diff options
author | Ohad Ben-Cohen <ohad@wizery.com> | 2011-06-05 11:22:18 -0400 |
---|---|---|
committer | Joerg Roedel <joerg.roedel@amd.com> | 2011-06-21 04:49:29 -0400 |
commit | 29b68415e335ba9e0eb6057f9405aa4d9c23efe4 (patch) | |
tree | 76d1a8990ab1e5db5f6860262cb52c186d477925 /drivers/iommu/amd_iommu.c | |
parent | b10f127e1a4d8cac5414c6e2b152c205b66c9f16 (diff) |
x86: amd_iommu: move to drivers/iommu/
This should ease finding similarities with different platforms,
with the intention of solving problems once in a generic framework
which everyone can use.
Compile-tested on x86_64.
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Diffstat (limited to 'drivers/iommu/amd_iommu.c')
-rw-r--r-- | drivers/iommu/amd_iommu.c | 2764 |
1 files changed, 2764 insertions, 0 deletions
diff --git a/drivers/iommu/amd_iommu.c b/drivers/iommu/amd_iommu.c new file mode 100644 index 000000000000..7c3a95e54ec5 --- /dev/null +++ b/drivers/iommu/amd_iommu.c | |||
@@ -0,0 +1,2764 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. | ||
3 | * Author: Joerg Roedel <joerg.roedel@amd.com> | ||
4 | * Leo Duran <leo.duran@amd.com> | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of the GNU General Public License version 2 as published | ||
8 | * by the Free Software Foundation. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, | ||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | * GNU General Public License for more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License | ||
16 | * along with this program; if not, write to the Free Software | ||
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
18 | */ | ||
19 | |||
20 | #include <linux/pci.h> | ||
21 | #include <linux/pci-ats.h> | ||
22 | #include <linux/bitmap.h> | ||
23 | #include <linux/slab.h> | ||
24 | #include <linux/debugfs.h> | ||
25 | #include <linux/scatterlist.h> | ||
26 | #include <linux/dma-mapping.h> | ||
27 | #include <linux/iommu-helper.h> | ||
28 | #include <linux/iommu.h> | ||
29 | #include <linux/delay.h> | ||
30 | #include <asm/proto.h> | ||
31 | #include <asm/iommu.h> | ||
32 | #include <asm/gart.h> | ||
33 | #include <asm/dma.h> | ||
34 | #include <asm/amd_iommu_proto.h> | ||
35 | #include <asm/amd_iommu_types.h> | ||
36 | #include <asm/amd_iommu.h> | ||
37 | |||
38 | #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) | ||
39 | |||
40 | #define LOOP_TIMEOUT 100000 | ||
41 | |||
42 | static DEFINE_RWLOCK(amd_iommu_devtable_lock); | ||
43 | |||
44 | /* A list of preallocated protection domains */ | ||
45 | static LIST_HEAD(iommu_pd_list); | ||
46 | static DEFINE_SPINLOCK(iommu_pd_list_lock); | ||
47 | |||
48 | /* | ||
49 | * Domain for untranslated devices - only allocated | ||
50 | * if iommu=pt passed on kernel cmd line. | ||
51 | */ | ||
52 | static struct protection_domain *pt_domain; | ||
53 | |||
54 | static struct iommu_ops amd_iommu_ops; | ||
55 | |||
56 | /* | ||
57 | * general struct to manage commands send to an IOMMU | ||
58 | */ | ||
59 | struct iommu_cmd { | ||
60 | u32 data[4]; | ||
61 | }; | ||
62 | |||
63 | static void update_domain(struct protection_domain *domain); | ||
64 | |||
65 | /**************************************************************************** | ||
66 | * | ||
67 | * Helper functions | ||
68 | * | ||
69 | ****************************************************************************/ | ||
70 | |||
71 | static inline u16 get_device_id(struct device *dev) | ||
72 | { | ||
73 | struct pci_dev *pdev = to_pci_dev(dev); | ||
74 | |||
75 | return calc_devid(pdev->bus->number, pdev->devfn); | ||
76 | } | ||
77 | |||
78 | static struct iommu_dev_data *get_dev_data(struct device *dev) | ||
79 | { | ||
80 | return dev->archdata.iommu; | ||
81 | } | ||
82 | |||
83 | /* | ||
84 | * In this function the list of preallocated protection domains is traversed to | ||
85 | * find the domain for a specific device | ||
86 | */ | ||
87 | static struct dma_ops_domain *find_protection_domain(u16 devid) | ||
88 | { | ||
89 | struct dma_ops_domain *entry, *ret = NULL; | ||
90 | unsigned long flags; | ||
91 | u16 alias = amd_iommu_alias_table[devid]; | ||
92 | |||
93 | if (list_empty(&iommu_pd_list)) | ||
94 | return NULL; | ||
95 | |||
96 | spin_lock_irqsave(&iommu_pd_list_lock, flags); | ||
97 | |||
98 | list_for_each_entry(entry, &iommu_pd_list, list) { | ||
99 | if (entry->target_dev == devid || | ||
100 | entry->target_dev == alias) { | ||
101 | ret = entry; | ||
102 | break; | ||
103 | } | ||
104 | } | ||
105 | |||
106 | spin_unlock_irqrestore(&iommu_pd_list_lock, flags); | ||
107 | |||
108 | return ret; | ||
109 | } | ||
110 | |||
111 | /* | ||
112 | * This function checks if the driver got a valid device from the caller to | ||
113 | * avoid dereferencing invalid pointers. | ||
114 | */ | ||
115 | static bool check_device(struct device *dev) | ||
116 | { | ||
117 | u16 devid; | ||
118 | |||
119 | if (!dev || !dev->dma_mask) | ||
120 | return false; | ||
121 | |||
122 | /* No device or no PCI device */ | ||
123 | if (dev->bus != &pci_bus_type) | ||
124 | return false; | ||
125 | |||
126 | devid = get_device_id(dev); | ||
127 | |||
128 | /* Out of our scope? */ | ||
129 | if (devid > amd_iommu_last_bdf) | ||
130 | return false; | ||
131 | |||
132 | if (amd_iommu_rlookup_table[devid] == NULL) | ||
133 | return false; | ||
134 | |||
135 | return true; | ||
136 | } | ||
137 | |||
138 | static int iommu_init_device(struct device *dev) | ||
139 | { | ||
140 | struct iommu_dev_data *dev_data; | ||
141 | struct pci_dev *pdev; | ||
142 | u16 devid, alias; | ||
143 | |||
144 | if (dev->archdata.iommu) | ||
145 | return 0; | ||
146 | |||
147 | dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); | ||
148 | if (!dev_data) | ||
149 | return -ENOMEM; | ||
150 | |||
151 | dev_data->dev = dev; | ||
152 | |||
153 | devid = get_device_id(dev); | ||
154 | alias = amd_iommu_alias_table[devid]; | ||
155 | pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff); | ||
156 | if (pdev) | ||
157 | dev_data->alias = &pdev->dev; | ||
158 | else { | ||
159 | kfree(dev_data); | ||
160 | return -ENOTSUPP; | ||
161 | } | ||
162 | |||
163 | atomic_set(&dev_data->bind, 0); | ||
164 | |||
165 | dev->archdata.iommu = dev_data; | ||
166 | |||
167 | |||
168 | return 0; | ||
169 | } | ||
170 | |||
171 | static void iommu_ignore_device(struct device *dev) | ||
172 | { | ||
173 | u16 devid, alias; | ||
174 | |||
175 | devid = get_device_id(dev); | ||
176 | alias = amd_iommu_alias_table[devid]; | ||
177 | |||
178 | memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); | ||
179 | memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry)); | ||
180 | |||
181 | amd_iommu_rlookup_table[devid] = NULL; | ||
182 | amd_iommu_rlookup_table[alias] = NULL; | ||
183 | } | ||
184 | |||
185 | static void iommu_uninit_device(struct device *dev) | ||
186 | { | ||
187 | kfree(dev->archdata.iommu); | ||
188 | } | ||
189 | |||
190 | void __init amd_iommu_uninit_devices(void) | ||
191 | { | ||
192 | struct pci_dev *pdev = NULL; | ||
193 | |||
194 | for_each_pci_dev(pdev) { | ||
195 | |||
196 | if (!check_device(&pdev->dev)) | ||
197 | continue; | ||
198 | |||
199 | iommu_uninit_device(&pdev->dev); | ||
200 | } | ||
201 | } | ||
202 | |||
203 | int __init amd_iommu_init_devices(void) | ||
204 | { | ||
205 | struct pci_dev *pdev = NULL; | ||
206 | int ret = 0; | ||
207 | |||
208 | for_each_pci_dev(pdev) { | ||
209 | |||
210 | if (!check_device(&pdev->dev)) | ||
211 | continue; | ||
212 | |||
213 | ret = iommu_init_device(&pdev->dev); | ||
214 | if (ret == -ENOTSUPP) | ||
215 | iommu_ignore_device(&pdev->dev); | ||
216 | else if (ret) | ||
217 | goto out_free; | ||
218 | } | ||
219 | |||
220 | return 0; | ||
221 | |||
222 | out_free: | ||
223 | |||
224 | amd_iommu_uninit_devices(); | ||
225 | |||
226 | return ret; | ||
227 | } | ||
228 | #ifdef CONFIG_AMD_IOMMU_STATS | ||
229 | |||
230 | /* | ||
231 | * Initialization code for statistics collection | ||
232 | */ | ||
233 | |||
234 | DECLARE_STATS_COUNTER(compl_wait); | ||
235 | DECLARE_STATS_COUNTER(cnt_map_single); | ||
236 | DECLARE_STATS_COUNTER(cnt_unmap_single); | ||
237 | DECLARE_STATS_COUNTER(cnt_map_sg); | ||
238 | DECLARE_STATS_COUNTER(cnt_unmap_sg); | ||
239 | DECLARE_STATS_COUNTER(cnt_alloc_coherent); | ||
240 | DECLARE_STATS_COUNTER(cnt_free_coherent); | ||
241 | DECLARE_STATS_COUNTER(cross_page); | ||
242 | DECLARE_STATS_COUNTER(domain_flush_single); | ||
243 | DECLARE_STATS_COUNTER(domain_flush_all); | ||
244 | DECLARE_STATS_COUNTER(alloced_io_mem); | ||
245 | DECLARE_STATS_COUNTER(total_map_requests); | ||
246 | |||
247 | static struct dentry *stats_dir; | ||
248 | static struct dentry *de_fflush; | ||
249 | |||
250 | static void amd_iommu_stats_add(struct __iommu_counter *cnt) | ||
251 | { | ||
252 | if (stats_dir == NULL) | ||
253 | return; | ||
254 | |||
255 | cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir, | ||
256 | &cnt->value); | ||
257 | } | ||
258 | |||
259 | static void amd_iommu_stats_init(void) | ||
260 | { | ||
261 | stats_dir = debugfs_create_dir("amd-iommu", NULL); | ||
262 | if (stats_dir == NULL) | ||
263 | return; | ||
264 | |||
265 | de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir, | ||
266 | (u32 *)&amd_iommu_unmap_flush); | ||
267 | |||
268 | amd_iommu_stats_add(&compl_wait); | ||
269 | amd_iommu_stats_add(&cnt_map_single); | ||
270 | amd_iommu_stats_add(&cnt_unmap_single); | ||
271 | amd_iommu_stats_add(&cnt_map_sg); | ||
272 | amd_iommu_stats_add(&cnt_unmap_sg); | ||
273 | amd_iommu_stats_add(&cnt_alloc_coherent); | ||
274 | amd_iommu_stats_add(&cnt_free_coherent); | ||
275 | amd_iommu_stats_add(&cross_page); | ||
276 | amd_iommu_stats_add(&domain_flush_single); | ||
277 | amd_iommu_stats_add(&domain_flush_all); | ||
278 | amd_iommu_stats_add(&alloced_io_mem); | ||
279 | amd_iommu_stats_add(&total_map_requests); | ||
280 | } | ||
281 | |||
282 | #endif | ||
283 | |||
284 | /**************************************************************************** | ||
285 | * | ||
286 | * Interrupt handling functions | ||
287 | * | ||
288 | ****************************************************************************/ | ||
289 | |||
290 | static void dump_dte_entry(u16 devid) | ||
291 | { | ||
292 | int i; | ||
293 | |||
294 | for (i = 0; i < 8; ++i) | ||
295 | pr_err("AMD-Vi: DTE[%d]: %08x\n", i, | ||
296 | amd_iommu_dev_table[devid].data[i]); | ||
297 | } | ||
298 | |||
299 | static void dump_command(unsigned long phys_addr) | ||
300 | { | ||
301 | struct iommu_cmd *cmd = phys_to_virt(phys_addr); | ||
302 | int i; | ||
303 | |||
304 | for (i = 0; i < 4; ++i) | ||
305 | pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]); | ||
306 | } | ||
307 | |||
308 | static void iommu_print_event(struct amd_iommu *iommu, void *__evt) | ||
309 | { | ||
310 | u32 *event = __evt; | ||
311 | int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; | ||
312 | int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; | ||
313 | int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; | ||
314 | int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; | ||
315 | u64 address = (u64)(((u64)event[3]) << 32) | event[2]; | ||
316 | |||
317 | printk(KERN_ERR "AMD-Vi: Event logged ["); | ||
318 | |||
319 | switch (type) { | ||
320 | case EVENT_TYPE_ILL_DEV: | ||
321 | printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " | ||
322 | "address=0x%016llx flags=0x%04x]\n", | ||
323 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | ||
324 | address, flags); | ||
325 | dump_dte_entry(devid); | ||
326 | break; | ||
327 | case EVENT_TYPE_IO_FAULT: | ||
328 | printk("IO_PAGE_FAULT device=%02x:%02x.%x " | ||
329 | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", | ||
330 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | ||
331 | domid, address, flags); | ||
332 | break; | ||
333 | case EVENT_TYPE_DEV_TAB_ERR: | ||
334 | printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " | ||
335 | "address=0x%016llx flags=0x%04x]\n", | ||
336 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | ||
337 | address, flags); | ||
338 | break; | ||
339 | case EVENT_TYPE_PAGE_TAB_ERR: | ||
340 | printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " | ||
341 | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", | ||
342 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | ||
343 | domid, address, flags); | ||
344 | break; | ||
345 | case EVENT_TYPE_ILL_CMD: | ||
346 | printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); | ||
347 | dump_command(address); | ||
348 | break; | ||
349 | case EVENT_TYPE_CMD_HARD_ERR: | ||
350 | printk("COMMAND_HARDWARE_ERROR address=0x%016llx " | ||
351 | "flags=0x%04x]\n", address, flags); | ||
352 | break; | ||
353 | case EVENT_TYPE_IOTLB_INV_TO: | ||
354 | printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " | ||
355 | "address=0x%016llx]\n", | ||
356 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | ||
357 | address); | ||
358 | break; | ||
359 | case EVENT_TYPE_INV_DEV_REQ: | ||
360 | printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " | ||
361 | "address=0x%016llx flags=0x%04x]\n", | ||
362 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | ||
363 | address, flags); | ||
364 | break; | ||
365 | default: | ||
366 | printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); | ||
367 | } | ||
368 | } | ||
369 | |||
370 | static void iommu_poll_events(struct amd_iommu *iommu) | ||
371 | { | ||
372 | u32 head, tail; | ||
373 | unsigned long flags; | ||
374 | |||
375 | spin_lock_irqsave(&iommu->lock, flags); | ||
376 | |||
377 | head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); | ||
378 | tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); | ||
379 | |||
380 | while (head != tail) { | ||
381 | iommu_print_event(iommu, iommu->evt_buf + head); | ||
382 | head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size; | ||
383 | } | ||
384 | |||
385 | writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); | ||
386 | |||
387 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
388 | } | ||
389 | |||
390 | irqreturn_t amd_iommu_int_thread(int irq, void *data) | ||
391 | { | ||
392 | struct amd_iommu *iommu; | ||
393 | |||
394 | for_each_iommu(iommu) | ||
395 | iommu_poll_events(iommu); | ||
396 | |||
397 | return IRQ_HANDLED; | ||
398 | } | ||
399 | |||
400 | irqreturn_t amd_iommu_int_handler(int irq, void *data) | ||
401 | { | ||
402 | return IRQ_WAKE_THREAD; | ||
403 | } | ||
404 | |||
405 | /**************************************************************************** | ||
406 | * | ||
407 | * IOMMU command queuing functions | ||
408 | * | ||
409 | ****************************************************************************/ | ||
410 | |||
411 | static int wait_on_sem(volatile u64 *sem) | ||
412 | { | ||
413 | int i = 0; | ||
414 | |||
415 | while (*sem == 0 && i < LOOP_TIMEOUT) { | ||
416 | udelay(1); | ||
417 | i += 1; | ||
418 | } | ||
419 | |||
420 | if (i == LOOP_TIMEOUT) { | ||
421 | pr_alert("AMD-Vi: Completion-Wait loop timed out\n"); | ||
422 | return -EIO; | ||
423 | } | ||
424 | |||
425 | return 0; | ||
426 | } | ||
427 | |||
428 | static void copy_cmd_to_buffer(struct amd_iommu *iommu, | ||
429 | struct iommu_cmd *cmd, | ||
430 | u32 tail) | ||
431 | { | ||
432 | u8 *target; | ||
433 | |||
434 | target = iommu->cmd_buf + tail; | ||
435 | tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; | ||
436 | |||
437 | /* Copy command to buffer */ | ||
438 | memcpy(target, cmd, sizeof(*cmd)); | ||
439 | |||
440 | /* Tell the IOMMU about it */ | ||
441 | writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); | ||
442 | } | ||
443 | |||
444 | static void build_completion_wait(struct iommu_cmd *cmd, u64 address) | ||
445 | { | ||
446 | WARN_ON(address & 0x7ULL); | ||
447 | |||
448 | memset(cmd, 0, sizeof(*cmd)); | ||
449 | cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK; | ||
450 | cmd->data[1] = upper_32_bits(__pa(address)); | ||
451 | cmd->data[2] = 1; | ||
452 | CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); | ||
453 | } | ||
454 | |||
455 | static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) | ||
456 | { | ||
457 | memset(cmd, 0, sizeof(*cmd)); | ||
458 | cmd->data[0] = devid; | ||
459 | CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); | ||
460 | } | ||
461 | |||
462 | static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, | ||
463 | size_t size, u16 domid, int pde) | ||
464 | { | ||
465 | u64 pages; | ||
466 | int s; | ||
467 | |||
468 | pages = iommu_num_pages(address, size, PAGE_SIZE); | ||
469 | s = 0; | ||
470 | |||
471 | if (pages > 1) { | ||
472 | /* | ||
473 | * If we have to flush more than one page, flush all | ||
474 | * TLB entries for this domain | ||
475 | */ | ||
476 | address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; | ||
477 | s = 1; | ||
478 | } | ||
479 | |||
480 | address &= PAGE_MASK; | ||
481 | |||
482 | memset(cmd, 0, sizeof(*cmd)); | ||
483 | cmd->data[1] |= domid; | ||
484 | cmd->data[2] = lower_32_bits(address); | ||
485 | cmd->data[3] = upper_32_bits(address); | ||
486 | CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); | ||
487 | if (s) /* size bit - we flush more than one 4kb page */ | ||
488 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; | ||
489 | if (pde) /* PDE bit - we wan't flush everything not only the PTEs */ | ||
490 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; | ||
491 | } | ||
492 | |||
493 | static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, | ||
494 | u64 address, size_t size) | ||
495 | { | ||
496 | u64 pages; | ||
497 | int s; | ||
498 | |||
499 | pages = iommu_num_pages(address, size, PAGE_SIZE); | ||
500 | s = 0; | ||
501 | |||
502 | if (pages > 1) { | ||
503 | /* | ||
504 | * If we have to flush more than one page, flush all | ||
505 | * TLB entries for this domain | ||
506 | */ | ||
507 | address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; | ||
508 | s = 1; | ||
509 | } | ||
510 | |||
511 | address &= PAGE_MASK; | ||
512 | |||
513 | memset(cmd, 0, sizeof(*cmd)); | ||
514 | cmd->data[0] = devid; | ||
515 | cmd->data[0] |= (qdep & 0xff) << 24; | ||
516 | cmd->data[1] = devid; | ||
517 | cmd->data[2] = lower_32_bits(address); | ||
518 | cmd->data[3] = upper_32_bits(address); | ||
519 | CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); | ||
520 | if (s) | ||
521 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; | ||
522 | } | ||
523 | |||
524 | static void build_inv_all(struct iommu_cmd *cmd) | ||
525 | { | ||
526 | memset(cmd, 0, sizeof(*cmd)); | ||
527 | CMD_SET_TYPE(cmd, CMD_INV_ALL); | ||
528 | } | ||
529 | |||
530 | /* | ||
531 | * Writes the command to the IOMMUs command buffer and informs the | ||
532 | * hardware about the new command. | ||
533 | */ | ||
534 | static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) | ||
535 | { | ||
536 | u32 left, tail, head, next_tail; | ||
537 | unsigned long flags; | ||
538 | |||
539 | WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED); | ||
540 | |||
541 | again: | ||
542 | spin_lock_irqsave(&iommu->lock, flags); | ||
543 | |||
544 | head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); | ||
545 | tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); | ||
546 | next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; | ||
547 | left = (head - next_tail) % iommu->cmd_buf_size; | ||
548 | |||
549 | if (left <= 2) { | ||
550 | struct iommu_cmd sync_cmd; | ||
551 | volatile u64 sem = 0; | ||
552 | int ret; | ||
553 | |||
554 | build_completion_wait(&sync_cmd, (u64)&sem); | ||
555 | copy_cmd_to_buffer(iommu, &sync_cmd, tail); | ||
556 | |||
557 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
558 | |||
559 | if ((ret = wait_on_sem(&sem)) != 0) | ||
560 | return ret; | ||
561 | |||
562 | goto again; | ||
563 | } | ||
564 | |||
565 | copy_cmd_to_buffer(iommu, cmd, tail); | ||
566 | |||
567 | /* We need to sync now to make sure all commands are processed */ | ||
568 | iommu->need_sync = true; | ||
569 | |||
570 | spin_unlock_irqrestore(&iommu->lock, flags); | ||
571 | |||
572 | return 0; | ||
573 | } | ||
574 | |||
575 | /* | ||
576 | * This function queues a completion wait command into the command | ||
577 | * buffer of an IOMMU | ||
578 | */ | ||
579 | static int iommu_completion_wait(struct amd_iommu *iommu) | ||
580 | { | ||
581 | struct iommu_cmd cmd; | ||
582 | volatile u64 sem = 0; | ||
583 | int ret; | ||
584 | |||
585 | if (!iommu->need_sync) | ||
586 | return 0; | ||
587 | |||
588 | build_completion_wait(&cmd, (u64)&sem); | ||
589 | |||
590 | ret = iommu_queue_command(iommu, &cmd); | ||
591 | if (ret) | ||
592 | return ret; | ||
593 | |||
594 | return wait_on_sem(&sem); | ||
595 | } | ||
596 | |||
597 | static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) | ||
598 | { | ||
599 | struct iommu_cmd cmd; | ||
600 | |||
601 | build_inv_dte(&cmd, devid); | ||
602 | |||
603 | return iommu_queue_command(iommu, &cmd); | ||
604 | } | ||
605 | |||
606 | static void iommu_flush_dte_all(struct amd_iommu *iommu) | ||
607 | { | ||
608 | u32 devid; | ||
609 | |||
610 | for (devid = 0; devid <= 0xffff; ++devid) | ||
611 | iommu_flush_dte(iommu, devid); | ||
612 | |||
613 | iommu_completion_wait(iommu); | ||
614 | } | ||
615 | |||
616 | /* | ||
617 | * This function uses heavy locking and may disable irqs for some time. But | ||
618 | * this is no issue because it is only called during resume. | ||
619 | */ | ||
620 | static void iommu_flush_tlb_all(struct amd_iommu *iommu) | ||
621 | { | ||
622 | u32 dom_id; | ||
623 | |||
624 | for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { | ||
625 | struct iommu_cmd cmd; | ||
626 | build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, | ||
627 | dom_id, 1); | ||
628 | iommu_queue_command(iommu, &cmd); | ||
629 | } | ||
630 | |||
631 | iommu_completion_wait(iommu); | ||
632 | } | ||
633 | |||
634 | static void iommu_flush_all(struct amd_iommu *iommu) | ||
635 | { | ||
636 | struct iommu_cmd cmd; | ||
637 | |||
638 | build_inv_all(&cmd); | ||
639 | |||
640 | iommu_queue_command(iommu, &cmd); | ||
641 | iommu_completion_wait(iommu); | ||
642 | } | ||
643 | |||
644 | void iommu_flush_all_caches(struct amd_iommu *iommu) | ||
645 | { | ||
646 | if (iommu_feature(iommu, FEATURE_IA)) { | ||
647 | iommu_flush_all(iommu); | ||
648 | } else { | ||
649 | iommu_flush_dte_all(iommu); | ||
650 | iommu_flush_tlb_all(iommu); | ||
651 | } | ||
652 | } | ||
653 | |||
654 | /* | ||
655 | * Command send function for flushing on-device TLB | ||
656 | */ | ||
657 | static int device_flush_iotlb(struct device *dev, u64 address, size_t size) | ||
658 | { | ||
659 | struct pci_dev *pdev = to_pci_dev(dev); | ||
660 | struct amd_iommu *iommu; | ||
661 | struct iommu_cmd cmd; | ||
662 | u16 devid; | ||
663 | int qdep; | ||
664 | |||
665 | qdep = pci_ats_queue_depth(pdev); | ||
666 | devid = get_device_id(dev); | ||
667 | iommu = amd_iommu_rlookup_table[devid]; | ||
668 | |||
669 | build_inv_iotlb_pages(&cmd, devid, qdep, address, size); | ||
670 | |||
671 | return iommu_queue_command(iommu, &cmd); | ||
672 | } | ||
673 | |||
674 | /* | ||
675 | * Command send function for invalidating a device table entry | ||
676 | */ | ||
677 | static int device_flush_dte(struct device *dev) | ||
678 | { | ||
679 | struct amd_iommu *iommu; | ||
680 | struct pci_dev *pdev; | ||
681 | u16 devid; | ||
682 | int ret; | ||
683 | |||
684 | pdev = to_pci_dev(dev); | ||
685 | devid = get_device_id(dev); | ||
686 | iommu = amd_iommu_rlookup_table[devid]; | ||
687 | |||
688 | ret = iommu_flush_dte(iommu, devid); | ||
689 | if (ret) | ||
690 | return ret; | ||
691 | |||
692 | if (pci_ats_enabled(pdev)) | ||
693 | ret = device_flush_iotlb(dev, 0, ~0UL); | ||
694 | |||
695 | return ret; | ||
696 | } | ||
697 | |||
698 | /* | ||
699 | * TLB invalidation function which is called from the mapping functions. | ||
700 | * It invalidates a single PTE if the range to flush is within a single | ||
701 | * page. Otherwise it flushes the whole TLB of the IOMMU. | ||
702 | */ | ||
703 | static void __domain_flush_pages(struct protection_domain *domain, | ||
704 | u64 address, size_t size, int pde) | ||
705 | { | ||
706 | struct iommu_dev_data *dev_data; | ||
707 | struct iommu_cmd cmd; | ||
708 | int ret = 0, i; | ||
709 | |||
710 | build_inv_iommu_pages(&cmd, address, size, domain->id, pde); | ||
711 | |||
712 | for (i = 0; i < amd_iommus_present; ++i) { | ||
713 | if (!domain->dev_iommu[i]) | ||
714 | continue; | ||
715 | |||
716 | /* | ||
717 | * Devices of this domain are behind this IOMMU | ||
718 | * We need a TLB flush | ||
719 | */ | ||
720 | ret |= iommu_queue_command(amd_iommus[i], &cmd); | ||
721 | } | ||
722 | |||
723 | list_for_each_entry(dev_data, &domain->dev_list, list) { | ||
724 | struct pci_dev *pdev = to_pci_dev(dev_data->dev); | ||
725 | |||
726 | if (!pci_ats_enabled(pdev)) | ||
727 | continue; | ||
728 | |||
729 | ret |= device_flush_iotlb(dev_data->dev, address, size); | ||
730 | } | ||
731 | |||
732 | WARN_ON(ret); | ||
733 | } | ||
734 | |||
735 | static void domain_flush_pages(struct protection_domain *domain, | ||
736 | u64 address, size_t size) | ||
737 | { | ||
738 | __domain_flush_pages(domain, address, size, 0); | ||
739 | } | ||
740 | |||
741 | /* Flush the whole IO/TLB for a given protection domain */ | ||
742 | static void domain_flush_tlb(struct protection_domain *domain) | ||
743 | { | ||
744 | __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0); | ||
745 | } | ||
746 | |||
747 | /* Flush the whole IO/TLB for a given protection domain - including PDE */ | ||
748 | static void domain_flush_tlb_pde(struct protection_domain *domain) | ||
749 | { | ||
750 | __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); | ||
751 | } | ||
752 | |||
753 | static void domain_flush_complete(struct protection_domain *domain) | ||
754 | { | ||
755 | int i; | ||
756 | |||
757 | for (i = 0; i < amd_iommus_present; ++i) { | ||
758 | if (!domain->dev_iommu[i]) | ||
759 | continue; | ||
760 | |||
761 | /* | ||
762 | * Devices of this domain are behind this IOMMU | ||
763 | * We need to wait for completion of all commands. | ||
764 | */ | ||
765 | iommu_completion_wait(amd_iommus[i]); | ||
766 | } | ||
767 | } | ||
768 | |||
769 | |||
770 | /* | ||
771 | * This function flushes the DTEs for all devices in domain | ||
772 | */ | ||
773 | static void domain_flush_devices(struct protection_domain *domain) | ||
774 | { | ||
775 | struct iommu_dev_data *dev_data; | ||
776 | unsigned long flags; | ||
777 | |||
778 | spin_lock_irqsave(&domain->lock, flags); | ||
779 | |||
780 | list_for_each_entry(dev_data, &domain->dev_list, list) | ||
781 | device_flush_dte(dev_data->dev); | ||
782 | |||
783 | spin_unlock_irqrestore(&domain->lock, flags); | ||
784 | } | ||
785 | |||
786 | /**************************************************************************** | ||
787 | * | ||
788 | * The functions below are used the create the page table mappings for | ||
789 | * unity mapped regions. | ||
790 | * | ||
791 | ****************************************************************************/ | ||
792 | |||
793 | /* | ||
794 | * This function is used to add another level to an IO page table. Adding | ||
795 | * another level increases the size of the address space by 9 bits to a size up | ||
796 | * to 64 bits. | ||
797 | */ | ||
798 | static bool increase_address_space(struct protection_domain *domain, | ||
799 | gfp_t gfp) | ||
800 | { | ||
801 | u64 *pte; | ||
802 | |||
803 | if (domain->mode == PAGE_MODE_6_LEVEL) | ||
804 | /* address space already 64 bit large */ | ||
805 | return false; | ||
806 | |||
807 | pte = (void *)get_zeroed_page(gfp); | ||
808 | if (!pte) | ||
809 | return false; | ||
810 | |||
811 | *pte = PM_LEVEL_PDE(domain->mode, | ||
812 | virt_to_phys(domain->pt_root)); | ||
813 | domain->pt_root = pte; | ||
814 | domain->mode += 1; | ||
815 | domain->updated = true; | ||
816 | |||
817 | return true; | ||
818 | } | ||
819 | |||
820 | static u64 *alloc_pte(struct protection_domain *domain, | ||
821 | unsigned long address, | ||
822 | unsigned long page_size, | ||
823 | u64 **pte_page, | ||
824 | gfp_t gfp) | ||
825 | { | ||
826 | int level, end_lvl; | ||
827 | u64 *pte, *page; | ||
828 | |||
829 | BUG_ON(!is_power_of_2(page_size)); | ||
830 | |||
831 | while (address > PM_LEVEL_SIZE(domain->mode)) | ||
832 | increase_address_space(domain, gfp); | ||
833 | |||
834 | level = domain->mode - 1; | ||
835 | pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; | ||
836 | address = PAGE_SIZE_ALIGN(address, page_size); | ||
837 | end_lvl = PAGE_SIZE_LEVEL(page_size); | ||
838 | |||
839 | while (level > end_lvl) { | ||
840 | if (!IOMMU_PTE_PRESENT(*pte)) { | ||
841 | page = (u64 *)get_zeroed_page(gfp); | ||
842 | if (!page) | ||
843 | return NULL; | ||
844 | *pte = PM_LEVEL_PDE(level, virt_to_phys(page)); | ||
845 | } | ||
846 | |||
847 | /* No level skipping support yet */ | ||
848 | if (PM_PTE_LEVEL(*pte) != level) | ||
849 | return NULL; | ||
850 | |||
851 | level -= 1; | ||
852 | |||
853 | pte = IOMMU_PTE_PAGE(*pte); | ||
854 | |||
855 | if (pte_page && level == end_lvl) | ||
856 | *pte_page = pte; | ||
857 | |||
858 | pte = &pte[PM_LEVEL_INDEX(level, address)]; | ||
859 | } | ||
860 | |||
861 | return pte; | ||
862 | } | ||
863 | |||
864 | /* | ||
865 | * This function checks if there is a PTE for a given dma address. If | ||
866 | * there is one, it returns the pointer to it. | ||
867 | */ | ||
868 | static u64 *fetch_pte(struct protection_domain *domain, unsigned long address) | ||
869 | { | ||
870 | int level; | ||
871 | u64 *pte; | ||
872 | |||
873 | if (address > PM_LEVEL_SIZE(domain->mode)) | ||
874 | return NULL; | ||
875 | |||
876 | level = domain->mode - 1; | ||
877 | pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; | ||
878 | |||
879 | while (level > 0) { | ||
880 | |||
881 | /* Not Present */ | ||
882 | if (!IOMMU_PTE_PRESENT(*pte)) | ||
883 | return NULL; | ||
884 | |||
885 | /* Large PTE */ | ||
886 | if (PM_PTE_LEVEL(*pte) == 0x07) { | ||
887 | unsigned long pte_mask, __pte; | ||
888 | |||
889 | /* | ||
890 | * If we have a series of large PTEs, make | ||
891 | * sure to return a pointer to the first one. | ||
892 | */ | ||
893 | pte_mask = PTE_PAGE_SIZE(*pte); | ||
894 | pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1); | ||
895 | __pte = ((unsigned long)pte) & pte_mask; | ||
896 | |||
897 | return (u64 *)__pte; | ||
898 | } | ||
899 | |||
900 | /* No level skipping support yet */ | ||
901 | if (PM_PTE_LEVEL(*pte) != level) | ||
902 | return NULL; | ||
903 | |||
904 | level -= 1; | ||
905 | |||
906 | /* Walk to the next level */ | ||
907 | pte = IOMMU_PTE_PAGE(*pte); | ||
908 | pte = &pte[PM_LEVEL_INDEX(level, address)]; | ||
909 | } | ||
910 | |||
911 | return pte; | ||
912 | } | ||
913 | |||
914 | /* | ||
915 | * Generic mapping functions. It maps a physical address into a DMA | ||
916 | * address space. It allocates the page table pages if necessary. | ||
917 | * In the future it can be extended to a generic mapping function | ||
918 | * supporting all features of AMD IOMMU page tables like level skipping | ||
919 | * and full 64 bit address spaces. | ||
920 | */ | ||
921 | static int iommu_map_page(struct protection_domain *dom, | ||
922 | unsigned long bus_addr, | ||
923 | unsigned long phys_addr, | ||
924 | int prot, | ||
925 | unsigned long page_size) | ||
926 | { | ||
927 | u64 __pte, *pte; | ||
928 | int i, count; | ||
929 | |||
930 | if (!(prot & IOMMU_PROT_MASK)) | ||
931 | return -EINVAL; | ||
932 | |||
933 | bus_addr = PAGE_ALIGN(bus_addr); | ||
934 | phys_addr = PAGE_ALIGN(phys_addr); | ||
935 | count = PAGE_SIZE_PTE_COUNT(page_size); | ||
936 | pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL); | ||
937 | |||
938 | for (i = 0; i < count; ++i) | ||
939 | if (IOMMU_PTE_PRESENT(pte[i])) | ||
940 | return -EBUSY; | ||
941 | |||
942 | if (page_size > PAGE_SIZE) { | ||
943 | __pte = PAGE_SIZE_PTE(phys_addr, page_size); | ||
944 | __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC; | ||
945 | } else | ||
946 | __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC; | ||
947 | |||
948 | if (prot & IOMMU_PROT_IR) | ||
949 | __pte |= IOMMU_PTE_IR; | ||
950 | if (prot & IOMMU_PROT_IW) | ||
951 | __pte |= IOMMU_PTE_IW; | ||
952 | |||
953 | for (i = 0; i < count; ++i) | ||
954 | pte[i] = __pte; | ||
955 | |||
956 | update_domain(dom); | ||
957 | |||
958 | return 0; | ||
959 | } | ||
960 | |||
961 | static unsigned long iommu_unmap_page(struct protection_domain *dom, | ||
962 | unsigned long bus_addr, | ||
963 | unsigned long page_size) | ||
964 | { | ||
965 | unsigned long long unmap_size, unmapped; | ||
966 | u64 *pte; | ||
967 | |||
968 | BUG_ON(!is_power_of_2(page_size)); | ||
969 | |||
970 | unmapped = 0; | ||
971 | |||
972 | while (unmapped < page_size) { | ||
973 | |||
974 | pte = fetch_pte(dom, bus_addr); | ||
975 | |||
976 | if (!pte) { | ||
977 | /* | ||
978 | * No PTE for this address | ||
979 | * move forward in 4kb steps | ||
980 | */ | ||
981 | unmap_size = PAGE_SIZE; | ||
982 | } else if (PM_PTE_LEVEL(*pte) == 0) { | ||
983 | /* 4kb PTE found for this address */ | ||
984 | unmap_size = PAGE_SIZE; | ||
985 | *pte = 0ULL; | ||
986 | } else { | ||
987 | int count, i; | ||
988 | |||
989 | /* Large PTE found which maps this address */ | ||
990 | unmap_size = PTE_PAGE_SIZE(*pte); | ||
991 | count = PAGE_SIZE_PTE_COUNT(unmap_size); | ||
992 | for (i = 0; i < count; i++) | ||
993 | pte[i] = 0ULL; | ||
994 | } | ||
995 | |||
996 | bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; | ||
997 | unmapped += unmap_size; | ||
998 | } | ||
999 | |||
1000 | BUG_ON(!is_power_of_2(unmapped)); | ||
1001 | |||
1002 | return unmapped; | ||
1003 | } | ||
1004 | |||
1005 | /* | ||
1006 | * This function checks if a specific unity mapping entry is needed for | ||
1007 | * this specific IOMMU. | ||
1008 | */ | ||
1009 | static int iommu_for_unity_map(struct amd_iommu *iommu, | ||
1010 | struct unity_map_entry *entry) | ||
1011 | { | ||
1012 | u16 bdf, i; | ||
1013 | |||
1014 | for (i = entry->devid_start; i <= entry->devid_end; ++i) { | ||
1015 | bdf = amd_iommu_alias_table[i]; | ||
1016 | if (amd_iommu_rlookup_table[bdf] == iommu) | ||
1017 | return 1; | ||
1018 | } | ||
1019 | |||
1020 | return 0; | ||
1021 | } | ||
1022 | |||
1023 | /* | ||
1024 | * This function actually applies the mapping to the page table of the | ||
1025 | * dma_ops domain. | ||
1026 | */ | ||
1027 | static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, | ||
1028 | struct unity_map_entry *e) | ||
1029 | { | ||
1030 | u64 addr; | ||
1031 | int ret; | ||
1032 | |||
1033 | for (addr = e->address_start; addr < e->address_end; | ||
1034 | addr += PAGE_SIZE) { | ||
1035 | ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot, | ||
1036 | PAGE_SIZE); | ||
1037 | if (ret) | ||
1038 | return ret; | ||
1039 | /* | ||
1040 | * if unity mapping is in aperture range mark the page | ||
1041 | * as allocated in the aperture | ||
1042 | */ | ||
1043 | if (addr < dma_dom->aperture_size) | ||
1044 | __set_bit(addr >> PAGE_SHIFT, | ||
1045 | dma_dom->aperture[0]->bitmap); | ||
1046 | } | ||
1047 | |||
1048 | return 0; | ||
1049 | } | ||
1050 | |||
1051 | /* | ||
1052 | * Init the unity mappings for a specific IOMMU in the system | ||
1053 | * | ||
1054 | * Basically iterates over all unity mapping entries and applies them to | ||
1055 | * the default domain DMA of that IOMMU if necessary. | ||
1056 | */ | ||
1057 | static int iommu_init_unity_mappings(struct amd_iommu *iommu) | ||
1058 | { | ||
1059 | struct unity_map_entry *entry; | ||
1060 | int ret; | ||
1061 | |||
1062 | list_for_each_entry(entry, &amd_iommu_unity_map, list) { | ||
1063 | if (!iommu_for_unity_map(iommu, entry)) | ||
1064 | continue; | ||
1065 | ret = dma_ops_unity_map(iommu->default_dom, entry); | ||
1066 | if (ret) | ||
1067 | return ret; | ||
1068 | } | ||
1069 | |||
1070 | return 0; | ||
1071 | } | ||
1072 | |||
1073 | /* | ||
1074 | * Inits the unity mappings required for a specific device | ||
1075 | */ | ||
1076 | static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom, | ||
1077 | u16 devid) | ||
1078 | { | ||
1079 | struct unity_map_entry *e; | ||
1080 | int ret; | ||
1081 | |||
1082 | list_for_each_entry(e, &amd_iommu_unity_map, list) { | ||
1083 | if (!(devid >= e->devid_start && devid <= e->devid_end)) | ||
1084 | continue; | ||
1085 | ret = dma_ops_unity_map(dma_dom, e); | ||
1086 | if (ret) | ||
1087 | return ret; | ||
1088 | } | ||
1089 | |||
1090 | return 0; | ||
1091 | } | ||
1092 | |||
1093 | /**************************************************************************** | ||
1094 | * | ||
1095 | * The next functions belong to the address allocator for the dma_ops | ||
1096 | * interface functions. They work like the allocators in the other IOMMU | ||
1097 | * drivers. Its basically a bitmap which marks the allocated pages in | ||
1098 | * the aperture. Maybe it could be enhanced in the future to a more | ||
1099 | * efficient allocator. | ||
1100 | * | ||
1101 | ****************************************************************************/ | ||
1102 | |||
1103 | /* | ||
1104 | * The address allocator core functions. | ||
1105 | * | ||
1106 | * called with domain->lock held | ||
1107 | */ | ||
1108 | |||
1109 | /* | ||
1110 | * Used to reserve address ranges in the aperture (e.g. for exclusion | ||
1111 | * ranges. | ||
1112 | */ | ||
1113 | static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, | ||
1114 | unsigned long start_page, | ||
1115 | unsigned int pages) | ||
1116 | { | ||
1117 | unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT; | ||
1118 | |||
1119 | if (start_page + pages > last_page) | ||
1120 | pages = last_page - start_page; | ||
1121 | |||
1122 | for (i = start_page; i < start_page + pages; ++i) { | ||
1123 | int index = i / APERTURE_RANGE_PAGES; | ||
1124 | int page = i % APERTURE_RANGE_PAGES; | ||
1125 | __set_bit(page, dom->aperture[index]->bitmap); | ||
1126 | } | ||
1127 | } | ||
1128 | |||
1129 | /* | ||
1130 | * This function is used to add a new aperture range to an existing | ||
1131 | * aperture in case of dma_ops domain allocation or address allocation | ||
1132 | * failure. | ||
1133 | */ | ||
1134 | static int alloc_new_range(struct dma_ops_domain *dma_dom, | ||
1135 | bool populate, gfp_t gfp) | ||
1136 | { | ||
1137 | int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT; | ||
1138 | struct amd_iommu *iommu; | ||
1139 | unsigned long i; | ||
1140 | |||
1141 | #ifdef CONFIG_IOMMU_STRESS | ||
1142 | populate = false; | ||
1143 | #endif | ||
1144 | |||
1145 | if (index >= APERTURE_MAX_RANGES) | ||
1146 | return -ENOMEM; | ||
1147 | |||
1148 | dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp); | ||
1149 | if (!dma_dom->aperture[index]) | ||
1150 | return -ENOMEM; | ||
1151 | |||
1152 | dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp); | ||
1153 | if (!dma_dom->aperture[index]->bitmap) | ||
1154 | goto out_free; | ||
1155 | |||
1156 | dma_dom->aperture[index]->offset = dma_dom->aperture_size; | ||
1157 | |||
1158 | if (populate) { | ||
1159 | unsigned long address = dma_dom->aperture_size; | ||
1160 | int i, num_ptes = APERTURE_RANGE_PAGES / 512; | ||
1161 | u64 *pte, *pte_page; | ||
1162 | |||
1163 | for (i = 0; i < num_ptes; ++i) { | ||
1164 | pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE, | ||
1165 | &pte_page, gfp); | ||
1166 | if (!pte) | ||
1167 | goto out_free; | ||
1168 | |||
1169 | dma_dom->aperture[index]->pte_pages[i] = pte_page; | ||
1170 | |||
1171 | address += APERTURE_RANGE_SIZE / 64; | ||
1172 | } | ||
1173 | } | ||
1174 | |||
1175 | dma_dom->aperture_size += APERTURE_RANGE_SIZE; | ||
1176 | |||
1177 | /* Initialize the exclusion range if necessary */ | ||
1178 | for_each_iommu(iommu) { | ||
1179 | if (iommu->exclusion_start && | ||
1180 | iommu->exclusion_start >= dma_dom->aperture[index]->offset | ||
1181 | && iommu->exclusion_start < dma_dom->aperture_size) { | ||
1182 | unsigned long startpage; | ||
1183 | int pages = iommu_num_pages(iommu->exclusion_start, | ||
1184 | iommu->exclusion_length, | ||
1185 | PAGE_SIZE); | ||
1186 | startpage = iommu->exclusion_start >> PAGE_SHIFT; | ||
1187 | dma_ops_reserve_addresses(dma_dom, startpage, pages); | ||
1188 | } | ||
1189 | } | ||
1190 | |||
1191 | /* | ||
1192 | * Check for areas already mapped as present in the new aperture | ||
1193 | * range and mark those pages as reserved in the allocator. Such | ||
1194 | * mappings may already exist as a result of requested unity | ||
1195 | * mappings for devices. | ||
1196 | */ | ||
1197 | for (i = dma_dom->aperture[index]->offset; | ||
1198 | i < dma_dom->aperture_size; | ||
1199 | i += PAGE_SIZE) { | ||
1200 | u64 *pte = fetch_pte(&dma_dom->domain, i); | ||
1201 | if (!pte || !IOMMU_PTE_PRESENT(*pte)) | ||
1202 | continue; | ||
1203 | |||
1204 | dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1); | ||
1205 | } | ||
1206 | |||
1207 | update_domain(&dma_dom->domain); | ||
1208 | |||
1209 | return 0; | ||
1210 | |||
1211 | out_free: | ||
1212 | update_domain(&dma_dom->domain); | ||
1213 | |||
1214 | free_page((unsigned long)dma_dom->aperture[index]->bitmap); | ||
1215 | |||
1216 | kfree(dma_dom->aperture[index]); | ||
1217 | dma_dom->aperture[index] = NULL; | ||
1218 | |||
1219 | return -ENOMEM; | ||
1220 | } | ||
1221 | |||
1222 | static unsigned long dma_ops_area_alloc(struct device *dev, | ||
1223 | struct dma_ops_domain *dom, | ||
1224 | unsigned int pages, | ||
1225 | unsigned long align_mask, | ||
1226 | u64 dma_mask, | ||
1227 | unsigned long start) | ||
1228 | { | ||
1229 | unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE; | ||
1230 | int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT; | ||
1231 | int i = start >> APERTURE_RANGE_SHIFT; | ||
1232 | unsigned long boundary_size; | ||
1233 | unsigned long address = -1; | ||
1234 | unsigned long limit; | ||
1235 | |||
1236 | next_bit >>= PAGE_SHIFT; | ||
1237 | |||
1238 | boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, | ||
1239 | PAGE_SIZE) >> PAGE_SHIFT; | ||
1240 | |||
1241 | for (;i < max_index; ++i) { | ||
1242 | unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT; | ||
1243 | |||
1244 | if (dom->aperture[i]->offset >= dma_mask) | ||
1245 | break; | ||
1246 | |||
1247 | limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset, | ||
1248 | dma_mask >> PAGE_SHIFT); | ||
1249 | |||
1250 | address = iommu_area_alloc(dom->aperture[i]->bitmap, | ||
1251 | limit, next_bit, pages, 0, | ||
1252 | boundary_size, align_mask); | ||
1253 | if (address != -1) { | ||
1254 | address = dom->aperture[i]->offset + | ||
1255 | (address << PAGE_SHIFT); | ||
1256 | dom->next_address = address + (pages << PAGE_SHIFT); | ||
1257 | break; | ||
1258 | } | ||
1259 | |||
1260 | next_bit = 0; | ||
1261 | } | ||
1262 | |||
1263 | return address; | ||
1264 | } | ||
1265 | |||
1266 | static unsigned long dma_ops_alloc_addresses(struct device *dev, | ||
1267 | struct dma_ops_domain *dom, | ||
1268 | unsigned int pages, | ||
1269 | unsigned long align_mask, | ||
1270 | u64 dma_mask) | ||
1271 | { | ||
1272 | unsigned long address; | ||
1273 | |||
1274 | #ifdef CONFIG_IOMMU_STRESS | ||
1275 | dom->next_address = 0; | ||
1276 | dom->need_flush = true; | ||
1277 | #endif | ||
1278 | |||
1279 | address = dma_ops_area_alloc(dev, dom, pages, align_mask, | ||
1280 | dma_mask, dom->next_address); | ||
1281 | |||
1282 | if (address == -1) { | ||
1283 | dom->next_address = 0; | ||
1284 | address = dma_ops_area_alloc(dev, dom, pages, align_mask, | ||
1285 | dma_mask, 0); | ||
1286 | dom->need_flush = true; | ||
1287 | } | ||
1288 | |||
1289 | if (unlikely(address == -1)) | ||
1290 | address = DMA_ERROR_CODE; | ||
1291 | |||
1292 | WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size); | ||
1293 | |||
1294 | return address; | ||
1295 | } | ||
1296 | |||
1297 | /* | ||
1298 | * The address free function. | ||
1299 | * | ||
1300 | * called with domain->lock held | ||
1301 | */ | ||
1302 | static void dma_ops_free_addresses(struct dma_ops_domain *dom, | ||
1303 | unsigned long address, | ||
1304 | unsigned int pages) | ||
1305 | { | ||
1306 | unsigned i = address >> APERTURE_RANGE_SHIFT; | ||
1307 | struct aperture_range *range = dom->aperture[i]; | ||
1308 | |||
1309 | BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL); | ||
1310 | |||
1311 | #ifdef CONFIG_IOMMU_STRESS | ||
1312 | if (i < 4) | ||
1313 | return; | ||
1314 | #endif | ||
1315 | |||
1316 | if (address >= dom->next_address) | ||
1317 | dom->need_flush = true; | ||
1318 | |||
1319 | address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT; | ||
1320 | |||
1321 | bitmap_clear(range->bitmap, address, pages); | ||
1322 | |||
1323 | } | ||
1324 | |||
1325 | /**************************************************************************** | ||
1326 | * | ||
1327 | * The next functions belong to the domain allocation. A domain is | ||
1328 | * allocated for every IOMMU as the default domain. If device isolation | ||
1329 | * is enabled, every device get its own domain. The most important thing | ||
1330 | * about domains is the page table mapping the DMA address space they | ||
1331 | * contain. | ||
1332 | * | ||
1333 | ****************************************************************************/ | ||
1334 | |||
1335 | /* | ||
1336 | * This function adds a protection domain to the global protection domain list | ||
1337 | */ | ||
1338 | static void add_domain_to_list(struct protection_domain *domain) | ||
1339 | { | ||
1340 | unsigned long flags; | ||
1341 | |||
1342 | spin_lock_irqsave(&amd_iommu_pd_lock, flags); | ||
1343 | list_add(&domain->list, &amd_iommu_pd_list); | ||
1344 | spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); | ||
1345 | } | ||
1346 | |||
1347 | /* | ||
1348 | * This function removes a protection domain to the global | ||
1349 | * protection domain list | ||
1350 | */ | ||
1351 | static void del_domain_from_list(struct protection_domain *domain) | ||
1352 | { | ||
1353 | unsigned long flags; | ||
1354 | |||
1355 | spin_lock_irqsave(&amd_iommu_pd_lock, flags); | ||
1356 | list_del(&domain->list); | ||
1357 | spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); | ||
1358 | } | ||
1359 | |||
1360 | static u16 domain_id_alloc(void) | ||
1361 | { | ||
1362 | unsigned long flags; | ||
1363 | int id; | ||
1364 | |||
1365 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | ||
1366 | id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); | ||
1367 | BUG_ON(id == 0); | ||
1368 | if (id > 0 && id < MAX_DOMAIN_ID) | ||
1369 | __set_bit(id, amd_iommu_pd_alloc_bitmap); | ||
1370 | else | ||
1371 | id = 0; | ||
1372 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | ||
1373 | |||
1374 | return id; | ||
1375 | } | ||
1376 | |||
1377 | static void domain_id_free(int id) | ||
1378 | { | ||
1379 | unsigned long flags; | ||
1380 | |||
1381 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | ||
1382 | if (id > 0 && id < MAX_DOMAIN_ID) | ||
1383 | __clear_bit(id, amd_iommu_pd_alloc_bitmap); | ||
1384 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | ||
1385 | } | ||
1386 | |||
1387 | static void free_pagetable(struct protection_domain *domain) | ||
1388 | { | ||
1389 | int i, j; | ||
1390 | u64 *p1, *p2, *p3; | ||
1391 | |||
1392 | p1 = domain->pt_root; | ||
1393 | |||
1394 | if (!p1) | ||
1395 | return; | ||
1396 | |||
1397 | for (i = 0; i < 512; ++i) { | ||
1398 | if (!IOMMU_PTE_PRESENT(p1[i])) | ||
1399 | continue; | ||
1400 | |||
1401 | p2 = IOMMU_PTE_PAGE(p1[i]); | ||
1402 | for (j = 0; j < 512; ++j) { | ||
1403 | if (!IOMMU_PTE_PRESENT(p2[j])) | ||
1404 | continue; | ||
1405 | p3 = IOMMU_PTE_PAGE(p2[j]); | ||
1406 | free_page((unsigned long)p3); | ||
1407 | } | ||
1408 | |||
1409 | free_page((unsigned long)p2); | ||
1410 | } | ||
1411 | |||
1412 | free_page((unsigned long)p1); | ||
1413 | |||
1414 | domain->pt_root = NULL; | ||
1415 | } | ||
1416 | |||
1417 | /* | ||
1418 | * Free a domain, only used if something went wrong in the | ||
1419 | * allocation path and we need to free an already allocated page table | ||
1420 | */ | ||
1421 | static void dma_ops_domain_free(struct dma_ops_domain *dom) | ||
1422 | { | ||
1423 | int i; | ||
1424 | |||
1425 | if (!dom) | ||
1426 | return; | ||
1427 | |||
1428 | del_domain_from_list(&dom->domain); | ||
1429 | |||
1430 | free_pagetable(&dom->domain); | ||
1431 | |||
1432 | for (i = 0; i < APERTURE_MAX_RANGES; ++i) { | ||
1433 | if (!dom->aperture[i]) | ||
1434 | continue; | ||
1435 | free_page((unsigned long)dom->aperture[i]->bitmap); | ||
1436 | kfree(dom->aperture[i]); | ||
1437 | } | ||
1438 | |||
1439 | kfree(dom); | ||
1440 | } | ||
1441 | |||
1442 | /* | ||
1443 | * Allocates a new protection domain usable for the dma_ops functions. | ||
1444 | * It also initializes the page table and the address allocator data | ||
1445 | * structures required for the dma_ops interface | ||
1446 | */ | ||
1447 | static struct dma_ops_domain *dma_ops_domain_alloc(void) | ||
1448 | { | ||
1449 | struct dma_ops_domain *dma_dom; | ||
1450 | |||
1451 | dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); | ||
1452 | if (!dma_dom) | ||
1453 | return NULL; | ||
1454 | |||
1455 | spin_lock_init(&dma_dom->domain.lock); | ||
1456 | |||
1457 | dma_dom->domain.id = domain_id_alloc(); | ||
1458 | if (dma_dom->domain.id == 0) | ||
1459 | goto free_dma_dom; | ||
1460 | INIT_LIST_HEAD(&dma_dom->domain.dev_list); | ||
1461 | dma_dom->domain.mode = PAGE_MODE_2_LEVEL; | ||
1462 | dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); | ||
1463 | dma_dom->domain.flags = PD_DMA_OPS_MASK; | ||
1464 | dma_dom->domain.priv = dma_dom; | ||
1465 | if (!dma_dom->domain.pt_root) | ||
1466 | goto free_dma_dom; | ||
1467 | |||
1468 | dma_dom->need_flush = false; | ||
1469 | dma_dom->target_dev = 0xffff; | ||
1470 | |||
1471 | add_domain_to_list(&dma_dom->domain); | ||
1472 | |||
1473 | if (alloc_new_range(dma_dom, true, GFP_KERNEL)) | ||
1474 | goto free_dma_dom; | ||
1475 | |||
1476 | /* | ||
1477 | * mark the first page as allocated so we never return 0 as | ||
1478 | * a valid dma-address. So we can use 0 as error value | ||
1479 | */ | ||
1480 | dma_dom->aperture[0]->bitmap[0] = 1; | ||
1481 | dma_dom->next_address = 0; | ||
1482 | |||
1483 | |||
1484 | return dma_dom; | ||
1485 | |||
1486 | free_dma_dom: | ||
1487 | dma_ops_domain_free(dma_dom); | ||
1488 | |||
1489 | return NULL; | ||
1490 | } | ||
1491 | |||
1492 | /* | ||
1493 | * little helper function to check whether a given protection domain is a | ||
1494 | * dma_ops domain | ||
1495 | */ | ||
1496 | static bool dma_ops_domain(struct protection_domain *domain) | ||
1497 | { | ||
1498 | return domain->flags & PD_DMA_OPS_MASK; | ||
1499 | } | ||
1500 | |||
1501 | static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats) | ||
1502 | { | ||
1503 | u64 pte_root = virt_to_phys(domain->pt_root); | ||
1504 | u32 flags = 0; | ||
1505 | |||
1506 | pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) | ||
1507 | << DEV_ENTRY_MODE_SHIFT; | ||
1508 | pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; | ||
1509 | |||
1510 | if (ats) | ||
1511 | flags |= DTE_FLAG_IOTLB; | ||
1512 | |||
1513 | amd_iommu_dev_table[devid].data[3] |= flags; | ||
1514 | amd_iommu_dev_table[devid].data[2] = domain->id; | ||
1515 | amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root); | ||
1516 | amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root); | ||
1517 | } | ||
1518 | |||
1519 | static void clear_dte_entry(u16 devid) | ||
1520 | { | ||
1521 | /* remove entry from the device table seen by the hardware */ | ||
1522 | amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV; | ||
1523 | amd_iommu_dev_table[devid].data[1] = 0; | ||
1524 | amd_iommu_dev_table[devid].data[2] = 0; | ||
1525 | |||
1526 | amd_iommu_apply_erratum_63(devid); | ||
1527 | } | ||
1528 | |||
1529 | static void do_attach(struct device *dev, struct protection_domain *domain) | ||
1530 | { | ||
1531 | struct iommu_dev_data *dev_data; | ||
1532 | struct amd_iommu *iommu; | ||
1533 | struct pci_dev *pdev; | ||
1534 | bool ats = false; | ||
1535 | u16 devid; | ||
1536 | |||
1537 | devid = get_device_id(dev); | ||
1538 | iommu = amd_iommu_rlookup_table[devid]; | ||
1539 | dev_data = get_dev_data(dev); | ||
1540 | pdev = to_pci_dev(dev); | ||
1541 | |||
1542 | if (amd_iommu_iotlb_sup) | ||
1543 | ats = pci_ats_enabled(pdev); | ||
1544 | |||
1545 | /* Update data structures */ | ||
1546 | dev_data->domain = domain; | ||
1547 | list_add(&dev_data->list, &domain->dev_list); | ||
1548 | set_dte_entry(devid, domain, ats); | ||
1549 | |||
1550 | /* Do reference counting */ | ||
1551 | domain->dev_iommu[iommu->index] += 1; | ||
1552 | domain->dev_cnt += 1; | ||
1553 | |||
1554 | /* Flush the DTE entry */ | ||
1555 | device_flush_dte(dev); | ||
1556 | } | ||
1557 | |||
1558 | static void do_detach(struct device *dev) | ||
1559 | { | ||
1560 | struct iommu_dev_data *dev_data; | ||
1561 | struct amd_iommu *iommu; | ||
1562 | u16 devid; | ||
1563 | |||
1564 | devid = get_device_id(dev); | ||
1565 | iommu = amd_iommu_rlookup_table[devid]; | ||
1566 | dev_data = get_dev_data(dev); | ||
1567 | |||
1568 | /* decrease reference counters */ | ||
1569 | dev_data->domain->dev_iommu[iommu->index] -= 1; | ||
1570 | dev_data->domain->dev_cnt -= 1; | ||
1571 | |||
1572 | /* Update data structures */ | ||
1573 | dev_data->domain = NULL; | ||
1574 | list_del(&dev_data->list); | ||
1575 | clear_dte_entry(devid); | ||
1576 | |||
1577 | /* Flush the DTE entry */ | ||
1578 | device_flush_dte(dev); | ||
1579 | } | ||
1580 | |||
1581 | /* | ||
1582 | * If a device is not yet associated with a domain, this function does | ||
1583 | * assigns it visible for the hardware | ||
1584 | */ | ||
1585 | static int __attach_device(struct device *dev, | ||
1586 | struct protection_domain *domain) | ||
1587 | { | ||
1588 | struct iommu_dev_data *dev_data, *alias_data; | ||
1589 | int ret; | ||
1590 | |||
1591 | dev_data = get_dev_data(dev); | ||
1592 | alias_data = get_dev_data(dev_data->alias); | ||
1593 | |||
1594 | if (!alias_data) | ||
1595 | return -EINVAL; | ||
1596 | |||
1597 | /* lock domain */ | ||
1598 | spin_lock(&domain->lock); | ||
1599 | |||
1600 | /* Some sanity checks */ | ||
1601 | ret = -EBUSY; | ||
1602 | if (alias_data->domain != NULL && | ||
1603 | alias_data->domain != domain) | ||
1604 | goto out_unlock; | ||
1605 | |||
1606 | if (dev_data->domain != NULL && | ||
1607 | dev_data->domain != domain) | ||
1608 | goto out_unlock; | ||
1609 | |||
1610 | /* Do real assignment */ | ||
1611 | if (dev_data->alias != dev) { | ||
1612 | alias_data = get_dev_data(dev_data->alias); | ||
1613 | if (alias_data->domain == NULL) | ||
1614 | do_attach(dev_data->alias, domain); | ||
1615 | |||
1616 | atomic_inc(&alias_data->bind); | ||
1617 | } | ||
1618 | |||
1619 | if (dev_data->domain == NULL) | ||
1620 | do_attach(dev, domain); | ||
1621 | |||
1622 | atomic_inc(&dev_data->bind); | ||
1623 | |||
1624 | ret = 0; | ||
1625 | |||
1626 | out_unlock: | ||
1627 | |||
1628 | /* ready */ | ||
1629 | spin_unlock(&domain->lock); | ||
1630 | |||
1631 | return ret; | ||
1632 | } | ||
1633 | |||
1634 | /* | ||
1635 | * If a device is not yet associated with a domain, this function does | ||
1636 | * assigns it visible for the hardware | ||
1637 | */ | ||
1638 | static int attach_device(struct device *dev, | ||
1639 | struct protection_domain *domain) | ||
1640 | { | ||
1641 | struct pci_dev *pdev = to_pci_dev(dev); | ||
1642 | unsigned long flags; | ||
1643 | int ret; | ||
1644 | |||
1645 | if (amd_iommu_iotlb_sup) | ||
1646 | pci_enable_ats(pdev, PAGE_SHIFT); | ||
1647 | |||
1648 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | ||
1649 | ret = __attach_device(dev, domain); | ||
1650 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | ||
1651 | |||
1652 | /* | ||
1653 | * We might boot into a crash-kernel here. The crashed kernel | ||
1654 | * left the caches in the IOMMU dirty. So we have to flush | ||
1655 | * here to evict all dirty stuff. | ||
1656 | */ | ||
1657 | domain_flush_tlb_pde(domain); | ||
1658 | |||
1659 | return ret; | ||
1660 | } | ||
1661 | |||
1662 | /* | ||
1663 | * Removes a device from a protection domain (unlocked) | ||
1664 | */ | ||
1665 | static void __detach_device(struct device *dev) | ||
1666 | { | ||
1667 | struct iommu_dev_data *dev_data = get_dev_data(dev); | ||
1668 | struct iommu_dev_data *alias_data; | ||
1669 | struct protection_domain *domain; | ||
1670 | unsigned long flags; | ||
1671 | |||
1672 | BUG_ON(!dev_data->domain); | ||
1673 | |||
1674 | domain = dev_data->domain; | ||
1675 | |||
1676 | spin_lock_irqsave(&domain->lock, flags); | ||
1677 | |||
1678 | if (dev_data->alias != dev) { | ||
1679 | alias_data = get_dev_data(dev_data->alias); | ||
1680 | if (atomic_dec_and_test(&alias_data->bind)) | ||
1681 | do_detach(dev_data->alias); | ||
1682 | } | ||
1683 | |||
1684 | if (atomic_dec_and_test(&dev_data->bind)) | ||
1685 | do_detach(dev); | ||
1686 | |||
1687 | spin_unlock_irqrestore(&domain->lock, flags); | ||
1688 | |||
1689 | /* | ||
1690 | * If we run in passthrough mode the device must be assigned to the | ||
1691 | * passthrough domain if it is detached from any other domain. | ||
1692 | * Make sure we can deassign from the pt_domain itself. | ||
1693 | */ | ||
1694 | if (iommu_pass_through && | ||
1695 | (dev_data->domain == NULL && domain != pt_domain)) | ||
1696 | __attach_device(dev, pt_domain); | ||
1697 | } | ||
1698 | |||
1699 | /* | ||
1700 | * Removes a device from a protection domain (with devtable_lock held) | ||
1701 | */ | ||
1702 | static void detach_device(struct device *dev) | ||
1703 | { | ||
1704 | struct pci_dev *pdev = to_pci_dev(dev); | ||
1705 | unsigned long flags; | ||
1706 | |||
1707 | /* lock device table */ | ||
1708 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | ||
1709 | __detach_device(dev); | ||
1710 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | ||
1711 | |||
1712 | if (amd_iommu_iotlb_sup && pci_ats_enabled(pdev)) | ||
1713 | pci_disable_ats(pdev); | ||
1714 | } | ||
1715 | |||
1716 | /* | ||
1717 | * Find out the protection domain structure for a given PCI device. This | ||
1718 | * will give us the pointer to the page table root for example. | ||
1719 | */ | ||
1720 | static struct protection_domain *domain_for_device(struct device *dev) | ||
1721 | { | ||
1722 | struct protection_domain *dom; | ||
1723 | struct iommu_dev_data *dev_data, *alias_data; | ||
1724 | unsigned long flags; | ||
1725 | u16 devid; | ||
1726 | |||
1727 | devid = get_device_id(dev); | ||
1728 | dev_data = get_dev_data(dev); | ||
1729 | alias_data = get_dev_data(dev_data->alias); | ||
1730 | if (!alias_data) | ||
1731 | return NULL; | ||
1732 | |||
1733 | read_lock_irqsave(&amd_iommu_devtable_lock, flags); | ||
1734 | dom = dev_data->domain; | ||
1735 | if (dom == NULL && | ||
1736 | alias_data->domain != NULL) { | ||
1737 | __attach_device(dev, alias_data->domain); | ||
1738 | dom = alias_data->domain; | ||
1739 | } | ||
1740 | |||
1741 | read_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | ||
1742 | |||
1743 | return dom; | ||
1744 | } | ||
1745 | |||
1746 | static int device_change_notifier(struct notifier_block *nb, | ||
1747 | unsigned long action, void *data) | ||
1748 | { | ||
1749 | struct device *dev = data; | ||
1750 | u16 devid; | ||
1751 | struct protection_domain *domain; | ||
1752 | struct dma_ops_domain *dma_domain; | ||
1753 | struct amd_iommu *iommu; | ||
1754 | unsigned long flags; | ||
1755 | |||
1756 | if (!check_device(dev)) | ||
1757 | return 0; | ||
1758 | |||
1759 | devid = get_device_id(dev); | ||
1760 | iommu = amd_iommu_rlookup_table[devid]; | ||
1761 | |||
1762 | switch (action) { | ||
1763 | case BUS_NOTIFY_UNBOUND_DRIVER: | ||
1764 | |||
1765 | domain = domain_for_device(dev); | ||
1766 | |||
1767 | if (!domain) | ||
1768 | goto out; | ||
1769 | if (iommu_pass_through) | ||
1770 | break; | ||
1771 | detach_device(dev); | ||
1772 | break; | ||
1773 | case BUS_NOTIFY_ADD_DEVICE: | ||
1774 | |||
1775 | iommu_init_device(dev); | ||
1776 | |||
1777 | domain = domain_for_device(dev); | ||
1778 | |||
1779 | /* allocate a protection domain if a device is added */ | ||
1780 | dma_domain = find_protection_domain(devid); | ||
1781 | if (dma_domain) | ||
1782 | goto out; | ||
1783 | dma_domain = dma_ops_domain_alloc(); | ||
1784 | if (!dma_domain) | ||
1785 | goto out; | ||
1786 | dma_domain->target_dev = devid; | ||
1787 | |||
1788 | spin_lock_irqsave(&iommu_pd_list_lock, flags); | ||
1789 | list_add_tail(&dma_domain->list, &iommu_pd_list); | ||
1790 | spin_unlock_irqrestore(&iommu_pd_list_lock, flags); | ||
1791 | |||
1792 | break; | ||
1793 | case BUS_NOTIFY_DEL_DEVICE: | ||
1794 | |||
1795 | iommu_uninit_device(dev); | ||
1796 | |||
1797 | default: | ||
1798 | goto out; | ||
1799 | } | ||
1800 | |||
1801 | device_flush_dte(dev); | ||
1802 | iommu_completion_wait(iommu); | ||
1803 | |||
1804 | out: | ||
1805 | return 0; | ||
1806 | } | ||
1807 | |||
1808 | static struct notifier_block device_nb = { | ||
1809 | .notifier_call = device_change_notifier, | ||
1810 | }; | ||
1811 | |||
1812 | void amd_iommu_init_notifier(void) | ||
1813 | { | ||
1814 | bus_register_notifier(&pci_bus_type, &device_nb); | ||
1815 | } | ||
1816 | |||
1817 | /***************************************************************************** | ||
1818 | * | ||
1819 | * The next functions belong to the dma_ops mapping/unmapping code. | ||
1820 | * | ||
1821 | *****************************************************************************/ | ||
1822 | |||
1823 | /* | ||
1824 | * In the dma_ops path we only have the struct device. This function | ||
1825 | * finds the corresponding IOMMU, the protection domain and the | ||
1826 | * requestor id for a given device. | ||
1827 | * If the device is not yet associated with a domain this is also done | ||
1828 | * in this function. | ||
1829 | */ | ||
1830 | static struct protection_domain *get_domain(struct device *dev) | ||
1831 | { | ||
1832 | struct protection_domain *domain; | ||
1833 | struct dma_ops_domain *dma_dom; | ||
1834 | u16 devid = get_device_id(dev); | ||
1835 | |||
1836 | if (!check_device(dev)) | ||
1837 | return ERR_PTR(-EINVAL); | ||
1838 | |||
1839 | domain = domain_for_device(dev); | ||
1840 | if (domain != NULL && !dma_ops_domain(domain)) | ||
1841 | return ERR_PTR(-EBUSY); | ||
1842 | |||
1843 | if (domain != NULL) | ||
1844 | return domain; | ||
1845 | |||
1846 | /* Device not bount yet - bind it */ | ||
1847 | dma_dom = find_protection_domain(devid); | ||
1848 | if (!dma_dom) | ||
1849 | dma_dom = amd_iommu_rlookup_table[devid]->default_dom; | ||
1850 | attach_device(dev, &dma_dom->domain); | ||
1851 | DUMP_printk("Using protection domain %d for device %s\n", | ||
1852 | dma_dom->domain.id, dev_name(dev)); | ||
1853 | |||
1854 | return &dma_dom->domain; | ||
1855 | } | ||
1856 | |||
1857 | static void update_device_table(struct protection_domain *domain) | ||
1858 | { | ||
1859 | struct iommu_dev_data *dev_data; | ||
1860 | |||
1861 | list_for_each_entry(dev_data, &domain->dev_list, list) { | ||
1862 | struct pci_dev *pdev = to_pci_dev(dev_data->dev); | ||
1863 | u16 devid = get_device_id(dev_data->dev); | ||
1864 | set_dte_entry(devid, domain, pci_ats_enabled(pdev)); | ||
1865 | } | ||
1866 | } | ||
1867 | |||
1868 | static void update_domain(struct protection_domain *domain) | ||
1869 | { | ||
1870 | if (!domain->updated) | ||
1871 | return; | ||
1872 | |||
1873 | update_device_table(domain); | ||
1874 | |||
1875 | domain_flush_devices(domain); | ||
1876 | domain_flush_tlb_pde(domain); | ||
1877 | |||
1878 | domain->updated = false; | ||
1879 | } | ||
1880 | |||
1881 | /* | ||
1882 | * This function fetches the PTE for a given address in the aperture | ||
1883 | */ | ||
1884 | static u64* dma_ops_get_pte(struct dma_ops_domain *dom, | ||
1885 | unsigned long address) | ||
1886 | { | ||
1887 | struct aperture_range *aperture; | ||
1888 | u64 *pte, *pte_page; | ||
1889 | |||
1890 | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; | ||
1891 | if (!aperture) | ||
1892 | return NULL; | ||
1893 | |||
1894 | pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; | ||
1895 | if (!pte) { | ||
1896 | pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page, | ||
1897 | GFP_ATOMIC); | ||
1898 | aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page; | ||
1899 | } else | ||
1900 | pte += PM_LEVEL_INDEX(0, address); | ||
1901 | |||
1902 | update_domain(&dom->domain); | ||
1903 | |||
1904 | return pte; | ||
1905 | } | ||
1906 | |||
1907 | /* | ||
1908 | * This is the generic map function. It maps one 4kb page at paddr to | ||
1909 | * the given address in the DMA address space for the domain. | ||
1910 | */ | ||
1911 | static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom, | ||
1912 | unsigned long address, | ||
1913 | phys_addr_t paddr, | ||
1914 | int direction) | ||
1915 | { | ||
1916 | u64 *pte, __pte; | ||
1917 | |||
1918 | WARN_ON(address > dom->aperture_size); | ||
1919 | |||
1920 | paddr &= PAGE_MASK; | ||
1921 | |||
1922 | pte = dma_ops_get_pte(dom, address); | ||
1923 | if (!pte) | ||
1924 | return DMA_ERROR_CODE; | ||
1925 | |||
1926 | __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; | ||
1927 | |||
1928 | if (direction == DMA_TO_DEVICE) | ||
1929 | __pte |= IOMMU_PTE_IR; | ||
1930 | else if (direction == DMA_FROM_DEVICE) | ||
1931 | __pte |= IOMMU_PTE_IW; | ||
1932 | else if (direction == DMA_BIDIRECTIONAL) | ||
1933 | __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW; | ||
1934 | |||
1935 | WARN_ON(*pte); | ||
1936 | |||
1937 | *pte = __pte; | ||
1938 | |||
1939 | return (dma_addr_t)address; | ||
1940 | } | ||
1941 | |||
1942 | /* | ||
1943 | * The generic unmapping function for on page in the DMA address space. | ||
1944 | */ | ||
1945 | static void dma_ops_domain_unmap(struct dma_ops_domain *dom, | ||
1946 | unsigned long address) | ||
1947 | { | ||
1948 | struct aperture_range *aperture; | ||
1949 | u64 *pte; | ||
1950 | |||
1951 | if (address >= dom->aperture_size) | ||
1952 | return; | ||
1953 | |||
1954 | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; | ||
1955 | if (!aperture) | ||
1956 | return; | ||
1957 | |||
1958 | pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; | ||
1959 | if (!pte) | ||
1960 | return; | ||
1961 | |||
1962 | pte += PM_LEVEL_INDEX(0, address); | ||
1963 | |||
1964 | WARN_ON(!*pte); | ||
1965 | |||
1966 | *pte = 0ULL; | ||
1967 | } | ||
1968 | |||
1969 | /* | ||
1970 | * This function contains common code for mapping of a physically | ||
1971 | * contiguous memory region into DMA address space. It is used by all | ||
1972 | * mapping functions provided with this IOMMU driver. | ||
1973 | * Must be called with the domain lock held. | ||
1974 | */ | ||
1975 | static dma_addr_t __map_single(struct device *dev, | ||
1976 | struct dma_ops_domain *dma_dom, | ||
1977 | phys_addr_t paddr, | ||
1978 | size_t size, | ||
1979 | int dir, | ||
1980 | bool align, | ||
1981 | u64 dma_mask) | ||
1982 | { | ||
1983 | dma_addr_t offset = paddr & ~PAGE_MASK; | ||
1984 | dma_addr_t address, start, ret; | ||
1985 | unsigned int pages; | ||
1986 | unsigned long align_mask = 0; | ||
1987 | int i; | ||
1988 | |||
1989 | pages = iommu_num_pages(paddr, size, PAGE_SIZE); | ||
1990 | paddr &= PAGE_MASK; | ||
1991 | |||
1992 | INC_STATS_COUNTER(total_map_requests); | ||
1993 | |||
1994 | if (pages > 1) | ||
1995 | INC_STATS_COUNTER(cross_page); | ||
1996 | |||
1997 | if (align) | ||
1998 | align_mask = (1UL << get_order(size)) - 1; | ||
1999 | |||
2000 | retry: | ||
2001 | address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask, | ||
2002 | dma_mask); | ||
2003 | if (unlikely(address == DMA_ERROR_CODE)) { | ||
2004 | /* | ||
2005 | * setting next_address here will let the address | ||
2006 | * allocator only scan the new allocated range in the | ||
2007 | * first run. This is a small optimization. | ||
2008 | */ | ||
2009 | dma_dom->next_address = dma_dom->aperture_size; | ||
2010 | |||
2011 | if (alloc_new_range(dma_dom, false, GFP_ATOMIC)) | ||
2012 | goto out; | ||
2013 | |||
2014 | /* | ||
2015 | * aperture was successfully enlarged by 128 MB, try | ||
2016 | * allocation again | ||
2017 | */ | ||
2018 | goto retry; | ||
2019 | } | ||
2020 | |||
2021 | start = address; | ||
2022 | for (i = 0; i < pages; ++i) { | ||
2023 | ret = dma_ops_domain_map(dma_dom, start, paddr, dir); | ||
2024 | if (ret == DMA_ERROR_CODE) | ||
2025 | goto out_unmap; | ||
2026 | |||
2027 | paddr += PAGE_SIZE; | ||
2028 | start += PAGE_SIZE; | ||
2029 | } | ||
2030 | address += offset; | ||
2031 | |||
2032 | ADD_STATS_COUNTER(alloced_io_mem, size); | ||
2033 | |||
2034 | if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) { | ||
2035 | domain_flush_tlb(&dma_dom->domain); | ||
2036 | dma_dom->need_flush = false; | ||
2037 | } else if (unlikely(amd_iommu_np_cache)) | ||
2038 | domain_flush_pages(&dma_dom->domain, address, size); | ||
2039 | |||
2040 | out: | ||
2041 | return address; | ||
2042 | |||
2043 | out_unmap: | ||
2044 | |||
2045 | for (--i; i >= 0; --i) { | ||
2046 | start -= PAGE_SIZE; | ||
2047 | dma_ops_domain_unmap(dma_dom, start); | ||
2048 | } | ||
2049 | |||
2050 | dma_ops_free_addresses(dma_dom, address, pages); | ||
2051 | |||
2052 | return DMA_ERROR_CODE; | ||
2053 | } | ||
2054 | |||
2055 | /* | ||
2056 | * Does the reverse of the __map_single function. Must be called with | ||
2057 | * the domain lock held too | ||
2058 | */ | ||
2059 | static void __unmap_single(struct dma_ops_domain *dma_dom, | ||
2060 | dma_addr_t dma_addr, | ||
2061 | size_t size, | ||
2062 | int dir) | ||
2063 | { | ||
2064 | dma_addr_t flush_addr; | ||
2065 | dma_addr_t i, start; | ||
2066 | unsigned int pages; | ||
2067 | |||
2068 | if ((dma_addr == DMA_ERROR_CODE) || | ||
2069 | (dma_addr + size > dma_dom->aperture_size)) | ||
2070 | return; | ||
2071 | |||
2072 | flush_addr = dma_addr; | ||
2073 | pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); | ||
2074 | dma_addr &= PAGE_MASK; | ||
2075 | start = dma_addr; | ||
2076 | |||
2077 | for (i = 0; i < pages; ++i) { | ||
2078 | dma_ops_domain_unmap(dma_dom, start); | ||
2079 | start += PAGE_SIZE; | ||
2080 | } | ||
2081 | |||
2082 | SUB_STATS_COUNTER(alloced_io_mem, size); | ||
2083 | |||
2084 | dma_ops_free_addresses(dma_dom, dma_addr, pages); | ||
2085 | |||
2086 | if (amd_iommu_unmap_flush || dma_dom->need_flush) { | ||
2087 | domain_flush_pages(&dma_dom->domain, flush_addr, size); | ||
2088 | dma_dom->need_flush = false; | ||
2089 | } | ||
2090 | } | ||
2091 | |||
2092 | /* | ||
2093 | * The exported map_single function for dma_ops. | ||
2094 | */ | ||
2095 | static dma_addr_t map_page(struct device *dev, struct page *page, | ||
2096 | unsigned long offset, size_t size, | ||
2097 | enum dma_data_direction dir, | ||
2098 | struct dma_attrs *attrs) | ||
2099 | { | ||
2100 | unsigned long flags; | ||
2101 | struct protection_domain *domain; | ||
2102 | dma_addr_t addr; | ||
2103 | u64 dma_mask; | ||
2104 | phys_addr_t paddr = page_to_phys(page) + offset; | ||
2105 | |||
2106 | INC_STATS_COUNTER(cnt_map_single); | ||
2107 | |||
2108 | domain = get_domain(dev); | ||
2109 | if (PTR_ERR(domain) == -EINVAL) | ||
2110 | return (dma_addr_t)paddr; | ||
2111 | else if (IS_ERR(domain)) | ||
2112 | return DMA_ERROR_CODE; | ||
2113 | |||
2114 | dma_mask = *dev->dma_mask; | ||
2115 | |||
2116 | spin_lock_irqsave(&domain->lock, flags); | ||
2117 | |||
2118 | addr = __map_single(dev, domain->priv, paddr, size, dir, false, | ||
2119 | dma_mask); | ||
2120 | if (addr == DMA_ERROR_CODE) | ||
2121 | goto out; | ||
2122 | |||
2123 | domain_flush_complete(domain); | ||
2124 | |||
2125 | out: | ||
2126 | spin_unlock_irqrestore(&domain->lock, flags); | ||
2127 | |||
2128 | return addr; | ||
2129 | } | ||
2130 | |||
2131 | /* | ||
2132 | * The exported unmap_single function for dma_ops. | ||
2133 | */ | ||
2134 | static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, | ||
2135 | enum dma_data_direction dir, struct dma_attrs *attrs) | ||
2136 | { | ||
2137 | unsigned long flags; | ||
2138 | struct protection_domain *domain; | ||
2139 | |||
2140 | INC_STATS_COUNTER(cnt_unmap_single); | ||
2141 | |||
2142 | domain = get_domain(dev); | ||
2143 | if (IS_ERR(domain)) | ||
2144 | return; | ||
2145 | |||
2146 | spin_lock_irqsave(&domain->lock, flags); | ||
2147 | |||
2148 | __unmap_single(domain->priv, dma_addr, size, dir); | ||
2149 | |||
2150 | domain_flush_complete(domain); | ||
2151 | |||
2152 | spin_unlock_irqrestore(&domain->lock, flags); | ||
2153 | } | ||
2154 | |||
2155 | /* | ||
2156 | * This is a special map_sg function which is used if we should map a | ||
2157 | * device which is not handled by an AMD IOMMU in the system. | ||
2158 | */ | ||
2159 | static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist, | ||
2160 | int nelems, int dir) | ||
2161 | { | ||
2162 | struct scatterlist *s; | ||
2163 | int i; | ||
2164 | |||
2165 | for_each_sg(sglist, s, nelems, i) { | ||
2166 | s->dma_address = (dma_addr_t)sg_phys(s); | ||
2167 | s->dma_length = s->length; | ||
2168 | } | ||
2169 | |||
2170 | return nelems; | ||
2171 | } | ||
2172 | |||
2173 | /* | ||
2174 | * The exported map_sg function for dma_ops (handles scatter-gather | ||
2175 | * lists). | ||
2176 | */ | ||
2177 | static int map_sg(struct device *dev, struct scatterlist *sglist, | ||
2178 | int nelems, enum dma_data_direction dir, | ||
2179 | struct dma_attrs *attrs) | ||
2180 | { | ||
2181 | unsigned long flags; | ||
2182 | struct protection_domain *domain; | ||
2183 | int i; | ||
2184 | struct scatterlist *s; | ||
2185 | phys_addr_t paddr; | ||
2186 | int mapped_elems = 0; | ||
2187 | u64 dma_mask; | ||
2188 | |||
2189 | INC_STATS_COUNTER(cnt_map_sg); | ||
2190 | |||
2191 | domain = get_domain(dev); | ||
2192 | if (PTR_ERR(domain) == -EINVAL) | ||
2193 | return map_sg_no_iommu(dev, sglist, nelems, dir); | ||
2194 | else if (IS_ERR(domain)) | ||
2195 | return 0; | ||
2196 | |||
2197 | dma_mask = *dev->dma_mask; | ||
2198 | |||
2199 | spin_lock_irqsave(&domain->lock, flags); | ||
2200 | |||
2201 | for_each_sg(sglist, s, nelems, i) { | ||
2202 | paddr = sg_phys(s); | ||
2203 | |||
2204 | s->dma_address = __map_single(dev, domain->priv, | ||
2205 | paddr, s->length, dir, false, | ||
2206 | dma_mask); | ||
2207 | |||
2208 | if (s->dma_address) { | ||
2209 | s->dma_length = s->length; | ||
2210 | mapped_elems++; | ||
2211 | } else | ||
2212 | goto unmap; | ||
2213 | } | ||
2214 | |||
2215 | domain_flush_complete(domain); | ||
2216 | |||
2217 | out: | ||
2218 | spin_unlock_irqrestore(&domain->lock, flags); | ||
2219 | |||
2220 | return mapped_elems; | ||
2221 | unmap: | ||
2222 | for_each_sg(sglist, s, mapped_elems, i) { | ||
2223 | if (s->dma_address) | ||
2224 | __unmap_single(domain->priv, s->dma_address, | ||
2225 | s->dma_length, dir); | ||
2226 | s->dma_address = s->dma_length = 0; | ||
2227 | } | ||
2228 | |||
2229 | mapped_elems = 0; | ||
2230 | |||
2231 | goto out; | ||
2232 | } | ||
2233 | |||
2234 | /* | ||
2235 | * The exported map_sg function for dma_ops (handles scatter-gather | ||
2236 | * lists). | ||
2237 | */ | ||
2238 | static void unmap_sg(struct device *dev, struct scatterlist *sglist, | ||
2239 | int nelems, enum dma_data_direction dir, | ||
2240 | struct dma_attrs *attrs) | ||
2241 | { | ||
2242 | unsigned long flags; | ||
2243 | struct protection_domain *domain; | ||
2244 | struct scatterlist *s; | ||
2245 | int i; | ||
2246 | |||
2247 | INC_STATS_COUNTER(cnt_unmap_sg); | ||
2248 | |||
2249 | domain = get_domain(dev); | ||
2250 | if (IS_ERR(domain)) | ||
2251 | return; | ||
2252 | |||
2253 | spin_lock_irqsave(&domain->lock, flags); | ||
2254 | |||
2255 | for_each_sg(sglist, s, nelems, i) { | ||
2256 | __unmap_single(domain->priv, s->dma_address, | ||
2257 | s->dma_length, dir); | ||
2258 | s->dma_address = s->dma_length = 0; | ||
2259 | } | ||
2260 | |||
2261 | domain_flush_complete(domain); | ||
2262 | |||
2263 | spin_unlock_irqrestore(&domain->lock, flags); | ||
2264 | } | ||
2265 | |||
2266 | /* | ||
2267 | * The exported alloc_coherent function for dma_ops. | ||
2268 | */ | ||
2269 | static void *alloc_coherent(struct device *dev, size_t size, | ||
2270 | dma_addr_t *dma_addr, gfp_t flag) | ||
2271 | { | ||
2272 | unsigned long flags; | ||
2273 | void *virt_addr; | ||
2274 | struct protection_domain *domain; | ||
2275 | phys_addr_t paddr; | ||
2276 | u64 dma_mask = dev->coherent_dma_mask; | ||
2277 | |||
2278 | INC_STATS_COUNTER(cnt_alloc_coherent); | ||
2279 | |||
2280 | domain = get_domain(dev); | ||
2281 | if (PTR_ERR(domain) == -EINVAL) { | ||
2282 | virt_addr = (void *)__get_free_pages(flag, get_order(size)); | ||
2283 | *dma_addr = __pa(virt_addr); | ||
2284 | return virt_addr; | ||
2285 | } else if (IS_ERR(domain)) | ||
2286 | return NULL; | ||
2287 | |||
2288 | dma_mask = dev->coherent_dma_mask; | ||
2289 | flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); | ||
2290 | flag |= __GFP_ZERO; | ||
2291 | |||
2292 | virt_addr = (void *)__get_free_pages(flag, get_order(size)); | ||
2293 | if (!virt_addr) | ||
2294 | return NULL; | ||
2295 | |||
2296 | paddr = virt_to_phys(virt_addr); | ||
2297 | |||
2298 | if (!dma_mask) | ||
2299 | dma_mask = *dev->dma_mask; | ||
2300 | |||
2301 | spin_lock_irqsave(&domain->lock, flags); | ||
2302 | |||
2303 | *dma_addr = __map_single(dev, domain->priv, paddr, | ||
2304 | size, DMA_BIDIRECTIONAL, true, dma_mask); | ||
2305 | |||
2306 | if (*dma_addr == DMA_ERROR_CODE) { | ||
2307 | spin_unlock_irqrestore(&domain->lock, flags); | ||
2308 | goto out_free; | ||
2309 | } | ||
2310 | |||
2311 | domain_flush_complete(domain); | ||
2312 | |||
2313 | spin_unlock_irqrestore(&domain->lock, flags); | ||
2314 | |||
2315 | return virt_addr; | ||
2316 | |||
2317 | out_free: | ||
2318 | |||
2319 | free_pages((unsigned long)virt_addr, get_order(size)); | ||
2320 | |||
2321 | return NULL; | ||
2322 | } | ||
2323 | |||
2324 | /* | ||
2325 | * The exported free_coherent function for dma_ops. | ||
2326 | */ | ||
2327 | static void free_coherent(struct device *dev, size_t size, | ||
2328 | void *virt_addr, dma_addr_t dma_addr) | ||
2329 | { | ||
2330 | unsigned long flags; | ||
2331 | struct protection_domain *domain; | ||
2332 | |||
2333 | INC_STATS_COUNTER(cnt_free_coherent); | ||
2334 | |||
2335 | domain = get_domain(dev); | ||
2336 | if (IS_ERR(domain)) | ||
2337 | goto free_mem; | ||
2338 | |||
2339 | spin_lock_irqsave(&domain->lock, flags); | ||
2340 | |||
2341 | __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL); | ||
2342 | |||
2343 | domain_flush_complete(domain); | ||
2344 | |||
2345 | spin_unlock_irqrestore(&domain->lock, flags); | ||
2346 | |||
2347 | free_mem: | ||
2348 | free_pages((unsigned long)virt_addr, get_order(size)); | ||
2349 | } | ||
2350 | |||
2351 | /* | ||
2352 | * This function is called by the DMA layer to find out if we can handle a | ||
2353 | * particular device. It is part of the dma_ops. | ||
2354 | */ | ||
2355 | static int amd_iommu_dma_supported(struct device *dev, u64 mask) | ||
2356 | { | ||
2357 | return check_device(dev); | ||
2358 | } | ||
2359 | |||
2360 | /* | ||
2361 | * The function for pre-allocating protection domains. | ||
2362 | * | ||
2363 | * If the driver core informs the DMA layer if a driver grabs a device | ||
2364 | * we don't need to preallocate the protection domains anymore. | ||
2365 | * For now we have to. | ||
2366 | */ | ||
2367 | static void prealloc_protection_domains(void) | ||
2368 | { | ||
2369 | struct pci_dev *dev = NULL; | ||
2370 | struct dma_ops_domain *dma_dom; | ||
2371 | u16 devid; | ||
2372 | |||
2373 | for_each_pci_dev(dev) { | ||
2374 | |||
2375 | /* Do we handle this device? */ | ||
2376 | if (!check_device(&dev->dev)) | ||
2377 | continue; | ||
2378 | |||
2379 | /* Is there already any domain for it? */ | ||
2380 | if (domain_for_device(&dev->dev)) | ||
2381 | continue; | ||
2382 | |||
2383 | devid = get_device_id(&dev->dev); | ||
2384 | |||
2385 | dma_dom = dma_ops_domain_alloc(); | ||
2386 | if (!dma_dom) | ||
2387 | continue; | ||
2388 | init_unity_mappings_for_device(dma_dom, devid); | ||
2389 | dma_dom->target_dev = devid; | ||
2390 | |||
2391 | attach_device(&dev->dev, &dma_dom->domain); | ||
2392 | |||
2393 | list_add_tail(&dma_dom->list, &iommu_pd_list); | ||
2394 | } | ||
2395 | } | ||
2396 | |||
2397 | static struct dma_map_ops amd_iommu_dma_ops = { | ||
2398 | .alloc_coherent = alloc_coherent, | ||
2399 | .free_coherent = free_coherent, | ||
2400 | .map_page = map_page, | ||
2401 | .unmap_page = unmap_page, | ||
2402 | .map_sg = map_sg, | ||
2403 | .unmap_sg = unmap_sg, | ||
2404 | .dma_supported = amd_iommu_dma_supported, | ||
2405 | }; | ||
2406 | |||
2407 | static unsigned device_dma_ops_init(void) | ||
2408 | { | ||
2409 | struct pci_dev *pdev = NULL; | ||
2410 | unsigned unhandled = 0; | ||
2411 | |||
2412 | for_each_pci_dev(pdev) { | ||
2413 | if (!check_device(&pdev->dev)) { | ||
2414 | unhandled += 1; | ||
2415 | continue; | ||
2416 | } | ||
2417 | |||
2418 | pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops; | ||
2419 | } | ||
2420 | |||
2421 | return unhandled; | ||
2422 | } | ||
2423 | |||
2424 | /* | ||
2425 | * The function which clues the AMD IOMMU driver into dma_ops. | ||
2426 | */ | ||
2427 | |||
2428 | void __init amd_iommu_init_api(void) | ||
2429 | { | ||
2430 | register_iommu(&amd_iommu_ops); | ||
2431 | } | ||
2432 | |||
2433 | int __init amd_iommu_init_dma_ops(void) | ||
2434 | { | ||
2435 | struct amd_iommu *iommu; | ||
2436 | int ret, unhandled; | ||
2437 | |||
2438 | /* | ||
2439 | * first allocate a default protection domain for every IOMMU we | ||
2440 | * found in the system. Devices not assigned to any other | ||
2441 | * protection domain will be assigned to the default one. | ||
2442 | */ | ||
2443 | for_each_iommu(iommu) { | ||
2444 | iommu->default_dom = dma_ops_domain_alloc(); | ||
2445 | if (iommu->default_dom == NULL) | ||
2446 | return -ENOMEM; | ||
2447 | iommu->default_dom->domain.flags |= PD_DEFAULT_MASK; | ||
2448 | ret = iommu_init_unity_mappings(iommu); | ||
2449 | if (ret) | ||
2450 | goto free_domains; | ||
2451 | } | ||
2452 | |||
2453 | /* | ||
2454 | * Pre-allocate the protection domains for each device. | ||
2455 | */ | ||
2456 | prealloc_protection_domains(); | ||
2457 | |||
2458 | iommu_detected = 1; | ||
2459 | swiotlb = 0; | ||
2460 | |||
2461 | /* Make the driver finally visible to the drivers */ | ||
2462 | unhandled = device_dma_ops_init(); | ||
2463 | if (unhandled && max_pfn > MAX_DMA32_PFN) { | ||
2464 | /* There are unhandled devices - initialize swiotlb for them */ | ||
2465 | swiotlb = 1; | ||
2466 | } | ||
2467 | |||
2468 | amd_iommu_stats_init(); | ||
2469 | |||
2470 | return 0; | ||
2471 | |||
2472 | free_domains: | ||
2473 | |||
2474 | for_each_iommu(iommu) { | ||
2475 | if (iommu->default_dom) | ||
2476 | dma_ops_domain_free(iommu->default_dom); | ||
2477 | } | ||
2478 | |||
2479 | return ret; | ||
2480 | } | ||
2481 | |||
2482 | /***************************************************************************** | ||
2483 | * | ||
2484 | * The following functions belong to the exported interface of AMD IOMMU | ||
2485 | * | ||
2486 | * This interface allows access to lower level functions of the IOMMU | ||
2487 | * like protection domain handling and assignement of devices to domains | ||
2488 | * which is not possible with the dma_ops interface. | ||
2489 | * | ||
2490 | *****************************************************************************/ | ||
2491 | |||
2492 | static void cleanup_domain(struct protection_domain *domain) | ||
2493 | { | ||
2494 | struct iommu_dev_data *dev_data, *next; | ||
2495 | unsigned long flags; | ||
2496 | |||
2497 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | ||
2498 | |||
2499 | list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) { | ||
2500 | struct device *dev = dev_data->dev; | ||
2501 | |||
2502 | __detach_device(dev); | ||
2503 | atomic_set(&dev_data->bind, 0); | ||
2504 | } | ||
2505 | |||
2506 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | ||
2507 | } | ||
2508 | |||
2509 | static void protection_domain_free(struct protection_domain *domain) | ||
2510 | { | ||
2511 | if (!domain) | ||
2512 | return; | ||
2513 | |||
2514 | del_domain_from_list(domain); | ||
2515 | |||
2516 | if (domain->id) | ||
2517 | domain_id_free(domain->id); | ||
2518 | |||
2519 | kfree(domain); | ||
2520 | } | ||
2521 | |||
2522 | static struct protection_domain *protection_domain_alloc(void) | ||
2523 | { | ||
2524 | struct protection_domain *domain; | ||
2525 | |||
2526 | domain = kzalloc(sizeof(*domain), GFP_KERNEL); | ||
2527 | if (!domain) | ||
2528 | return NULL; | ||
2529 | |||
2530 | spin_lock_init(&domain->lock); | ||
2531 | mutex_init(&domain->api_lock); | ||
2532 | domain->id = domain_id_alloc(); | ||
2533 | if (!domain->id) | ||
2534 | goto out_err; | ||
2535 | INIT_LIST_HEAD(&domain->dev_list); | ||
2536 | |||
2537 | add_domain_to_list(domain); | ||
2538 | |||
2539 | return domain; | ||
2540 | |||
2541 | out_err: | ||
2542 | kfree(domain); | ||
2543 | |||
2544 | return NULL; | ||
2545 | } | ||
2546 | |||
2547 | static int amd_iommu_domain_init(struct iommu_domain *dom) | ||
2548 | { | ||
2549 | struct protection_domain *domain; | ||
2550 | |||
2551 | domain = protection_domain_alloc(); | ||
2552 | if (!domain) | ||
2553 | goto out_free; | ||
2554 | |||
2555 | domain->mode = PAGE_MODE_3_LEVEL; | ||
2556 | domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL); | ||
2557 | if (!domain->pt_root) | ||
2558 | goto out_free; | ||
2559 | |||
2560 | dom->priv = domain; | ||
2561 | |||
2562 | return 0; | ||
2563 | |||
2564 | out_free: | ||
2565 | protection_domain_free(domain); | ||
2566 | |||
2567 | return -ENOMEM; | ||
2568 | } | ||
2569 | |||
2570 | static void amd_iommu_domain_destroy(struct iommu_domain *dom) | ||
2571 | { | ||
2572 | struct protection_domain *domain = dom->priv; | ||
2573 | |||
2574 | if (!domain) | ||
2575 | return; | ||
2576 | |||
2577 | if (domain->dev_cnt > 0) | ||
2578 | cleanup_domain(domain); | ||
2579 | |||
2580 | BUG_ON(domain->dev_cnt != 0); | ||
2581 | |||
2582 | free_pagetable(domain); | ||
2583 | |||
2584 | protection_domain_free(domain); | ||
2585 | |||
2586 | dom->priv = NULL; | ||
2587 | } | ||
2588 | |||
2589 | static void amd_iommu_detach_device(struct iommu_domain *dom, | ||
2590 | struct device *dev) | ||
2591 | { | ||
2592 | struct iommu_dev_data *dev_data = dev->archdata.iommu; | ||
2593 | struct amd_iommu *iommu; | ||
2594 | u16 devid; | ||
2595 | |||
2596 | if (!check_device(dev)) | ||
2597 | return; | ||
2598 | |||
2599 | devid = get_device_id(dev); | ||
2600 | |||
2601 | if (dev_data->domain != NULL) | ||
2602 | detach_device(dev); | ||
2603 | |||
2604 | iommu = amd_iommu_rlookup_table[devid]; | ||
2605 | if (!iommu) | ||
2606 | return; | ||
2607 | |||
2608 | device_flush_dte(dev); | ||
2609 | iommu_completion_wait(iommu); | ||
2610 | } | ||
2611 | |||
2612 | static int amd_iommu_attach_device(struct iommu_domain *dom, | ||
2613 | struct device *dev) | ||
2614 | { | ||
2615 | struct protection_domain *domain = dom->priv; | ||
2616 | struct iommu_dev_data *dev_data; | ||
2617 | struct amd_iommu *iommu; | ||
2618 | int ret; | ||
2619 | u16 devid; | ||
2620 | |||
2621 | if (!check_device(dev)) | ||
2622 | return -EINVAL; | ||
2623 | |||
2624 | dev_data = dev->archdata.iommu; | ||
2625 | |||
2626 | devid = get_device_id(dev); | ||
2627 | |||
2628 | iommu = amd_iommu_rlookup_table[devid]; | ||
2629 | if (!iommu) | ||
2630 | return -EINVAL; | ||
2631 | |||
2632 | if (dev_data->domain) | ||
2633 | detach_device(dev); | ||
2634 | |||
2635 | ret = attach_device(dev, domain); | ||
2636 | |||
2637 | iommu_completion_wait(iommu); | ||
2638 | |||
2639 | return ret; | ||
2640 | } | ||
2641 | |||
2642 | static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, | ||
2643 | phys_addr_t paddr, int gfp_order, int iommu_prot) | ||
2644 | { | ||
2645 | unsigned long page_size = 0x1000UL << gfp_order; | ||
2646 | struct protection_domain *domain = dom->priv; | ||
2647 | int prot = 0; | ||
2648 | int ret; | ||
2649 | |||
2650 | if (iommu_prot & IOMMU_READ) | ||
2651 | prot |= IOMMU_PROT_IR; | ||
2652 | if (iommu_prot & IOMMU_WRITE) | ||
2653 | prot |= IOMMU_PROT_IW; | ||
2654 | |||
2655 | mutex_lock(&domain->api_lock); | ||
2656 | ret = iommu_map_page(domain, iova, paddr, prot, page_size); | ||
2657 | mutex_unlock(&domain->api_lock); | ||
2658 | |||
2659 | return ret; | ||
2660 | } | ||
2661 | |||
2662 | static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, | ||
2663 | int gfp_order) | ||
2664 | { | ||
2665 | struct protection_domain *domain = dom->priv; | ||
2666 | unsigned long page_size, unmap_size; | ||
2667 | |||
2668 | page_size = 0x1000UL << gfp_order; | ||
2669 | |||
2670 | mutex_lock(&domain->api_lock); | ||
2671 | unmap_size = iommu_unmap_page(domain, iova, page_size); | ||
2672 | mutex_unlock(&domain->api_lock); | ||
2673 | |||
2674 | domain_flush_tlb_pde(domain); | ||
2675 | |||
2676 | return get_order(unmap_size); | ||
2677 | } | ||
2678 | |||
2679 | static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, | ||
2680 | unsigned long iova) | ||
2681 | { | ||
2682 | struct protection_domain *domain = dom->priv; | ||
2683 | unsigned long offset_mask; | ||
2684 | phys_addr_t paddr; | ||
2685 | u64 *pte, __pte; | ||
2686 | |||
2687 | pte = fetch_pte(domain, iova); | ||
2688 | |||
2689 | if (!pte || !IOMMU_PTE_PRESENT(*pte)) | ||
2690 | return 0; | ||
2691 | |||
2692 | if (PM_PTE_LEVEL(*pte) == 0) | ||
2693 | offset_mask = PAGE_SIZE - 1; | ||
2694 | else | ||
2695 | offset_mask = PTE_PAGE_SIZE(*pte) - 1; | ||
2696 | |||
2697 | __pte = *pte & PM_ADDR_MASK; | ||
2698 | paddr = (__pte & ~offset_mask) | (iova & offset_mask); | ||
2699 | |||
2700 | return paddr; | ||
2701 | } | ||
2702 | |||
2703 | static int amd_iommu_domain_has_cap(struct iommu_domain *domain, | ||
2704 | unsigned long cap) | ||
2705 | { | ||
2706 | switch (cap) { | ||
2707 | case IOMMU_CAP_CACHE_COHERENCY: | ||
2708 | return 1; | ||
2709 | } | ||
2710 | |||
2711 | return 0; | ||
2712 | } | ||
2713 | |||
2714 | static struct iommu_ops amd_iommu_ops = { | ||
2715 | .domain_init = amd_iommu_domain_init, | ||
2716 | .domain_destroy = amd_iommu_domain_destroy, | ||
2717 | .attach_dev = amd_iommu_attach_device, | ||
2718 | .detach_dev = amd_iommu_detach_device, | ||
2719 | .map = amd_iommu_map, | ||
2720 | .unmap = amd_iommu_unmap, | ||
2721 | .iova_to_phys = amd_iommu_iova_to_phys, | ||
2722 | .domain_has_cap = amd_iommu_domain_has_cap, | ||
2723 | }; | ||
2724 | |||
2725 | /***************************************************************************** | ||
2726 | * | ||
2727 | * The next functions do a basic initialization of IOMMU for pass through | ||
2728 | * mode | ||
2729 | * | ||
2730 | * In passthrough mode the IOMMU is initialized and enabled but not used for | ||
2731 | * DMA-API translation. | ||
2732 | * | ||
2733 | *****************************************************************************/ | ||
2734 | |||
2735 | int __init amd_iommu_init_passthrough(void) | ||
2736 | { | ||
2737 | struct amd_iommu *iommu; | ||
2738 | struct pci_dev *dev = NULL; | ||
2739 | u16 devid; | ||
2740 | |||
2741 | /* allocate passthrough domain */ | ||
2742 | pt_domain = protection_domain_alloc(); | ||
2743 | if (!pt_domain) | ||
2744 | return -ENOMEM; | ||
2745 | |||
2746 | pt_domain->mode |= PAGE_MODE_NONE; | ||
2747 | |||
2748 | for_each_pci_dev(dev) { | ||
2749 | if (!check_device(&dev->dev)) | ||
2750 | continue; | ||
2751 | |||
2752 | devid = get_device_id(&dev->dev); | ||
2753 | |||
2754 | iommu = amd_iommu_rlookup_table[devid]; | ||
2755 | if (!iommu) | ||
2756 | continue; | ||
2757 | |||
2758 | attach_device(&dev->dev, pt_domain); | ||
2759 | } | ||
2760 | |||
2761 | pr_info("AMD-Vi: Initialized for Passthrough Mode\n"); | ||
2762 | |||
2763 | return 0; | ||
2764 | } | ||