598 * mappings: caller must map the stack! */
599 *blank_pgdir = 1;
600 }
601#else
422 *blank_pgdir = 1; 602 *blank_pgdir = 1;
603#endif
604 }
423 } 605 }
424 /* Record which Guest toplevel this shadows. */ 606 /* Record which Guest toplevel this shadows. */
425 cpu->lg->pgdirs[next].gpgdir = gpgdir; 607 cpu->lg->pgdirs[next].gpgdir = gpgdir;
@@ -460,10 +642,25 @@ static void release_all_pagetables(struct lguest *lg)
460 642
461 /* Every shadow pagetable this Guest has */ 643 /* Every shadow pagetable this Guest has */
462 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) 644 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
463 if (lg->pgdirs[i].pgdir) 645 if (lg->pgdirs[i].pgdir) {
646#ifdef CONFIG_X86_PAE
647 pgd_t *spgd;
648 pmd_t *pmdpage;
649 unsigned int k;
650
651 /* Get the last pmd page. */
652 spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
653 pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
654
655 /* And release the pmd entries of that pmd page,
656 * except for the switcher pmd. */
657 for (k = 0; k < SWITCHER_PMD_INDEX; k++)
658 release_pmd(&pmdpage[k]);
659#endif
464 /* Every PGD entry except the Switcher at the top */ 660 /* Every PGD entry except the Switcher at the top */
465 for (j = 0; j < SWITCHER_PGD_INDEX; j++) 661 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
466 release_pgd(lg->pgdirs[i].pgdir + j); 662 release_pgd(lg->pgdirs[i].pgdir + j);
663 }
467} 664}
468 665
469/* We also throw away everything when a Guest tells us it's changed a kernel 666/* We also throw away everything when a Guest tells us it's changed a kernel
@@ -504,24 +701,37 @@ static void do_set_pte(struct lg_cpu *cpu, int idx,
504{ 701{
505 /* Look up the matching shadow page directory entry. */ 702 /* Look up the matching shadow page directory entry. */
506 pgd_t *spgd = spgd_addr(cpu, idx, vaddr); 703 pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
704#ifdef CONFIG_X86_PAE
705 pmd_t *spmd;
706#endif
507 707
508 /* If the top level isn't present, there's no entry to update. */ 708 /* If the top level isn't present, there's no entry to update. */
509 if (pgd_flags(*spgd) & _PAGE_PRESENT) { 709 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
510 /* Otherwise, we start by releasing the existing entry. */ 710#ifdef CONFIG_X86_PAE
511 pte_t *spte = spte_addr(*spgd, vaddr); 711 spmd = spmd_addr(cpu, *spgd, vaddr);
512 release_pte(*spte); 712 if (pmd_flags(*spmd) & _PAGE_PRESENT) {
513 713#endif
514 /* If they're setting this entry as dirty or accessed, we might 714 /* Otherwise, we start by releasing
515 * as well put that entry they've given us in now. This shaves 715 * the existing entry. */
516 * 10% off a copy-on-write micro-benchmark. */ 716 pte_t *spte = spte_addr(cpu, *spgd, vaddr);
517 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) { 717 release_pte(*spte);
518 check_gpte(cpu, gpte); 718
519 *spte = gpte_to_spte(cpu, gpte, 719 /* If they're setting this entry as dirty or accessed,
520 pte_flags(gpte) & _PAGE_DIRTY); 720 * we might as well put that entry they've given us
521 } else 721 * in now. This shaves 10% off a
522 /* Otherwise kill it and we can demand_page() it in 722 * copy-on-write micro-benchmark. */
523 * later. */ 723 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
524 *spte = __pte(0); 724 check_gpte(cpu, gpte);
725 native_set_pte(spte,
726 gpte_to_spte(cpu, gpte,
727 pte_flags(gpte) & _PAGE_DIRTY));
728 } else
729 /* Otherwise kill it and we can demand_page()
730 * it in later. */
731 native_set_pte(spte, __pte(0));
732#ifdef CONFIG_X86_PAE
733 }
734#endif
525 } 735 }
526} 736}
527 737
@@ -572,8 +782,6 @@ void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
572{ 782{
573 int pgdir; 783 int pgdir;
574 784
575 /* The kernel seems to try to initialize this early on: we ignore its
576 * attempts to map over the Switcher. */
577 if (idx >= SWITCHER_PGD_INDEX) 785 if (idx >= SWITCHER_PGD_INDEX)
578 return; 786 return;
579 787
@@ -583,6 +791,12 @@ void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
583 /* ... throw it away. */ 791 /* ... throw it away. */
584 release_pgd(lg->pgdirs[pgdir].pgdir + idx); 792 release_pgd(lg->pgdirs[pgdir].pgdir + idx);
585} 793}
794#ifdef CONFIG_X86_PAE
795void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
796{
797 guest_pagetable_clear_all(&lg->cpus[0]);
798}
799#endif
586 800
587/* Once we know how much memory we have we can construct simple identity 801/* Once we know how much memory we have we can construct simple identity
588 * (which set virtual == physical) and linear mappings 802 * (which set virtual == physical) and linear mappings
@@ -596,8 +810,16 @@ static unsigned long setup_pagetables(struct lguest *lg,
596{ 810{
597 pgd_t __user *pgdir; 811 pgd_t __user *pgdir;
598 pte_t __user *linear; 812 pte_t __user *linear;
599 unsigned int mapped_pages, i, linear_pages, phys_linear;
600 unsigned long mem_base = (unsigned long)lg->mem_base; 813 unsigned long mem_base = (unsigned long)lg->mem_base;
814 unsigned int mapped_pages, i, linear_pages;
815#ifdef CONFIG_X86_PAE
816 pmd_t __user *pmds;
817 unsigned int j;
818 pgd_t pgd;
819 pmd_t pmd;
820#else
821 unsigned int phys_linear;
822#endif
601 823
602 /* We have mapped_pages frames to map, so we need 824 /* We have mapped_pages frames to map, so we need
603 * linear_pages page tables to map them. */ 825 * linear_pages page tables to map them. */
@@ -610,6 +832,9 @@ static unsigned long setup_pagetables(struct lguest *lg,
610 /* Now we use the next linear_pages pages as pte pages */ 832 /* Now we use the next linear_pages pages as pte pages */
611 linear = (void *)pgdir - linear_pages * PAGE_SIZE; 833 linear = (void *)pgdir - linear_pages * PAGE_SIZE;
612 834
835#ifdef CONFIG_X86_PAE
836 pmds = (void *)linear - PAGE_SIZE;
837#endif
613 /* Linear mapping is easy: put every page's address into the 838 /* Linear mapping is easy: put every page's address into the
614 * mapping in order. */ 839 * mapping in order. */
615 for (i = 0; i < mapped_pages; i++) { 840 for (i = 0; i < mapped_pages; i++) {
@@ -621,6 +846,22 @@ static unsigned long setup_pagetables(struct lguest *lg,
621 846
622 /* The top level points to the linear page table pages above. 847 /* The top level points to the linear page table pages above.
623 * We setup the identity and linear mappings here. */ 848 * We setup the identity and linear mappings here. */
849#ifdef CONFIG_X86_PAE
850 for (i = 0, j; i < mapped_pages && j < PTRS_PER_PMD;
851 i += PTRS_PER_PTE, j++) {
852 native_set_pmd(&pmd, __pmd(((unsigned long)(linear + i)
853 - mem_base) | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
854
855 if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
856 return -EFAULT;
857 }
858
859 set_pgd(&pgd, __pgd(((u32)pmds - mem_base) | _PAGE_PRESENT));
860 if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
861 return -EFAULT;
862 if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0)
863 return -EFAULT;
864#else
624 phys_linear = (unsigned long)linear - mem_base; 865 phys_linear = (unsigned long)linear - mem_base;
625 for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) { 866 for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
626 pgd_t pgd; 867 pgd_t pgd;
@@ -633,6 +874,7 @@ static unsigned long setup_pagetables(struct lguest *lg,
633 &pgd, sizeof(pgd))) 874 &pgd, sizeof(pgd)))
634 return -EFAULT; 875 return -EFAULT;
635 } 876 }
877#endif
636 878
637 /* We return the top level (guest-physical) address: remember where 879 /* We return the top level (guest-physical) address: remember where
638 * this is. */ 880 * this is. */
@@ -648,7 +890,10 @@ int init_guest_pagetable(struct lguest *lg)
648 u64 mem; 890 u64 mem;
649 u32 initrd_size; 891 u32 initrd_size;
650 struct boot_params __user *boot = (struct boot_params *)lg->mem_base; 892 struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
651 893#ifdef CONFIG_X86_PAE
894 pgd_t *pgd;
895 pmd_t *pmd_table;
896#endif
652 /* Get the Guest memory size and the ramdisk size from the boot header 897 /* Get the Guest memory size and the ramdisk size from the boot header
653 * located at lg->mem_base (Guest address 0). */ 898 * located at lg->mem_base (Guest address 0). */
654 if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem)) 899 if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
@@ -663,6 +908,15 @@ int init_guest_pagetable(struct lguest *lg)
663 lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL); 908 lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
664 if (!lg->pgdirs[0].pgdir) 909 if (!lg->pgdirs[0].pgdir)
665 return -ENOMEM; 910 return -ENOMEM;
911#ifdef CONFIG_X86_PAE
912 pgd = lg->pgdirs[0].pgdir;
913 pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
914 if (!pmd_table)
915 return -ENOMEM;
916
917 set_pgd(pgd + SWITCHER_PGD_INDEX,
918 __pgd(__pa(pmd_table) | _PAGE_PRESENT));
919#endif
666 lg->cpus[0].cpu_pgd = 0; 920 lg->cpus[0].cpu_pgd = 0;
667 return 0; 921 return 0;
668} 922}
@@ -672,17 +926,24 @@ void page_table_guest_data_init(struct lg_cpu *cpu)
672{ 926{
673 /* We get the kernel address: above this is all kernel memory. */ 927 /* We get the kernel address: above this is all kernel memory. */
674 if (get_user(cpu->lg->kernel_address, 928 if (get_user(cpu->lg->kernel_address,
675 &cpu->lg->lguest_data->kernel_address) 929 &cpu->lg->lguest_data->kernel_address)
676 /* We tell the Guest that it can't use the top 4MB of virtual 930 /* We tell the Guest that it can't use the top 2 or 4 MB
677 * addresses used by the Switcher. */ 931 * of virtual addresses used by the Switcher. */
678 || put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem) 932 || put_user(RESERVE_MEM * 1024 * 1024,
679 || put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir)) 933 &cpu->lg->lguest_data->reserve_mem)
934 || put_user(cpu->lg->pgdirs[0].gpgdir,
935 &cpu->lg->lguest_data->pgdir))
680 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data); 936 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
681 937
682 /* In flush_user_mappings() we loop from 0 to 938 /* In flush_user_mappings() we loop from 0 to
683 * "pgd_index(lg->kernel_address)". This assumes it won't hit the 939 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
684 * Switcher mappings, so check that now. */ 940 * Switcher mappings, so check that now. */
941#ifdef CONFIG_X86_PAE
942 if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
943 pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
944#else
685 if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX) 945 if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
946#endif
686 kill_guest(cpu, "bad kernel address %#lx", 947 kill_guest(cpu, "bad kernel address %#lx",
687 cpu->lg->kernel_address); 948 cpu->lg->kernel_address);
688} 949}
@@ -708,16 +969,30 @@ void free_guest_pagetable(struct lguest *lg)
708void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) 969void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
709{ 970{
710 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); 971 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
711 pgd_t switcher_pgd;
712 pte_t regs_pte; 972 pte_t regs_pte;
713 unsigned long pfn; 973 unsigned long pfn;
714 974
975#ifdef CONFIG_X86_PAE
976 pmd_t switcher_pmd;
977 pmd_t *pmd_table;
978
979 native_set_pmd(&switcher_pmd, pfn_pmd(__pa(switcher_pte_page) >>
980 PAGE_SHIFT, PAGE_KERNEL_EXEC));
981
982 pmd_table = __va(pgd_pfn(cpu->lg->
983 pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
984 << PAGE_SHIFT);
985 native_set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
986#else
987 pgd_t switcher_pgd;
988
715 /* Make the last PGD entry for this Guest point to the Switcher's PTE 989 /* Make the last PGD entry for this Guest point to the Switcher's PTE
716 * page for this CPU (with appropriate flags). */ 990 * page for this CPU (with appropriate flags). */
717 switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC); 991 switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
718 992
719 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; 993 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
720 994
995#endif
721 /* We also change the Switcher PTE page. When we're running the Guest, 996 /* We also change the Switcher PTE page. When we're running the Guest,
722 * we want the Guest's "regs" page to appear where the first Switcher 997 * we want the Guest's "regs" page to appear where the first Switcher
723 * page for this CPU is. This is an optimization: when the Switcher 998 * page for this CPU is. This is an optimization: when the Switcher