aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/infiniband/hw/ipath/ipath_stats.c
diff options
context:
space:
mode:
authorBryan O'Sullivan <bos@pathscale.com>2006-03-29 18:23:29 -0500
committerRoland Dreier <rolandd@cisco.com>2006-03-31 16:14:19 -0500
commit108ecf0d90655055d5a7db8d3a7239133b4d52b7 (patch)
tree95e3a20828478e7e66f1aa7e88e3b5cf17b93dfe /drivers/infiniband/hw/ipath/ipath_stats.c
parent097709fea03140b567bde8369f3ffafe33dfc1c6 (diff)
IB/ipath: misc driver support code
EEPROM support, interrupt handling, statistics gathering, and write combining management for x86_64. A note regarding i2c: The Atmel EEPROM hardware we use looks like an i2c device electrically, but is not i2c compliant at all from a functional perspective. We tried using the kernel's i2c support to talk to it, but failed. Normal i2c devices have a single 7-bit or 10-bit i2c address that they respond to. Valid 7-bit addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78 to 0x7F are special reserved addresses (e.g. 0x00 is the "general call" address.) The Atmel device, on the other hand, responds to ALL addresses. It's designed to be the only device on a given i2c bus. A given i2c device address corresponds to the memory address within the i2c device itself. At least one reason why the linux core i2c stuff won't work for this is that it prohibits access to reserved addresses like 0x00, which are really valid addresses on the Atmel devices. Signed-off-by: Bryan O'Sullivan <bos@pathscale.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
Diffstat (limited to 'drivers/infiniband/hw/ipath/ipath_stats.c')
-rw-r--r--drivers/infiniband/hw/ipath/ipath_stats.c303
1 files changed, 303 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/ipath/ipath_stats.c b/drivers/infiniband/hw/ipath/ipath_stats.c
new file mode 100644
index 000000000000..fe209137ee74
--- /dev/null
+++ b/drivers/infiniband/hw/ipath/ipath_stats.c
@@ -0,0 +1,303 @@
1/*
2 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33#include <linux/pci.h>
34
35#include "ipath_kernel.h"
36
37struct infinipath_stats ipath_stats;
38
39/**
40 * ipath_snap_cntr - snapshot a chip counter
41 * @dd: the infinipath device
42 * @creg: the counter to snapshot
43 *
44 * called from add_timer and user counter read calls, to deal with
45 * counters that wrap in "human time". The words sent and received, and
46 * the packets sent and received are all that we worry about. For now,
47 * at least, we don't worry about error counters, because if they wrap
48 * that quickly, we probably don't care. We may eventually just make this
49 * handle all the counters. word counters can wrap in about 20 seconds
50 * of full bandwidth traffic, packet counters in a few hours.
51 */
52
53u64 ipath_snap_cntr(struct ipath_devdata *dd, ipath_creg creg)
54{
55 u32 val, reg64 = 0;
56 u64 val64;
57 unsigned long t0, t1;
58 u64 ret;
59
60 t0 = jiffies;
61 /* If fast increment counters are only 32 bits, snapshot them,
62 * and maintain them as 64bit values in the driver */
63 if (!(dd->ipath_flags & IPATH_32BITCOUNTERS) &&
64 (creg == dd->ipath_cregs->cr_wordsendcnt ||
65 creg == dd->ipath_cregs->cr_wordrcvcnt ||
66 creg == dd->ipath_cregs->cr_pktsendcnt ||
67 creg == dd->ipath_cregs->cr_pktrcvcnt)) {
68 val64 = ipath_read_creg(dd, creg);
69 val = val64 == ~0ULL ? ~0U : 0;
70 reg64 = 1;
71 } else /* val64 just to keep gcc quiet... */
72 val64 = val = ipath_read_creg32(dd, creg);
73 /*
74 * See if a second has passed. This is just a way to detect things
75 * that are quite broken. Normally this should take just a few
76 * cycles (the check is for long enough that we don't care if we get
77 * pre-empted.) An Opteron HT O read timeout is 4 seconds with
78 * normal NB values
79 */
80 t1 = jiffies;
81 if (time_before(t0 + HZ, t1) && val == -1) {
82 ipath_dev_err(dd, "Error! Read counter 0x%x timed out\n",
83 creg);
84 ret = 0ULL;
85 goto bail;
86 }
87 if (reg64) {
88 ret = val64;
89 goto bail;
90 }
91
92 if (creg == dd->ipath_cregs->cr_wordsendcnt) {
93 if (val != dd->ipath_lastsword) {
94 dd->ipath_sword += val - dd->ipath_lastsword;
95 dd->ipath_lastsword = val;
96 }
97 val64 = dd->ipath_sword;
98 } else if (creg == dd->ipath_cregs->cr_wordrcvcnt) {
99 if (val != dd->ipath_lastrword) {
100 dd->ipath_rword += val - dd->ipath_lastrword;
101 dd->ipath_lastrword = val;
102 }
103 val64 = dd->ipath_rword;
104 } else if (creg == dd->ipath_cregs->cr_pktsendcnt) {
105 if (val != dd->ipath_lastspkts) {
106 dd->ipath_spkts += val - dd->ipath_lastspkts;
107 dd->ipath_lastspkts = val;
108 }
109 val64 = dd->ipath_spkts;
110 } else if (creg == dd->ipath_cregs->cr_pktrcvcnt) {
111 if (val != dd->ipath_lastrpkts) {
112 dd->ipath_rpkts += val - dd->ipath_lastrpkts;
113 dd->ipath_lastrpkts = val;
114 }
115 val64 = dd->ipath_rpkts;
116 } else
117 val64 = (u64) val;
118
119 ret = val64;
120
121bail:
122 return ret;
123}
124
125/**
126 * ipath_qcheck - print delta of egrfull/hdrqfull errors for kernel ports
127 * @dd: the infinipath device
128 *
129 * print the delta of egrfull/hdrqfull errors for kernel ports no more than
130 * every 5 seconds. User processes are printed at close, but kernel doesn't
131 * close, so... Separate routine so may call from other places someday, and
132 * so function name when printed by _IPATH_INFO is meaningfull
133 */
134static void ipath_qcheck(struct ipath_devdata *dd)
135{
136 static u64 last_tot_hdrqfull;
137 size_t blen = 0;
138 char buf[128];
139
140 *buf = 0;
141 if (dd->ipath_pd[0]->port_hdrqfull != dd->ipath_p0_hdrqfull) {
142 blen = snprintf(buf, sizeof buf, "port 0 hdrqfull %u",
143 dd->ipath_pd[0]->port_hdrqfull -
144 dd->ipath_p0_hdrqfull);
145 dd->ipath_p0_hdrqfull = dd->ipath_pd[0]->port_hdrqfull;
146 }
147 if (ipath_stats.sps_etidfull != dd->ipath_last_tidfull) {
148 blen += snprintf(buf + blen, sizeof buf - blen,
149 "%srcvegrfull %llu",
150 blen ? ", " : "",
151 (unsigned long long)
152 (ipath_stats.sps_etidfull -
153 dd->ipath_last_tidfull));
154 dd->ipath_last_tidfull = ipath_stats.sps_etidfull;
155 }
156
157 /*
158 * this is actually the number of hdrq full interrupts, not actual
159 * events, but at the moment that's mostly what I'm interested in.
160 * Actual count, etc. is in the counters, if needed. For production
161 * users this won't ordinarily be printed.
162 */
163
164 if ((ipath_debug & (__IPATH_PKTDBG | __IPATH_DBG)) &&
165 ipath_stats.sps_hdrqfull != last_tot_hdrqfull) {
166 blen += snprintf(buf + blen, sizeof buf - blen,
167 "%shdrqfull %llu (all ports)",
168 blen ? ", " : "",
169 (unsigned long long)
170 (ipath_stats.sps_hdrqfull -
171 last_tot_hdrqfull));
172 last_tot_hdrqfull = ipath_stats.sps_hdrqfull;
173 }
174 if (blen)
175 ipath_dbg("%s\n", buf);
176
177 if (dd->ipath_port0head != (u32)
178 le64_to_cpu(*dd->ipath_hdrqtailptr)) {
179 if (dd->ipath_lastport0rcv_cnt ==
180 ipath_stats.sps_port0pkts) {
181 ipath_cdbg(PKT, "missing rcv interrupts? "
182 "port0 hd=%llx tl=%x; port0pkts %llx\n",
183 (unsigned long long)
184 le64_to_cpu(*dd->ipath_hdrqtailptr),
185 dd->ipath_port0head,
186 (unsigned long long)
187 ipath_stats.sps_port0pkts);
188 ipath_kreceive(dd);
189 }
190 dd->ipath_lastport0rcv_cnt = ipath_stats.sps_port0pkts;
191 }
192}
193
194/**
195 * ipath_get_faststats - get word counters from chip before they overflow
196 * @opaque - contains a pointer to the infinipath device ipath_devdata
197 *
198 * called from add_timer
199 */
200void ipath_get_faststats(unsigned long opaque)
201{
202 struct ipath_devdata *dd = (struct ipath_devdata *) opaque;
203 u32 val;
204 static unsigned cnt;
205
206 /*
207 * don't access the chip while running diags, or memory diags can
208 * fail
209 */
210 if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT) ||
211 ipath_diag_inuse)
212 /* but re-arm the timer, for diags case; won't hurt other */
213 goto done;
214
215 if (dd->ipath_flags & IPATH_32BITCOUNTERS) {
216 ipath_snap_cntr(dd, dd->ipath_cregs->cr_wordsendcnt);
217 ipath_snap_cntr(dd, dd->ipath_cregs->cr_wordrcvcnt);
218 ipath_snap_cntr(dd, dd->ipath_cregs->cr_pktsendcnt);
219 ipath_snap_cntr(dd, dd->ipath_cregs->cr_pktrcvcnt);
220 }
221
222 ipath_qcheck(dd);
223
224 /*
225 * deal with repeat error suppression. Doesn't really matter if
226 * last error was almost a full interval ago, or just a few usecs
227 * ago; still won't get more than 2 per interval. We may want
228 * longer intervals for this eventually, could do with mod, counter
229 * or separate timer. Also see code in ipath_handle_errors() and
230 * ipath_handle_hwerrors().
231 */
232
233 if (dd->ipath_lasterror)
234 dd->ipath_lasterror = 0;
235 if (dd->ipath_lasthwerror)
236 dd->ipath_lasthwerror = 0;
237 if ((dd->ipath_maskederrs & ~dd->ipath_ignorederrs)
238 && time_after(jiffies, dd->ipath_unmasktime)) {
239 char ebuf[256];
240 ipath_decode_err(ebuf, sizeof ebuf,
241 (dd->ipath_maskederrs & ~dd->
242 ipath_ignorederrs));
243 if ((dd->ipath_maskederrs & ~dd->ipath_ignorederrs) &
244 ~(INFINIPATH_E_RRCVEGRFULL | INFINIPATH_E_RRCVHDRFULL))
245 ipath_dev_err(dd, "Re-enabling masked errors "
246 "(%s)\n", ebuf);
247 else {
248 /*
249 * rcvegrfull and rcvhdrqfull are "normal", for some
250 * types of processes (mostly benchmarks) that send
251 * huge numbers of messages, while not processing
252 * them. So only complain about these at debug
253 * level.
254 */
255 ipath_dbg("Disabling frequent queue full errors "
256 "(%s)\n", ebuf);
257 }
258 dd->ipath_maskederrs = dd->ipath_ignorederrs;
259 ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask,
260 ~dd->ipath_maskederrs);
261 }
262
263 /* limit qfull messages to ~one per minute per port */
264 if ((++cnt & 0x10)) {
265 for (val = dd->ipath_cfgports - 1; ((int)val) >= 0;
266 val--) {
267 if (dd->ipath_lastegrheads[val] != -1)
268 dd->ipath_lastegrheads[val] = -1;
269 if (dd->ipath_lastrcvhdrqtails[val] != -1)
270 dd->ipath_lastrcvhdrqtails[val] = -1;
271 }
272 }
273
274 if (dd->ipath_nosma_bufs) {
275 dd->ipath_nosma_secs += 5;
276 if (dd->ipath_nosma_secs >= 30) {
277 ipath_cdbg(SMA, "No SMA bufs avail %u seconds; "
278 "cancelling pending sends\n",
279 dd->ipath_nosma_secs);
280 /*
281 * issue an abort as well, in case we have a packet
282 * stuck in launch fifo. This could corrupt an
283 * outgoing user packet in the worst case,
284 * but this is a pretty catastrophic, anyway.
285 */
286 ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl,
287 INFINIPATH_S_ABORT);
288 ipath_disarm_piobufs(dd, dd->ipath_lastport_piobuf,
289 dd->ipath_piobcnt2k +
290 dd->ipath_piobcnt4k -
291 dd->ipath_lastport_piobuf);
292 /* start again, if necessary */
293 dd->ipath_nosma_secs = 0;
294 } else
295 ipath_cdbg(SMA, "No SMA bufs avail %u tries, "
296 "after %u seconds\n",
297 dd->ipath_nosma_bufs,
298 dd->ipath_nosma_secs);
299 }
300
301done:
302 mod_timer(&dd->ipath_stats_timer, jiffies + HZ * 5);
303}