aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/infiniband/hw/ipath
diff options
context:
space:
mode:
authorMichael Albaugh <Michael.Albaugh@Qlogic.com>2008-04-17 00:09:31 -0400
committerRoland Dreier <rolandd@cisco.com>2008-04-17 00:09:31 -0400
commitab0fb2e0490e5e453a02ad72fd3529ce1561e1c6 (patch)
tree43055fea7a841d17723fba88da542048227e726f /drivers/infiniband/hw/ipath
parent843e6ab489cb5a2fd5df45bed1254812bc8ed8fa (diff)
IB/ipath: Support for SerDes portion of IBA7220
The control and initialization of the SerDes blocks of the IBA7220 is sufficiently complex to merit a separate file. Signed-off-by: Michael Albaugh <Michael.Albaugh@qlogic.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
Diffstat (limited to 'drivers/infiniband/hw/ipath')
-rw-r--r--drivers/infiniband/hw/ipath/ipath_sd7220.c1462
1 files changed, 1462 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/ipath/ipath_sd7220.c b/drivers/infiniband/hw/ipath/ipath_sd7220.c
new file mode 100644
index 000000000000..aa47eb549520
--- /dev/null
+++ b/drivers/infiniband/hw/ipath/ipath_sd7220.c
@@ -0,0 +1,1462 @@
1/*
2 * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved.
3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33/*
34 * This file contains all of the code that is specific to the SerDes
35 * on the InfiniPath 7220 chip.
36 */
37
38#include <linux/pci.h>
39#include <linux/delay.h>
40
41#include "ipath_kernel.h"
42#include "ipath_registers.h"
43#include "ipath_7220.h"
44
45/*
46 * The IBSerDesMappTable is a memory that holds values to be stored in
47 * various SerDes registers by IBC. It is not part of the normal kregs
48 * map and is used in exactly one place, hence the #define below.
49 */
50#define KR_IBSerDesMappTable (0x94000 / (sizeof(uint64_t)))
51
52/*
53 * Below used for sdnum parameter, selecting one of the two sections
54 * used for PCIe, or the single SerDes used for IB.
55 */
56#define PCIE_SERDES0 0
57#define PCIE_SERDES1 1
58
59/*
60 * The EPB requires addressing in a particular form. EPB_LOC() is intended
61 * to make #definitions a little more readable.
62 */
63#define EPB_ADDR_SHF 8
64#define EPB_LOC(chn, elt, reg) \
65 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
66 EPB_ADDR_SHF)
67#define EPB_IB_QUAD0_CS_SHF (25)
68#define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
69#define EPB_IB_UC_CS_SHF (26)
70#define EPB_PCIE_UC_CS_SHF (27)
71#define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
72
73/* Forward declarations. */
74static int ipath_sd7220_reg_mod(struct ipath_devdata *dd, int sdnum, u32 loc,
75 u32 data, u32 mask);
76static int ibsd_mod_allchnls(struct ipath_devdata *dd, int loc, int val,
77 int mask);
78static int ipath_sd_trimdone_poll(struct ipath_devdata *dd);
79static void ipath_sd_trimdone_monitor(struct ipath_devdata *dd,
80 const char *where);
81static int ipath_sd_setvals(struct ipath_devdata *dd);
82static int ipath_sd_early(struct ipath_devdata *dd);
83static int ipath_sd_dactrim(struct ipath_devdata *dd);
84/* Set the registers that IBC may muck with to their default "preset" values */
85int ipath_sd7220_presets(struct ipath_devdata *dd);
86static int ipath_internal_presets(struct ipath_devdata *dd);
87/* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
88static int ipath_sd_trimself(struct ipath_devdata *dd, int val);
89static int epb_access(struct ipath_devdata *dd, int sdnum, int claim);
90
91void ipath_set_relock_poll(struct ipath_devdata *dd, int ibup);
92
93/*
94 * Below keeps track of whether the "once per power-on" initialization has
95 * been done, because uC code Version 1.32.17 or higher allows the uC to
96 * be reset at will, and Automatic Equalization may require it. So the
97 * state of the reset "pin", as reflected in was_reset parameter to
98 * ipath_sd7220_init() is no longer valid. Instead, we check for the
99 * actual uC code having been loaded.
100 */
101static int ipath_ibsd_ucode_loaded(struct ipath_devdata *dd)
102{
103 if (!dd->serdes_first_init_done && (ipath_sd7220_ib_vfy(dd) > 0))
104 dd->serdes_first_init_done = 1;
105 return dd->serdes_first_init_done;
106}
107
108/* repeat #define for local use. "Real" #define is in ipath_iba7220.c */
109#define INFINIPATH_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
110#define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
111#define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
112#define UC_PAR_CLR_D 8
113#define UC_PAR_CLR_M 0xC
114#define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
115#define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
116
117void ipath_sd7220_clr_ibpar(struct ipath_devdata *dd)
118{
119 int ret;
120
121 /* clear, then re-enable parity errs */
122 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
123 UC_PAR_CLR_D, UC_PAR_CLR_M);
124 if (ret < 0) {
125 ipath_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
126 goto bail;
127 }
128 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
129 UC_PAR_CLR_M);
130
131 ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
132 udelay(4);
133 ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear,
134 INFINIPATH_HWE_IB_UC_MEMORYPARITYERR);
135 ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
136bail:
137 return;
138}
139
140/*
141 * After a reset or other unusual event, the epb interface may need
142 * to be re-synchronized, between the host and the uC.
143 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
144 */
145#define IBSD_RESYNC_TRIES 3
146#define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
147#define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
148
149static int ipath_resync_ibepb(struct ipath_devdata *dd)
150{
151 int ret, pat, tries, chn;
152 u32 loc;
153
154 ret = -1;
155 chn = 0;
156 for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
157 loc = IB_PGUDP(chn);
158 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
159 if (ret < 0) {
160 ipath_dev_err(dd, "Failed read in resync\n");
161 continue;
162 }
163 if (ret != 0xF0 && ret != 0x55 && tries == 0)
164 ipath_dev_err(dd, "unexpected pattern in resync\n");
165 pat = ret ^ 0xA5; /* alternate F0 and 55 */
166 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
167 if (ret < 0) {
168 ipath_dev_err(dd, "Failed write in resync\n");
169 continue;
170 }
171 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
172 if (ret < 0) {
173 ipath_dev_err(dd, "Failed re-read in resync\n");
174 continue;
175 }
176 if (ret != pat) {
177 ipath_dev_err(dd, "Failed compare1 in resync\n");
178 continue;
179 }
180 loc = IB_CMUDONE(chn);
181 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
182 if (ret < 0) {
183 ipath_dev_err(dd, "Failed CMUDONE rd in resync\n");
184 continue;
185 }
186 if ((ret & 0x70) != ((chn << 4) | 0x40)) {
187 ipath_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
188 ret, chn);
189 continue;
190 }
191 if (++chn == 4)
192 break; /* Success */
193 }
194 ipath_cdbg(VERBOSE, "Resync in %d tries\n", tries);
195 return (ret > 0) ? 0 : ret;
196}
197
198/*
199 * Localize the stuff that should be done to change IB uC reset
200 * returns <0 for errors.
201 */
202static int ipath_ibsd_reset(struct ipath_devdata *dd, int assert_rst)
203{
204 u64 rst_val;
205 int ret = 0;
206 unsigned long flags;
207
208 rst_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibserdesctrl);
209 if (assert_rst) {
210 /*
211 * Vendor recommends "interrupting" uC before reset, to
212 * minimize possible glitches.
213 */
214 spin_lock_irqsave(&dd->ipath_sdepb_lock, flags);
215 epb_access(dd, IB_7220_SERDES, 1);
216 rst_val |= 1ULL;
217 /* Squelch possible parity error from _asserting_ reset */
218 ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask,
219 dd->ipath_hwerrmask &
220 ~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR);
221 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, rst_val);
222 /* flush write, delay to ensure it took effect */
223 ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
224 udelay(2);
225 /* once it's reset, can remove interrupt */
226 epb_access(dd, IB_7220_SERDES, -1);
227 spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
228 } else {
229 /*
230 * Before we de-assert reset, we need to deal with
231 * possible glitch on the Parity-error line.
232 * Suppress it around the reset, both in chip-level
233 * hwerrmask and in IB uC control reg. uC will allow
234 * it again during startup.
235 */
236 u64 val;
237 rst_val &= ~(1ULL);
238 ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask,
239 dd->ipath_hwerrmask &
240 ~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR);
241
242 ret = ipath_resync_ibepb(dd);
243 if (ret < 0)
244 ipath_dev_err(dd, "unable to re-sync IB EPB\n");
245
246 /* set uC control regs to suppress parity errs */
247 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
248 if (ret < 0)
249 goto bail;
250 /* IB uC code past Version 1.32.17 allow suppression of wdog */
251 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
252 0x80);
253 if (ret < 0) {
254 ipath_dev_err(dd, "Failed to set WDOG disable\n");
255 goto bail;
256 }
257 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, rst_val);
258 /* flush write, delay for startup */
259 ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
260 udelay(1);
261 /* clear, then re-enable parity errs */
262 ipath_sd7220_clr_ibpar(dd);
263 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_hwerrstatus);
264 if (val & INFINIPATH_HWE_IB_UC_MEMORYPARITYERR) {
265 ipath_dev_err(dd, "IBUC Parity still set after RST\n");
266 dd->ipath_hwerrmask &=
267 ~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR;
268 }
269 ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask,
270 dd->ipath_hwerrmask);
271 }
272
273bail:
274 return ret;
275}
276
277static void ipath_sd_trimdone_monitor(struct ipath_devdata *dd,
278 const char *where)
279{
280 int ret, chn, baduns;
281 u64 val;
282
283 if (!where)
284 where = "?";
285
286 /* give time for reset to settle out in EPB */
287 udelay(2);
288
289 ret = ipath_resync_ibepb(dd);
290 if (ret < 0)
291 ipath_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
292
293 /* Do "sacrificial read" to get EPB in sane state after reset */
294 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
295 if (ret < 0)
296 ipath_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
297
298 /* Check/show "summary" Trim-done bit in IBCStatus */
299 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
300 if (val & (1ULL << 11))
301 ipath_cdbg(VERBOSE, "IBCS TRIMDONE set (%s)\n", where);
302 else
303 ipath_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
304
305 udelay(2);
306
307 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
308 if (ret < 0)
309 ipath_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
310 udelay(10);
311
312 baduns = 0;
313
314 for (chn = 3; chn >= 0; --chn) {
315 /* Read CTRL reg for each channel to check TRIMDONE */
316 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
317 IB_CTRL2(chn), 0, 0);
318 if (ret < 0)
319 ipath_dev_err(dd, "Failed checking TRIMDONE, chn %d"
320 " (%s)\n", chn, where);
321
322 if (!(ret & 0x10)) {
323 int probe;
324 baduns |= (1 << chn);
325 ipath_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)."
326 " (%s)\n", chn, ret, where);
327 probe = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
328 IB_PGUDP(0), 0, 0);
329 ipath_dev_err(dd, "probe is %d (%02X)\n",
330 probe, probe);
331 probe = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
332 IB_CTRL2(chn), 0, 0);
333 ipath_dev_err(dd, "re-read: %d (%02X)\n",
334 probe, probe);
335 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
336 IB_CTRL2(chn), 0x10, 0x10);
337 if (ret < 0)
338 ipath_dev_err(dd,
339 "Err on TRIMDONE rewrite1\n");
340 }
341 }
342 for (chn = 3; chn >= 0; --chn) {
343 /* Read CTRL reg for each channel to check TRIMDONE */
344 if (baduns & (1 << chn)) {
345 ipath_dev_err(dd,
346 "Reseting TRIMDONE on chn %d (%s)\n",
347 chn, where);
348 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
349 IB_CTRL2(chn), 0x10, 0x10);
350 if (ret < 0)
351 ipath_dev_err(dd, "Failed re-setting "
352 "TRIMDONE, chn %d (%s)\n",
353 chn, where);
354 }
355 }
356}
357
358/*
359 * Below is portion of IBA7220-specific bringup_serdes() that actually
360 * deals with registers and memory within the SerDes itself.
361 * Post IB uC code version 1.32.17, was_reset being 1 is not really
362 * informative, so we double-check.
363 */
364int ipath_sd7220_init(struct ipath_devdata *dd, int was_reset)
365{
366 int ret = 1; /* default to failure */
367 int first_reset;
368 int val_stat;
369
370 if (!was_reset) {
371 /* entered with reset not asserted, we need to do it */
372 ipath_ibsd_reset(dd, 1);
373 ipath_sd_trimdone_monitor(dd, "Driver-reload");
374 }
375
376 /* Substitute our deduced value for was_reset */
377 ret = ipath_ibsd_ucode_loaded(dd);
378 if (ret < 0) {
379 ret = 1;
380 goto done;
381 }
382 first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
383
384 /*
385 * Alter some regs per vendor latest doc, reset-defaults
386 * are not right for IB.
387 */
388 ret = ipath_sd_early(dd);
389 if (ret < 0) {
390 ipath_dev_err(dd, "Failed to set IB SERDES early defaults\n");
391 ret = 1;
392 goto done;
393 }
394
395 /*
396 * Set DAC manual trim IB.
397 * We only do this once after chip has been reset (usually
398 * same as once per system boot).
399 */
400 if (first_reset) {
401 ret = ipath_sd_dactrim(dd);
402 if (ret < 0) {
403 ipath_dev_err(dd, "Failed IB SERDES DAC trim\n");
404 ret = 1;
405 goto done;
406 }
407 }
408
409 /*
410 * Set various registers (DDS and RXEQ) that will be
411 * controlled by IBC (in 1.2 mode) to reasonable preset values
412 * Calling the "internal" version avoids the "check for needed"
413 * and "trimdone monitor" that might be counter-productive.
414 */
415 ret = ipath_internal_presets(dd);
416 if (ret < 0) {
417 ipath_dev_err(dd, "Failed to set IB SERDES presets\n");
418 ret = 1;
419 goto done;
420 }
421 ret = ipath_sd_trimself(dd, 0x80);
422 if (ret < 0) {
423 ipath_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
424 ret = 1;
425 goto done;
426 }
427
428 /* Load image, then try to verify */
429 ret = 0; /* Assume success */
430 if (first_reset) {
431 int vfy;
432 int trim_done;
433 ipath_dbg("SerDes uC was reset, reloading PRAM\n");
434 ret = ipath_sd7220_ib_load(dd);
435 if (ret < 0) {
436 ipath_dev_err(dd, "Failed to load IB SERDES image\n");
437 ret = 1;
438 goto done;
439 }
440
441 /* Loaded image, try to verify */
442 vfy = ipath_sd7220_ib_vfy(dd);
443 if (vfy != ret) {
444 ipath_dev_err(dd, "SERDES PRAM VFY failed\n");
445 ret = 1;
446 goto done;
447 }
448 /*
449 * Loaded and verified. Almost good...
450 * hold "success" in ret
451 */
452 ret = 0;
453
454 /*
455 * Prev steps all worked, continue bringup
456 * De-assert RESET to uC, only in first reset, to allow
457 * trimming.
458 *
459 * Since our default setup sets START_EQ1 to
460 * PRESET, we need to clear that for this very first run.
461 */
462 ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
463 if (ret < 0) {
464 ipath_dev_err(dd, "Failed clearing START_EQ1\n");
465 ret = 1;
466 goto done;
467 }
468
469 ipath_ibsd_reset(dd, 0);
470 /*
471 * If this is not the first reset, trimdone should be set
472 * already.
473 */
474 trim_done = ipath_sd_trimdone_poll(dd);
475 /*
476 * Whether or not trimdone succeeded, we need to put the
477 * uC back into reset to avoid a possible fight with the
478 * IBC state-machine.
479 */
480 ipath_ibsd_reset(dd, 1);
481
482 if (!trim_done) {
483 ipath_dev_err(dd, "No TRIMDONE seen\n");
484 ret = 1;
485 goto done;
486 }
487
488 ipath_sd_trimdone_monitor(dd, "First-reset");
489 /* Remember so we do not re-do the load, dactrim, etc. */
490 dd->serdes_first_init_done = 1;
491 }
492 /*
493 * Setup for channel training and load values for
494 * RxEq and DDS in tables used by IBC in IB1.2 mode
495 */
496
497 val_stat = ipath_sd_setvals(dd);
498 if (val_stat < 0)
499 ret = 1;
500done:
501 /* start relock timer regardless, but start at 1 second */
502 ipath_set_relock_poll(dd, -1);
503 return ret;
504}
505
506#define EPB_ACC_REQ 1
507#define EPB_ACC_GNT 0x100
508#define EPB_DATA_MASK 0xFF
509#define EPB_RD (1ULL << 24)
510#define EPB_TRANS_RDY (1ULL << 31)
511#define EPB_TRANS_ERR (1ULL << 30)
512#define EPB_TRANS_TRIES 5
513
514/*
515 * query, claim, release ownership of the EPB (External Parallel Bus)
516 * for a specified SERDES.
517 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
518 * Returns <0 for errors, >0 if we had ownership, else 0.
519 */
520static int epb_access(struct ipath_devdata *dd, int sdnum, int claim)
521{
522 u16 acc;
523 u64 accval;
524 int owned = 0;
525 u64 oct_sel = 0;
526
527 switch (sdnum) {
528 case IB_7220_SERDES :
529 /*
530 * The IB SERDES "ownership" is fairly simple. A single each
531 * request/grant.
532 */
533 acc = dd->ipath_kregs->kr_ib_epbacc;
534 break;
535 case PCIE_SERDES0 :
536 case PCIE_SERDES1 :
537 /* PCIe SERDES has two "octants", need to select which */
538 acc = dd->ipath_kregs->kr_pcie_epbacc;
539 oct_sel = (2 << (sdnum - PCIE_SERDES0));
540 break;
541 default :
542 return 0;
543 }
544
545 /* Make sure any outstanding transaction was seen */
546 ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
547 udelay(15);
548
549 accval = ipath_read_kreg32(dd, acc);
550
551 owned = !!(accval & EPB_ACC_GNT);
552 if (claim < 0) {
553 /* Need to release */
554 u64 pollval;
555 /*
556 * The only writeable bits are the request and CS.
557 * Both should be clear
558 */
559 u64 newval = 0;
560 ipath_write_kreg(dd, acc, newval);
561 /* First read after write is not trustworthy */
562 pollval = ipath_read_kreg32(dd, acc);
563 udelay(5);
564 pollval = ipath_read_kreg32(dd, acc);
565 if (pollval & EPB_ACC_GNT)
566 owned = -1;
567 } else if (claim > 0) {
568 /* Need to claim */
569 u64 pollval;
570 u64 newval = EPB_ACC_REQ | oct_sel;
571 ipath_write_kreg(dd, acc, newval);
572 /* First read after write is not trustworthy */
573 pollval = ipath_read_kreg32(dd, acc);
574 udelay(5);
575 pollval = ipath_read_kreg32(dd, acc);
576 if (!(pollval & EPB_ACC_GNT))
577 owned = -1;
578 }
579 return owned;
580}
581
582/*
583 * Lemma to deal with race condition of write..read to epb regs
584 */
585static int epb_trans(struct ipath_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
586{
587 int tries;
588 u64 transval;
589
590
591 ipath_write_kreg(dd, reg, i_val);
592 /* Throw away first read, as RDY bit may be stale */
593 transval = ipath_read_kreg64(dd, reg);
594
595 for (tries = EPB_TRANS_TRIES; tries; --tries) {
596 transval = ipath_read_kreg32(dd, reg);
597 if (transval & EPB_TRANS_RDY)
598 break;
599 udelay(5);
600 }
601 if (transval & EPB_TRANS_ERR)
602 return -1;
603 if (tries > 0 && o_vp)
604 *o_vp = transval;
605 return tries;
606}
607
608/**
609 *
610 * ipath_sd7220_reg_mod - modify SERDES register
611 * @dd: the infinipath device
612 * @sdnum: which SERDES to access
613 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
614 * @wd: Write Data - value to set in register
615 * @mask: ones where data should be spliced into reg.
616 *
617 * Basic register read/modify/write, with un-needed acesses elided. That is,
618 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
619 * returns current (presumed, if a write was done) contents of selected
620 * register, or <0 if errors.
621 */
622static int ipath_sd7220_reg_mod(struct ipath_devdata *dd, int sdnum, u32 loc,
623 u32 wd, u32 mask)
624{
625 u16 trans;
626 u64 transval;
627 int owned;
628 int tries, ret;
629 unsigned long flags;
630
631 switch (sdnum) {
632 case IB_7220_SERDES :
633 trans = dd->ipath_kregs->kr_ib_epbtrans;
634 break;
635 case PCIE_SERDES0 :
636 case PCIE_SERDES1 :
637 trans = dd->ipath_kregs->kr_pcie_epbtrans;
638 break;
639 default :
640 return -1;
641 }
642
643 /*
644 * All access is locked in software (vs other host threads) and
645 * hardware (vs uC access).
646 */
647 spin_lock_irqsave(&dd->ipath_sdepb_lock, flags);
648
649 owned = epb_access(dd, sdnum, 1);
650 if (owned < 0) {
651 spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
652 return -1;
653 }
654 ret = 0;
655 for (tries = EPB_TRANS_TRIES; tries; --tries) {
656 transval = ipath_read_kreg32(dd, trans);
657 if (transval & EPB_TRANS_RDY)
658 break;
659 udelay(5);
660 }
661
662 if (tries > 0) {
663 tries = 1; /* to make read-skip work */
664 if (mask != 0xFF) {
665 /*
666 * Not a pure write, so need to read.
667 * loc encodes chip-select as well as address
668 */
669 transval = loc | EPB_RD;
670 tries = epb_trans(dd, trans, transval, &transval);
671 }
672 if (tries > 0 && mask != 0) {
673 /*
674 * Not a pure read, so need to write.
675 */
676 wd = (wd & mask) | (transval & ~mask);
677 transval = loc | (wd & EPB_DATA_MASK);
678 tries = epb_trans(dd, trans, transval, &transval);
679 }
680 }
681 /* else, failed to see ready, what error-handling? */
682
683 /*
684 * Release bus. Failure is an error.
685 */
686 if (epb_access(dd, sdnum, -1) < 0)
687 ret = -1;
688 else
689 ret = transval & EPB_DATA_MASK;
690
691 spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
692 if (tries <= 0)
693 ret = -1;
694 return ret;
695}
696
697#define EPB_ROM_R (2)
698#define EPB_ROM_W (1)
699/*
700 * Below, all uC-related, use appropriate UC_CS, depending
701 * on which SerDes is used.
702 */
703#define EPB_UC_CTL EPB_LOC(6, 0, 0)
704#define EPB_MADDRL EPB_LOC(6, 0, 2)
705#define EPB_MADDRH EPB_LOC(6, 0, 3)
706#define EPB_ROMDATA EPB_LOC(6, 0, 4)
707#define EPB_RAMDATA EPB_LOC(6, 0, 5)
708
709/* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
710static int ipath_sd7220_ram_xfer(struct ipath_devdata *dd, int sdnum, u32 loc,
711 u8 *buf, int cnt, int rd_notwr)
712{
713 u16 trans;
714 u64 transval;
715 u64 csbit;
716 int owned;
717 int tries;
718 int sofar;
719 int addr;
720 int ret;
721 unsigned long flags;
722 const char *op;
723
724 /* Pick appropriate transaction reg and "Chip select" for this serdes */
725 switch (sdnum) {
726 case IB_7220_SERDES :
727 csbit = 1ULL << EPB_IB_UC_CS_SHF;
728 trans = dd->ipath_kregs->kr_ib_epbtrans;
729 break;
730 case PCIE_SERDES0 :
731 case PCIE_SERDES1 :
732 /* PCIe SERDES has uC "chip select" in different bit, too */
733 csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
734 trans = dd->ipath_kregs->kr_pcie_epbtrans;
735 break;
736 default :
737 return -1;
738 }
739
740 op = rd_notwr ? "Rd" : "Wr";
741 spin_lock_irqsave(&dd->ipath_sdepb_lock, flags);
742
743 owned = epb_access(dd, sdnum, 1);
744 if (owned < 0) {
745 spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
746 ipath_dbg("Could not get %s access to %s EPB: %X, loc %X\n",
747 op, (sdnum == IB_7220_SERDES) ? "IB" : "PCIe",
748 owned, loc);
749 return -1;
750 }
751
752 /*
753 * In future code, we may need to distinguish several address ranges,
754 * and select various memories based on this. For now, just trim
755 * "loc" (location including address and memory select) to
756 * "addr" (address within memory). we will only support PRAM
757 * The memory is 8KB.
758 */
759 addr = loc & 0x1FFF;
760 for (tries = EPB_TRANS_TRIES; tries; --tries) {
761 transval = ipath_read_kreg32(dd, trans);
762 if (transval & EPB_TRANS_RDY)
763 break;
764 udelay(5);
765 }
766
767 sofar = 0;
768 if (tries <= 0)
769 ipath_dbg("No initial RDY on EPB access request\n");
770 else {
771 /*
772 * Every "memory" access is doubly-indirect.
773 * We set two bytes of address, then read/write
774 * one or mores bytes of data.
775 */
776
777 /* First, we set control to "Read" or "Write" */
778 transval = csbit | EPB_UC_CTL |
779 (rd_notwr ? EPB_ROM_R : EPB_ROM_W);
780 tries = epb_trans(dd, trans, transval, &transval);
781 if (tries <= 0)
782 ipath_dbg("No EPB response to uC %s cmd\n", op);
783 while (tries > 0 && sofar < cnt) {
784 if (!sofar) {
785 /* Only set address at start of chunk */
786 int addrbyte = (addr + sofar) >> 8;
787 transval = csbit | EPB_MADDRH | addrbyte;
788 tries = epb_trans(dd, trans, transval,
789 &transval);
790 if (tries <= 0) {
791 ipath_dbg("No EPB response ADDRH\n");
792 break;
793 }
794 addrbyte = (addr + sofar) & 0xFF;
795 transval = csbit | EPB_MADDRL | addrbyte;
796 tries = epb_trans(dd, trans, transval,
797 &transval);
798 if (tries <= 0) {
799 ipath_dbg("No EPB response ADDRL\n");
800 break;
801 }
802 }
803
804 if (rd_notwr)
805 transval = csbit | EPB_ROMDATA | EPB_RD;
806 else
807 transval = csbit | EPB_ROMDATA | buf[sofar];
808 tries = epb_trans(dd, trans, transval, &transval);
809 if (tries <= 0) {
810 ipath_dbg("No EPB response DATA\n");
811 break;
812 }
813 if (rd_notwr)
814 buf[sofar] = transval & EPB_DATA_MASK;
815 ++sofar;
816 }
817 /* Finally, clear control-bit for Read or Write */
818 transval = csbit | EPB_UC_CTL;
819 tries = epb_trans(dd, trans, transval, &transval);
820 if (tries <= 0)
821 ipath_dbg("No EPB response to drop of uC %s cmd\n", op);
822 }
823
824 ret = sofar;
825 /* Release bus. Failure is an error */
826 if (epb_access(dd, sdnum, -1) < 0)
827 ret = -1;
828
829 spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags);
830 if (tries <= 0) {
831 ipath_dbg("SERDES PRAM %s failed after %d bytes\n", op, sofar);
832 ret = -1;
833 }
834 return ret;
835}
836
837#define PROG_CHUNK 64
838
839int ipath_sd7220_prog_ld(struct ipath_devdata *dd, int sdnum,
840 u8 *img, int len, int offset)
841{
842 int cnt, sofar, req;
843
844 sofar = 0;
845 while (sofar < len) {
846 req = len - sofar;
847 if (req > PROG_CHUNK)
848 req = PROG_CHUNK;
849 cnt = ipath_sd7220_ram_xfer(dd, sdnum, offset + sofar,
850 img + sofar, req, 0);
851 if (cnt < req) {
852 sofar = -1;
853 break;
854 }
855 sofar += req;
856 }
857 return sofar;
858}
859
860#define VFY_CHUNK 64
861#define SD_PRAM_ERROR_LIMIT 42
862
863int ipath_sd7220_prog_vfy(struct ipath_devdata *dd, int sdnum,
864 const u8 *img, int len, int offset)
865{
866 int cnt, sofar, req, idx, errors;
867 unsigned char readback[VFY_CHUNK];
868
869 errors = 0;
870 sofar = 0;
871 while (sofar < len) {
872 req = len - sofar;
873 if (req > VFY_CHUNK)
874 req = VFY_CHUNK;
875 cnt = ipath_sd7220_ram_xfer(dd, sdnum, sofar + offset,
876 readback, req, 1);
877 if (cnt < req) {
878 /* failed in read itself */
879 sofar = -1;
880 break;
881 }
882 for (idx = 0; idx < cnt; ++idx) {
883 if (readback[idx] != img[idx+sofar])
884 ++errors;
885 }
886 sofar += cnt;
887 }
888 return errors ? -errors : sofar;
889}
890
891/* IRQ not set up at this point in init, so we poll. */
892#define IB_SERDES_TRIM_DONE (1ULL << 11)
893#define TRIM_TMO (30)
894
895static int ipath_sd_trimdone_poll(struct ipath_devdata *dd)
896{
897 int trim_tmo, ret;
898 uint64_t val;
899
900 /*
901 * Default to failure, so IBC will not start
902 * without IB_SERDES_TRIM_DONE.
903 */
904 ret = 0;
905 for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
906 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
907 if (val & IB_SERDES_TRIM_DONE) {
908 ipath_cdbg(VERBOSE, "TRIMDONE after %d\n", trim_tmo);
909 ret = 1;
910 break;
911 }
912 msleep(10);
913 }
914 if (trim_tmo >= TRIM_TMO) {
915 ipath_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
916 ret = 0;
917 }
918 return ret;
919}
920
921#define TX_FAST_ELT (9)
922
923/*
924 * Set the "negotiation" values for SERDES. These are used by the IB1.2
925 * link negotiation. Macros below are attempt to keep the values a
926 * little more human-editable.
927 * First, values related to Drive De-emphasis Settings.
928 */
929
930#define NUM_DDS_REGS 6
931#define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
932
933#define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
934 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
935 (main_d << 3) | 4 | (ipre_d >> 2), \
936 (main_s << 3) | 4 | (ipre_s >> 2), \
937 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
938 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
939
940static struct dds_init {
941 uint8_t reg_vals[NUM_DDS_REGS];
942} dds_init_vals[] = {
943 /* DDR(FDR) SDR(HDR) */
944 /* Vendor recommends below for 3m cable */
945#define DDS_3M 0
946 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
947 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
948 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
949 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
950 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
951 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
952 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
953 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
954 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
955 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
956 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
957 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
958 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
959 /* Vendor recommends below for 1m cable */
960#define DDS_1M 13
961 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
962 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
963 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
964};
965
966/*
967 * Next, values related to Receive Equalization.
968 * In comments, FDR (Full) is IB DDR, HDR (Half) is IB SDR
969 */
970/* Hardware packs an element number and register address thus: */
971#define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
972#define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
973 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
974
975#define RXEQ_VAL_ALL(elt, adr, val) \
976 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
977
978#define RXEQ_SDR_DFELTH 0
979#define RXEQ_SDR_TLTH 0
980#define RXEQ_SDR_G1CNT_Z1CNT 0x11
981#define RXEQ_SDR_ZCNT 23
982
983static struct rxeq_init {
984 u16 rdesc; /* in form used in SerDesDDSRXEQ */
985 u8 rdata[4];
986} rxeq_init_vals[] = {
987 /* Set Rcv Eq. to Preset node */
988 RXEQ_VAL_ALL(7, 0x27, 0x10),
989 /* Set DFELTHFDR/HDR thresholds */
990 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR */
991 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
992 /* Set TLTHFDR/HDR theshold */
993 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR */
994 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR */
995 /* Set Preamp setting 2 (ZFR/ZCNT) */
996 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR */
997 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR */
998 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */
999 RXEQ_VAL(7, 0x1E, 0x10, 0x10, 0x10, 0x10), /* FDR */
1000 RXEQ_VAL(7, 0x1F, 0x10, 0x10, 0x10, 0x10), /* HDR */
1001 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1002 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1003 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1004};
1005
1006/* There are 17 values from vendor, but IBC only accesses the first 16 */
1007#define DDS_ROWS (16)
1008#define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1009
1010static int ipath_sd_setvals(struct ipath_devdata *dd)
1011{
1012 int idx, midx;
1013 int min_idx; /* Minimum index for this portion of table */
1014 uint32_t dds_reg_map;
1015 u64 __iomem *taddr, *iaddr;
1016 uint64_t data;
1017 uint64_t sdctl;
1018
1019 taddr = dd->ipath_kregbase + KR_IBSerDesMappTable;
1020 iaddr = dd->ipath_kregbase + dd->ipath_kregs->kr_ib_ddsrxeq;
1021
1022 /*
1023 * Init the DDS section of the table.
1024 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1025 * registers indicated in DDS_REG_MAP.
1026 */
1027 sdctl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibserdesctrl);
1028 sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1029 sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1030 ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, sdctl);
1031
1032 /*
1033 * Iterate down table within loop for each register to store.
1034 */
1035 dds_reg_map = DDS_REG_MAP;
1036 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1037 data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1038 writeq(data, iaddr + idx);
1039 mmiowb();
1040 ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
1041 dds_reg_map >>= 4;
1042 for (midx = 0; midx < DDS_ROWS; ++midx) {
1043 u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1044 data = dds_init_vals[midx].reg_vals[idx];
1045 writeq(data, daddr);
1046 mmiowb();
1047 ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
1048 } /* End inner for (vals for this reg, each row) */
1049 } /* end outer for (regs to be stored) */
1050
1051 /*
1052 * Init the RXEQ section of the table. As explained above the table
1053 * rxeq_init_vals[], this runs in a different order, as the pattern
1054 * of register references is more complex, but there are only
1055 * four "data" values per register.
1056 */
1057 min_idx = idx; /* RXEQ indices pick up where DDS left off */
1058 taddr += 0x100; /* RXEQ data is in second half of table */
1059 /* Iterate through RXEQ register addresses */
1060 for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1061 int didx; /* "destination" */
1062 int vidx;
1063
1064 /* didx is offset by min_idx to address RXEQ range of regs */
1065 didx = idx + min_idx;
1066 /* Store the next RXEQ register address */
1067 writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1068 mmiowb();
1069 ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
1070 /* Iterate through RXEQ values */
1071 for (vidx = 0; vidx < 4; vidx++) {
1072 data = rxeq_init_vals[idx].rdata[vidx];
1073 writeq(data, taddr + (vidx << 6) + idx);
1074 mmiowb();
1075 ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch);
1076 }
1077 } /* end outer for (Reg-writes for RXEQ) */
1078 return 0;
1079}
1080
1081#define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1082#define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1083#define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1084#define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1085#define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1086#define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1087
1088static int ibsd_sto_noisy(struct ipath_devdata *dd, int loc, int val, int mask)
1089{
1090 int ret = -1;
1091 int sloc; /* shifted loc, for messages */
1092
1093 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1094 sloc = loc >> EPB_ADDR_SHF;
1095
1096 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, mask);
1097 if (ret < 0)
1098 ipath_dev_err(dd, "Write failed: elt %d,"
1099 " addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
1100 (sloc & 0xF), (sloc >> 9) & 0x3f, (sloc >> 4) & 7,
1101 val & 0xFF, mask & 0xFF);
1102 return ret;
1103}
1104
1105/*
1106 * Repeat a "store" across all channels of the IB SerDes.
1107 * Although nominally it inherits the "read value" of the last
1108 * channel it modified, the only really useful return is <0 for
1109 * failure, >= 0 for success. The parameter 'loc' is assumed to
1110 * be the location for the channel-0 copy of the register to
1111 * be modified.
1112 */
1113static int ibsd_mod_allchnls(struct ipath_devdata *dd, int loc, int val,
1114 int mask)
1115{
1116 int ret = -1;
1117 int chnl;
1118
1119 if (loc & EPB_GLOBAL_WR) {
1120 /*
1121 * Our caller has assured us that we can set all four
1122 * channels at once. Trust that. If mask is not 0xFF,
1123 * we will read the _specified_ channel for our starting
1124 * value.
1125 */
1126 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1127 chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1128 if (mask != 0xFF) {
1129 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES,
1130 loc & ~EPB_GLOBAL_WR, 0, 0);
1131 if (ret < 0) {
1132 int sloc = loc >> EPB_ADDR_SHF;
1133 ipath_dev_err(dd, "pre-read failed: elt %d,"
1134 " addr 0x%X, chnl %d\n", (sloc & 0xF),
1135 (sloc >> 9) & 0x3f, chnl);
1136 return ret;
1137 }
1138 val = (ret & ~mask) | (val & mask);
1139 }
1140 loc &= ~(7 << (4+EPB_ADDR_SHF));
1141 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1142 if (ret < 0) {
1143 int sloc = loc >> EPB_ADDR_SHF;
1144 ipath_dev_err(dd, "Global WR failed: elt %d,"
1145 " addr 0x%X, val %02X\n",
1146 (sloc & 0xF), (sloc >> 9) & 0x3f, val);
1147 }
1148 return ret;
1149 }
1150 /* Clear "channel" and set CS so we can simply iterate */
1151 loc &= ~(7 << (4+EPB_ADDR_SHF));
1152 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1153 for (chnl = 0; chnl < 4; ++chnl) {
1154 int cloc;
1155 cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1156 ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1157 if (ret < 0) {
1158 int sloc = loc >> EPB_ADDR_SHF;
1159 ipath_dev_err(dd, "Write failed: elt %d,"
1160 " addr 0x%X, chnl %d, val 0x%02X,"
1161 " mask 0x%02X\n",
1162 (sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1163 val & 0xFF, mask & 0xFF);
1164 break;
1165 }
1166 }
1167 return ret;
1168}
1169
1170/*
1171 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1172 * values, as gotten from first row of init table.
1173 */
1174static int set_dds_vals(struct ipath_devdata *dd, struct dds_init *ddi)
1175{
1176 int ret;
1177 int idx, reg, data;
1178 uint32_t regmap;
1179
1180 regmap = DDS_REG_MAP;
1181 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1182 reg = (regmap & 0xF);
1183 regmap >>= 4;
1184 data = ddi->reg_vals[idx];
1185 /* Vendor says RMW not needed for these regs, use 0xFF mask */
1186 ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1187 if (ret < 0)
1188 break;
1189 }
1190 return ret;
1191}
1192
1193/*
1194 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1195 * values, as gotten from selected column of init table.
1196 */
1197static int set_rxeq_vals(struct ipath_devdata *dd, int vsel)
1198{
1199 int ret;
1200 int ridx;
1201 int cnt = ARRAY_SIZE(rxeq_init_vals);
1202
1203 for (ridx = 0; ridx < cnt; ++ridx) {
1204 int elt, reg, val, loc;
1205 elt = rxeq_init_vals[ridx].rdesc & 0xF;
1206 reg = rxeq_init_vals[ridx].rdesc >> 4;
1207 loc = EPB_LOC(0, elt, reg);
1208 val = rxeq_init_vals[ridx].rdata[vsel];
1209 /* mask of 0xFF, because hardware does full-byte store. */
1210 ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1211 if (ret < 0)
1212 break;
1213 }
1214 return ret;
1215}
1216
1217/*
1218 * Set the default values (row 0) for DDR Driver Demphasis.
1219 * we do this initially and whenever we turn off IB-1.2
1220 * The "default" values for Rx equalization are also stored to
1221 * SerDes registers. Formerly (and still default), we used set 2.
1222 * For experimenting with cables and link-partners, we allow changing
1223 * that via a module parameter.
1224 */
1225static unsigned ipath_rxeq_set = 2;
1226module_param_named(rxeq_default_set, ipath_rxeq_set, uint,
1227 S_IWUSR | S_IRUGO);
1228MODULE_PARM_DESC(rxeq_default_set,
1229 "Which set [0..3] of Rx Equalization values is default");
1230
1231static int ipath_internal_presets(struct ipath_devdata *dd)
1232{
1233 int ret = 0;
1234
1235 ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1236
1237 if (ret < 0)
1238 ipath_dev_err(dd, "Failed to set default DDS values\n");
1239 ret = set_rxeq_vals(dd, ipath_rxeq_set & 3);
1240 if (ret < 0)
1241 ipath_dev_err(dd, "Failed to set default RXEQ values\n");
1242 return ret;
1243}
1244
1245int ipath_sd7220_presets(struct ipath_devdata *dd)
1246{
1247 int ret = 0;
1248
1249 if (!dd->ipath_presets_needed)
1250 return ret;
1251 dd->ipath_presets_needed = 0;
1252 /* Assert uC reset, so we don't clash with it. */
1253 ipath_ibsd_reset(dd, 1);
1254 udelay(2);
1255 ipath_sd_trimdone_monitor(dd, "link-down");
1256
1257 ret = ipath_internal_presets(dd);
1258return ret;
1259}
1260
1261static int ipath_sd_trimself(struct ipath_devdata *dd, int val)
1262{
1263 return ibsd_sto_noisy(dd, CMUCTRL5, val, 0xFF);
1264}
1265
1266static int ipath_sd_early(struct ipath_devdata *dd)
1267{
1268 int ret = -1; /* Default failed */
1269 int chnl;
1270
1271 for (chnl = 0; chnl < 4; ++chnl) {
1272 ret = ibsd_sto_noisy(dd, RXHSCTRL0(chnl), 0xD4, 0xFF);
1273 if (ret < 0)
1274 goto bail;
1275 }
1276 for (chnl = 0; chnl < 4; ++chnl) {
1277 ret = ibsd_sto_noisy(dd, VCDL_DAC2(chnl), 0x2D, 0xFF);
1278 if (ret < 0)
1279 goto bail;
1280 }
1281 /* more fine-tuning of what will be default */
1282 for (chnl = 0; chnl < 4; ++chnl) {
1283 ret = ibsd_sto_noisy(dd, VCDL_CTRL2(chnl), 3, 0xF);
1284 if (ret < 0)
1285 goto bail;
1286 }
1287 for (chnl = 0; chnl < 4; ++chnl) {
1288 ret = ibsd_sto_noisy(dd, START_EQ1(chnl), 0x10, 0xFF);
1289 if (ret < 0)
1290 goto bail;
1291 }
1292 for (chnl = 0; chnl < 4; ++chnl) {
1293 ret = ibsd_sto_noisy(dd, START_EQ2(chnl), 0x30, 0xFF);
1294 if (ret < 0)
1295 goto bail;
1296 }
1297bail:
1298 return ret;
1299}
1300
1301#define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1302#define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1303#define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1304
1305static int ipath_sd_dactrim(struct ipath_devdata *dd)
1306{
1307 int ret = -1; /* Default failed */
1308 int chnl;
1309
1310 for (chnl = 0; chnl < 4; ++chnl) {
1311 ret = ibsd_sto_noisy(dd, BACTRL(chnl), 0x40, 0xFF);
1312 if (ret < 0)
1313 goto bail;
1314 }
1315 for (chnl = 0; chnl < 4; ++chnl) {
1316 ret = ibsd_sto_noisy(dd, LDOUTCTRL1(chnl), 0x04, 0xFF);
1317 if (ret < 0)
1318 goto bail;
1319 }
1320 for (chnl = 0; chnl < 4; ++chnl) {
1321 ret = ibsd_sto_noisy(dd, RXHSSTATUS(chnl), 0x04, 0xFF);
1322 if (ret < 0)
1323 goto bail;
1324 }
1325 /*
1326 * delay for max possible number of steps, with slop.
1327 * Each step is about 4usec.
1328 */
1329 udelay(415);
1330 for (chnl = 0; chnl < 4; ++chnl) {
1331 ret = ibsd_sto_noisy(dd, LDOUTCTRL1(chnl), 0x00, 0xFF);
1332 if (ret < 0)
1333 goto bail;
1334 }
1335bail:
1336 return ret;
1337}
1338
1339#define RELOCK_FIRST_MS 3
1340#define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1341void ipath_toggle_rclkrls(struct ipath_devdata *dd)
1342{
1343 int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1344 int ret;
1345
1346 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1347 if (ret < 0)
1348 ipath_dev_err(dd, "RCLKRLS failed to clear D7\n");
1349 else {
1350 udelay(1);
1351 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1352 }
1353 /* And again for good measure */
1354 udelay(1);
1355 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1356 if (ret < 0)
1357 ipath_dev_err(dd, "RCLKRLS failed to clear D7\n");
1358 else {
1359 udelay(1);
1360 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1361 }
1362 /* Now reset xgxs and IBC to complete the recovery */
1363 dd->ipath_f_xgxs_reset(dd);
1364}
1365
1366/*
1367 * Shut down the timer that polls for relock occasions, if needed
1368 * this is "hooked" from ipath_7220_quiet_serdes(), which is called
1369 * just before ipath_shutdown_device() in ipath_driver.c shuts down all
1370 * the other timers
1371 */
1372void ipath_shutdown_relock_poll(struct ipath_devdata *dd)
1373{
1374 struct ipath_relock *irp = &dd->ipath_relock_singleton;
1375 if (atomic_read(&irp->ipath_relock_timer_active)) {
1376 del_timer_sync(&irp->ipath_relock_timer);
1377 atomic_set(&irp->ipath_relock_timer_active, 0);
1378 }
1379}
1380
1381static unsigned ipath_relock_by_timer = 1;
1382module_param_named(relock_by_timer, ipath_relock_by_timer, uint,
1383 S_IWUSR | S_IRUGO);
1384MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1385
1386static void ipath_run_relock(unsigned long opaque)
1387{
1388 struct ipath_devdata *dd = (struct ipath_devdata *)opaque;
1389 struct ipath_relock *irp = &dd->ipath_relock_singleton;
1390 u64 val, ltstate;
1391
1392 if (!(dd->ipath_flags & IPATH_INITTED)) {
1393 /* Not yet up, just reenable the timer for later */
1394 irp->ipath_relock_interval = HZ;
1395 mod_timer(&irp->ipath_relock_timer, jiffies + HZ);
1396 return;
1397 }
1398
1399 /*
1400 * Check link-training state for "stuck" state.
1401 * if found, try relock and schedule another try at
1402 * exponentially growing delay, maxed at one second.
1403 * if not stuck, our work is done.
1404 */
1405 val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus);
1406 ltstate = ipath_ib_linktrstate(dd, val);
1407
1408 if (ltstate <= INFINIPATH_IBCS_LT_STATE_CFGWAITRMT
1409 && ltstate != INFINIPATH_IBCS_LT_STATE_LINKUP) {
1410 int timeoff;
1411 /* Not up yet. Try again, if allowed by module-param */
1412 if (ipath_relock_by_timer) {
1413 if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG)
1414 ipath_cdbg(VERBOSE, "Skip RELOCK in AUTONEG\n");
1415 else if (!(dd->ipath_flags & IPATH_IB_LINK_DISABLED)) {
1416 ipath_cdbg(VERBOSE, "RELOCK\n");
1417 ipath_toggle_rclkrls(dd);
1418 }
1419 }
1420 /* re-set timer for next check */
1421 timeoff = irp->ipath_relock_interval << 1;
1422 if (timeoff > HZ)
1423 timeoff = HZ;
1424 irp->ipath_relock_interval = timeoff;
1425
1426 mod_timer(&irp->ipath_relock_timer, jiffies + timeoff);
1427 } else {
1428 /* Up, so no more need to check so often */
1429 mod_timer(&irp->ipath_relock_timer, jiffies + HZ);
1430 }
1431}
1432
1433void ipath_set_relock_poll(struct ipath_devdata *dd, int ibup)
1434{
1435 struct ipath_relock *irp = &dd->ipath_relock_singleton;
1436
1437 if (ibup > 0) {
1438 /* we are now up, so relax timer to 1 second interval */
1439 if (atomic_read(&irp->ipath_relock_timer_active))
1440 mod_timer(&irp->ipath_relock_timer, jiffies + HZ);
1441 } else {
1442 /* Transition to down, (re-)set timer to short interval. */
1443 int timeout;
1444 timeout = (HZ * ((ibup == -1) ? 1000 : RELOCK_FIRST_MS))/1000;
1445 if (timeout == 0)
1446 timeout = 1;
1447 /* If timer has not yet been started, do so. */
1448 if (atomic_inc_return(&irp->ipath_relock_timer_active) == 1) {
1449 init_timer(&irp->ipath_relock_timer);
1450 irp->ipath_relock_timer.function = ipath_run_relock;
1451 irp->ipath_relock_timer.data = (unsigned long) dd;
1452 irp->ipath_relock_interval = timeout;
1453 irp->ipath_relock_timer.expires = jiffies + timeout;
1454 add_timer(&irp->ipath_relock_timer);
1455 } else {
1456 irp->ipath_relock_interval = timeout;
1457 mod_timer(&irp->ipath_relock_timer, jiffies + timeout);
1458 atomic_dec(&irp->ipath_relock_timer_active);
1459 }
1460 }
1461}
1462