diff options
author | Rusty Russell <rusty@rustcorp.com.au> | 2007-07-26 13:41:04 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@woody.linux-foundation.org> | 2007-07-26 14:35:17 -0400 |
commit | bff672e630a015d5b54c8bfb16160b7edc39a57c (patch) | |
tree | 3af06baacb76809234a3e71033d14b7ed769dbd8 /drivers/lguest/interrupts_and_traps.c | |
parent | dde797899ac17ebb812b7566044124d785e98dc7 (diff) |
lguest: documentation V: Host
Documentation: The Host
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'drivers/lguest/interrupts_and_traps.c')
-rw-r--r-- | drivers/lguest/interrupts_and_traps.c | 176 |
1 files changed, 157 insertions, 19 deletions
diff --git a/drivers/lguest/interrupts_and_traps.c b/drivers/lguest/interrupts_and_traps.c index b2647974e1a7..3d9830322646 100644 --- a/drivers/lguest/interrupts_and_traps.c +++ b/drivers/lguest/interrupts_and_traps.c | |||
@@ -14,100 +14,147 @@ | |||
14 | #include <linux/uaccess.h> | 14 | #include <linux/uaccess.h> |
15 | #include "lg.h" | 15 | #include "lg.h" |
16 | 16 | ||
17 | /* The address of the interrupt handler is split into two bits: */ | ||
17 | static unsigned long idt_address(u32 lo, u32 hi) | 18 | static unsigned long idt_address(u32 lo, u32 hi) |
18 | { | 19 | { |
19 | return (lo & 0x0000FFFF) | (hi & 0xFFFF0000); | 20 | return (lo & 0x0000FFFF) | (hi & 0xFFFF0000); |
20 | } | 21 | } |
21 | 22 | ||
23 | /* The "type" of the interrupt handler is a 4 bit field: we only support a | ||
24 | * couple of types. */ | ||
22 | static int idt_type(u32 lo, u32 hi) | 25 | static int idt_type(u32 lo, u32 hi) |
23 | { | 26 | { |
24 | return (hi >> 8) & 0xF; | 27 | return (hi >> 8) & 0xF; |
25 | } | 28 | } |
26 | 29 | ||
30 | /* An IDT entry can't be used unless the "present" bit is set. */ | ||
27 | static int idt_present(u32 lo, u32 hi) | 31 | static int idt_present(u32 lo, u32 hi) |
28 | { | 32 | { |
29 | return (hi & 0x8000); | 33 | return (hi & 0x8000); |
30 | } | 34 | } |
31 | 35 | ||
36 | /* We need a helper to "push" a value onto the Guest's stack, since that's a | ||
37 | * big part of what delivering an interrupt does. */ | ||
32 | static void push_guest_stack(struct lguest *lg, unsigned long *gstack, u32 val) | 38 | static void push_guest_stack(struct lguest *lg, unsigned long *gstack, u32 val) |
33 | { | 39 | { |
40 | /* Stack grows upwards: move stack then write value. */ | ||
34 | *gstack -= 4; | 41 | *gstack -= 4; |
35 | lgwrite_u32(lg, *gstack, val); | 42 | lgwrite_u32(lg, *gstack, val); |
36 | } | 43 | } |
37 | 44 | ||
45 | /*H:210 The set_guest_interrupt() routine actually delivers the interrupt or | ||
46 | * trap. The mechanics of delivering traps and interrupts to the Guest are the | ||
47 | * same, except some traps have an "error code" which gets pushed onto the | ||
48 | * stack as well: the caller tells us if this is one. | ||
49 | * | ||
50 | * "lo" and "hi" are the two parts of the Interrupt Descriptor Table for this | ||
51 | * interrupt or trap. It's split into two parts for traditional reasons: gcc | ||
52 | * on i386 used to be frightened by 64 bit numbers. | ||
53 | * | ||
54 | * We set up the stack just like the CPU does for a real interrupt, so it's | ||
55 | * identical for the Guest (and the standard "iret" instruction will undo | ||
56 | * it). */ | ||
38 | static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err) | 57 | static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err) |
39 | { | 58 | { |
40 | unsigned long gstack; | 59 | unsigned long gstack; |
41 | u32 eflags, ss, irq_enable; | 60 | u32 eflags, ss, irq_enable; |
42 | 61 | ||
43 | /* If they want a ring change, we use new stack and push old ss/esp */ | 62 | /* There are two cases for interrupts: one where the Guest is already |
63 | * in the kernel, and a more complex one where the Guest is in | ||
64 | * userspace. We check the privilege level to find out. */ | ||
44 | if ((lg->regs->ss&0x3) != GUEST_PL) { | 65 | if ((lg->regs->ss&0x3) != GUEST_PL) { |
66 | /* The Guest told us their kernel stack with the SET_STACK | ||
67 | * hypercall: both the virtual address and the segment */ | ||
45 | gstack = guest_pa(lg, lg->esp1); | 68 | gstack = guest_pa(lg, lg->esp1); |
46 | ss = lg->ss1; | 69 | ss = lg->ss1; |
70 | /* We push the old stack segment and pointer onto the new | ||
71 | * stack: when the Guest does an "iret" back from the interrupt | ||
72 | * handler the CPU will notice they're dropping privilege | ||
73 | * levels and expect these here. */ | ||
47 | push_guest_stack(lg, &gstack, lg->regs->ss); | 74 | push_guest_stack(lg, &gstack, lg->regs->ss); |
48 | push_guest_stack(lg, &gstack, lg->regs->esp); | 75 | push_guest_stack(lg, &gstack, lg->regs->esp); |
49 | } else { | 76 | } else { |
77 | /* We're staying on the same Guest (kernel) stack. */ | ||
50 | gstack = guest_pa(lg, lg->regs->esp); | 78 | gstack = guest_pa(lg, lg->regs->esp); |
51 | ss = lg->regs->ss; | 79 | ss = lg->regs->ss; |
52 | } | 80 | } |
53 | 81 | ||
54 | /* We use IF bit in eflags to indicate whether irqs were enabled | 82 | /* Remember that we never let the Guest actually disable interrupts, so |
55 | (it's always 1, since irqs are enabled when guest is running). */ | 83 | * the "Interrupt Flag" bit is always set. We copy that bit from the |
84 | * Guest's "irq_enabled" field into the eflags word: the Guest copies | ||
85 | * it back in "lguest_iret". */ | ||
56 | eflags = lg->regs->eflags; | 86 | eflags = lg->regs->eflags; |
57 | if (get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0 | 87 | if (get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0 |
58 | && !(irq_enable & X86_EFLAGS_IF)) | 88 | && !(irq_enable & X86_EFLAGS_IF)) |
59 | eflags &= ~X86_EFLAGS_IF; | 89 | eflags &= ~X86_EFLAGS_IF; |
60 | 90 | ||
91 | /* An interrupt is expected to push three things on the stack: the old | ||
92 | * "eflags" word, the old code segment, and the old instruction | ||
93 | * pointer. */ | ||
61 | push_guest_stack(lg, &gstack, eflags); | 94 | push_guest_stack(lg, &gstack, eflags); |
62 | push_guest_stack(lg, &gstack, lg->regs->cs); | 95 | push_guest_stack(lg, &gstack, lg->regs->cs); |
63 | push_guest_stack(lg, &gstack, lg->regs->eip); | 96 | push_guest_stack(lg, &gstack, lg->regs->eip); |
64 | 97 | ||
98 | /* For the six traps which supply an error code, we push that, too. */ | ||
65 | if (has_err) | 99 | if (has_err) |
66 | push_guest_stack(lg, &gstack, lg->regs->errcode); | 100 | push_guest_stack(lg, &gstack, lg->regs->errcode); |
67 | 101 | ||
68 | /* Change the real stack so switcher returns to trap handler */ | 102 | /* Now we've pushed all the old state, we change the stack, the code |
103 | * segment and the address to execute. */ | ||
69 | lg->regs->ss = ss; | 104 | lg->regs->ss = ss; |
70 | lg->regs->esp = gstack + lg->page_offset; | 105 | lg->regs->esp = gstack + lg->page_offset; |
71 | lg->regs->cs = (__KERNEL_CS|GUEST_PL); | 106 | lg->regs->cs = (__KERNEL_CS|GUEST_PL); |
72 | lg->regs->eip = idt_address(lo, hi); | 107 | lg->regs->eip = idt_address(lo, hi); |
73 | 108 | ||
74 | /* Disable interrupts for an interrupt gate. */ | 109 | /* There are two kinds of interrupt handlers: 0xE is an "interrupt |
110 | * gate" which expects interrupts to be disabled on entry. */ | ||
75 | if (idt_type(lo, hi) == 0xE) | 111 | if (idt_type(lo, hi) == 0xE) |
76 | if (put_user(0, &lg->lguest_data->irq_enabled)) | 112 | if (put_user(0, &lg->lguest_data->irq_enabled)) |
77 | kill_guest(lg, "Disabling interrupts"); | 113 | kill_guest(lg, "Disabling interrupts"); |
78 | } | 114 | } |
79 | 115 | ||
116 | /*H:200 | ||
117 | * Virtual Interrupts. | ||
118 | * | ||
119 | * maybe_do_interrupt() gets called before every entry to the Guest, to see if | ||
120 | * we should divert the Guest to running an interrupt handler. */ | ||
80 | void maybe_do_interrupt(struct lguest *lg) | 121 | void maybe_do_interrupt(struct lguest *lg) |
81 | { | 122 | { |
82 | unsigned int irq; | 123 | unsigned int irq; |
83 | DECLARE_BITMAP(blk, LGUEST_IRQS); | 124 | DECLARE_BITMAP(blk, LGUEST_IRQS); |
84 | struct desc_struct *idt; | 125 | struct desc_struct *idt; |
85 | 126 | ||
127 | /* If the Guest hasn't even initialized yet, we can do nothing. */ | ||
86 | if (!lg->lguest_data) | 128 | if (!lg->lguest_data) |
87 | return; | 129 | return; |
88 | 130 | ||
89 | /* Mask out any interrupts they have blocked. */ | 131 | /* Take our "irqs_pending" array and remove any interrupts the Guest |
132 | * wants blocked: the result ends up in "blk". */ | ||
90 | if (copy_from_user(&blk, lg->lguest_data->blocked_interrupts, | 133 | if (copy_from_user(&blk, lg->lguest_data->blocked_interrupts, |
91 | sizeof(blk))) | 134 | sizeof(blk))) |
92 | return; | 135 | return; |
93 | 136 | ||
94 | bitmap_andnot(blk, lg->irqs_pending, blk, LGUEST_IRQS); | 137 | bitmap_andnot(blk, lg->irqs_pending, blk, LGUEST_IRQS); |
95 | 138 | ||
139 | /* Find the first interrupt. */ | ||
96 | irq = find_first_bit(blk, LGUEST_IRQS); | 140 | irq = find_first_bit(blk, LGUEST_IRQS); |
141 | /* None? Nothing to do */ | ||
97 | if (irq >= LGUEST_IRQS) | 142 | if (irq >= LGUEST_IRQS) |
98 | return; | 143 | return; |
99 | 144 | ||
145 | /* They may be in the middle of an iret, where they asked us never to | ||
146 | * deliver interrupts. */ | ||
100 | if (lg->regs->eip >= lg->noirq_start && lg->regs->eip < lg->noirq_end) | 147 | if (lg->regs->eip >= lg->noirq_start && lg->regs->eip < lg->noirq_end) |
101 | return; | 148 | return; |
102 | 149 | ||
103 | /* If they're halted, we re-enable interrupts. */ | 150 | /* If they're halted, interrupts restart them. */ |
104 | if (lg->halted) { | 151 | if (lg->halted) { |
105 | /* Re-enable interrupts. */ | 152 | /* Re-enable interrupts. */ |
106 | if (put_user(X86_EFLAGS_IF, &lg->lguest_data->irq_enabled)) | 153 | if (put_user(X86_EFLAGS_IF, &lg->lguest_data->irq_enabled)) |
107 | kill_guest(lg, "Re-enabling interrupts"); | 154 | kill_guest(lg, "Re-enabling interrupts"); |
108 | lg->halted = 0; | 155 | lg->halted = 0; |
109 | } else { | 156 | } else { |
110 | /* Maybe they have interrupts disabled? */ | 157 | /* Otherwise we check if they have interrupts disabled. */ |
111 | u32 irq_enabled; | 158 | u32 irq_enabled; |
112 | if (get_user(irq_enabled, &lg->lguest_data->irq_enabled)) | 159 | if (get_user(irq_enabled, &lg->lguest_data->irq_enabled)) |
113 | irq_enabled = 0; | 160 | irq_enabled = 0; |
@@ -115,112 +162,197 @@ void maybe_do_interrupt(struct lguest *lg) | |||
115 | return; | 162 | return; |
116 | } | 163 | } |
117 | 164 | ||
165 | /* Look at the IDT entry the Guest gave us for this interrupt. The | ||
166 | * first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip | ||
167 | * over them. */ | ||
118 | idt = &lg->idt[FIRST_EXTERNAL_VECTOR+irq]; | 168 | idt = &lg->idt[FIRST_EXTERNAL_VECTOR+irq]; |
169 | /* If they don't have a handler (yet?), we just ignore it */ | ||
119 | if (idt_present(idt->a, idt->b)) { | 170 | if (idt_present(idt->a, idt->b)) { |
171 | /* OK, mark it no longer pending and deliver it. */ | ||
120 | clear_bit(irq, lg->irqs_pending); | 172 | clear_bit(irq, lg->irqs_pending); |
173 | /* set_guest_interrupt() takes the interrupt descriptor and a | ||
174 | * flag to say whether this interrupt pushes an error code onto | ||
175 | * the stack as well: virtual interrupts never do. */ | ||
121 | set_guest_interrupt(lg, idt->a, idt->b, 0); | 176 | set_guest_interrupt(lg, idt->a, idt->b, 0); |
122 | } | 177 | } |
123 | } | 178 | } |
124 | 179 | ||
180 | /*H:220 Now we've got the routines to deliver interrupts, delivering traps | ||
181 | * like page fault is easy. The only trick is that Intel decided that some | ||
182 | * traps should have error codes: */ | ||
125 | static int has_err(unsigned int trap) | 183 | static int has_err(unsigned int trap) |
126 | { | 184 | { |
127 | return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17); | 185 | return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17); |
128 | } | 186 | } |
129 | 187 | ||
188 | /* deliver_trap() returns true if it could deliver the trap. */ | ||
130 | int deliver_trap(struct lguest *lg, unsigned int num) | 189 | int deliver_trap(struct lguest *lg, unsigned int num) |
131 | { | 190 | { |
132 | u32 lo = lg->idt[num].a, hi = lg->idt[num].b; | 191 | u32 lo = lg->idt[num].a, hi = lg->idt[num].b; |
133 | 192 | ||
193 | /* Early on the Guest hasn't set the IDT entries (or maybe it put a | ||
194 | * bogus one in): if we fail here, the Guest will be killed. */ | ||
134 | if (!idt_present(lo, hi)) | 195 | if (!idt_present(lo, hi)) |
135 | return 0; | 196 | return 0; |
136 | set_guest_interrupt(lg, lo, hi, has_err(num)); | 197 | set_guest_interrupt(lg, lo, hi, has_err(num)); |
137 | return 1; | 198 | return 1; |
138 | } | 199 | } |
139 | 200 | ||
201 | /*H:250 Here's the hard part: returning to the Host every time a trap happens | ||
202 | * and then calling deliver_trap() and re-entering the Guest is slow. | ||
203 | * Particularly because Guest userspace system calls are traps (trap 128). | ||
204 | * | ||
205 | * So we'd like to set up the IDT to tell the CPU to deliver traps directly | ||
206 | * into the Guest. This is possible, but the complexities cause the size of | ||
207 | * this file to double! However, 150 lines of code is worth writing for taking | ||
208 | * system calls down from 1750ns to 270ns. Plus, if lguest didn't do it, all | ||
209 | * the other hypervisors would tease it. | ||
210 | * | ||
211 | * This routine determines if a trap can be delivered directly. */ | ||
140 | static int direct_trap(const struct lguest *lg, | 212 | static int direct_trap(const struct lguest *lg, |
141 | const struct desc_struct *trap, | 213 | const struct desc_struct *trap, |
142 | unsigned int num) | 214 | unsigned int num) |
143 | { | 215 | { |
144 | /* Hardware interrupts don't go to guest (except syscall). */ | 216 | /* Hardware interrupts don't go to the Guest at all (except system |
217 | * call). */ | ||
145 | if (num >= FIRST_EXTERNAL_VECTOR && num != SYSCALL_VECTOR) | 218 | if (num >= FIRST_EXTERNAL_VECTOR && num != SYSCALL_VECTOR) |
146 | return 0; | 219 | return 0; |
147 | 220 | ||
148 | /* We intercept page fault (demand shadow paging & cr2 saving) | 221 | /* The Host needs to see page faults (for shadow paging and to save the |
149 | protection fault (in/out emulation) and device not | 222 | * fault address), general protection faults (in/out emulation) and |
150 | available (TS handling), and hypercall */ | 223 | * device not available (TS handling), and of course, the hypercall |
224 | * trap. */ | ||
151 | if (num == 14 || num == 13 || num == 7 || num == LGUEST_TRAP_ENTRY) | 225 | if (num == 14 || num == 13 || num == 7 || num == LGUEST_TRAP_ENTRY) |
152 | return 0; | 226 | return 0; |
153 | 227 | ||
154 | /* Interrupt gates (0xE) or not present (0x0) can't go direct. */ | 228 | /* Only trap gates (type 15) can go direct to the Guest. Interrupt |
229 | * gates (type 14) disable interrupts as they are entered, which we | ||
230 | * never let the Guest do. Not present entries (type 0x0) also can't | ||
231 | * go direct, of course 8) */ | ||
155 | return idt_type(trap->a, trap->b) == 0xF; | 232 | return idt_type(trap->a, trap->b) == 0xF; |
156 | } | 233 | } |
157 | 234 | ||
235 | /*H:260 When we make traps go directly into the Guest, we need to make sure | ||
236 | * the kernel stack is valid (ie. mapped in the page tables). Otherwise, the | ||
237 | * CPU trying to deliver the trap will fault while trying to push the interrupt | ||
238 | * words on the stack: this is called a double fault, and it forces us to kill | ||
239 | * the Guest. | ||
240 | * | ||
241 | * Which is deeply unfair, because (literally!) it wasn't the Guests' fault. */ | ||
158 | void pin_stack_pages(struct lguest *lg) | 242 | void pin_stack_pages(struct lguest *lg) |
159 | { | 243 | { |
160 | unsigned int i; | 244 | unsigned int i; |
161 | 245 | ||
246 | /* Depending on the CONFIG_4KSTACKS option, the Guest can have one or | ||
247 | * two pages of stack space. */ | ||
162 | for (i = 0; i < lg->stack_pages; i++) | 248 | for (i = 0; i < lg->stack_pages; i++) |
249 | /* The stack grows *upwards*, hence the subtraction */ | ||
163 | pin_page(lg, lg->esp1 - i * PAGE_SIZE); | 250 | pin_page(lg, lg->esp1 - i * PAGE_SIZE); |
164 | } | 251 | } |
165 | 252 | ||
253 | /* Direct traps also mean that we need to know whenever the Guest wants to use | ||
254 | * a different kernel stack, so we can change the IDT entries to use that | ||
255 | * stack. The IDT entries expect a virtual address, so unlike most addresses | ||
256 | * the Guest gives us, the "esp" (stack pointer) value here is virtual, not | ||
257 | * physical. | ||
258 | * | ||
259 | * In Linux each process has its own kernel stack, so this happens a lot: we | ||
260 | * change stacks on each context switch. */ | ||
166 | void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages) | 261 | void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages) |
167 | { | 262 | { |
168 | /* You cannot have a stack segment with priv level 0. */ | 263 | /* You are not allowd have a stack segment with privilege level 0: bad |
264 | * Guest! */ | ||
169 | if ((seg & 0x3) != GUEST_PL) | 265 | if ((seg & 0x3) != GUEST_PL) |
170 | kill_guest(lg, "bad stack segment %i", seg); | 266 | kill_guest(lg, "bad stack segment %i", seg); |
267 | /* We only expect one or two stack pages. */ | ||
171 | if (pages > 2) | 268 | if (pages > 2) |
172 | kill_guest(lg, "bad stack pages %u", pages); | 269 | kill_guest(lg, "bad stack pages %u", pages); |
270 | /* Save where the stack is, and how many pages */ | ||
173 | lg->ss1 = seg; | 271 | lg->ss1 = seg; |
174 | lg->esp1 = esp; | 272 | lg->esp1 = esp; |
175 | lg->stack_pages = pages; | 273 | lg->stack_pages = pages; |
274 | /* Make sure the new stack pages are mapped */ | ||
176 | pin_stack_pages(lg); | 275 | pin_stack_pages(lg); |
177 | } | 276 | } |
178 | 277 | ||
179 | /* Set up trap in IDT. */ | 278 | /* All this reference to mapping stacks leads us neatly into the other complex |
279 | * part of the Host: page table handling. */ | ||
280 | |||
281 | /*H:235 This is the routine which actually checks the Guest's IDT entry and | ||
282 | * transfers it into our entry in "struct lguest": */ | ||
180 | static void set_trap(struct lguest *lg, struct desc_struct *trap, | 283 | static void set_trap(struct lguest *lg, struct desc_struct *trap, |
181 | unsigned int num, u32 lo, u32 hi) | 284 | unsigned int num, u32 lo, u32 hi) |
182 | { | 285 | { |
183 | u8 type = idt_type(lo, hi); | 286 | u8 type = idt_type(lo, hi); |
184 | 287 | ||
288 | /* We zero-out a not-present entry */ | ||
185 | if (!idt_present(lo, hi)) { | 289 | if (!idt_present(lo, hi)) { |
186 | trap->a = trap->b = 0; | 290 | trap->a = trap->b = 0; |
187 | return; | 291 | return; |
188 | } | 292 | } |
189 | 293 | ||
294 | /* We only support interrupt and trap gates. */ | ||
190 | if (type != 0xE && type != 0xF) | 295 | if (type != 0xE && type != 0xF) |
191 | kill_guest(lg, "bad IDT type %i", type); | 296 | kill_guest(lg, "bad IDT type %i", type); |
192 | 297 | ||
298 | /* We only copy the handler address, present bit, privilege level and | ||
299 | * type. The privilege level controls where the trap can be triggered | ||
300 | * manually with an "int" instruction. This is usually GUEST_PL, | ||
301 | * except for system calls which userspace can use. */ | ||
193 | trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF); | 302 | trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF); |
194 | trap->b = (hi&0xFFFFEF00); | 303 | trap->b = (hi&0xFFFFEF00); |
195 | } | 304 | } |
196 | 305 | ||
306 | /*H:230 While we're here, dealing with delivering traps and interrupts to the | ||
307 | * Guest, we might as well complete the picture: how the Guest tells us where | ||
308 | * it wants them to go. This would be simple, except making traps fast | ||
309 | * requires some tricks. | ||
310 | * | ||
311 | * We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the | ||
312 | * LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here. */ | ||
197 | void load_guest_idt_entry(struct lguest *lg, unsigned int num, u32 lo, u32 hi) | 313 | void load_guest_idt_entry(struct lguest *lg, unsigned int num, u32 lo, u32 hi) |
198 | { | 314 | { |
199 | /* Guest never handles: NMI, doublefault, hypercall, spurious irq. */ | 315 | /* Guest never handles: NMI, doublefault, spurious interrupt or |
316 | * hypercall. We ignore when it tries to set them. */ | ||
200 | if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY) | 317 | if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY) |
201 | return; | 318 | return; |
202 | 319 | ||
320 | /* Mark the IDT as changed: next time the Guest runs we'll know we have | ||
321 | * to copy this again. */ | ||
203 | lg->changed |= CHANGED_IDT; | 322 | lg->changed |= CHANGED_IDT; |
323 | |||
324 | /* The IDT which we keep in "struct lguest" only contains 32 entries | ||
325 | * for the traps and LGUEST_IRQS (32) entries for interrupts. We | ||
326 | * ignore attempts to set handlers for higher interrupt numbers, except | ||
327 | * for the system call "interrupt" at 128: we have a special IDT entry | ||
328 | * for that. */ | ||
204 | if (num < ARRAY_SIZE(lg->idt)) | 329 | if (num < ARRAY_SIZE(lg->idt)) |
205 | set_trap(lg, &lg->idt[num], num, lo, hi); | 330 | set_trap(lg, &lg->idt[num], num, lo, hi); |
206 | else if (num == SYSCALL_VECTOR) | 331 | else if (num == SYSCALL_VECTOR) |
207 | set_trap(lg, &lg->syscall_idt, num, lo, hi); | 332 | set_trap(lg, &lg->syscall_idt, num, lo, hi); |
208 | } | 333 | } |
209 | 334 | ||
335 | /* The default entry for each interrupt points into the Switcher routines which | ||
336 | * simply return to the Host. The run_guest() loop will then call | ||
337 | * deliver_trap() to bounce it back into the Guest. */ | ||
210 | static void default_idt_entry(struct desc_struct *idt, | 338 | static void default_idt_entry(struct desc_struct *idt, |
211 | int trap, | 339 | int trap, |
212 | const unsigned long handler) | 340 | const unsigned long handler) |
213 | { | 341 | { |
342 | /* A present interrupt gate. */ | ||
214 | u32 flags = 0x8e00; | 343 | u32 flags = 0x8e00; |
215 | 344 | ||
216 | /* They can't "int" into any of them except hypercall. */ | 345 | /* Set the privilege level on the entry for the hypercall: this allows |
346 | * the Guest to use the "int" instruction to trigger it. */ | ||
217 | if (trap == LGUEST_TRAP_ENTRY) | 347 | if (trap == LGUEST_TRAP_ENTRY) |
218 | flags |= (GUEST_PL << 13); | 348 | flags |= (GUEST_PL << 13); |
219 | 349 | ||
350 | /* Now pack it into the IDT entry in its weird format. */ | ||
220 | idt->a = (LGUEST_CS<<16) | (handler&0x0000FFFF); | 351 | idt->a = (LGUEST_CS<<16) | (handler&0x0000FFFF); |
221 | idt->b = (handler&0xFFFF0000) | flags; | 352 | idt->b = (handler&0xFFFF0000) | flags; |
222 | } | 353 | } |
223 | 354 | ||
355 | /* When the Guest first starts, we put default entries into the IDT. */ | ||
224 | void setup_default_idt_entries(struct lguest_ro_state *state, | 356 | void setup_default_idt_entries(struct lguest_ro_state *state, |
225 | const unsigned long *def) | 357 | const unsigned long *def) |
226 | { | 358 | { |
@@ -230,19 +362,25 @@ void setup_default_idt_entries(struct lguest_ro_state *state, | |||
230 | default_idt_entry(&state->guest_idt[i], i, def[i]); | 362 | default_idt_entry(&state->guest_idt[i], i, def[i]); |
231 | } | 363 | } |
232 | 364 | ||
365 | /*H:240 We don't use the IDT entries in the "struct lguest" directly, instead | ||
366 | * we copy them into the IDT which we've set up for Guests on this CPU, just | ||
367 | * before we run the Guest. This routine does that copy. */ | ||
233 | void copy_traps(const struct lguest *lg, struct desc_struct *idt, | 368 | void copy_traps(const struct lguest *lg, struct desc_struct *idt, |
234 | const unsigned long *def) | 369 | const unsigned long *def) |
235 | { | 370 | { |
236 | unsigned int i; | 371 | unsigned int i; |
237 | 372 | ||
238 | /* All hardware interrupts are same whatever the guest: only the | 373 | /* We can simply copy the direct traps, otherwise we use the default |
239 | * traps might be different. */ | 374 | * ones in the Switcher: they will return to the Host. */ |
240 | for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) { | 375 | for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) { |
241 | if (direct_trap(lg, &lg->idt[i], i)) | 376 | if (direct_trap(lg, &lg->idt[i], i)) |
242 | idt[i] = lg->idt[i]; | 377 | idt[i] = lg->idt[i]; |
243 | else | 378 | else |
244 | default_idt_entry(&idt[i], i, def[i]); | 379 | default_idt_entry(&idt[i], i, def[i]); |
245 | } | 380 | } |
381 | |||
382 | /* Don't forget the system call trap! The IDT entries for other | ||
383 | * interupts never change, so no need to copy them. */ | ||
246 | i = SYSCALL_VECTOR; | 384 | i = SYSCALL_VECTOR; |
247 | if (direct_trap(lg, &lg->syscall_idt, i)) | 385 | if (direct_trap(lg, &lg->syscall_idt, i)) |
248 | idt[i] = lg->syscall_idt; | 386 | idt[i] = lg->syscall_idt; |