aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/iommu/amd_iommu.c
diff options
context:
space:
mode:
authorOhad Ben-Cohen <ohad@wizery.com>2011-06-05 11:22:18 -0400
committerJoerg Roedel <joerg.roedel@amd.com>2011-06-21 04:49:29 -0400
commit29b68415e335ba9e0eb6057f9405aa4d9c23efe4 (patch)
tree76d1a8990ab1e5db5f6860262cb52c186d477925 /drivers/iommu/amd_iommu.c
parentb10f127e1a4d8cac5414c6e2b152c205b66c9f16 (diff)
x86: amd_iommu: move to drivers/iommu/
This should ease finding similarities with different platforms, with the intention of solving problems once in a generic framework which everyone can use. Compile-tested on x86_64. Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com> Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Diffstat (limited to 'drivers/iommu/amd_iommu.c')
-rw-r--r--drivers/iommu/amd_iommu.c2764
1 files changed, 2764 insertions, 0 deletions
diff --git a/drivers/iommu/amd_iommu.c b/drivers/iommu/amd_iommu.c
new file mode 100644
index 000000000000..7c3a95e54ec5
--- /dev/null
+++ b/drivers/iommu/amd_iommu.c
@@ -0,0 +1,2764 @@
1/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/pci-ats.h>
22#include <linux/bitmap.h>
23#include <linux/slab.h>
24#include <linux/debugfs.h>
25#include <linux/scatterlist.h>
26#include <linux/dma-mapping.h>
27#include <linux/iommu-helper.h>
28#include <linux/iommu.h>
29#include <linux/delay.h>
30#include <asm/proto.h>
31#include <asm/iommu.h>
32#include <asm/gart.h>
33#include <asm/dma.h>
34#include <asm/amd_iommu_proto.h>
35#include <asm/amd_iommu_types.h>
36#include <asm/amd_iommu.h>
37
38#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
39
40#define LOOP_TIMEOUT 100000
41
42static DEFINE_RWLOCK(amd_iommu_devtable_lock);
43
44/* A list of preallocated protection domains */
45static LIST_HEAD(iommu_pd_list);
46static DEFINE_SPINLOCK(iommu_pd_list_lock);
47
48/*
49 * Domain for untranslated devices - only allocated
50 * if iommu=pt passed on kernel cmd line.
51 */
52static struct protection_domain *pt_domain;
53
54static struct iommu_ops amd_iommu_ops;
55
56/*
57 * general struct to manage commands send to an IOMMU
58 */
59struct iommu_cmd {
60 u32 data[4];
61};
62
63static void update_domain(struct protection_domain *domain);
64
65/****************************************************************************
66 *
67 * Helper functions
68 *
69 ****************************************************************************/
70
71static inline u16 get_device_id(struct device *dev)
72{
73 struct pci_dev *pdev = to_pci_dev(dev);
74
75 return calc_devid(pdev->bus->number, pdev->devfn);
76}
77
78static struct iommu_dev_data *get_dev_data(struct device *dev)
79{
80 return dev->archdata.iommu;
81}
82
83/*
84 * In this function the list of preallocated protection domains is traversed to
85 * find the domain for a specific device
86 */
87static struct dma_ops_domain *find_protection_domain(u16 devid)
88{
89 struct dma_ops_domain *entry, *ret = NULL;
90 unsigned long flags;
91 u16 alias = amd_iommu_alias_table[devid];
92
93 if (list_empty(&iommu_pd_list))
94 return NULL;
95
96 spin_lock_irqsave(&iommu_pd_list_lock, flags);
97
98 list_for_each_entry(entry, &iommu_pd_list, list) {
99 if (entry->target_dev == devid ||
100 entry->target_dev == alias) {
101 ret = entry;
102 break;
103 }
104 }
105
106 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
107
108 return ret;
109}
110
111/*
112 * This function checks if the driver got a valid device from the caller to
113 * avoid dereferencing invalid pointers.
114 */
115static bool check_device(struct device *dev)
116{
117 u16 devid;
118
119 if (!dev || !dev->dma_mask)
120 return false;
121
122 /* No device or no PCI device */
123 if (dev->bus != &pci_bus_type)
124 return false;
125
126 devid = get_device_id(dev);
127
128 /* Out of our scope? */
129 if (devid > amd_iommu_last_bdf)
130 return false;
131
132 if (amd_iommu_rlookup_table[devid] == NULL)
133 return false;
134
135 return true;
136}
137
138static int iommu_init_device(struct device *dev)
139{
140 struct iommu_dev_data *dev_data;
141 struct pci_dev *pdev;
142 u16 devid, alias;
143
144 if (dev->archdata.iommu)
145 return 0;
146
147 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
148 if (!dev_data)
149 return -ENOMEM;
150
151 dev_data->dev = dev;
152
153 devid = get_device_id(dev);
154 alias = amd_iommu_alias_table[devid];
155 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
156 if (pdev)
157 dev_data->alias = &pdev->dev;
158 else {
159 kfree(dev_data);
160 return -ENOTSUPP;
161 }
162
163 atomic_set(&dev_data->bind, 0);
164
165 dev->archdata.iommu = dev_data;
166
167
168 return 0;
169}
170
171static void iommu_ignore_device(struct device *dev)
172{
173 u16 devid, alias;
174
175 devid = get_device_id(dev);
176 alias = amd_iommu_alias_table[devid];
177
178 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
179 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
180
181 amd_iommu_rlookup_table[devid] = NULL;
182 amd_iommu_rlookup_table[alias] = NULL;
183}
184
185static void iommu_uninit_device(struct device *dev)
186{
187 kfree(dev->archdata.iommu);
188}
189
190void __init amd_iommu_uninit_devices(void)
191{
192 struct pci_dev *pdev = NULL;
193
194 for_each_pci_dev(pdev) {
195
196 if (!check_device(&pdev->dev))
197 continue;
198
199 iommu_uninit_device(&pdev->dev);
200 }
201}
202
203int __init amd_iommu_init_devices(void)
204{
205 struct pci_dev *pdev = NULL;
206 int ret = 0;
207
208 for_each_pci_dev(pdev) {
209
210 if (!check_device(&pdev->dev))
211 continue;
212
213 ret = iommu_init_device(&pdev->dev);
214 if (ret == -ENOTSUPP)
215 iommu_ignore_device(&pdev->dev);
216 else if (ret)
217 goto out_free;
218 }
219
220 return 0;
221
222out_free:
223
224 amd_iommu_uninit_devices();
225
226 return ret;
227}
228#ifdef CONFIG_AMD_IOMMU_STATS
229
230/*
231 * Initialization code for statistics collection
232 */
233
234DECLARE_STATS_COUNTER(compl_wait);
235DECLARE_STATS_COUNTER(cnt_map_single);
236DECLARE_STATS_COUNTER(cnt_unmap_single);
237DECLARE_STATS_COUNTER(cnt_map_sg);
238DECLARE_STATS_COUNTER(cnt_unmap_sg);
239DECLARE_STATS_COUNTER(cnt_alloc_coherent);
240DECLARE_STATS_COUNTER(cnt_free_coherent);
241DECLARE_STATS_COUNTER(cross_page);
242DECLARE_STATS_COUNTER(domain_flush_single);
243DECLARE_STATS_COUNTER(domain_flush_all);
244DECLARE_STATS_COUNTER(alloced_io_mem);
245DECLARE_STATS_COUNTER(total_map_requests);
246
247static struct dentry *stats_dir;
248static struct dentry *de_fflush;
249
250static void amd_iommu_stats_add(struct __iommu_counter *cnt)
251{
252 if (stats_dir == NULL)
253 return;
254
255 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
256 &cnt->value);
257}
258
259static void amd_iommu_stats_init(void)
260{
261 stats_dir = debugfs_create_dir("amd-iommu", NULL);
262 if (stats_dir == NULL)
263 return;
264
265 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
266 (u32 *)&amd_iommu_unmap_flush);
267
268 amd_iommu_stats_add(&compl_wait);
269 amd_iommu_stats_add(&cnt_map_single);
270 amd_iommu_stats_add(&cnt_unmap_single);
271 amd_iommu_stats_add(&cnt_map_sg);
272 amd_iommu_stats_add(&cnt_unmap_sg);
273 amd_iommu_stats_add(&cnt_alloc_coherent);
274 amd_iommu_stats_add(&cnt_free_coherent);
275 amd_iommu_stats_add(&cross_page);
276 amd_iommu_stats_add(&domain_flush_single);
277 amd_iommu_stats_add(&domain_flush_all);
278 amd_iommu_stats_add(&alloced_io_mem);
279 amd_iommu_stats_add(&total_map_requests);
280}
281
282#endif
283
284/****************************************************************************
285 *
286 * Interrupt handling functions
287 *
288 ****************************************************************************/
289
290static void dump_dte_entry(u16 devid)
291{
292 int i;
293
294 for (i = 0; i < 8; ++i)
295 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
296 amd_iommu_dev_table[devid].data[i]);
297}
298
299static void dump_command(unsigned long phys_addr)
300{
301 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
302 int i;
303
304 for (i = 0; i < 4; ++i)
305 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
306}
307
308static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
309{
310 u32 *event = __evt;
311 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
312 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
313 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
314 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
315 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
316
317 printk(KERN_ERR "AMD-Vi: Event logged [");
318
319 switch (type) {
320 case EVENT_TYPE_ILL_DEV:
321 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
322 "address=0x%016llx flags=0x%04x]\n",
323 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
324 address, flags);
325 dump_dte_entry(devid);
326 break;
327 case EVENT_TYPE_IO_FAULT:
328 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
329 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
330 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
331 domid, address, flags);
332 break;
333 case EVENT_TYPE_DEV_TAB_ERR:
334 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
335 "address=0x%016llx flags=0x%04x]\n",
336 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 address, flags);
338 break;
339 case EVENT_TYPE_PAGE_TAB_ERR:
340 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
341 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 domid, address, flags);
344 break;
345 case EVENT_TYPE_ILL_CMD:
346 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
347 dump_command(address);
348 break;
349 case EVENT_TYPE_CMD_HARD_ERR:
350 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
351 "flags=0x%04x]\n", address, flags);
352 break;
353 case EVENT_TYPE_IOTLB_INV_TO:
354 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
355 "address=0x%016llx]\n",
356 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
357 address);
358 break;
359 case EVENT_TYPE_INV_DEV_REQ:
360 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
361 "address=0x%016llx flags=0x%04x]\n",
362 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
363 address, flags);
364 break;
365 default:
366 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
367 }
368}
369
370static void iommu_poll_events(struct amd_iommu *iommu)
371{
372 u32 head, tail;
373 unsigned long flags;
374
375 spin_lock_irqsave(&iommu->lock, flags);
376
377 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
378 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
379
380 while (head != tail) {
381 iommu_print_event(iommu, iommu->evt_buf + head);
382 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
383 }
384
385 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
386
387 spin_unlock_irqrestore(&iommu->lock, flags);
388}
389
390irqreturn_t amd_iommu_int_thread(int irq, void *data)
391{
392 struct amd_iommu *iommu;
393
394 for_each_iommu(iommu)
395 iommu_poll_events(iommu);
396
397 return IRQ_HANDLED;
398}
399
400irqreturn_t amd_iommu_int_handler(int irq, void *data)
401{
402 return IRQ_WAKE_THREAD;
403}
404
405/****************************************************************************
406 *
407 * IOMMU command queuing functions
408 *
409 ****************************************************************************/
410
411static int wait_on_sem(volatile u64 *sem)
412{
413 int i = 0;
414
415 while (*sem == 0 && i < LOOP_TIMEOUT) {
416 udelay(1);
417 i += 1;
418 }
419
420 if (i == LOOP_TIMEOUT) {
421 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
422 return -EIO;
423 }
424
425 return 0;
426}
427
428static void copy_cmd_to_buffer(struct amd_iommu *iommu,
429 struct iommu_cmd *cmd,
430 u32 tail)
431{
432 u8 *target;
433
434 target = iommu->cmd_buf + tail;
435 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
436
437 /* Copy command to buffer */
438 memcpy(target, cmd, sizeof(*cmd));
439
440 /* Tell the IOMMU about it */
441 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
442}
443
444static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
445{
446 WARN_ON(address & 0x7ULL);
447
448 memset(cmd, 0, sizeof(*cmd));
449 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
450 cmd->data[1] = upper_32_bits(__pa(address));
451 cmd->data[2] = 1;
452 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
453}
454
455static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
456{
457 memset(cmd, 0, sizeof(*cmd));
458 cmd->data[0] = devid;
459 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
460}
461
462static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
463 size_t size, u16 domid, int pde)
464{
465 u64 pages;
466 int s;
467
468 pages = iommu_num_pages(address, size, PAGE_SIZE);
469 s = 0;
470
471 if (pages > 1) {
472 /*
473 * If we have to flush more than one page, flush all
474 * TLB entries for this domain
475 */
476 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
477 s = 1;
478 }
479
480 address &= PAGE_MASK;
481
482 memset(cmd, 0, sizeof(*cmd));
483 cmd->data[1] |= domid;
484 cmd->data[2] = lower_32_bits(address);
485 cmd->data[3] = upper_32_bits(address);
486 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
487 if (s) /* size bit - we flush more than one 4kb page */
488 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
489 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
490 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
491}
492
493static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
494 u64 address, size_t size)
495{
496 u64 pages;
497 int s;
498
499 pages = iommu_num_pages(address, size, PAGE_SIZE);
500 s = 0;
501
502 if (pages > 1) {
503 /*
504 * If we have to flush more than one page, flush all
505 * TLB entries for this domain
506 */
507 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
508 s = 1;
509 }
510
511 address &= PAGE_MASK;
512
513 memset(cmd, 0, sizeof(*cmd));
514 cmd->data[0] = devid;
515 cmd->data[0] |= (qdep & 0xff) << 24;
516 cmd->data[1] = devid;
517 cmd->data[2] = lower_32_bits(address);
518 cmd->data[3] = upper_32_bits(address);
519 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
520 if (s)
521 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
522}
523
524static void build_inv_all(struct iommu_cmd *cmd)
525{
526 memset(cmd, 0, sizeof(*cmd));
527 CMD_SET_TYPE(cmd, CMD_INV_ALL);
528}
529
530/*
531 * Writes the command to the IOMMUs command buffer and informs the
532 * hardware about the new command.
533 */
534static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
535{
536 u32 left, tail, head, next_tail;
537 unsigned long flags;
538
539 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
540
541again:
542 spin_lock_irqsave(&iommu->lock, flags);
543
544 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
545 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
546 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
547 left = (head - next_tail) % iommu->cmd_buf_size;
548
549 if (left <= 2) {
550 struct iommu_cmd sync_cmd;
551 volatile u64 sem = 0;
552 int ret;
553
554 build_completion_wait(&sync_cmd, (u64)&sem);
555 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
556
557 spin_unlock_irqrestore(&iommu->lock, flags);
558
559 if ((ret = wait_on_sem(&sem)) != 0)
560 return ret;
561
562 goto again;
563 }
564
565 copy_cmd_to_buffer(iommu, cmd, tail);
566
567 /* We need to sync now to make sure all commands are processed */
568 iommu->need_sync = true;
569
570 spin_unlock_irqrestore(&iommu->lock, flags);
571
572 return 0;
573}
574
575/*
576 * This function queues a completion wait command into the command
577 * buffer of an IOMMU
578 */
579static int iommu_completion_wait(struct amd_iommu *iommu)
580{
581 struct iommu_cmd cmd;
582 volatile u64 sem = 0;
583 int ret;
584
585 if (!iommu->need_sync)
586 return 0;
587
588 build_completion_wait(&cmd, (u64)&sem);
589
590 ret = iommu_queue_command(iommu, &cmd);
591 if (ret)
592 return ret;
593
594 return wait_on_sem(&sem);
595}
596
597static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
598{
599 struct iommu_cmd cmd;
600
601 build_inv_dte(&cmd, devid);
602
603 return iommu_queue_command(iommu, &cmd);
604}
605
606static void iommu_flush_dte_all(struct amd_iommu *iommu)
607{
608 u32 devid;
609
610 for (devid = 0; devid <= 0xffff; ++devid)
611 iommu_flush_dte(iommu, devid);
612
613 iommu_completion_wait(iommu);
614}
615
616/*
617 * This function uses heavy locking and may disable irqs for some time. But
618 * this is no issue because it is only called during resume.
619 */
620static void iommu_flush_tlb_all(struct amd_iommu *iommu)
621{
622 u32 dom_id;
623
624 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
625 struct iommu_cmd cmd;
626 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
627 dom_id, 1);
628 iommu_queue_command(iommu, &cmd);
629 }
630
631 iommu_completion_wait(iommu);
632}
633
634static void iommu_flush_all(struct amd_iommu *iommu)
635{
636 struct iommu_cmd cmd;
637
638 build_inv_all(&cmd);
639
640 iommu_queue_command(iommu, &cmd);
641 iommu_completion_wait(iommu);
642}
643
644void iommu_flush_all_caches(struct amd_iommu *iommu)
645{
646 if (iommu_feature(iommu, FEATURE_IA)) {
647 iommu_flush_all(iommu);
648 } else {
649 iommu_flush_dte_all(iommu);
650 iommu_flush_tlb_all(iommu);
651 }
652}
653
654/*
655 * Command send function for flushing on-device TLB
656 */
657static int device_flush_iotlb(struct device *dev, u64 address, size_t size)
658{
659 struct pci_dev *pdev = to_pci_dev(dev);
660 struct amd_iommu *iommu;
661 struct iommu_cmd cmd;
662 u16 devid;
663 int qdep;
664
665 qdep = pci_ats_queue_depth(pdev);
666 devid = get_device_id(dev);
667 iommu = amd_iommu_rlookup_table[devid];
668
669 build_inv_iotlb_pages(&cmd, devid, qdep, address, size);
670
671 return iommu_queue_command(iommu, &cmd);
672}
673
674/*
675 * Command send function for invalidating a device table entry
676 */
677static int device_flush_dte(struct device *dev)
678{
679 struct amd_iommu *iommu;
680 struct pci_dev *pdev;
681 u16 devid;
682 int ret;
683
684 pdev = to_pci_dev(dev);
685 devid = get_device_id(dev);
686 iommu = amd_iommu_rlookup_table[devid];
687
688 ret = iommu_flush_dte(iommu, devid);
689 if (ret)
690 return ret;
691
692 if (pci_ats_enabled(pdev))
693 ret = device_flush_iotlb(dev, 0, ~0UL);
694
695 return ret;
696}
697
698/*
699 * TLB invalidation function which is called from the mapping functions.
700 * It invalidates a single PTE if the range to flush is within a single
701 * page. Otherwise it flushes the whole TLB of the IOMMU.
702 */
703static void __domain_flush_pages(struct protection_domain *domain,
704 u64 address, size_t size, int pde)
705{
706 struct iommu_dev_data *dev_data;
707 struct iommu_cmd cmd;
708 int ret = 0, i;
709
710 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
711
712 for (i = 0; i < amd_iommus_present; ++i) {
713 if (!domain->dev_iommu[i])
714 continue;
715
716 /*
717 * Devices of this domain are behind this IOMMU
718 * We need a TLB flush
719 */
720 ret |= iommu_queue_command(amd_iommus[i], &cmd);
721 }
722
723 list_for_each_entry(dev_data, &domain->dev_list, list) {
724 struct pci_dev *pdev = to_pci_dev(dev_data->dev);
725
726 if (!pci_ats_enabled(pdev))
727 continue;
728
729 ret |= device_flush_iotlb(dev_data->dev, address, size);
730 }
731
732 WARN_ON(ret);
733}
734
735static void domain_flush_pages(struct protection_domain *domain,
736 u64 address, size_t size)
737{
738 __domain_flush_pages(domain, address, size, 0);
739}
740
741/* Flush the whole IO/TLB for a given protection domain */
742static void domain_flush_tlb(struct protection_domain *domain)
743{
744 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
745}
746
747/* Flush the whole IO/TLB for a given protection domain - including PDE */
748static void domain_flush_tlb_pde(struct protection_domain *domain)
749{
750 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
751}
752
753static void domain_flush_complete(struct protection_domain *domain)
754{
755 int i;
756
757 for (i = 0; i < amd_iommus_present; ++i) {
758 if (!domain->dev_iommu[i])
759 continue;
760
761 /*
762 * Devices of this domain are behind this IOMMU
763 * We need to wait for completion of all commands.
764 */
765 iommu_completion_wait(amd_iommus[i]);
766 }
767}
768
769
770/*
771 * This function flushes the DTEs for all devices in domain
772 */
773static void domain_flush_devices(struct protection_domain *domain)
774{
775 struct iommu_dev_data *dev_data;
776 unsigned long flags;
777
778 spin_lock_irqsave(&domain->lock, flags);
779
780 list_for_each_entry(dev_data, &domain->dev_list, list)
781 device_flush_dte(dev_data->dev);
782
783 spin_unlock_irqrestore(&domain->lock, flags);
784}
785
786/****************************************************************************
787 *
788 * The functions below are used the create the page table mappings for
789 * unity mapped regions.
790 *
791 ****************************************************************************/
792
793/*
794 * This function is used to add another level to an IO page table. Adding
795 * another level increases the size of the address space by 9 bits to a size up
796 * to 64 bits.
797 */
798static bool increase_address_space(struct protection_domain *domain,
799 gfp_t gfp)
800{
801 u64 *pte;
802
803 if (domain->mode == PAGE_MODE_6_LEVEL)
804 /* address space already 64 bit large */
805 return false;
806
807 pte = (void *)get_zeroed_page(gfp);
808 if (!pte)
809 return false;
810
811 *pte = PM_LEVEL_PDE(domain->mode,
812 virt_to_phys(domain->pt_root));
813 domain->pt_root = pte;
814 domain->mode += 1;
815 domain->updated = true;
816
817 return true;
818}
819
820static u64 *alloc_pte(struct protection_domain *domain,
821 unsigned long address,
822 unsigned long page_size,
823 u64 **pte_page,
824 gfp_t gfp)
825{
826 int level, end_lvl;
827 u64 *pte, *page;
828
829 BUG_ON(!is_power_of_2(page_size));
830
831 while (address > PM_LEVEL_SIZE(domain->mode))
832 increase_address_space(domain, gfp);
833
834 level = domain->mode - 1;
835 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
836 address = PAGE_SIZE_ALIGN(address, page_size);
837 end_lvl = PAGE_SIZE_LEVEL(page_size);
838
839 while (level > end_lvl) {
840 if (!IOMMU_PTE_PRESENT(*pte)) {
841 page = (u64 *)get_zeroed_page(gfp);
842 if (!page)
843 return NULL;
844 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
845 }
846
847 /* No level skipping support yet */
848 if (PM_PTE_LEVEL(*pte) != level)
849 return NULL;
850
851 level -= 1;
852
853 pte = IOMMU_PTE_PAGE(*pte);
854
855 if (pte_page && level == end_lvl)
856 *pte_page = pte;
857
858 pte = &pte[PM_LEVEL_INDEX(level, address)];
859 }
860
861 return pte;
862}
863
864/*
865 * This function checks if there is a PTE for a given dma address. If
866 * there is one, it returns the pointer to it.
867 */
868static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
869{
870 int level;
871 u64 *pte;
872
873 if (address > PM_LEVEL_SIZE(domain->mode))
874 return NULL;
875
876 level = domain->mode - 1;
877 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
878
879 while (level > 0) {
880
881 /* Not Present */
882 if (!IOMMU_PTE_PRESENT(*pte))
883 return NULL;
884
885 /* Large PTE */
886 if (PM_PTE_LEVEL(*pte) == 0x07) {
887 unsigned long pte_mask, __pte;
888
889 /*
890 * If we have a series of large PTEs, make
891 * sure to return a pointer to the first one.
892 */
893 pte_mask = PTE_PAGE_SIZE(*pte);
894 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
895 __pte = ((unsigned long)pte) & pte_mask;
896
897 return (u64 *)__pte;
898 }
899
900 /* No level skipping support yet */
901 if (PM_PTE_LEVEL(*pte) != level)
902 return NULL;
903
904 level -= 1;
905
906 /* Walk to the next level */
907 pte = IOMMU_PTE_PAGE(*pte);
908 pte = &pte[PM_LEVEL_INDEX(level, address)];
909 }
910
911 return pte;
912}
913
914/*
915 * Generic mapping functions. It maps a physical address into a DMA
916 * address space. It allocates the page table pages if necessary.
917 * In the future it can be extended to a generic mapping function
918 * supporting all features of AMD IOMMU page tables like level skipping
919 * and full 64 bit address spaces.
920 */
921static int iommu_map_page(struct protection_domain *dom,
922 unsigned long bus_addr,
923 unsigned long phys_addr,
924 int prot,
925 unsigned long page_size)
926{
927 u64 __pte, *pte;
928 int i, count;
929
930 if (!(prot & IOMMU_PROT_MASK))
931 return -EINVAL;
932
933 bus_addr = PAGE_ALIGN(bus_addr);
934 phys_addr = PAGE_ALIGN(phys_addr);
935 count = PAGE_SIZE_PTE_COUNT(page_size);
936 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
937
938 for (i = 0; i < count; ++i)
939 if (IOMMU_PTE_PRESENT(pte[i]))
940 return -EBUSY;
941
942 if (page_size > PAGE_SIZE) {
943 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
944 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
945 } else
946 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
947
948 if (prot & IOMMU_PROT_IR)
949 __pte |= IOMMU_PTE_IR;
950 if (prot & IOMMU_PROT_IW)
951 __pte |= IOMMU_PTE_IW;
952
953 for (i = 0; i < count; ++i)
954 pte[i] = __pte;
955
956 update_domain(dom);
957
958 return 0;
959}
960
961static unsigned long iommu_unmap_page(struct protection_domain *dom,
962 unsigned long bus_addr,
963 unsigned long page_size)
964{
965 unsigned long long unmap_size, unmapped;
966 u64 *pte;
967
968 BUG_ON(!is_power_of_2(page_size));
969
970 unmapped = 0;
971
972 while (unmapped < page_size) {
973
974 pte = fetch_pte(dom, bus_addr);
975
976 if (!pte) {
977 /*
978 * No PTE for this address
979 * move forward in 4kb steps
980 */
981 unmap_size = PAGE_SIZE;
982 } else if (PM_PTE_LEVEL(*pte) == 0) {
983 /* 4kb PTE found for this address */
984 unmap_size = PAGE_SIZE;
985 *pte = 0ULL;
986 } else {
987 int count, i;
988
989 /* Large PTE found which maps this address */
990 unmap_size = PTE_PAGE_SIZE(*pte);
991 count = PAGE_SIZE_PTE_COUNT(unmap_size);
992 for (i = 0; i < count; i++)
993 pte[i] = 0ULL;
994 }
995
996 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
997 unmapped += unmap_size;
998 }
999
1000 BUG_ON(!is_power_of_2(unmapped));
1001
1002 return unmapped;
1003}
1004
1005/*
1006 * This function checks if a specific unity mapping entry is needed for
1007 * this specific IOMMU.
1008 */
1009static int iommu_for_unity_map(struct amd_iommu *iommu,
1010 struct unity_map_entry *entry)
1011{
1012 u16 bdf, i;
1013
1014 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1015 bdf = amd_iommu_alias_table[i];
1016 if (amd_iommu_rlookup_table[bdf] == iommu)
1017 return 1;
1018 }
1019
1020 return 0;
1021}
1022
1023/*
1024 * This function actually applies the mapping to the page table of the
1025 * dma_ops domain.
1026 */
1027static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1028 struct unity_map_entry *e)
1029{
1030 u64 addr;
1031 int ret;
1032
1033 for (addr = e->address_start; addr < e->address_end;
1034 addr += PAGE_SIZE) {
1035 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1036 PAGE_SIZE);
1037 if (ret)
1038 return ret;
1039 /*
1040 * if unity mapping is in aperture range mark the page
1041 * as allocated in the aperture
1042 */
1043 if (addr < dma_dom->aperture_size)
1044 __set_bit(addr >> PAGE_SHIFT,
1045 dma_dom->aperture[0]->bitmap);
1046 }
1047
1048 return 0;
1049}
1050
1051/*
1052 * Init the unity mappings for a specific IOMMU in the system
1053 *
1054 * Basically iterates over all unity mapping entries and applies them to
1055 * the default domain DMA of that IOMMU if necessary.
1056 */
1057static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1058{
1059 struct unity_map_entry *entry;
1060 int ret;
1061
1062 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1063 if (!iommu_for_unity_map(iommu, entry))
1064 continue;
1065 ret = dma_ops_unity_map(iommu->default_dom, entry);
1066 if (ret)
1067 return ret;
1068 }
1069
1070 return 0;
1071}
1072
1073/*
1074 * Inits the unity mappings required for a specific device
1075 */
1076static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1077 u16 devid)
1078{
1079 struct unity_map_entry *e;
1080 int ret;
1081
1082 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1083 if (!(devid >= e->devid_start && devid <= e->devid_end))
1084 continue;
1085 ret = dma_ops_unity_map(dma_dom, e);
1086 if (ret)
1087 return ret;
1088 }
1089
1090 return 0;
1091}
1092
1093/****************************************************************************
1094 *
1095 * The next functions belong to the address allocator for the dma_ops
1096 * interface functions. They work like the allocators in the other IOMMU
1097 * drivers. Its basically a bitmap which marks the allocated pages in
1098 * the aperture. Maybe it could be enhanced in the future to a more
1099 * efficient allocator.
1100 *
1101 ****************************************************************************/
1102
1103/*
1104 * The address allocator core functions.
1105 *
1106 * called with domain->lock held
1107 */
1108
1109/*
1110 * Used to reserve address ranges in the aperture (e.g. for exclusion
1111 * ranges.
1112 */
1113static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1114 unsigned long start_page,
1115 unsigned int pages)
1116{
1117 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1118
1119 if (start_page + pages > last_page)
1120 pages = last_page - start_page;
1121
1122 for (i = start_page; i < start_page + pages; ++i) {
1123 int index = i / APERTURE_RANGE_PAGES;
1124 int page = i % APERTURE_RANGE_PAGES;
1125 __set_bit(page, dom->aperture[index]->bitmap);
1126 }
1127}
1128
1129/*
1130 * This function is used to add a new aperture range to an existing
1131 * aperture in case of dma_ops domain allocation or address allocation
1132 * failure.
1133 */
1134static int alloc_new_range(struct dma_ops_domain *dma_dom,
1135 bool populate, gfp_t gfp)
1136{
1137 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1138 struct amd_iommu *iommu;
1139 unsigned long i;
1140
1141#ifdef CONFIG_IOMMU_STRESS
1142 populate = false;
1143#endif
1144
1145 if (index >= APERTURE_MAX_RANGES)
1146 return -ENOMEM;
1147
1148 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1149 if (!dma_dom->aperture[index])
1150 return -ENOMEM;
1151
1152 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1153 if (!dma_dom->aperture[index]->bitmap)
1154 goto out_free;
1155
1156 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1157
1158 if (populate) {
1159 unsigned long address = dma_dom->aperture_size;
1160 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1161 u64 *pte, *pte_page;
1162
1163 for (i = 0; i < num_ptes; ++i) {
1164 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1165 &pte_page, gfp);
1166 if (!pte)
1167 goto out_free;
1168
1169 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1170
1171 address += APERTURE_RANGE_SIZE / 64;
1172 }
1173 }
1174
1175 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1176
1177 /* Initialize the exclusion range if necessary */
1178 for_each_iommu(iommu) {
1179 if (iommu->exclusion_start &&
1180 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1181 && iommu->exclusion_start < dma_dom->aperture_size) {
1182 unsigned long startpage;
1183 int pages = iommu_num_pages(iommu->exclusion_start,
1184 iommu->exclusion_length,
1185 PAGE_SIZE);
1186 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1187 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1188 }
1189 }
1190
1191 /*
1192 * Check for areas already mapped as present in the new aperture
1193 * range and mark those pages as reserved in the allocator. Such
1194 * mappings may already exist as a result of requested unity
1195 * mappings for devices.
1196 */
1197 for (i = dma_dom->aperture[index]->offset;
1198 i < dma_dom->aperture_size;
1199 i += PAGE_SIZE) {
1200 u64 *pte = fetch_pte(&dma_dom->domain, i);
1201 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1202 continue;
1203
1204 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1205 }
1206
1207 update_domain(&dma_dom->domain);
1208
1209 return 0;
1210
1211out_free:
1212 update_domain(&dma_dom->domain);
1213
1214 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1215
1216 kfree(dma_dom->aperture[index]);
1217 dma_dom->aperture[index] = NULL;
1218
1219 return -ENOMEM;
1220}
1221
1222static unsigned long dma_ops_area_alloc(struct device *dev,
1223 struct dma_ops_domain *dom,
1224 unsigned int pages,
1225 unsigned long align_mask,
1226 u64 dma_mask,
1227 unsigned long start)
1228{
1229 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1230 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1231 int i = start >> APERTURE_RANGE_SHIFT;
1232 unsigned long boundary_size;
1233 unsigned long address = -1;
1234 unsigned long limit;
1235
1236 next_bit >>= PAGE_SHIFT;
1237
1238 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1239 PAGE_SIZE) >> PAGE_SHIFT;
1240
1241 for (;i < max_index; ++i) {
1242 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1243
1244 if (dom->aperture[i]->offset >= dma_mask)
1245 break;
1246
1247 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1248 dma_mask >> PAGE_SHIFT);
1249
1250 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1251 limit, next_bit, pages, 0,
1252 boundary_size, align_mask);
1253 if (address != -1) {
1254 address = dom->aperture[i]->offset +
1255 (address << PAGE_SHIFT);
1256 dom->next_address = address + (pages << PAGE_SHIFT);
1257 break;
1258 }
1259
1260 next_bit = 0;
1261 }
1262
1263 return address;
1264}
1265
1266static unsigned long dma_ops_alloc_addresses(struct device *dev,
1267 struct dma_ops_domain *dom,
1268 unsigned int pages,
1269 unsigned long align_mask,
1270 u64 dma_mask)
1271{
1272 unsigned long address;
1273
1274#ifdef CONFIG_IOMMU_STRESS
1275 dom->next_address = 0;
1276 dom->need_flush = true;
1277#endif
1278
1279 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1280 dma_mask, dom->next_address);
1281
1282 if (address == -1) {
1283 dom->next_address = 0;
1284 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1285 dma_mask, 0);
1286 dom->need_flush = true;
1287 }
1288
1289 if (unlikely(address == -1))
1290 address = DMA_ERROR_CODE;
1291
1292 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1293
1294 return address;
1295}
1296
1297/*
1298 * The address free function.
1299 *
1300 * called with domain->lock held
1301 */
1302static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1303 unsigned long address,
1304 unsigned int pages)
1305{
1306 unsigned i = address >> APERTURE_RANGE_SHIFT;
1307 struct aperture_range *range = dom->aperture[i];
1308
1309 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1310
1311#ifdef CONFIG_IOMMU_STRESS
1312 if (i < 4)
1313 return;
1314#endif
1315
1316 if (address >= dom->next_address)
1317 dom->need_flush = true;
1318
1319 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1320
1321 bitmap_clear(range->bitmap, address, pages);
1322
1323}
1324
1325/****************************************************************************
1326 *
1327 * The next functions belong to the domain allocation. A domain is
1328 * allocated for every IOMMU as the default domain. If device isolation
1329 * is enabled, every device get its own domain. The most important thing
1330 * about domains is the page table mapping the DMA address space they
1331 * contain.
1332 *
1333 ****************************************************************************/
1334
1335/*
1336 * This function adds a protection domain to the global protection domain list
1337 */
1338static void add_domain_to_list(struct protection_domain *domain)
1339{
1340 unsigned long flags;
1341
1342 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1343 list_add(&domain->list, &amd_iommu_pd_list);
1344 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1345}
1346
1347/*
1348 * This function removes a protection domain to the global
1349 * protection domain list
1350 */
1351static void del_domain_from_list(struct protection_domain *domain)
1352{
1353 unsigned long flags;
1354
1355 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1356 list_del(&domain->list);
1357 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1358}
1359
1360static u16 domain_id_alloc(void)
1361{
1362 unsigned long flags;
1363 int id;
1364
1365 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1366 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1367 BUG_ON(id == 0);
1368 if (id > 0 && id < MAX_DOMAIN_ID)
1369 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1370 else
1371 id = 0;
1372 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1373
1374 return id;
1375}
1376
1377static void domain_id_free(int id)
1378{
1379 unsigned long flags;
1380
1381 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1382 if (id > 0 && id < MAX_DOMAIN_ID)
1383 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1384 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1385}
1386
1387static void free_pagetable(struct protection_domain *domain)
1388{
1389 int i, j;
1390 u64 *p1, *p2, *p3;
1391
1392 p1 = domain->pt_root;
1393
1394 if (!p1)
1395 return;
1396
1397 for (i = 0; i < 512; ++i) {
1398 if (!IOMMU_PTE_PRESENT(p1[i]))
1399 continue;
1400
1401 p2 = IOMMU_PTE_PAGE(p1[i]);
1402 for (j = 0; j < 512; ++j) {
1403 if (!IOMMU_PTE_PRESENT(p2[j]))
1404 continue;
1405 p3 = IOMMU_PTE_PAGE(p2[j]);
1406 free_page((unsigned long)p3);
1407 }
1408
1409 free_page((unsigned long)p2);
1410 }
1411
1412 free_page((unsigned long)p1);
1413
1414 domain->pt_root = NULL;
1415}
1416
1417/*
1418 * Free a domain, only used if something went wrong in the
1419 * allocation path and we need to free an already allocated page table
1420 */
1421static void dma_ops_domain_free(struct dma_ops_domain *dom)
1422{
1423 int i;
1424
1425 if (!dom)
1426 return;
1427
1428 del_domain_from_list(&dom->domain);
1429
1430 free_pagetable(&dom->domain);
1431
1432 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1433 if (!dom->aperture[i])
1434 continue;
1435 free_page((unsigned long)dom->aperture[i]->bitmap);
1436 kfree(dom->aperture[i]);
1437 }
1438
1439 kfree(dom);
1440}
1441
1442/*
1443 * Allocates a new protection domain usable for the dma_ops functions.
1444 * It also initializes the page table and the address allocator data
1445 * structures required for the dma_ops interface
1446 */
1447static struct dma_ops_domain *dma_ops_domain_alloc(void)
1448{
1449 struct dma_ops_domain *dma_dom;
1450
1451 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1452 if (!dma_dom)
1453 return NULL;
1454
1455 spin_lock_init(&dma_dom->domain.lock);
1456
1457 dma_dom->domain.id = domain_id_alloc();
1458 if (dma_dom->domain.id == 0)
1459 goto free_dma_dom;
1460 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1461 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1462 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1463 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1464 dma_dom->domain.priv = dma_dom;
1465 if (!dma_dom->domain.pt_root)
1466 goto free_dma_dom;
1467
1468 dma_dom->need_flush = false;
1469 dma_dom->target_dev = 0xffff;
1470
1471 add_domain_to_list(&dma_dom->domain);
1472
1473 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1474 goto free_dma_dom;
1475
1476 /*
1477 * mark the first page as allocated so we never return 0 as
1478 * a valid dma-address. So we can use 0 as error value
1479 */
1480 dma_dom->aperture[0]->bitmap[0] = 1;
1481 dma_dom->next_address = 0;
1482
1483
1484 return dma_dom;
1485
1486free_dma_dom:
1487 dma_ops_domain_free(dma_dom);
1488
1489 return NULL;
1490}
1491
1492/*
1493 * little helper function to check whether a given protection domain is a
1494 * dma_ops domain
1495 */
1496static bool dma_ops_domain(struct protection_domain *domain)
1497{
1498 return domain->flags & PD_DMA_OPS_MASK;
1499}
1500
1501static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1502{
1503 u64 pte_root = virt_to_phys(domain->pt_root);
1504 u32 flags = 0;
1505
1506 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1507 << DEV_ENTRY_MODE_SHIFT;
1508 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1509
1510 if (ats)
1511 flags |= DTE_FLAG_IOTLB;
1512
1513 amd_iommu_dev_table[devid].data[3] |= flags;
1514 amd_iommu_dev_table[devid].data[2] = domain->id;
1515 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1516 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1517}
1518
1519static void clear_dte_entry(u16 devid)
1520{
1521 /* remove entry from the device table seen by the hardware */
1522 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1523 amd_iommu_dev_table[devid].data[1] = 0;
1524 amd_iommu_dev_table[devid].data[2] = 0;
1525
1526 amd_iommu_apply_erratum_63(devid);
1527}
1528
1529static void do_attach(struct device *dev, struct protection_domain *domain)
1530{
1531 struct iommu_dev_data *dev_data;
1532 struct amd_iommu *iommu;
1533 struct pci_dev *pdev;
1534 bool ats = false;
1535 u16 devid;
1536
1537 devid = get_device_id(dev);
1538 iommu = amd_iommu_rlookup_table[devid];
1539 dev_data = get_dev_data(dev);
1540 pdev = to_pci_dev(dev);
1541
1542 if (amd_iommu_iotlb_sup)
1543 ats = pci_ats_enabled(pdev);
1544
1545 /* Update data structures */
1546 dev_data->domain = domain;
1547 list_add(&dev_data->list, &domain->dev_list);
1548 set_dte_entry(devid, domain, ats);
1549
1550 /* Do reference counting */
1551 domain->dev_iommu[iommu->index] += 1;
1552 domain->dev_cnt += 1;
1553
1554 /* Flush the DTE entry */
1555 device_flush_dte(dev);
1556}
1557
1558static void do_detach(struct device *dev)
1559{
1560 struct iommu_dev_data *dev_data;
1561 struct amd_iommu *iommu;
1562 u16 devid;
1563
1564 devid = get_device_id(dev);
1565 iommu = amd_iommu_rlookup_table[devid];
1566 dev_data = get_dev_data(dev);
1567
1568 /* decrease reference counters */
1569 dev_data->domain->dev_iommu[iommu->index] -= 1;
1570 dev_data->domain->dev_cnt -= 1;
1571
1572 /* Update data structures */
1573 dev_data->domain = NULL;
1574 list_del(&dev_data->list);
1575 clear_dte_entry(devid);
1576
1577 /* Flush the DTE entry */
1578 device_flush_dte(dev);
1579}
1580
1581/*
1582 * If a device is not yet associated with a domain, this function does
1583 * assigns it visible for the hardware
1584 */
1585static int __attach_device(struct device *dev,
1586 struct protection_domain *domain)
1587{
1588 struct iommu_dev_data *dev_data, *alias_data;
1589 int ret;
1590
1591 dev_data = get_dev_data(dev);
1592 alias_data = get_dev_data(dev_data->alias);
1593
1594 if (!alias_data)
1595 return -EINVAL;
1596
1597 /* lock domain */
1598 spin_lock(&domain->lock);
1599
1600 /* Some sanity checks */
1601 ret = -EBUSY;
1602 if (alias_data->domain != NULL &&
1603 alias_data->domain != domain)
1604 goto out_unlock;
1605
1606 if (dev_data->domain != NULL &&
1607 dev_data->domain != domain)
1608 goto out_unlock;
1609
1610 /* Do real assignment */
1611 if (dev_data->alias != dev) {
1612 alias_data = get_dev_data(dev_data->alias);
1613 if (alias_data->domain == NULL)
1614 do_attach(dev_data->alias, domain);
1615
1616 atomic_inc(&alias_data->bind);
1617 }
1618
1619 if (dev_data->domain == NULL)
1620 do_attach(dev, domain);
1621
1622 atomic_inc(&dev_data->bind);
1623
1624 ret = 0;
1625
1626out_unlock:
1627
1628 /* ready */
1629 spin_unlock(&domain->lock);
1630
1631 return ret;
1632}
1633
1634/*
1635 * If a device is not yet associated with a domain, this function does
1636 * assigns it visible for the hardware
1637 */
1638static int attach_device(struct device *dev,
1639 struct protection_domain *domain)
1640{
1641 struct pci_dev *pdev = to_pci_dev(dev);
1642 unsigned long flags;
1643 int ret;
1644
1645 if (amd_iommu_iotlb_sup)
1646 pci_enable_ats(pdev, PAGE_SHIFT);
1647
1648 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1649 ret = __attach_device(dev, domain);
1650 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1651
1652 /*
1653 * We might boot into a crash-kernel here. The crashed kernel
1654 * left the caches in the IOMMU dirty. So we have to flush
1655 * here to evict all dirty stuff.
1656 */
1657 domain_flush_tlb_pde(domain);
1658
1659 return ret;
1660}
1661
1662/*
1663 * Removes a device from a protection domain (unlocked)
1664 */
1665static void __detach_device(struct device *dev)
1666{
1667 struct iommu_dev_data *dev_data = get_dev_data(dev);
1668 struct iommu_dev_data *alias_data;
1669 struct protection_domain *domain;
1670 unsigned long flags;
1671
1672 BUG_ON(!dev_data->domain);
1673
1674 domain = dev_data->domain;
1675
1676 spin_lock_irqsave(&domain->lock, flags);
1677
1678 if (dev_data->alias != dev) {
1679 alias_data = get_dev_data(dev_data->alias);
1680 if (atomic_dec_and_test(&alias_data->bind))
1681 do_detach(dev_data->alias);
1682 }
1683
1684 if (atomic_dec_and_test(&dev_data->bind))
1685 do_detach(dev);
1686
1687 spin_unlock_irqrestore(&domain->lock, flags);
1688
1689 /*
1690 * If we run in passthrough mode the device must be assigned to the
1691 * passthrough domain if it is detached from any other domain.
1692 * Make sure we can deassign from the pt_domain itself.
1693 */
1694 if (iommu_pass_through &&
1695 (dev_data->domain == NULL && domain != pt_domain))
1696 __attach_device(dev, pt_domain);
1697}
1698
1699/*
1700 * Removes a device from a protection domain (with devtable_lock held)
1701 */
1702static void detach_device(struct device *dev)
1703{
1704 struct pci_dev *pdev = to_pci_dev(dev);
1705 unsigned long flags;
1706
1707 /* lock device table */
1708 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1709 __detach_device(dev);
1710 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1711
1712 if (amd_iommu_iotlb_sup && pci_ats_enabled(pdev))
1713 pci_disable_ats(pdev);
1714}
1715
1716/*
1717 * Find out the protection domain structure for a given PCI device. This
1718 * will give us the pointer to the page table root for example.
1719 */
1720static struct protection_domain *domain_for_device(struct device *dev)
1721{
1722 struct protection_domain *dom;
1723 struct iommu_dev_data *dev_data, *alias_data;
1724 unsigned long flags;
1725 u16 devid;
1726
1727 devid = get_device_id(dev);
1728 dev_data = get_dev_data(dev);
1729 alias_data = get_dev_data(dev_data->alias);
1730 if (!alias_data)
1731 return NULL;
1732
1733 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1734 dom = dev_data->domain;
1735 if (dom == NULL &&
1736 alias_data->domain != NULL) {
1737 __attach_device(dev, alias_data->domain);
1738 dom = alias_data->domain;
1739 }
1740
1741 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1742
1743 return dom;
1744}
1745
1746static int device_change_notifier(struct notifier_block *nb,
1747 unsigned long action, void *data)
1748{
1749 struct device *dev = data;
1750 u16 devid;
1751 struct protection_domain *domain;
1752 struct dma_ops_domain *dma_domain;
1753 struct amd_iommu *iommu;
1754 unsigned long flags;
1755
1756 if (!check_device(dev))
1757 return 0;
1758
1759 devid = get_device_id(dev);
1760 iommu = amd_iommu_rlookup_table[devid];
1761
1762 switch (action) {
1763 case BUS_NOTIFY_UNBOUND_DRIVER:
1764
1765 domain = domain_for_device(dev);
1766
1767 if (!domain)
1768 goto out;
1769 if (iommu_pass_through)
1770 break;
1771 detach_device(dev);
1772 break;
1773 case BUS_NOTIFY_ADD_DEVICE:
1774
1775 iommu_init_device(dev);
1776
1777 domain = domain_for_device(dev);
1778
1779 /* allocate a protection domain if a device is added */
1780 dma_domain = find_protection_domain(devid);
1781 if (dma_domain)
1782 goto out;
1783 dma_domain = dma_ops_domain_alloc();
1784 if (!dma_domain)
1785 goto out;
1786 dma_domain->target_dev = devid;
1787
1788 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1789 list_add_tail(&dma_domain->list, &iommu_pd_list);
1790 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1791
1792 break;
1793 case BUS_NOTIFY_DEL_DEVICE:
1794
1795 iommu_uninit_device(dev);
1796
1797 default:
1798 goto out;
1799 }
1800
1801 device_flush_dte(dev);
1802 iommu_completion_wait(iommu);
1803
1804out:
1805 return 0;
1806}
1807
1808static struct notifier_block device_nb = {
1809 .notifier_call = device_change_notifier,
1810};
1811
1812void amd_iommu_init_notifier(void)
1813{
1814 bus_register_notifier(&pci_bus_type, &device_nb);
1815}
1816
1817/*****************************************************************************
1818 *
1819 * The next functions belong to the dma_ops mapping/unmapping code.
1820 *
1821 *****************************************************************************/
1822
1823/*
1824 * In the dma_ops path we only have the struct device. This function
1825 * finds the corresponding IOMMU, the protection domain and the
1826 * requestor id for a given device.
1827 * If the device is not yet associated with a domain this is also done
1828 * in this function.
1829 */
1830static struct protection_domain *get_domain(struct device *dev)
1831{
1832 struct protection_domain *domain;
1833 struct dma_ops_domain *dma_dom;
1834 u16 devid = get_device_id(dev);
1835
1836 if (!check_device(dev))
1837 return ERR_PTR(-EINVAL);
1838
1839 domain = domain_for_device(dev);
1840 if (domain != NULL && !dma_ops_domain(domain))
1841 return ERR_PTR(-EBUSY);
1842
1843 if (domain != NULL)
1844 return domain;
1845
1846 /* Device not bount yet - bind it */
1847 dma_dom = find_protection_domain(devid);
1848 if (!dma_dom)
1849 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1850 attach_device(dev, &dma_dom->domain);
1851 DUMP_printk("Using protection domain %d for device %s\n",
1852 dma_dom->domain.id, dev_name(dev));
1853
1854 return &dma_dom->domain;
1855}
1856
1857static void update_device_table(struct protection_domain *domain)
1858{
1859 struct iommu_dev_data *dev_data;
1860
1861 list_for_each_entry(dev_data, &domain->dev_list, list) {
1862 struct pci_dev *pdev = to_pci_dev(dev_data->dev);
1863 u16 devid = get_device_id(dev_data->dev);
1864 set_dte_entry(devid, domain, pci_ats_enabled(pdev));
1865 }
1866}
1867
1868static void update_domain(struct protection_domain *domain)
1869{
1870 if (!domain->updated)
1871 return;
1872
1873 update_device_table(domain);
1874
1875 domain_flush_devices(domain);
1876 domain_flush_tlb_pde(domain);
1877
1878 domain->updated = false;
1879}
1880
1881/*
1882 * This function fetches the PTE for a given address in the aperture
1883 */
1884static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1885 unsigned long address)
1886{
1887 struct aperture_range *aperture;
1888 u64 *pte, *pte_page;
1889
1890 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1891 if (!aperture)
1892 return NULL;
1893
1894 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1895 if (!pte) {
1896 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1897 GFP_ATOMIC);
1898 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1899 } else
1900 pte += PM_LEVEL_INDEX(0, address);
1901
1902 update_domain(&dom->domain);
1903
1904 return pte;
1905}
1906
1907/*
1908 * This is the generic map function. It maps one 4kb page at paddr to
1909 * the given address in the DMA address space for the domain.
1910 */
1911static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1912 unsigned long address,
1913 phys_addr_t paddr,
1914 int direction)
1915{
1916 u64 *pte, __pte;
1917
1918 WARN_ON(address > dom->aperture_size);
1919
1920 paddr &= PAGE_MASK;
1921
1922 pte = dma_ops_get_pte(dom, address);
1923 if (!pte)
1924 return DMA_ERROR_CODE;
1925
1926 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1927
1928 if (direction == DMA_TO_DEVICE)
1929 __pte |= IOMMU_PTE_IR;
1930 else if (direction == DMA_FROM_DEVICE)
1931 __pte |= IOMMU_PTE_IW;
1932 else if (direction == DMA_BIDIRECTIONAL)
1933 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1934
1935 WARN_ON(*pte);
1936
1937 *pte = __pte;
1938
1939 return (dma_addr_t)address;
1940}
1941
1942/*
1943 * The generic unmapping function for on page in the DMA address space.
1944 */
1945static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1946 unsigned long address)
1947{
1948 struct aperture_range *aperture;
1949 u64 *pte;
1950
1951 if (address >= dom->aperture_size)
1952 return;
1953
1954 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1955 if (!aperture)
1956 return;
1957
1958 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1959 if (!pte)
1960 return;
1961
1962 pte += PM_LEVEL_INDEX(0, address);
1963
1964 WARN_ON(!*pte);
1965
1966 *pte = 0ULL;
1967}
1968
1969/*
1970 * This function contains common code for mapping of a physically
1971 * contiguous memory region into DMA address space. It is used by all
1972 * mapping functions provided with this IOMMU driver.
1973 * Must be called with the domain lock held.
1974 */
1975static dma_addr_t __map_single(struct device *dev,
1976 struct dma_ops_domain *dma_dom,
1977 phys_addr_t paddr,
1978 size_t size,
1979 int dir,
1980 bool align,
1981 u64 dma_mask)
1982{
1983 dma_addr_t offset = paddr & ~PAGE_MASK;
1984 dma_addr_t address, start, ret;
1985 unsigned int pages;
1986 unsigned long align_mask = 0;
1987 int i;
1988
1989 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1990 paddr &= PAGE_MASK;
1991
1992 INC_STATS_COUNTER(total_map_requests);
1993
1994 if (pages > 1)
1995 INC_STATS_COUNTER(cross_page);
1996
1997 if (align)
1998 align_mask = (1UL << get_order(size)) - 1;
1999
2000retry:
2001 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2002 dma_mask);
2003 if (unlikely(address == DMA_ERROR_CODE)) {
2004 /*
2005 * setting next_address here will let the address
2006 * allocator only scan the new allocated range in the
2007 * first run. This is a small optimization.
2008 */
2009 dma_dom->next_address = dma_dom->aperture_size;
2010
2011 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2012 goto out;
2013
2014 /*
2015 * aperture was successfully enlarged by 128 MB, try
2016 * allocation again
2017 */
2018 goto retry;
2019 }
2020
2021 start = address;
2022 for (i = 0; i < pages; ++i) {
2023 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2024 if (ret == DMA_ERROR_CODE)
2025 goto out_unmap;
2026
2027 paddr += PAGE_SIZE;
2028 start += PAGE_SIZE;
2029 }
2030 address += offset;
2031
2032 ADD_STATS_COUNTER(alloced_io_mem, size);
2033
2034 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2035 domain_flush_tlb(&dma_dom->domain);
2036 dma_dom->need_flush = false;
2037 } else if (unlikely(amd_iommu_np_cache))
2038 domain_flush_pages(&dma_dom->domain, address, size);
2039
2040out:
2041 return address;
2042
2043out_unmap:
2044
2045 for (--i; i >= 0; --i) {
2046 start -= PAGE_SIZE;
2047 dma_ops_domain_unmap(dma_dom, start);
2048 }
2049
2050 dma_ops_free_addresses(dma_dom, address, pages);
2051
2052 return DMA_ERROR_CODE;
2053}
2054
2055/*
2056 * Does the reverse of the __map_single function. Must be called with
2057 * the domain lock held too
2058 */
2059static void __unmap_single(struct dma_ops_domain *dma_dom,
2060 dma_addr_t dma_addr,
2061 size_t size,
2062 int dir)
2063{
2064 dma_addr_t flush_addr;
2065 dma_addr_t i, start;
2066 unsigned int pages;
2067
2068 if ((dma_addr == DMA_ERROR_CODE) ||
2069 (dma_addr + size > dma_dom->aperture_size))
2070 return;
2071
2072 flush_addr = dma_addr;
2073 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2074 dma_addr &= PAGE_MASK;
2075 start = dma_addr;
2076
2077 for (i = 0; i < pages; ++i) {
2078 dma_ops_domain_unmap(dma_dom, start);
2079 start += PAGE_SIZE;
2080 }
2081
2082 SUB_STATS_COUNTER(alloced_io_mem, size);
2083
2084 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2085
2086 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2087 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2088 dma_dom->need_flush = false;
2089 }
2090}
2091
2092/*
2093 * The exported map_single function for dma_ops.
2094 */
2095static dma_addr_t map_page(struct device *dev, struct page *page,
2096 unsigned long offset, size_t size,
2097 enum dma_data_direction dir,
2098 struct dma_attrs *attrs)
2099{
2100 unsigned long flags;
2101 struct protection_domain *domain;
2102 dma_addr_t addr;
2103 u64 dma_mask;
2104 phys_addr_t paddr = page_to_phys(page) + offset;
2105
2106 INC_STATS_COUNTER(cnt_map_single);
2107
2108 domain = get_domain(dev);
2109 if (PTR_ERR(domain) == -EINVAL)
2110 return (dma_addr_t)paddr;
2111 else if (IS_ERR(domain))
2112 return DMA_ERROR_CODE;
2113
2114 dma_mask = *dev->dma_mask;
2115
2116 spin_lock_irqsave(&domain->lock, flags);
2117
2118 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2119 dma_mask);
2120 if (addr == DMA_ERROR_CODE)
2121 goto out;
2122
2123 domain_flush_complete(domain);
2124
2125out:
2126 spin_unlock_irqrestore(&domain->lock, flags);
2127
2128 return addr;
2129}
2130
2131/*
2132 * The exported unmap_single function for dma_ops.
2133 */
2134static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2135 enum dma_data_direction dir, struct dma_attrs *attrs)
2136{
2137 unsigned long flags;
2138 struct protection_domain *domain;
2139
2140 INC_STATS_COUNTER(cnt_unmap_single);
2141
2142 domain = get_domain(dev);
2143 if (IS_ERR(domain))
2144 return;
2145
2146 spin_lock_irqsave(&domain->lock, flags);
2147
2148 __unmap_single(domain->priv, dma_addr, size, dir);
2149
2150 domain_flush_complete(domain);
2151
2152 spin_unlock_irqrestore(&domain->lock, flags);
2153}
2154
2155/*
2156 * This is a special map_sg function which is used if we should map a
2157 * device which is not handled by an AMD IOMMU in the system.
2158 */
2159static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2160 int nelems, int dir)
2161{
2162 struct scatterlist *s;
2163 int i;
2164
2165 for_each_sg(sglist, s, nelems, i) {
2166 s->dma_address = (dma_addr_t)sg_phys(s);
2167 s->dma_length = s->length;
2168 }
2169
2170 return nelems;
2171}
2172
2173/*
2174 * The exported map_sg function for dma_ops (handles scatter-gather
2175 * lists).
2176 */
2177static int map_sg(struct device *dev, struct scatterlist *sglist,
2178 int nelems, enum dma_data_direction dir,
2179 struct dma_attrs *attrs)
2180{
2181 unsigned long flags;
2182 struct protection_domain *domain;
2183 int i;
2184 struct scatterlist *s;
2185 phys_addr_t paddr;
2186 int mapped_elems = 0;
2187 u64 dma_mask;
2188
2189 INC_STATS_COUNTER(cnt_map_sg);
2190
2191 domain = get_domain(dev);
2192 if (PTR_ERR(domain) == -EINVAL)
2193 return map_sg_no_iommu(dev, sglist, nelems, dir);
2194 else if (IS_ERR(domain))
2195 return 0;
2196
2197 dma_mask = *dev->dma_mask;
2198
2199 spin_lock_irqsave(&domain->lock, flags);
2200
2201 for_each_sg(sglist, s, nelems, i) {
2202 paddr = sg_phys(s);
2203
2204 s->dma_address = __map_single(dev, domain->priv,
2205 paddr, s->length, dir, false,
2206 dma_mask);
2207
2208 if (s->dma_address) {
2209 s->dma_length = s->length;
2210 mapped_elems++;
2211 } else
2212 goto unmap;
2213 }
2214
2215 domain_flush_complete(domain);
2216
2217out:
2218 spin_unlock_irqrestore(&domain->lock, flags);
2219
2220 return mapped_elems;
2221unmap:
2222 for_each_sg(sglist, s, mapped_elems, i) {
2223 if (s->dma_address)
2224 __unmap_single(domain->priv, s->dma_address,
2225 s->dma_length, dir);
2226 s->dma_address = s->dma_length = 0;
2227 }
2228
2229 mapped_elems = 0;
2230
2231 goto out;
2232}
2233
2234/*
2235 * The exported map_sg function for dma_ops (handles scatter-gather
2236 * lists).
2237 */
2238static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2239 int nelems, enum dma_data_direction dir,
2240 struct dma_attrs *attrs)
2241{
2242 unsigned long flags;
2243 struct protection_domain *domain;
2244 struct scatterlist *s;
2245 int i;
2246
2247 INC_STATS_COUNTER(cnt_unmap_sg);
2248
2249 domain = get_domain(dev);
2250 if (IS_ERR(domain))
2251 return;
2252
2253 spin_lock_irqsave(&domain->lock, flags);
2254
2255 for_each_sg(sglist, s, nelems, i) {
2256 __unmap_single(domain->priv, s->dma_address,
2257 s->dma_length, dir);
2258 s->dma_address = s->dma_length = 0;
2259 }
2260
2261 domain_flush_complete(domain);
2262
2263 spin_unlock_irqrestore(&domain->lock, flags);
2264}
2265
2266/*
2267 * The exported alloc_coherent function for dma_ops.
2268 */
2269static void *alloc_coherent(struct device *dev, size_t size,
2270 dma_addr_t *dma_addr, gfp_t flag)
2271{
2272 unsigned long flags;
2273 void *virt_addr;
2274 struct protection_domain *domain;
2275 phys_addr_t paddr;
2276 u64 dma_mask = dev->coherent_dma_mask;
2277
2278 INC_STATS_COUNTER(cnt_alloc_coherent);
2279
2280 domain = get_domain(dev);
2281 if (PTR_ERR(domain) == -EINVAL) {
2282 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2283 *dma_addr = __pa(virt_addr);
2284 return virt_addr;
2285 } else if (IS_ERR(domain))
2286 return NULL;
2287
2288 dma_mask = dev->coherent_dma_mask;
2289 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2290 flag |= __GFP_ZERO;
2291
2292 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2293 if (!virt_addr)
2294 return NULL;
2295
2296 paddr = virt_to_phys(virt_addr);
2297
2298 if (!dma_mask)
2299 dma_mask = *dev->dma_mask;
2300
2301 spin_lock_irqsave(&domain->lock, flags);
2302
2303 *dma_addr = __map_single(dev, domain->priv, paddr,
2304 size, DMA_BIDIRECTIONAL, true, dma_mask);
2305
2306 if (*dma_addr == DMA_ERROR_CODE) {
2307 spin_unlock_irqrestore(&domain->lock, flags);
2308 goto out_free;
2309 }
2310
2311 domain_flush_complete(domain);
2312
2313 spin_unlock_irqrestore(&domain->lock, flags);
2314
2315 return virt_addr;
2316
2317out_free:
2318
2319 free_pages((unsigned long)virt_addr, get_order(size));
2320
2321 return NULL;
2322}
2323
2324/*
2325 * The exported free_coherent function for dma_ops.
2326 */
2327static void free_coherent(struct device *dev, size_t size,
2328 void *virt_addr, dma_addr_t dma_addr)
2329{
2330 unsigned long flags;
2331 struct protection_domain *domain;
2332
2333 INC_STATS_COUNTER(cnt_free_coherent);
2334
2335 domain = get_domain(dev);
2336 if (IS_ERR(domain))
2337 goto free_mem;
2338
2339 spin_lock_irqsave(&domain->lock, flags);
2340
2341 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2342
2343 domain_flush_complete(domain);
2344
2345 spin_unlock_irqrestore(&domain->lock, flags);
2346
2347free_mem:
2348 free_pages((unsigned long)virt_addr, get_order(size));
2349}
2350
2351/*
2352 * This function is called by the DMA layer to find out if we can handle a
2353 * particular device. It is part of the dma_ops.
2354 */
2355static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2356{
2357 return check_device(dev);
2358}
2359
2360/*
2361 * The function for pre-allocating protection domains.
2362 *
2363 * If the driver core informs the DMA layer if a driver grabs a device
2364 * we don't need to preallocate the protection domains anymore.
2365 * For now we have to.
2366 */
2367static void prealloc_protection_domains(void)
2368{
2369 struct pci_dev *dev = NULL;
2370 struct dma_ops_domain *dma_dom;
2371 u16 devid;
2372
2373 for_each_pci_dev(dev) {
2374
2375 /* Do we handle this device? */
2376 if (!check_device(&dev->dev))
2377 continue;
2378
2379 /* Is there already any domain for it? */
2380 if (domain_for_device(&dev->dev))
2381 continue;
2382
2383 devid = get_device_id(&dev->dev);
2384
2385 dma_dom = dma_ops_domain_alloc();
2386 if (!dma_dom)
2387 continue;
2388 init_unity_mappings_for_device(dma_dom, devid);
2389 dma_dom->target_dev = devid;
2390
2391 attach_device(&dev->dev, &dma_dom->domain);
2392
2393 list_add_tail(&dma_dom->list, &iommu_pd_list);
2394 }
2395}
2396
2397static struct dma_map_ops amd_iommu_dma_ops = {
2398 .alloc_coherent = alloc_coherent,
2399 .free_coherent = free_coherent,
2400 .map_page = map_page,
2401 .unmap_page = unmap_page,
2402 .map_sg = map_sg,
2403 .unmap_sg = unmap_sg,
2404 .dma_supported = amd_iommu_dma_supported,
2405};
2406
2407static unsigned device_dma_ops_init(void)
2408{
2409 struct pci_dev *pdev = NULL;
2410 unsigned unhandled = 0;
2411
2412 for_each_pci_dev(pdev) {
2413 if (!check_device(&pdev->dev)) {
2414 unhandled += 1;
2415 continue;
2416 }
2417
2418 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2419 }
2420
2421 return unhandled;
2422}
2423
2424/*
2425 * The function which clues the AMD IOMMU driver into dma_ops.
2426 */
2427
2428void __init amd_iommu_init_api(void)
2429{
2430 register_iommu(&amd_iommu_ops);
2431}
2432
2433int __init amd_iommu_init_dma_ops(void)
2434{
2435 struct amd_iommu *iommu;
2436 int ret, unhandled;
2437
2438 /*
2439 * first allocate a default protection domain for every IOMMU we
2440 * found in the system. Devices not assigned to any other
2441 * protection domain will be assigned to the default one.
2442 */
2443 for_each_iommu(iommu) {
2444 iommu->default_dom = dma_ops_domain_alloc();
2445 if (iommu->default_dom == NULL)
2446 return -ENOMEM;
2447 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2448 ret = iommu_init_unity_mappings(iommu);
2449 if (ret)
2450 goto free_domains;
2451 }
2452
2453 /*
2454 * Pre-allocate the protection domains for each device.
2455 */
2456 prealloc_protection_domains();
2457
2458 iommu_detected = 1;
2459 swiotlb = 0;
2460
2461 /* Make the driver finally visible to the drivers */
2462 unhandled = device_dma_ops_init();
2463 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2464 /* There are unhandled devices - initialize swiotlb for them */
2465 swiotlb = 1;
2466 }
2467
2468 amd_iommu_stats_init();
2469
2470 return 0;
2471
2472free_domains:
2473
2474 for_each_iommu(iommu) {
2475 if (iommu->default_dom)
2476 dma_ops_domain_free(iommu->default_dom);
2477 }
2478
2479 return ret;
2480}
2481
2482/*****************************************************************************
2483 *
2484 * The following functions belong to the exported interface of AMD IOMMU
2485 *
2486 * This interface allows access to lower level functions of the IOMMU
2487 * like protection domain handling and assignement of devices to domains
2488 * which is not possible with the dma_ops interface.
2489 *
2490 *****************************************************************************/
2491
2492static void cleanup_domain(struct protection_domain *domain)
2493{
2494 struct iommu_dev_data *dev_data, *next;
2495 unsigned long flags;
2496
2497 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2498
2499 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2500 struct device *dev = dev_data->dev;
2501
2502 __detach_device(dev);
2503 atomic_set(&dev_data->bind, 0);
2504 }
2505
2506 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2507}
2508
2509static void protection_domain_free(struct protection_domain *domain)
2510{
2511 if (!domain)
2512 return;
2513
2514 del_domain_from_list(domain);
2515
2516 if (domain->id)
2517 domain_id_free(domain->id);
2518
2519 kfree(domain);
2520}
2521
2522static struct protection_domain *protection_domain_alloc(void)
2523{
2524 struct protection_domain *domain;
2525
2526 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2527 if (!domain)
2528 return NULL;
2529
2530 spin_lock_init(&domain->lock);
2531 mutex_init(&domain->api_lock);
2532 domain->id = domain_id_alloc();
2533 if (!domain->id)
2534 goto out_err;
2535 INIT_LIST_HEAD(&domain->dev_list);
2536
2537 add_domain_to_list(domain);
2538
2539 return domain;
2540
2541out_err:
2542 kfree(domain);
2543
2544 return NULL;
2545}
2546
2547static int amd_iommu_domain_init(struct iommu_domain *dom)
2548{
2549 struct protection_domain *domain;
2550
2551 domain = protection_domain_alloc();
2552 if (!domain)
2553 goto out_free;
2554
2555 domain->mode = PAGE_MODE_3_LEVEL;
2556 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2557 if (!domain->pt_root)
2558 goto out_free;
2559
2560 dom->priv = domain;
2561
2562 return 0;
2563
2564out_free:
2565 protection_domain_free(domain);
2566
2567 return -ENOMEM;
2568}
2569
2570static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2571{
2572 struct protection_domain *domain = dom->priv;
2573
2574 if (!domain)
2575 return;
2576
2577 if (domain->dev_cnt > 0)
2578 cleanup_domain(domain);
2579
2580 BUG_ON(domain->dev_cnt != 0);
2581
2582 free_pagetable(domain);
2583
2584 protection_domain_free(domain);
2585
2586 dom->priv = NULL;
2587}
2588
2589static void amd_iommu_detach_device(struct iommu_domain *dom,
2590 struct device *dev)
2591{
2592 struct iommu_dev_data *dev_data = dev->archdata.iommu;
2593 struct amd_iommu *iommu;
2594 u16 devid;
2595
2596 if (!check_device(dev))
2597 return;
2598
2599 devid = get_device_id(dev);
2600
2601 if (dev_data->domain != NULL)
2602 detach_device(dev);
2603
2604 iommu = amd_iommu_rlookup_table[devid];
2605 if (!iommu)
2606 return;
2607
2608 device_flush_dte(dev);
2609 iommu_completion_wait(iommu);
2610}
2611
2612static int amd_iommu_attach_device(struct iommu_domain *dom,
2613 struct device *dev)
2614{
2615 struct protection_domain *domain = dom->priv;
2616 struct iommu_dev_data *dev_data;
2617 struct amd_iommu *iommu;
2618 int ret;
2619 u16 devid;
2620
2621 if (!check_device(dev))
2622 return -EINVAL;
2623
2624 dev_data = dev->archdata.iommu;
2625
2626 devid = get_device_id(dev);
2627
2628 iommu = amd_iommu_rlookup_table[devid];
2629 if (!iommu)
2630 return -EINVAL;
2631
2632 if (dev_data->domain)
2633 detach_device(dev);
2634
2635 ret = attach_device(dev, domain);
2636
2637 iommu_completion_wait(iommu);
2638
2639 return ret;
2640}
2641
2642static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2643 phys_addr_t paddr, int gfp_order, int iommu_prot)
2644{
2645 unsigned long page_size = 0x1000UL << gfp_order;
2646 struct protection_domain *domain = dom->priv;
2647 int prot = 0;
2648 int ret;
2649
2650 if (iommu_prot & IOMMU_READ)
2651 prot |= IOMMU_PROT_IR;
2652 if (iommu_prot & IOMMU_WRITE)
2653 prot |= IOMMU_PROT_IW;
2654
2655 mutex_lock(&domain->api_lock);
2656 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2657 mutex_unlock(&domain->api_lock);
2658
2659 return ret;
2660}
2661
2662static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2663 int gfp_order)
2664{
2665 struct protection_domain *domain = dom->priv;
2666 unsigned long page_size, unmap_size;
2667
2668 page_size = 0x1000UL << gfp_order;
2669
2670 mutex_lock(&domain->api_lock);
2671 unmap_size = iommu_unmap_page(domain, iova, page_size);
2672 mutex_unlock(&domain->api_lock);
2673
2674 domain_flush_tlb_pde(domain);
2675
2676 return get_order(unmap_size);
2677}
2678
2679static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2680 unsigned long iova)
2681{
2682 struct protection_domain *domain = dom->priv;
2683 unsigned long offset_mask;
2684 phys_addr_t paddr;
2685 u64 *pte, __pte;
2686
2687 pte = fetch_pte(domain, iova);
2688
2689 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2690 return 0;
2691
2692 if (PM_PTE_LEVEL(*pte) == 0)
2693 offset_mask = PAGE_SIZE - 1;
2694 else
2695 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2696
2697 __pte = *pte & PM_ADDR_MASK;
2698 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2699
2700 return paddr;
2701}
2702
2703static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2704 unsigned long cap)
2705{
2706 switch (cap) {
2707 case IOMMU_CAP_CACHE_COHERENCY:
2708 return 1;
2709 }
2710
2711 return 0;
2712}
2713
2714static struct iommu_ops amd_iommu_ops = {
2715 .domain_init = amd_iommu_domain_init,
2716 .domain_destroy = amd_iommu_domain_destroy,
2717 .attach_dev = amd_iommu_attach_device,
2718 .detach_dev = amd_iommu_detach_device,
2719 .map = amd_iommu_map,
2720 .unmap = amd_iommu_unmap,
2721 .iova_to_phys = amd_iommu_iova_to_phys,
2722 .domain_has_cap = amd_iommu_domain_has_cap,
2723};
2724
2725/*****************************************************************************
2726 *
2727 * The next functions do a basic initialization of IOMMU for pass through
2728 * mode
2729 *
2730 * In passthrough mode the IOMMU is initialized and enabled but not used for
2731 * DMA-API translation.
2732 *
2733 *****************************************************************************/
2734
2735int __init amd_iommu_init_passthrough(void)
2736{
2737 struct amd_iommu *iommu;
2738 struct pci_dev *dev = NULL;
2739 u16 devid;
2740
2741 /* allocate passthrough domain */
2742 pt_domain = protection_domain_alloc();
2743 if (!pt_domain)
2744 return -ENOMEM;
2745
2746 pt_domain->mode |= PAGE_MODE_NONE;
2747
2748 for_each_pci_dev(dev) {
2749 if (!check_device(&dev->dev))
2750 continue;
2751
2752 devid = get_device_id(&dev->dev);
2753
2754 iommu = amd_iommu_rlookup_table[devid];
2755 if (!iommu)
2756 continue;
2757
2758 attach_device(&dev->dev, pt_domain);
2759 }
2760
2761 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2762
2763 return 0;
2764}