aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/lguest/hypercalls.c
diff options
context:
space:
mode:
authorJes Sorensen <jes@sgi.com>2007-10-21 21:03:31 -0400
committerRusty Russell <rusty@rustcorp.com.au>2007-10-23 01:49:52 -0400
commitb410e7b1499c49513cab18275db8a8ab549d9e09 (patch)
tree8a71fa34660f5ccc9d71677137c5ae211a38bbf2 /drivers/lguest/hypercalls.c
parentcc6d4fbcef328acdc9fa7023e69f39f753f72fe1 (diff)
Make hypercalls arch-independent.
Clean up the hypercall code to make the code in hypercalls.c architecture independent. First process the common hypercalls and then call lguest_arch_do_hcall() if the call hasn't been handled. Rename struct hcall_ring to hcall_args. This patch requires the previous patch which reorganize the layout of struct lguest_regs on i386 so they match the layout of struct hcall_args. Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Diffstat (limited to 'drivers/lguest/hypercalls.c')
-rw-r--r--drivers/lguest/hypercalls.c104
1 files changed, 30 insertions, 74 deletions
diff --git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c
index 0175a9f03347..2859a7687288 100644
--- a/drivers/lguest/hypercalls.c
+++ b/drivers/lguest/hypercalls.c
@@ -25,17 +25,13 @@
25#include <linux/mm.h> 25#include <linux/mm.h>
26#include <asm/page.h> 26#include <asm/page.h>
27#include <asm/pgtable.h> 27#include <asm/pgtable.h>
28#include <irq_vectors.h>
29#include "lg.h" 28#include "lg.h"
30 29
31/*H:120 This is the core hypercall routine: where the Guest gets what it 30/*H:120 This is the core hypercall routine: where the Guest gets what it wants.
32 * wants. Or gets killed. Or, in the case of LHCALL_CRASH, both. 31 * Or gets killed. Or, in the case of LHCALL_CRASH, both. */
33 * 32static void do_hcall(struct lguest *lg, struct hcall_args *args)
34 * Remember from the Guest: %eax == which call to make, and the arguments are
35 * packed into %edx, %ebx and %ecx if needed. */
36static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
37{ 33{
38 switch (regs->eax) { 34 switch (args->arg0) {
39 case LHCALL_FLUSH_ASYNC: 35 case LHCALL_FLUSH_ASYNC:
40 /* This call does nothing, except by breaking out of the Guest 36 /* This call does nothing, except by breaking out of the Guest
41 * it makes us process all the asynchronous hypercalls. */ 37 * it makes us process all the asynchronous hypercalls. */
@@ -51,7 +47,7 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
51 char msg[128]; 47 char msg[128];
52 /* If the lgread fails, it will call kill_guest() itself; the 48 /* If the lgread fails, it will call kill_guest() itself; the
53 * kill_guest() with the message will be ignored. */ 49 * kill_guest() with the message will be ignored. */
54 lgread(lg, msg, regs->edx, sizeof(msg)); 50 lgread(lg, msg, args->arg1, sizeof(msg));
55 msg[sizeof(msg)-1] = '\0'; 51 msg[sizeof(msg)-1] = '\0';
56 kill_guest(lg, "CRASH: %s", msg); 52 kill_guest(lg, "CRASH: %s", msg);
57 break; 53 break;
@@ -59,7 +55,7 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
59 case LHCALL_FLUSH_TLB: 55 case LHCALL_FLUSH_TLB:
60 /* FLUSH_TLB comes in two flavors, depending on the 56 /* FLUSH_TLB comes in two flavors, depending on the
61 * argument: */ 57 * argument: */
62 if (regs->edx) 58 if (args->arg1)
63 guest_pagetable_clear_all(lg); 59 guest_pagetable_clear_all(lg);
64 else 60 else
65 guest_pagetable_flush_user(lg); 61 guest_pagetable_flush_user(lg);
@@ -71,55 +67,47 @@ static void do_hcall(struct lguest *lg, struct lguest_regs *regs)
71 * it here. This can legitimately fail, since we currently 67 * it here. This can legitimately fail, since we currently
72 * place a limit on the number of DMA pools a Guest can have. 68 * place a limit on the number of DMA pools a Guest can have.
73 * So we return true or false from this call. */ 69 * So we return true or false from this call. */
74 regs->eax = bind_dma(lg, regs->edx, regs->ebx, 70 args->arg0 = bind_dma(lg, args->arg1, args->arg2,
75 regs->ecx >> 8, regs->ecx & 0xFF); 71 args->arg3 >> 8, args->arg3 & 0xFF);
76 break; 72 break;
77 73
78 /* All these calls simply pass the arguments through to the right 74 /* All these calls simply pass the arguments through to the right
79 * routines. */ 75 * routines. */
80 case LHCALL_SEND_DMA: 76 case LHCALL_SEND_DMA:
81 send_dma(lg, regs->edx, regs->ebx); 77 send_dma(lg, args->arg1, args->arg2);
82 break;
83 case LHCALL_LOAD_GDT:
84 load_guest_gdt(lg, regs->edx, regs->ebx);
85 break;
86 case LHCALL_LOAD_IDT_ENTRY:
87 load_guest_idt_entry(lg, regs->edx, regs->ebx, regs->ecx);
88 break; 78 break;
89 case LHCALL_NEW_PGTABLE: 79 case LHCALL_NEW_PGTABLE:
90 guest_new_pagetable(lg, regs->edx); 80 guest_new_pagetable(lg, args->arg1);
91 break; 81 break;
92 case LHCALL_SET_STACK: 82 case LHCALL_SET_STACK:
93 guest_set_stack(lg, regs->edx, regs->ebx, regs->ecx); 83 guest_set_stack(lg, args->arg1, args->arg2, args->arg3);
94 break; 84 break;
95 case LHCALL_SET_PTE: 85 case LHCALL_SET_PTE:
96 guest_set_pte(lg, regs->edx, regs->ebx, mkgpte(regs->ecx)); 86 guest_set_pte(lg, args->arg1, args->arg2, mkgpte(args->arg3));
97 break; 87 break;
98 case LHCALL_SET_PMD: 88 case LHCALL_SET_PMD:
99 guest_set_pmd(lg, regs->edx, regs->ebx); 89 guest_set_pmd(lg, args->arg1, args->arg2);
100 break;
101 case LHCALL_LOAD_TLS:
102 guest_load_tls(lg, regs->edx);
103 break; 90 break;
104 case LHCALL_SET_CLOCKEVENT: 91 case LHCALL_SET_CLOCKEVENT:
105 guest_set_clockevent(lg, regs->edx); 92 guest_set_clockevent(lg, args->arg1);
106 break; 93 break;
107
108 case LHCALL_TS: 94 case LHCALL_TS:
109 /* This sets the TS flag, as we saw used in run_guest(). */ 95 /* This sets the TS flag, as we saw used in run_guest(). */
110 lg->ts = regs->edx; 96 lg->ts = args->arg1;
111 break; 97 break;
112 case LHCALL_HALT: 98 case LHCALL_HALT:
113 /* Similarly, this sets the halted flag for run_guest(). */ 99 /* Similarly, this sets the halted flag for run_guest(). */
114 lg->halted = 1; 100 lg->halted = 1;
115 break; 101 break;
116 default: 102 default:
117 kill_guest(lg, "Bad hypercall %li\n", regs->eax); 103 if (lguest_arch_do_hcall(lg, args))
104 kill_guest(lg, "Bad hypercall %li\n", args->arg0);
118 } 105 }
119} 106}
107/*:*/
120 108
121/* Asynchronous hypercalls are easy: we just look in the array in the Guest's 109/*H:124 Asynchronous hypercalls are easy: we just look in the array in the
122 * "struct lguest_data" and see if there are any new ones marked "ready". 110 * Guest's "struct lguest_data" to see if any new ones are marked "ready".
123 * 111 *
124 * We are careful to do these in order: obviously we respect the order the 112 * We are careful to do these in order: obviously we respect the order the
125 * Guest put them in the ring, but we also promise the Guest that they will 113 * Guest put them in the ring, but we also promise the Guest that they will
@@ -134,10 +122,9 @@ static void do_async_hcalls(struct lguest *lg)
134 if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st))) 122 if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st)))
135 return; 123 return;
136 124
137
138 /* We process "struct lguest_data"s hcalls[] ring once. */ 125 /* We process "struct lguest_data"s hcalls[] ring once. */
139 for (i = 0; i < ARRAY_SIZE(st); i++) { 126 for (i = 0; i < ARRAY_SIZE(st); i++) {
140 struct lguest_regs regs; 127 struct hcall_args args;
141 /* We remember where we were up to from last time. This makes 128 /* We remember where we were up to from last time. This makes
142 * sure that the hypercalls are done in the order the Guest 129 * sure that the hypercalls are done in the order the Guest
143 * places them in the ring. */ 130 * places them in the ring. */
@@ -152,18 +139,16 @@ static void do_async_hcalls(struct lguest *lg)
152 if (++lg->next_hcall == LHCALL_RING_SIZE) 139 if (++lg->next_hcall == LHCALL_RING_SIZE)
153 lg->next_hcall = 0; 140 lg->next_hcall = 0;
154 141
155 /* We copy the hypercall arguments into a fake register 142 /* Copy the hypercall arguments into a local copy of
156 * structure. This makes life simple for do_hcall(). */ 143 * the hcall_args struct. */
157 if (get_user(regs.eax, &lg->lguest_data->hcalls[n].eax) 144 if (copy_from_user(&args, &lg->lguest_data->hcalls[n],
158 || get_user(regs.edx, &lg->lguest_data->hcalls[n].edx) 145 sizeof(struct hcall_args))) {
159 || get_user(regs.ecx, &lg->lguest_data->hcalls[n].ecx)
160 || get_user(regs.ebx, &lg->lguest_data->hcalls[n].ebx)) {
161 kill_guest(lg, "Fetching async hypercalls"); 146 kill_guest(lg, "Fetching async hypercalls");
162 break; 147 break;
163 } 148 }
164 149
165 /* Do the hypercall, same as a normal one. */ 150 /* Do the hypercall, same as a normal one. */
166 do_hcall(lg, &regs); 151 do_hcall(lg, &args);
167 152
168 /* Mark the hypercall done. */ 153 /* Mark the hypercall done. */
169 if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) { 154 if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) {
@@ -182,41 +167,16 @@ static void do_async_hcalls(struct lguest *lg)
182 * Guest makes a hypercall, we end up here to set things up: */ 167 * Guest makes a hypercall, we end up here to set things up: */
183static void initialize(struct lguest *lg) 168static void initialize(struct lguest *lg)
184{ 169{
185 u32 tsc_speed;
186 170
187 /* You can't do anything until you're initialized. The Guest knows the 171 /* You can't do anything until you're initialized. The Guest knows the
188 * rules, so we're unforgiving here. */ 172 * rules, so we're unforgiving here. */
189 if (lg->regs->eax != LHCALL_LGUEST_INIT) { 173 if (lg->hcall->arg0 != LHCALL_LGUEST_INIT) {
190 kill_guest(lg, "hypercall %li before LGUEST_INIT", 174 kill_guest(lg, "hypercall %li before INIT", lg->hcall->arg0);
191 lg->regs->eax);
192 return; 175 return;
193 } 176 }
194 177
195 /* We insist that the Time Stamp Counter exist and doesn't change with 178 if (lguest_arch_init_hypercalls(lg))
196 * cpu frequency. Some devious chip manufacturers decided that TSC
197 * changes could be handled in software. I decided that time going
198 * backwards might be good for benchmarks, but it's bad for users.
199 *
200 * We also insist that the TSC be stable: the kernel detects unreliable
201 * TSCs for its own purposes, and we use that here. */
202 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
203 tsc_speed = tsc_khz;
204 else
205 tsc_speed = 0;
206
207 /* The pointer to the Guest's "struct lguest_data" is the only
208 * argument. We check that address now. */
209 if (!lguest_address_ok(lg, lg->regs->edx, sizeof(*lg->lguest_data))) {
210 kill_guest(lg, "bad guest page %p", lg->lguest_data); 179 kill_guest(lg, "bad guest page %p", lg->lguest_data);
211 return;
212 }
213
214 /* Having checked it, we simply set lg->lguest_data to point straight
215 * into the Launcher's memory at the right place and then use
216 * copy_to_user/from_user from now on, instead of lgread/write. I put
217 * this in to show that I'm not immune to writing stupid
218 * optimizations. */
219 lg->lguest_data = lg->mem_base + lg->regs->edx;
220 180
221 /* The Guest tells us where we're not to deliver interrupts by putting 181 /* The Guest tells us where we're not to deliver interrupts by putting
222 * the range of addresses into "struct lguest_data". */ 182 * the range of addresses into "struct lguest_data". */
@@ -224,8 +184,7 @@ static void initialize(struct lguest *lg)
224 || get_user(lg->noirq_end, &lg->lguest_data->noirq_end) 184 || get_user(lg->noirq_end, &lg->lguest_data->noirq_end)
225 /* We tell the Guest that it can't use the top 4MB of virtual 185 /* We tell the Guest that it can't use the top 4MB of virtual
226 * addresses used by the Switcher. */ 186 * addresses used by the Switcher. */
227 || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem) 187 || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem))
228 || put_user(tsc_speed, &lg->lguest_data->tsc_khz))
229 kill_guest(lg, "bad guest page %p", lg->lguest_data); 188 kill_guest(lg, "bad guest page %p", lg->lguest_data);
230 189
231 /* We write the current time into the Guest's data page once now. */ 190 /* We write the current time into the Guest's data page once now. */
@@ -237,9 +196,6 @@ static void initialize(struct lguest *lg)
237 * page. */ 196 * page. */
238 guest_pagetable_clear_all(lg); 197 guest_pagetable_clear_all(lg);
239} 198}
240/* Now we've examined the hypercall code; our Guest can make requests. There
241 * is one other way we can do things for the Guest, as we see in
242 * emulate_insn(). */
243 199
244/*H:100 200/*H:100
245 * Hypercalls 201 * Hypercalls