aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/lguest/hypercalls.c
diff options
context:
space:
mode:
authorRusty Russell <rusty@rustcorp.com.au>2007-07-26 13:41:04 -0400
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-07-26 14:35:17 -0400
commitbff672e630a015d5b54c8bfb16160b7edc39a57c (patch)
tree3af06baacb76809234a3e71033d14b7ed769dbd8 /drivers/lguest/hypercalls.c
parentdde797899ac17ebb812b7566044124d785e98dc7 (diff)
lguest: documentation V: Host
Documentation: The Host Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'drivers/lguest/hypercalls.c')
-rw-r--r--drivers/lguest/hypercalls.c118
1 files changed, 108 insertions, 10 deletions
diff --git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c
index fb546b046445..7a5299f9679d 100644
--- a/drivers/lguest/hypercalls.c
+++ b/drivers/lguest/hypercalls.c
@@ -28,37 +28,63 @@
28#include <irq_vectors.h> 28#include <irq_vectors.h>
29#include "lg.h" 29#include "lg.h"
30 30
31/*H:120 This is the core hypercall routine: where the Guest gets what it
32 * wants. Or gets killed. Or, in the case of LHCALL_CRASH, both.
33 *
34 * Remember from the Guest: %eax == which call to make, and the arguments are
35 * packed into %edx, %ebx and %ecx if needed. */
31static void do_hcall(struct lguest *lg, struct lguest_regs *regs) 36static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
32{ 37{
33 switch (regs->eax) { 38 switch (regs->eax) {
34 case LHCALL_FLUSH_ASYNC: 39 case LHCALL_FLUSH_ASYNC:
40 /* This call does nothing, except by breaking out of the Guest
41 * it makes us process all the asynchronous hypercalls. */
35 break; 42 break;
36 case LHCALL_LGUEST_INIT: 43 case LHCALL_LGUEST_INIT:
44 /* You can't get here unless you're already initialized. Don't
45 * do that. */
37 kill_guest(lg, "already have lguest_data"); 46 kill_guest(lg, "already have lguest_data");
38 break; 47 break;
39 case LHCALL_CRASH: { 48 case LHCALL_CRASH: {
49 /* Crash is such a trivial hypercall that we do it in four
50 * lines right here. */
40 char msg[128]; 51 char msg[128];
52 /* If the lgread fails, it will call kill_guest() itself; the
53 * kill_guest() with the message will be ignored. */
41 lgread(lg, msg, regs->edx, sizeof(msg)); 54 lgread(lg, msg, regs->edx, sizeof(msg));
42 msg[sizeof(msg)-1] = '\0'; 55 msg[sizeof(msg)-1] = '\0';
43 kill_guest(lg, "CRASH: %s", msg); 56 kill_guest(lg, "CRASH: %s", msg);
44 break; 57 break;
45 } 58 }
46 case LHCALL_FLUSH_TLB: 59 case LHCALL_FLUSH_TLB:
60 /* FLUSH_TLB comes in two flavors, depending on the
61 * argument: */
47 if (regs->edx) 62 if (regs->edx)
48 guest_pagetable_clear_all(lg); 63 guest_pagetable_clear_all(lg);
49 else 64 else
50 guest_pagetable_flush_user(lg); 65 guest_pagetable_flush_user(lg);
51 break; 66 break;
52 case LHCALL_GET_WALLCLOCK: { 67 case LHCALL_GET_WALLCLOCK: {
68 /* The Guest wants to know the real time in seconds since 1970,
69 * in good Unix tradition. */
53 struct timespec ts; 70 struct timespec ts;
54 ktime_get_real_ts(&ts); 71 ktime_get_real_ts(&ts);
55 regs->eax = ts.tv_sec; 72 regs->eax = ts.tv_sec;
56 break; 73 break;
57 } 74 }
58 case LHCALL_BIND_DMA: 75 case LHCALL_BIND_DMA:
76 /* BIND_DMA really wants four arguments, but it's the only call
77 * which does. So the Guest packs the number of buffers and
78 * the interrupt number into the final argument, and we decode
79 * it here. This can legitimately fail, since we currently
80 * place a limit on the number of DMA pools a Guest can have.
81 * So we return true or false from this call. */
59 regs->eax = bind_dma(lg, regs->edx, regs->ebx, 82 regs->eax = bind_dma(lg, regs->edx, regs->ebx,
60 regs->ecx >> 8, regs->ecx & 0xFF); 83 regs->ecx >> 8, regs->ecx & 0xFF);
61 break; 84 break;
85
86 /* All these calls simply pass the arguments through to the right
87 * routines. */
62 case LHCALL_SEND_DMA: 88 case LHCALL_SEND_DMA:
63 send_dma(lg, regs->edx, regs->ebx); 89 send_dma(lg, regs->edx, regs->ebx);
64 break; 90 break;
@@ -86,10 +112,13 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
86 case LHCALL_SET_CLOCKEVENT: 112 case LHCALL_SET_CLOCKEVENT:
87 guest_set_clockevent(lg, regs->edx); 113 guest_set_clockevent(lg, regs->edx);
88 break; 114 break;
115
89 case LHCALL_TS: 116 case LHCALL_TS:
117 /* This sets the TS flag, as we saw used in run_guest(). */
90 lg->ts = regs->edx; 118 lg->ts = regs->edx;
91 break; 119 break;
92 case LHCALL_HALT: 120 case LHCALL_HALT:
121 /* Similarly, this sets the halted flag for run_guest(). */
93 lg->halted = 1; 122 lg->halted = 1;
94 break; 123 break;
95 default: 124 default:
@@ -97,25 +126,42 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
97 } 126 }
98} 127}
99 128
100/* We always do queued calls before actual hypercall. */ 129/* Asynchronous hypercalls are easy: we just look in the array in the Guest's
130 * "struct lguest_data" and see if there are any new ones marked "ready".
131 *
132 * We are careful to do these in order: obviously we respect the order the
133 * Guest put them in the ring, but we also promise the Guest that they will
134 * happen before any normal hypercall (which is why we check this before
135 * checking for a normal hcall). */
101static void do_async_hcalls(struct lguest *lg) 136static void do_async_hcalls(struct lguest *lg)
102{ 137{
103 unsigned int i; 138 unsigned int i;
104 u8 st[LHCALL_RING_SIZE]; 139 u8 st[LHCALL_RING_SIZE];
105 140
141 /* For simplicity, we copy the entire call status array in at once. */
106 if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st))) 142 if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st)))
107 return; 143 return;
108 144
145
146 /* We process "struct lguest_data"s hcalls[] ring once. */
109 for (i = 0; i < ARRAY_SIZE(st); i++) { 147 for (i = 0; i < ARRAY_SIZE(st); i++) {
110 struct lguest_regs regs; 148 struct lguest_regs regs;
149 /* We remember where we were up to from last time. This makes
150 * sure that the hypercalls are done in the order the Guest
151 * places them in the ring. */
111 unsigned int n = lg->next_hcall; 152 unsigned int n = lg->next_hcall;
112 153
154 /* 0xFF means there's no call here (yet). */
113 if (st[n] == 0xFF) 155 if (st[n] == 0xFF)
114 break; 156 break;
115 157
158 /* OK, we have hypercall. Increment the "next_hcall" cursor,
159 * and wrap back to 0 if we reach the end. */
116 if (++lg->next_hcall == LHCALL_RING_SIZE) 160 if (++lg->next_hcall == LHCALL_RING_SIZE)
117 lg->next_hcall = 0; 161 lg->next_hcall = 0;
118 162
163 /* We copy the hypercall arguments into a fake register
164 * structure. This makes life simple for do_hcall(). */
119 if (get_user(regs.eax, &lg->lguest_data->hcalls[n].eax) 165 if (get_user(regs.eax, &lg->lguest_data->hcalls[n].eax)
120 || get_user(regs.edx, &lg->lguest_data->hcalls[n].edx) 166 || get_user(regs.edx, &lg->lguest_data->hcalls[n].edx)
121 || get_user(regs.ecx, &lg->lguest_data->hcalls[n].ecx) 167 || get_user(regs.ecx, &lg->lguest_data->hcalls[n].ecx)
@@ -124,74 +170,126 @@ static void do_async_hcalls(struct lguest *lg)
124 break; 170 break;
125 } 171 }
126 172
173 /* Do the hypercall, same as a normal one. */
127 do_hcall(lg, &regs); 174 do_hcall(lg, &regs);
175
176 /* Mark the hypercall done. */
128 if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) { 177 if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) {
129 kill_guest(lg, "Writing result for async hypercall"); 178 kill_guest(lg, "Writing result for async hypercall");
130 break; 179 break;
131 } 180 }
132 181
182 /* Stop doing hypercalls if we've just done a DMA to the
183 * Launcher: it needs to service this first. */
133 if (lg->dma_is_pending) 184 if (lg->dma_is_pending)
134 break; 185 break;
135 } 186 }
136} 187}
137 188
189/* Last of all, we look at what happens first of all. The very first time the
190 * Guest makes a hypercall, we end up here to set things up: */
138static void initialize(struct lguest *lg) 191static void initialize(struct lguest *lg)
139{ 192{
140 u32 tsc_speed; 193 u32 tsc_speed;
141 194
195 /* You can't do anything until you're initialized. The Guest knows the
196 * rules, so we're unforgiving here. */
142 if (lg->regs->eax != LHCALL_LGUEST_INIT) { 197 if (lg->regs->eax != LHCALL_LGUEST_INIT) {
143 kill_guest(lg, "hypercall %li before LGUEST_INIT", 198 kill_guest(lg, "hypercall %li before LGUEST_INIT",
144 lg->regs->eax); 199 lg->regs->eax);
145 return; 200 return;
146 } 201 }
147 202
148 /* We only tell the guest to use the TSC if it's reliable. */ 203 /* We insist that the Time Stamp Counter exist and doesn't change with
204 * cpu frequency. Some devious chip manufacturers decided that TSC
205 * changes could be handled in software. I decided that time going
206 * backwards might be good for benchmarks, but it's bad for users.
207 *
208 * We also insist that the TSC be stable: the kernel detects unreliable
209 * TSCs for its own purposes, and we use that here. */
149 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable()) 210 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
150 tsc_speed = tsc_khz; 211 tsc_speed = tsc_khz;
151 else 212 else
152 tsc_speed = 0; 213 tsc_speed = 0;
153 214
215 /* The pointer to the Guest's "struct lguest_data" is the only
216 * argument. */
154 lg->lguest_data = (struct lguest_data __user *)lg->regs->edx; 217 lg->lguest_data = (struct lguest_data __user *)lg->regs->edx;
155 /* We check here so we can simply copy_to_user/from_user */ 218 /* If we check the address they gave is OK now, we can simply
219 * copy_to_user/from_user from now on rather than using lgread/lgwrite.
220 * I put this in to show that I'm not immune to writing stupid
221 * optimizations. */
156 if (!lguest_address_ok(lg, lg->regs->edx, sizeof(*lg->lguest_data))) { 222 if (!lguest_address_ok(lg, lg->regs->edx, sizeof(*lg->lguest_data))) {
157 kill_guest(lg, "bad guest page %p", lg->lguest_data); 223 kill_guest(lg, "bad guest page %p", lg->lguest_data);
158 return; 224 return;
159 } 225 }
226 /* The Guest tells us where we're not to deliver interrupts by putting
227 * the range of addresses into "struct lguest_data". */
160 if (get_user(lg->noirq_start, &lg->lguest_data->noirq_start) 228 if (get_user(lg->noirq_start, &lg->lguest_data->noirq_start)
161 || get_user(lg->noirq_end, &lg->lguest_data->noirq_end) 229 || get_user(lg->noirq_end, &lg->lguest_data->noirq_end)
162 /* We reserve the top pgd entry. */ 230 /* We tell the Guest that it can't use the top 4MB of virtual
231 * addresses used by the Switcher. */
163 || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem) 232 || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
164 || put_user(tsc_speed, &lg->lguest_data->tsc_khz) 233 || put_user(tsc_speed, &lg->lguest_data->tsc_khz)
234 /* We also give the Guest a unique id, as used in lguest_net.c. */
165 || put_user(lg->guestid, &lg->lguest_data->guestid)) 235 || put_user(lg->guestid, &lg->lguest_data->guestid))
166 kill_guest(lg, "bad guest page %p", lg->lguest_data); 236 kill_guest(lg, "bad guest page %p", lg->lguest_data);
167 237
168 /* This is the one case where the above accesses might have 238 /* This is the one case where the above accesses might have been the
169 * been the first write to a Guest page. This may have caused 239 * first write to a Guest page. This may have caused a copy-on-write
170 * a copy-on-write fault, but the Guest might be referring to 240 * fault, but the Guest might be referring to the old (read-only)
171 * the old (read-only) page. */ 241 * page. */
172 guest_pagetable_clear_all(lg); 242 guest_pagetable_clear_all(lg);
173} 243}
244/* Now we've examined the hypercall code; our Guest can make requests. There
245 * is one other way we can do things for the Guest, as we see in
246 * emulate_insn(). */
174 247
175/* Even if we go out to userspace and come back, we don't want to do 248/*H:110 Tricky point: we mark the hypercall as "done" once we've done it.
176 * the hypercall again. */ 249 * Normally we don't need to do this: the Guest will run again and update the
250 * trap number before we come back around the run_guest() loop to
251 * do_hypercalls().
252 *
253 * However, if we are signalled or the Guest sends DMA to the Launcher, that
254 * loop will exit without running the Guest. When it comes back it would try
255 * to re-run the hypercall. */
177static void clear_hcall(struct lguest *lg) 256static void clear_hcall(struct lguest *lg)
178{ 257{
179 lg->regs->trapnum = 255; 258 lg->regs->trapnum = 255;
180} 259}
181 260
261/*H:100
262 * Hypercalls
263 *
264 * Remember from the Guest, hypercalls come in two flavors: normal and
265 * asynchronous. This file handles both of types.
266 */
182void do_hypercalls(struct lguest *lg) 267void do_hypercalls(struct lguest *lg)
183{ 268{
269 /* Not initialized yet? */
184 if (unlikely(!lg->lguest_data)) { 270 if (unlikely(!lg->lguest_data)) {
271 /* Did the Guest make a hypercall? We might have come back for
272 * some other reason (an interrupt, a different trap). */
185 if (lg->regs->trapnum == LGUEST_TRAP_ENTRY) { 273 if (lg->regs->trapnum == LGUEST_TRAP_ENTRY) {
274 /* Set up the "struct lguest_data" */
186 initialize(lg); 275 initialize(lg);
276 /* The hypercall is done. */
187 clear_hcall(lg); 277 clear_hcall(lg);
188 } 278 }
189 return; 279 return;
190 } 280 }
191 281
282 /* The Guest has initialized.
283 *
284 * Look in the hypercall ring for the async hypercalls: */
192 do_async_hcalls(lg); 285 do_async_hcalls(lg);
286
287 /* If we stopped reading the hypercall ring because the Guest did a
288 * SEND_DMA to the Launcher, we want to return now. Otherwise if the
289 * Guest asked us to do a hypercall, we do it. */
193 if (!lg->dma_is_pending && lg->regs->trapnum == LGUEST_TRAP_ENTRY) { 290 if (!lg->dma_is_pending && lg->regs->trapnum == LGUEST_TRAP_ENTRY) {
194 do_hcall(lg, lg->regs); 291 do_hcall(lg, lg->regs);
292 /* The hypercall is done. */
195 clear_hcall(lg); 293 clear_hcall(lg);
196 } 294 }
197} 295}