aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/i2c/chips
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-01-06 03:53:05 -0500
committerIngo Molnar <mingo@elte.hu>2009-01-06 03:53:05 -0500
commit3d7a96f5a485b7d06c2379f343d7312af89ec9e2 (patch)
tree5f097f68eb0f9fd3fa4a10f38672e300e9127b10 /drivers/i2c/chips
parent723cbe0775514853c22dc45005af59c360916af1 (diff)
parent238c6d54830c624f34ac9cf123ac04aebfca5013 (diff)
Merge branch 'linus' into tracing/kmemtrace2
Diffstat (limited to 'drivers/i2c/chips')
-rw-r--r--drivers/i2c/chips/Kconfig23
-rw-r--r--drivers/i2c/chips/Makefile2
-rw-r--r--drivers/i2c/chips/menelaus.c1285
-rw-r--r--drivers/i2c/chips/tps65010.c1072
4 files changed, 0 insertions, 2382 deletions
diff --git a/drivers/i2c/chips/Kconfig b/drivers/i2c/chips/Kconfig
index 4c35702830ce..864ac561fdbb 100644
--- a/drivers/i2c/chips/Kconfig
+++ b/drivers/i2c/chips/Kconfig
@@ -126,19 +126,6 @@ config ISP1301_OMAP
126 This driver can also be built as a module. If so, the module 126 This driver can also be built as a module. If so, the module
127 will be called isp1301_omap. 127 will be called isp1301_omap.
128 128
129config TPS65010
130 tristate "TPS6501x Power Management chips"
131 depends on GPIOLIB
132 default y if MACH_OMAP_H2 || MACH_OMAP_H3 || MACH_OMAP_OSK
133 help
134 If you say yes here you get support for the TPS6501x series of
135 Power Management chips. These include voltage regulators,
136 lithium ion/polymer battery charging, and other features that
137 are often used in portable devices like cell phones and cameras.
138
139 This driver can also be built as a module. If so, the module
140 will be called tps65010.
141
142config SENSORS_MAX6875 129config SENSORS_MAX6875
143 tristate "Maxim MAX6875 Power supply supervisor" 130 tristate "Maxim MAX6875 Power supply supervisor"
144 depends on EXPERIMENTAL 131 depends on EXPERIMENTAL
@@ -164,16 +151,6 @@ config SENSORS_TSL2550
164 This driver can also be built as a module. If so, the module 151 This driver can also be built as a module. If so, the module
165 will be called tsl2550. 152 will be called tsl2550.
166 153
167config MENELAUS
168 bool "TWL92330/Menelaus PM chip"
169 depends on I2C=y && ARCH_OMAP24XX
170 help
171 If you say yes here you get support for the Texas Instruments
172 TWL92330/Menelaus Power Management chip. This include voltage
173 regulators, Dual slot memory card tranceivers, real-time clock
174 and other features that are often used in portable devices like
175 cell phones and PDAs.
176
177config MCU_MPC8349EMITX 154config MCU_MPC8349EMITX
178 tristate "MPC8349E-mITX MCU driver" 155 tristate "MPC8349E-mITX MCU driver"
179 depends on I2C && PPC_83xx 156 depends on I2C && PPC_83xx
diff --git a/drivers/i2c/chips/Makefile b/drivers/i2c/chips/Makefile
index 23d2a31b0a64..8b95f41a5001 100644
--- a/drivers/i2c/chips/Makefile
+++ b/drivers/i2c/chips/Makefile
@@ -19,8 +19,6 @@ obj-$(CONFIG_SENSORS_PCF8574) += pcf8574.o
19obj-$(CONFIG_PCF8575) += pcf8575.o 19obj-$(CONFIG_PCF8575) += pcf8575.o
20obj-$(CONFIG_SENSORS_PCF8591) += pcf8591.o 20obj-$(CONFIG_SENSORS_PCF8591) += pcf8591.o
21obj-$(CONFIG_ISP1301_OMAP) += isp1301_omap.o 21obj-$(CONFIG_ISP1301_OMAP) += isp1301_omap.o
22obj-$(CONFIG_TPS65010) += tps65010.o
23obj-$(CONFIG_MENELAUS) += menelaus.o
24obj-$(CONFIG_SENSORS_TSL2550) += tsl2550.o 22obj-$(CONFIG_SENSORS_TSL2550) += tsl2550.o
25obj-$(CONFIG_MCU_MPC8349EMITX) += mcu_mpc8349emitx.o 23obj-$(CONFIG_MCU_MPC8349EMITX) += mcu_mpc8349emitx.o
26 24
diff --git a/drivers/i2c/chips/menelaus.c b/drivers/i2c/chips/menelaus.c
deleted file mode 100644
index 4b364bae6b3e..000000000000
--- a/drivers/i2c/chips/menelaus.c
+++ /dev/null
@@ -1,1285 +0,0 @@
1/*
2 * Copyright (C) 2004 Texas Instruments, Inc.
3 *
4 * Some parts based tps65010.c:
5 * Copyright (C) 2004 Texas Instruments and
6 * Copyright (C) 2004-2005 David Brownell
7 *
8 * Some parts based on tlv320aic24.c:
9 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
10 *
11 * Changes for interrupt handling and clean-up by
12 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
13 * Cleanup and generalized support for voltage setting by
14 * Juha Yrjola
15 * Added support for controlling VCORE and regulator sleep states,
16 * Amit Kucheria <amit.kucheria@nokia.com>
17 * Copyright (C) 2005, 2006 Nokia Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 */
33
34#include <linux/module.h>
35#include <linux/i2c.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/mutex.h>
39#include <linux/workqueue.h>
40#include <linux/delay.h>
41#include <linux/rtc.h>
42#include <linux/bcd.h>
43
44#include <asm/mach/irq.h>
45
46#include <mach/gpio.h>
47#include <mach/menelaus.h>
48
49#define DRIVER_NAME "menelaus"
50
51#define MENELAUS_I2C_ADDRESS 0x72
52
53#define MENELAUS_REV 0x01
54#define MENELAUS_VCORE_CTRL1 0x02
55#define MENELAUS_VCORE_CTRL2 0x03
56#define MENELAUS_VCORE_CTRL3 0x04
57#define MENELAUS_VCORE_CTRL4 0x05
58#define MENELAUS_VCORE_CTRL5 0x06
59#define MENELAUS_DCDC_CTRL1 0x07
60#define MENELAUS_DCDC_CTRL2 0x08
61#define MENELAUS_DCDC_CTRL3 0x09
62#define MENELAUS_LDO_CTRL1 0x0A
63#define MENELAUS_LDO_CTRL2 0x0B
64#define MENELAUS_LDO_CTRL3 0x0C
65#define MENELAUS_LDO_CTRL4 0x0D
66#define MENELAUS_LDO_CTRL5 0x0E
67#define MENELAUS_LDO_CTRL6 0x0F
68#define MENELAUS_LDO_CTRL7 0x10
69#define MENELAUS_LDO_CTRL8 0x11
70#define MENELAUS_SLEEP_CTRL1 0x12
71#define MENELAUS_SLEEP_CTRL2 0x13
72#define MENELAUS_DEVICE_OFF 0x14
73#define MENELAUS_OSC_CTRL 0x15
74#define MENELAUS_DETECT_CTRL 0x16
75#define MENELAUS_INT_MASK1 0x17
76#define MENELAUS_INT_MASK2 0x18
77#define MENELAUS_INT_STATUS1 0x19
78#define MENELAUS_INT_STATUS2 0x1A
79#define MENELAUS_INT_ACK1 0x1B
80#define MENELAUS_INT_ACK2 0x1C
81#define MENELAUS_GPIO_CTRL 0x1D
82#define MENELAUS_GPIO_IN 0x1E
83#define MENELAUS_GPIO_OUT 0x1F
84#define MENELAUS_BBSMS 0x20
85#define MENELAUS_RTC_CTRL 0x21
86#define MENELAUS_RTC_UPDATE 0x22
87#define MENELAUS_RTC_SEC 0x23
88#define MENELAUS_RTC_MIN 0x24
89#define MENELAUS_RTC_HR 0x25
90#define MENELAUS_RTC_DAY 0x26
91#define MENELAUS_RTC_MON 0x27
92#define MENELAUS_RTC_YR 0x28
93#define MENELAUS_RTC_WKDAY 0x29
94#define MENELAUS_RTC_AL_SEC 0x2A
95#define MENELAUS_RTC_AL_MIN 0x2B
96#define MENELAUS_RTC_AL_HR 0x2C
97#define MENELAUS_RTC_AL_DAY 0x2D
98#define MENELAUS_RTC_AL_MON 0x2E
99#define MENELAUS_RTC_AL_YR 0x2F
100#define MENELAUS_RTC_COMP_MSB 0x30
101#define MENELAUS_RTC_COMP_LSB 0x31
102#define MENELAUS_S1_PULL_EN 0x32
103#define MENELAUS_S1_PULL_DIR 0x33
104#define MENELAUS_S2_PULL_EN 0x34
105#define MENELAUS_S2_PULL_DIR 0x35
106#define MENELAUS_MCT_CTRL1 0x36
107#define MENELAUS_MCT_CTRL2 0x37
108#define MENELAUS_MCT_CTRL3 0x38
109#define MENELAUS_MCT_PIN_ST 0x39
110#define MENELAUS_DEBOUNCE1 0x3A
111
112#define IH_MENELAUS_IRQS 12
113#define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */
114#define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */
115#define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */
116#define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */
117#define MENELAUS_LOWBAT_IRQ 4 /* Low battery */
118#define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */
119#define MENELAUS_UVLO_IRQ 6 /* UVLO detect */
120#define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */
121#define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */
122#define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */
123#define MENELAUS_RTCERR_IRQ 10 /* RTC error */
124#define MENELAUS_PSHBTN_IRQ 11 /* Push button */
125#define MENELAUS_RESERVED12_IRQ 12 /* Reserved */
126#define MENELAUS_RESERVED13_IRQ 13 /* Reserved */
127#define MENELAUS_RESERVED14_IRQ 14 /* Reserved */
128#define MENELAUS_RESERVED15_IRQ 15 /* Reserved */
129
130static void menelaus_work(struct work_struct *_menelaus);
131
132struct menelaus_chip {
133 struct mutex lock;
134 struct i2c_client *client;
135 struct work_struct work;
136#ifdef CONFIG_RTC_DRV_TWL92330
137 struct rtc_device *rtc;
138 u8 rtc_control;
139 unsigned uie:1;
140#endif
141 unsigned vcore_hw_mode:1;
142 u8 mask1, mask2;
143 void (*handlers[16])(struct menelaus_chip *);
144 void (*mmc_callback)(void *data, u8 mask);
145 void *mmc_callback_data;
146};
147
148static struct menelaus_chip *the_menelaus;
149
150static int menelaus_write_reg(int reg, u8 value)
151{
152 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
153
154 if (val < 0) {
155 pr_err(DRIVER_NAME ": write error");
156 return val;
157 }
158
159 return 0;
160}
161
162static int menelaus_read_reg(int reg)
163{
164 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
165
166 if (val < 0)
167 pr_err(DRIVER_NAME ": read error");
168
169 return val;
170}
171
172static int menelaus_enable_irq(int irq)
173{
174 if (irq > 7) {
175 irq -= 8;
176 the_menelaus->mask2 &= ~(1 << irq);
177 return menelaus_write_reg(MENELAUS_INT_MASK2,
178 the_menelaus->mask2);
179 } else {
180 the_menelaus->mask1 &= ~(1 << irq);
181 return menelaus_write_reg(MENELAUS_INT_MASK1,
182 the_menelaus->mask1);
183 }
184}
185
186static int menelaus_disable_irq(int irq)
187{
188 if (irq > 7) {
189 irq -= 8;
190 the_menelaus->mask2 |= (1 << irq);
191 return menelaus_write_reg(MENELAUS_INT_MASK2,
192 the_menelaus->mask2);
193 } else {
194 the_menelaus->mask1 |= (1 << irq);
195 return menelaus_write_reg(MENELAUS_INT_MASK1,
196 the_menelaus->mask1);
197 }
198}
199
200static int menelaus_ack_irq(int irq)
201{
202 if (irq > 7)
203 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
204 else
205 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
206}
207
208/* Adds a handler for an interrupt. Does not run in interrupt context */
209static int menelaus_add_irq_work(int irq,
210 void (*handler)(struct menelaus_chip *))
211{
212 int ret = 0;
213
214 mutex_lock(&the_menelaus->lock);
215 the_menelaus->handlers[irq] = handler;
216 ret = menelaus_enable_irq(irq);
217 mutex_unlock(&the_menelaus->lock);
218
219 return ret;
220}
221
222/* Removes handler for an interrupt */
223static int menelaus_remove_irq_work(int irq)
224{
225 int ret = 0;
226
227 mutex_lock(&the_menelaus->lock);
228 ret = menelaus_disable_irq(irq);
229 the_menelaus->handlers[irq] = NULL;
230 mutex_unlock(&the_menelaus->lock);
231
232 return ret;
233}
234
235/*
236 * Gets scheduled when a card detect interrupt happens. Note that in some cases
237 * this line is wired to card cover switch rather than the card detect switch
238 * in each slot. In this case the cards are not seen by menelaus.
239 * FIXME: Add handling for D1 too
240 */
241static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
242{
243 int reg;
244 unsigned char card_mask = 0;
245
246 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
247 if (reg < 0)
248 return;
249
250 if (!(reg & 0x1))
251 card_mask |= (1 << 0);
252
253 if (!(reg & 0x2))
254 card_mask |= (1 << 1);
255
256 if (menelaus_hw->mmc_callback)
257 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
258 card_mask);
259}
260
261/*
262 * Toggles the MMC slots between open-drain and push-pull mode.
263 */
264int menelaus_set_mmc_opendrain(int slot, int enable)
265{
266 int ret, val;
267
268 if (slot != 1 && slot != 2)
269 return -EINVAL;
270 mutex_lock(&the_menelaus->lock);
271 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
272 if (ret < 0) {
273 mutex_unlock(&the_menelaus->lock);
274 return ret;
275 }
276 val = ret;
277 if (slot == 1) {
278 if (enable)
279 val |= 1 << 2;
280 else
281 val &= ~(1 << 2);
282 } else {
283 if (enable)
284 val |= 1 << 3;
285 else
286 val &= ~(1 << 3);
287 }
288 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
289 mutex_unlock(&the_menelaus->lock);
290
291 return ret;
292}
293EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
294
295int menelaus_set_slot_sel(int enable)
296{
297 int ret;
298
299 mutex_lock(&the_menelaus->lock);
300 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
301 if (ret < 0)
302 goto out;
303 ret |= 0x02;
304 if (enable)
305 ret |= 1 << 5;
306 else
307 ret &= ~(1 << 5);
308 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
309out:
310 mutex_unlock(&the_menelaus->lock);
311 return ret;
312}
313EXPORT_SYMBOL(menelaus_set_slot_sel);
314
315int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
316{
317 int ret, val;
318
319 if (slot != 1 && slot != 2)
320 return -EINVAL;
321 if (power >= 3)
322 return -EINVAL;
323
324 mutex_lock(&the_menelaus->lock);
325
326 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
327 if (ret < 0)
328 goto out;
329 val = ret;
330 if (slot == 1) {
331 if (cd_en)
332 val |= (1 << 4) | (1 << 6);
333 else
334 val &= ~((1 << 4) | (1 << 6));
335 } else {
336 if (cd_en)
337 val |= (1 << 5) | (1 << 7);
338 else
339 val &= ~((1 << 5) | (1 << 7));
340 }
341 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
342 if (ret < 0)
343 goto out;
344
345 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
346 if (ret < 0)
347 goto out;
348 val = ret;
349 if (slot == 1) {
350 if (enable)
351 val |= 1 << 0;
352 else
353 val &= ~(1 << 0);
354 } else {
355 int b;
356
357 if (enable)
358 ret |= 1 << 1;
359 else
360 ret &= ~(1 << 1);
361 b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
362 b &= ~0x03;
363 b |= power;
364 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
365 if (ret < 0)
366 goto out;
367 }
368 /* Disable autonomous shutdown */
369 val &= ~(0x03 << 2);
370 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
371out:
372 mutex_unlock(&the_menelaus->lock);
373 return ret;
374}
375EXPORT_SYMBOL(menelaus_set_mmc_slot);
376
377int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
378 void *data)
379{
380 int ret = 0;
381
382 the_menelaus->mmc_callback_data = data;
383 the_menelaus->mmc_callback = callback;
384 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
385 menelaus_mmc_cd_work);
386 if (ret < 0)
387 return ret;
388 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
389 menelaus_mmc_cd_work);
390 if (ret < 0)
391 return ret;
392 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
393 menelaus_mmc_cd_work);
394 if (ret < 0)
395 return ret;
396 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
397 menelaus_mmc_cd_work);
398
399 return ret;
400}
401EXPORT_SYMBOL(menelaus_register_mmc_callback);
402
403void menelaus_unregister_mmc_callback(void)
404{
405 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
406 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
407 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
408 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
409
410 the_menelaus->mmc_callback = NULL;
411 the_menelaus->mmc_callback_data = 0;
412}
413EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
414
415struct menelaus_vtg {
416 const char *name;
417 u8 vtg_reg;
418 u8 vtg_shift;
419 u8 vtg_bits;
420 u8 mode_reg;
421};
422
423struct menelaus_vtg_value {
424 u16 vtg;
425 u16 val;
426};
427
428static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
429 int vtg_val, int mode)
430{
431 int val, ret;
432 struct i2c_client *c = the_menelaus->client;
433
434 mutex_lock(&the_menelaus->lock);
435 if (vtg == 0)
436 goto set_voltage;
437
438 ret = menelaus_read_reg(vtg->vtg_reg);
439 if (ret < 0)
440 goto out;
441 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
442 val |= vtg_val << vtg->vtg_shift;
443
444 dev_dbg(&c->dev, "Setting voltage '%s'"
445 "to %d mV (reg 0x%02x, val 0x%02x)\n",
446 vtg->name, mV, vtg->vtg_reg, val);
447
448 ret = menelaus_write_reg(vtg->vtg_reg, val);
449 if (ret < 0)
450 goto out;
451set_voltage:
452 ret = menelaus_write_reg(vtg->mode_reg, mode);
453out:
454 mutex_unlock(&the_menelaus->lock);
455 if (ret == 0) {
456 /* Wait for voltage to stabilize */
457 msleep(1);
458 }
459 return ret;
460}
461
462static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
463 int n)
464{
465 int i;
466
467 for (i = 0; i < n; i++, tbl++)
468 if (tbl->vtg == vtg)
469 return tbl->val;
470 return -EINVAL;
471}
472
473/*
474 * Vcore can be programmed in two ways:
475 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
476 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
477 * and VCORE_CTRL4
478 *
479 * Call correct 'set' function accordingly
480 */
481
482static const struct menelaus_vtg_value vcore_values[] = {
483 { 1000, 0 },
484 { 1025, 1 },
485 { 1050, 2 },
486 { 1075, 3 },
487 { 1100, 4 },
488 { 1125, 5 },
489 { 1150, 6 },
490 { 1175, 7 },
491 { 1200, 8 },
492 { 1225, 9 },
493 { 1250, 10 },
494 { 1275, 11 },
495 { 1300, 12 },
496 { 1325, 13 },
497 { 1350, 14 },
498 { 1375, 15 },
499 { 1400, 16 },
500 { 1425, 17 },
501 { 1450, 18 },
502};
503
504int menelaus_set_vcore_sw(unsigned int mV)
505{
506 int val, ret;
507 struct i2c_client *c = the_menelaus->client;
508
509 val = menelaus_get_vtg_value(mV, vcore_values,
510 ARRAY_SIZE(vcore_values));
511 if (val < 0)
512 return -EINVAL;
513
514 dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val);
515
516 /* Set SW mode and the voltage in one go. */
517 mutex_lock(&the_menelaus->lock);
518 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
519 if (ret == 0)
520 the_menelaus->vcore_hw_mode = 0;
521 mutex_unlock(&the_menelaus->lock);
522 msleep(1);
523
524 return ret;
525}
526
527int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
528{
529 int fval, rval, val, ret;
530 struct i2c_client *c = the_menelaus->client;
531
532 rval = menelaus_get_vtg_value(roof_mV, vcore_values,
533 ARRAY_SIZE(vcore_values));
534 if (rval < 0)
535 return -EINVAL;
536 fval = menelaus_get_vtg_value(floor_mV, vcore_values,
537 ARRAY_SIZE(vcore_values));
538 if (fval < 0)
539 return -EINVAL;
540
541 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
542 floor_mV, roof_mV);
543
544 mutex_lock(&the_menelaus->lock);
545 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
546 if (ret < 0)
547 goto out;
548 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
549 if (ret < 0)
550 goto out;
551 if (!the_menelaus->vcore_hw_mode) {
552 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
553 /* HW mode, turn OFF byte comparator */
554 val |= ((1 << 7) | (1 << 5));
555 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
556 the_menelaus->vcore_hw_mode = 1;
557 }
558 msleep(1);
559out:
560 mutex_unlock(&the_menelaus->lock);
561 return ret;
562}
563
564static const struct menelaus_vtg vmem_vtg = {
565 .name = "VMEM",
566 .vtg_reg = MENELAUS_LDO_CTRL1,
567 .vtg_shift = 0,
568 .vtg_bits = 2,
569 .mode_reg = MENELAUS_LDO_CTRL3,
570};
571
572static const struct menelaus_vtg_value vmem_values[] = {
573 { 1500, 0 },
574 { 1800, 1 },
575 { 1900, 2 },
576 { 2500, 3 },
577};
578
579int menelaus_set_vmem(unsigned int mV)
580{
581 int val;
582
583 if (mV == 0)
584 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
585
586 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
587 if (val < 0)
588 return -EINVAL;
589 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
590}
591EXPORT_SYMBOL(menelaus_set_vmem);
592
593static const struct menelaus_vtg vio_vtg = {
594 .name = "VIO",
595 .vtg_reg = MENELAUS_LDO_CTRL1,
596 .vtg_shift = 2,
597 .vtg_bits = 2,
598 .mode_reg = MENELAUS_LDO_CTRL4,
599};
600
601static const struct menelaus_vtg_value vio_values[] = {
602 { 1500, 0 },
603 { 1800, 1 },
604 { 2500, 2 },
605 { 2800, 3 },
606};
607
608int menelaus_set_vio(unsigned int mV)
609{
610 int val;
611
612 if (mV == 0)
613 return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
614
615 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
616 if (val < 0)
617 return -EINVAL;
618 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
619}
620EXPORT_SYMBOL(menelaus_set_vio);
621
622static const struct menelaus_vtg_value vdcdc_values[] = {
623 { 1500, 0 },
624 { 1800, 1 },
625 { 2000, 2 },
626 { 2200, 3 },
627 { 2400, 4 },
628 { 2800, 5 },
629 { 3000, 6 },
630 { 3300, 7 },
631};
632
633static const struct menelaus_vtg vdcdc2_vtg = {
634 .name = "VDCDC2",
635 .vtg_reg = MENELAUS_DCDC_CTRL1,
636 .vtg_shift = 0,
637 .vtg_bits = 3,
638 .mode_reg = MENELAUS_DCDC_CTRL2,
639};
640
641static const struct menelaus_vtg vdcdc3_vtg = {
642 .name = "VDCDC3",
643 .vtg_reg = MENELAUS_DCDC_CTRL1,
644 .vtg_shift = 3,
645 .vtg_bits = 3,
646 .mode_reg = MENELAUS_DCDC_CTRL3,
647};
648
649int menelaus_set_vdcdc(int dcdc, unsigned int mV)
650{
651 const struct menelaus_vtg *vtg;
652 int val;
653
654 if (dcdc != 2 && dcdc != 3)
655 return -EINVAL;
656 if (dcdc == 2)
657 vtg = &vdcdc2_vtg;
658 else
659 vtg = &vdcdc3_vtg;
660
661 if (mV == 0)
662 return menelaus_set_voltage(vtg, 0, 0, 0);
663
664 val = menelaus_get_vtg_value(mV, vdcdc_values,
665 ARRAY_SIZE(vdcdc_values));
666 if (val < 0)
667 return -EINVAL;
668 return menelaus_set_voltage(vtg, mV, val, 0x03);
669}
670
671static const struct menelaus_vtg_value vmmc_values[] = {
672 { 1850, 0 },
673 { 2800, 1 },
674 { 3000, 2 },
675 { 3100, 3 },
676};
677
678static const struct menelaus_vtg vmmc_vtg = {
679 .name = "VMMC",
680 .vtg_reg = MENELAUS_LDO_CTRL1,
681 .vtg_shift = 6,
682 .vtg_bits = 2,
683 .mode_reg = MENELAUS_LDO_CTRL7,
684};
685
686int menelaus_set_vmmc(unsigned int mV)
687{
688 int val;
689
690 if (mV == 0)
691 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
692
693 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
694 if (val < 0)
695 return -EINVAL;
696 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
697}
698EXPORT_SYMBOL(menelaus_set_vmmc);
699
700
701static const struct menelaus_vtg_value vaux_values[] = {
702 { 1500, 0 },
703 { 1800, 1 },
704 { 2500, 2 },
705 { 2800, 3 },
706};
707
708static const struct menelaus_vtg vaux_vtg = {
709 .name = "VAUX",
710 .vtg_reg = MENELAUS_LDO_CTRL1,
711 .vtg_shift = 4,
712 .vtg_bits = 2,
713 .mode_reg = MENELAUS_LDO_CTRL6,
714};
715
716int menelaus_set_vaux(unsigned int mV)
717{
718 int val;
719
720 if (mV == 0)
721 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
722
723 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
724 if (val < 0)
725 return -EINVAL;
726 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
727}
728EXPORT_SYMBOL(menelaus_set_vaux);
729
730int menelaus_get_slot_pin_states(void)
731{
732 return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
733}
734EXPORT_SYMBOL(menelaus_get_slot_pin_states);
735
736int menelaus_set_regulator_sleep(int enable, u32 val)
737{
738 int t, ret;
739 struct i2c_client *c = the_menelaus->client;
740
741 mutex_lock(&the_menelaus->lock);
742 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
743 if (ret < 0)
744 goto out;
745
746 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
747
748 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
749 if (ret < 0)
750 goto out;
751 t = ((1 << 6) | 0x04);
752 if (enable)
753 ret |= t;
754 else
755 ret &= ~t;
756 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
757out:
758 mutex_unlock(&the_menelaus->lock);
759 return ret;
760}
761
762/*-----------------------------------------------------------------------*/
763
764/* Handles Menelaus interrupts. Does not run in interrupt context */
765static void menelaus_work(struct work_struct *_menelaus)
766{
767 struct menelaus_chip *menelaus =
768 container_of(_menelaus, struct menelaus_chip, work);
769 void (*handler)(struct menelaus_chip *menelaus);
770
771 while (1) {
772 unsigned isr;
773
774 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
775 & ~menelaus->mask2) << 8;
776 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
777 & ~menelaus->mask1;
778 if (!isr)
779 break;
780
781 while (isr) {
782 int irq = fls(isr) - 1;
783 isr &= ~(1 << irq);
784
785 mutex_lock(&menelaus->lock);
786 menelaus_disable_irq(irq);
787 menelaus_ack_irq(irq);
788 handler = menelaus->handlers[irq];
789 if (handler)
790 handler(menelaus);
791 menelaus_enable_irq(irq);
792 mutex_unlock(&menelaus->lock);
793 }
794 }
795 enable_irq(menelaus->client->irq);
796}
797
798/*
799 * We cannot use I2C in interrupt context, so we just schedule work.
800 */
801static irqreturn_t menelaus_irq(int irq, void *_menelaus)
802{
803 struct menelaus_chip *menelaus = _menelaus;
804
805 disable_irq_nosync(irq);
806 (void)schedule_work(&menelaus->work);
807
808 return IRQ_HANDLED;
809}
810
811/*-----------------------------------------------------------------------*/
812
813/*
814 * The RTC needs to be set once, then it runs on backup battery power.
815 * It supports alarms, including system wake alarms (from some modes);
816 * and 1/second IRQs if requested.
817 */
818#ifdef CONFIG_RTC_DRV_TWL92330
819
820#define RTC_CTRL_RTC_EN (1 << 0)
821#define RTC_CTRL_AL_EN (1 << 1)
822#define RTC_CTRL_MODE12 (1 << 2)
823#define RTC_CTRL_EVERY_MASK (3 << 3)
824#define RTC_CTRL_EVERY_SEC (0 << 3)
825#define RTC_CTRL_EVERY_MIN (1 << 3)
826#define RTC_CTRL_EVERY_HR (2 << 3)
827#define RTC_CTRL_EVERY_DAY (3 << 3)
828
829#define RTC_UPDATE_EVERY 0x08
830
831#define RTC_HR_PM (1 << 7)
832
833static void menelaus_to_time(char *regs, struct rtc_time *t)
834{
835 t->tm_sec = bcd2bin(regs[0]);
836 t->tm_min = bcd2bin(regs[1]);
837 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
838 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
839 if (regs[2] & RTC_HR_PM)
840 t->tm_hour += 12;
841 } else
842 t->tm_hour = bcd2bin(regs[2] & 0x3f);
843 t->tm_mday = bcd2bin(regs[3]);
844 t->tm_mon = bcd2bin(regs[4]) - 1;
845 t->tm_year = bcd2bin(regs[5]) + 100;
846}
847
848static int time_to_menelaus(struct rtc_time *t, int regnum)
849{
850 int hour, status;
851
852 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
853 if (status < 0)
854 goto fail;
855
856 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
857 if (status < 0)
858 goto fail;
859
860 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
861 hour = t->tm_hour + 1;
862 if (hour > 12)
863 hour = RTC_HR_PM | bin2bcd(hour - 12);
864 else
865 hour = bin2bcd(hour);
866 } else
867 hour = bin2bcd(t->tm_hour);
868 status = menelaus_write_reg(regnum++, hour);
869 if (status < 0)
870 goto fail;
871
872 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
873 if (status < 0)
874 goto fail;
875
876 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
877 if (status < 0)
878 goto fail;
879
880 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
881 if (status < 0)
882 goto fail;
883
884 return 0;
885fail:
886 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
887 --regnum, status);
888 return status;
889}
890
891static int menelaus_read_time(struct device *dev, struct rtc_time *t)
892{
893 struct i2c_msg msg[2];
894 char regs[7];
895 int status;
896
897 /* block read date and time registers */
898 regs[0] = MENELAUS_RTC_SEC;
899
900 msg[0].addr = MENELAUS_I2C_ADDRESS;
901 msg[0].flags = 0;
902 msg[0].len = 1;
903 msg[0].buf = regs;
904
905 msg[1].addr = MENELAUS_I2C_ADDRESS;
906 msg[1].flags = I2C_M_RD;
907 msg[1].len = sizeof(regs);
908 msg[1].buf = regs;
909
910 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
911 if (status != 2) {
912 dev_err(dev, "%s error %d\n", "read", status);
913 return -EIO;
914 }
915
916 menelaus_to_time(regs, t);
917 t->tm_wday = bcd2bin(regs[6]);
918
919 return 0;
920}
921
922static int menelaus_set_time(struct device *dev, struct rtc_time *t)
923{
924 int status;
925
926 /* write date and time registers */
927 status = time_to_menelaus(t, MENELAUS_RTC_SEC);
928 if (status < 0)
929 return status;
930 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
931 if (status < 0) {
932 dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
933 "err %d\n", MENELAUS_RTC_WKDAY, status);
934 return status;
935 }
936
937 /* now commit the write */
938 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
939 if (status < 0)
940 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
941 status);
942
943 return 0;
944}
945
946static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
947{
948 struct i2c_msg msg[2];
949 char regs[6];
950 int status;
951
952 /* block read alarm registers */
953 regs[0] = MENELAUS_RTC_AL_SEC;
954
955 msg[0].addr = MENELAUS_I2C_ADDRESS;
956 msg[0].flags = 0;
957 msg[0].len = 1;
958 msg[0].buf = regs;
959
960 msg[1].addr = MENELAUS_I2C_ADDRESS;
961 msg[1].flags = I2C_M_RD;
962 msg[1].len = sizeof(regs);
963 msg[1].buf = regs;
964
965 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
966 if (status != 2) {
967 dev_err(dev, "%s error %d\n", "alarm read", status);
968 return -EIO;
969 }
970
971 menelaus_to_time(regs, &w->time);
972
973 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
974
975 /* NOTE we *could* check if actually pending... */
976 w->pending = 0;
977
978 return 0;
979}
980
981static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
982{
983 int status;
984
985 if (the_menelaus->client->irq <= 0 && w->enabled)
986 return -ENODEV;
987
988 /* clear previous alarm enable */
989 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
990 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
991 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
992 the_menelaus->rtc_control);
993 if (status < 0)
994 return status;
995 }
996
997 /* write alarm registers */
998 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
999 if (status < 0)
1000 return status;
1001
1002 /* enable alarm if requested */
1003 if (w->enabled) {
1004 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1005 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1006 the_menelaus->rtc_control);
1007 }
1008
1009 return status;
1010}
1011
1012#ifdef CONFIG_RTC_INTF_DEV
1013
1014static void menelaus_rtc_update_work(struct menelaus_chip *m)
1015{
1016 /* report 1/sec update */
1017 local_irq_disable();
1018 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1019 local_irq_enable();
1020}
1021
1022static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1023{
1024 int status;
1025
1026 if (the_menelaus->client->irq <= 0)
1027 return -ENOIOCTLCMD;
1028
1029 switch (cmd) {
1030 /* alarm IRQ */
1031 case RTC_AIE_ON:
1032 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1033 return 0;
1034 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1035 break;
1036 case RTC_AIE_OFF:
1037 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1038 return 0;
1039 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1040 break;
1041 /* 1/second "update" IRQ */
1042 case RTC_UIE_ON:
1043 if (the_menelaus->uie)
1044 return 0;
1045 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1046 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1047 menelaus_rtc_update_work);
1048 if (status == 0)
1049 the_menelaus->uie = 1;
1050 return status;
1051 case RTC_UIE_OFF:
1052 if (!the_menelaus->uie)
1053 return 0;
1054 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1055 if (status == 0)
1056 the_menelaus->uie = 0;
1057 return status;
1058 default:
1059 return -ENOIOCTLCMD;
1060 }
1061 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1062}
1063
1064#else
1065#define menelaus_ioctl NULL
1066#endif
1067
1068/* REVISIT no compensation register support ... */
1069
1070static const struct rtc_class_ops menelaus_rtc_ops = {
1071 .ioctl = menelaus_ioctl,
1072 .read_time = menelaus_read_time,
1073 .set_time = menelaus_set_time,
1074 .read_alarm = menelaus_read_alarm,
1075 .set_alarm = menelaus_set_alarm,
1076};
1077
1078static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1079{
1080 /* report alarm */
1081 local_irq_disable();
1082 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1083 local_irq_enable();
1084
1085 /* then disable it; alarms are oneshot */
1086 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1087 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1088}
1089
1090static inline void menelaus_rtc_init(struct menelaus_chip *m)
1091{
1092 int alarm = (m->client->irq > 0);
1093
1094 /* assume 32KDETEN pin is pulled high */
1095 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1096 dev_dbg(&m->client->dev, "no 32k oscillator\n");
1097 return;
1098 }
1099
1100 /* support RTC alarm; it can issue wakeups */
1101 if (alarm) {
1102 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1103 menelaus_rtc_alarm_work) < 0) {
1104 dev_err(&m->client->dev, "can't handle RTC alarm\n");
1105 return;
1106 }
1107 device_init_wakeup(&m->client->dev, 1);
1108 }
1109
1110 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1111 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1112 if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1113 || (m->rtc_control & RTC_CTRL_AL_EN)
1114 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1115 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1116 dev_warn(&m->client->dev, "rtc clock needs setting\n");
1117 m->rtc_control |= RTC_CTRL_RTC_EN;
1118 }
1119 m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1120 m->rtc_control &= ~RTC_CTRL_AL_EN;
1121 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1122 }
1123
1124 m->rtc = rtc_device_register(DRIVER_NAME,
1125 &m->client->dev,
1126 &menelaus_rtc_ops, THIS_MODULE);
1127 if (IS_ERR(m->rtc)) {
1128 if (alarm) {
1129 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1130 device_init_wakeup(&m->client->dev, 0);
1131 }
1132 dev_err(&m->client->dev, "can't register RTC: %d\n",
1133 (int) PTR_ERR(m->rtc));
1134 the_menelaus->rtc = NULL;
1135 }
1136}
1137
1138#else
1139
1140static inline void menelaus_rtc_init(struct menelaus_chip *m)
1141{
1142 /* nothing */
1143}
1144
1145#endif
1146
1147/*-----------------------------------------------------------------------*/
1148
1149static struct i2c_driver menelaus_i2c_driver;
1150
1151static int menelaus_probe(struct i2c_client *client,
1152 const struct i2c_device_id *id)
1153{
1154 struct menelaus_chip *menelaus;
1155 int rev = 0, val;
1156 int err = 0;
1157 struct menelaus_platform_data *menelaus_pdata =
1158 client->dev.platform_data;
1159
1160 if (the_menelaus) {
1161 dev_dbg(&client->dev, "only one %s for now\n",
1162 DRIVER_NAME);
1163 return -ENODEV;
1164 }
1165
1166 menelaus = kzalloc(sizeof *menelaus, GFP_KERNEL);
1167 if (!menelaus)
1168 return -ENOMEM;
1169
1170 i2c_set_clientdata(client, menelaus);
1171
1172 the_menelaus = menelaus;
1173 menelaus->client = client;
1174
1175 /* If a true probe check the device */
1176 rev = menelaus_read_reg(MENELAUS_REV);
1177 if (rev < 0) {
1178 pr_err(DRIVER_NAME ": device not found");
1179 err = -ENODEV;
1180 goto fail1;
1181 }
1182
1183 /* Ack and disable all Menelaus interrupts */
1184 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1185 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1186 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1187 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1188 menelaus->mask1 = 0xff;
1189 menelaus->mask2 = 0xff;
1190
1191 /* Set output buffer strengths */
1192 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1193
1194 if (client->irq > 0) {
1195 err = request_irq(client->irq, menelaus_irq, IRQF_DISABLED,
1196 DRIVER_NAME, menelaus);
1197 if (err) {
1198 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n",
1199 client->irq, err);
1200 goto fail1;
1201 }
1202 }
1203
1204 mutex_init(&menelaus->lock);
1205 INIT_WORK(&menelaus->work, menelaus_work);
1206
1207 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1208
1209 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1210 if (val < 0)
1211 goto fail2;
1212 if (val & (1 << 7))
1213 menelaus->vcore_hw_mode = 1;
1214 else
1215 menelaus->vcore_hw_mode = 0;
1216
1217 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1218 err = menelaus_pdata->late_init(&client->dev);
1219 if (err < 0)
1220 goto fail2;
1221 }
1222
1223 menelaus_rtc_init(menelaus);
1224
1225 return 0;
1226fail2:
1227 free_irq(client->irq, menelaus);
1228 flush_scheduled_work();
1229fail1:
1230 kfree(menelaus);
1231 return err;
1232}
1233
1234static int __exit menelaus_remove(struct i2c_client *client)
1235{
1236 struct menelaus_chip *menelaus = i2c_get_clientdata(client);
1237
1238 free_irq(client->irq, menelaus);
1239 kfree(menelaus);
1240 i2c_set_clientdata(client, NULL);
1241 the_menelaus = NULL;
1242 return 0;
1243}
1244
1245static const struct i2c_device_id menelaus_id[] = {
1246 { "menelaus", 0 },
1247 { }
1248};
1249MODULE_DEVICE_TABLE(i2c, menelaus_id);
1250
1251static struct i2c_driver menelaus_i2c_driver = {
1252 .driver = {
1253 .name = DRIVER_NAME,
1254 },
1255 .probe = menelaus_probe,
1256 .remove = __exit_p(menelaus_remove),
1257 .id_table = menelaus_id,
1258};
1259
1260static int __init menelaus_init(void)
1261{
1262 int res;
1263
1264 res = i2c_add_driver(&menelaus_i2c_driver);
1265 if (res < 0) {
1266 pr_err(DRIVER_NAME ": driver registration failed\n");
1267 return res;
1268 }
1269
1270 return 0;
1271}
1272
1273static void __exit menelaus_exit(void)
1274{
1275 i2c_del_driver(&menelaus_i2c_driver);
1276
1277 /* FIXME: Shutdown menelaus parts that can be shut down */
1278}
1279
1280MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1281MODULE_DESCRIPTION("I2C interface for Menelaus.");
1282MODULE_LICENSE("GPL");
1283
1284module_init(menelaus_init);
1285module_exit(menelaus_exit);
diff --git a/drivers/i2c/chips/tps65010.c b/drivers/i2c/chips/tps65010.c
deleted file mode 100644
index acf8b9d5f575..000000000000
--- a/drivers/i2c/chips/tps65010.c
+++ /dev/null
@@ -1,1072 +0,0 @@
1/*
2 * tps65010 - driver for tps6501x power management chips
3 *
4 * Copyright (C) 2004 Texas Instruments
5 * Copyright (C) 2004-2005 David Brownell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
27#include <linux/i2c.h>
28#include <linux/delay.h>
29#include <linux/workqueue.h>
30#include <linux/debugfs.h>
31#include <linux/seq_file.h>
32#include <linux/mutex.h>
33#include <linux/platform_device.h>
34
35#include <linux/i2c/tps65010.h>
36
37#include <asm/gpio.h>
38
39
40/*-------------------------------------------------------------------------*/
41
42#define DRIVER_VERSION "2 May 2005"
43#define DRIVER_NAME (tps65010_driver.driver.name)
44
45MODULE_DESCRIPTION("TPS6501x Power Management Driver");
46MODULE_LICENSE("GPL");
47
48static struct i2c_driver tps65010_driver;
49
50/*-------------------------------------------------------------------------*/
51
52/* This driver handles a family of multipurpose chips, which incorporate
53 * voltage regulators, lithium ion/polymer battery charging, GPIOs, LEDs,
54 * and other features often needed in portable devices like cell phones
55 * or digital cameras.
56 *
57 * The tps65011 and tps65013 have different voltage settings compared
58 * to tps65010 and tps65012. The tps65013 has a NO_CHG status/irq.
59 * All except tps65010 have "wait" mode, possibly defaulted so that
60 * battery-insert != device-on.
61 *
62 * We could distinguish between some models by checking VDCDC1.UVLO or
63 * other registers, unless they've been changed already after powerup
64 * as part of board setup by a bootloader.
65 */
66enum tps_model {
67 TPS65010,
68 TPS65011,
69 TPS65012,
70 TPS65013,
71};
72
73struct tps65010 {
74 struct i2c_client *client;
75 struct mutex lock;
76 struct delayed_work work;
77 struct dentry *file;
78 unsigned charging:1;
79 unsigned por:1;
80 unsigned model:8;
81 u16 vbus;
82 unsigned long flags;
83#define FLAG_VBUS_CHANGED 0
84#define FLAG_IRQ_ENABLE 1
85
86 /* copies of last register state */
87 u8 chgstatus, regstatus, chgconf;
88 u8 nmask1, nmask2;
89
90 u8 outmask;
91 struct gpio_chip chip;
92 struct platform_device *leds;
93};
94
95#define POWER_POLL_DELAY msecs_to_jiffies(5000)
96
97/*-------------------------------------------------------------------------*/
98
99#if defined(DEBUG) || defined(CONFIG_DEBUG_FS)
100
101static void dbg_chgstat(char *buf, size_t len, u8 chgstatus)
102{
103 snprintf(buf, len, "%02x%s%s%s%s%s%s%s%s\n",
104 chgstatus,
105 (chgstatus & TPS_CHG_USB) ? " USB" : "",
106 (chgstatus & TPS_CHG_AC) ? " AC" : "",
107 (chgstatus & TPS_CHG_THERM) ? " therm" : "",
108 (chgstatus & TPS_CHG_TERM) ? " done" :
109 ((chgstatus & (TPS_CHG_USB|TPS_CHG_AC))
110 ? " (charging)" : ""),
111 (chgstatus & TPS_CHG_TAPER_TMO) ? " taper_tmo" : "",
112 (chgstatus & TPS_CHG_CHG_TMO) ? " charge_tmo" : "",
113 (chgstatus & TPS_CHG_PRECHG_TMO) ? " prechg_tmo" : "",
114 (chgstatus & TPS_CHG_TEMP_ERR) ? " temp_err" : "");
115}
116
117static void dbg_regstat(char *buf, size_t len, u8 regstatus)
118{
119 snprintf(buf, len, "%02x %s%s%s%s%s%s%s%s\n",
120 regstatus,
121 (regstatus & TPS_REG_ONOFF) ? "off" : "(on)",
122 (regstatus & TPS_REG_COVER) ? " uncover" : "",
123 (regstatus & TPS_REG_UVLO) ? " UVLO" : "",
124 (regstatus & TPS_REG_NO_CHG) ? " NO_CHG" : "",
125 (regstatus & TPS_REG_PG_LD02) ? " ld02_bad" : "",
126 (regstatus & TPS_REG_PG_LD01) ? " ld01_bad" : "",
127 (regstatus & TPS_REG_PG_MAIN) ? " main_bad" : "",
128 (regstatus & TPS_REG_PG_CORE) ? " core_bad" : "");
129}
130
131static void dbg_chgconf(int por, char *buf, size_t len, u8 chgconfig)
132{
133 const char *hibit;
134
135 if (por)
136 hibit = (chgconfig & TPS_CHARGE_POR)
137 ? "POR=69ms" : "POR=1sec";
138 else
139 hibit = (chgconfig & TPS65013_AUA) ? "AUA" : "";
140
141 snprintf(buf, len, "%02x %s%s%s AC=%d%% USB=%dmA %sCharge\n",
142 chgconfig, hibit,
143 (chgconfig & TPS_CHARGE_RESET) ? " reset" : "",
144 (chgconfig & TPS_CHARGE_FAST) ? " fast" : "",
145 ({int p; switch ((chgconfig >> 3) & 3) {
146 case 3: p = 100; break;
147 case 2: p = 75; break;
148 case 1: p = 50; break;
149 default: p = 25; break;
150 }; p; }),
151 (chgconfig & TPS_VBUS_CHARGING)
152 ? ((chgconfig & TPS_VBUS_500MA) ? 500 : 100)
153 : 0,
154 (chgconfig & TPS_CHARGE_ENABLE) ? "" : "No");
155}
156
157#endif
158
159#ifdef DEBUG
160
161static void show_chgstatus(const char *label, u8 chgstatus)
162{
163 char buf [100];
164
165 dbg_chgstat(buf, sizeof buf, chgstatus);
166 pr_debug("%s: %s %s", DRIVER_NAME, label, buf);
167}
168
169static void show_regstatus(const char *label, u8 regstatus)
170{
171 char buf [100];
172
173 dbg_regstat(buf, sizeof buf, regstatus);
174 pr_debug("%s: %s %s", DRIVER_NAME, label, buf);
175}
176
177static void show_chgconfig(int por, const char *label, u8 chgconfig)
178{
179 char buf [100];
180
181 dbg_chgconf(por, buf, sizeof buf, chgconfig);
182 pr_debug("%s: %s %s", DRIVER_NAME, label, buf);
183}
184
185#else
186
187static inline void show_chgstatus(const char *label, u8 chgstatus) { }
188static inline void show_regstatus(const char *label, u8 chgstatus) { }
189static inline void show_chgconfig(int por, const char *label, u8 chgconfig) { }
190
191#endif
192
193#ifdef CONFIG_DEBUG_FS
194
195static int dbg_show(struct seq_file *s, void *_)
196{
197 struct tps65010 *tps = s->private;
198 u8 value, v2;
199 unsigned i;
200 char buf[100];
201 const char *chip;
202
203 switch (tps->model) {
204 case TPS65010: chip = "tps65010"; break;
205 case TPS65011: chip = "tps65011"; break;
206 case TPS65012: chip = "tps65012"; break;
207 case TPS65013: chip = "tps65013"; break;
208 default: chip = NULL; break;
209 }
210 seq_printf(s, "driver %s\nversion %s\nchip %s\n\n",
211 DRIVER_NAME, DRIVER_VERSION, chip);
212
213 mutex_lock(&tps->lock);
214
215 /* FIXME how can we tell whether a battery is present?
216 * likely involves a charge gauging chip (like BQ26501).
217 */
218
219 seq_printf(s, "%scharging\n\n", tps->charging ? "" : "(not) ");
220
221
222 /* registers for monitoring battery charging and status; note
223 * that reading chgstat and regstat may ack IRQs...
224 */
225 value = i2c_smbus_read_byte_data(tps->client, TPS_CHGCONFIG);
226 dbg_chgconf(tps->por, buf, sizeof buf, value);
227 seq_printf(s, "chgconfig %s", buf);
228
229 value = i2c_smbus_read_byte_data(tps->client, TPS_CHGSTATUS);
230 dbg_chgstat(buf, sizeof buf, value);
231 seq_printf(s, "chgstat %s", buf);
232 value = i2c_smbus_read_byte_data(tps->client, TPS_MASK1);
233 dbg_chgstat(buf, sizeof buf, value);
234 seq_printf(s, "mask1 %s", buf);
235 /* ignore ackint1 */
236
237 value = i2c_smbus_read_byte_data(tps->client, TPS_REGSTATUS);
238 dbg_regstat(buf, sizeof buf, value);
239 seq_printf(s, "regstat %s", buf);
240 value = i2c_smbus_read_byte_data(tps->client, TPS_MASK2);
241 dbg_regstat(buf, sizeof buf, value);
242 seq_printf(s, "mask2 %s\n", buf);
243 /* ignore ackint2 */
244
245 (void) schedule_delayed_work(&tps->work, POWER_POLL_DELAY);
246
247
248 /* VMAIN voltage, enable lowpower, etc */
249 value = i2c_smbus_read_byte_data(tps->client, TPS_VDCDC1);
250 seq_printf(s, "vdcdc1 %02x\n", value);
251
252 /* VCORE voltage, vibrator on/off */
253 value = i2c_smbus_read_byte_data(tps->client, TPS_VDCDC2);
254 seq_printf(s, "vdcdc2 %02x\n", value);
255
256 /* both LD0s, and their lowpower behavior */
257 value = i2c_smbus_read_byte_data(tps->client, TPS_VREGS1);
258 seq_printf(s, "vregs1 %02x\n\n", value);
259
260
261 /* LEDs and GPIOs */
262 value = i2c_smbus_read_byte_data(tps->client, TPS_LED1_ON);
263 v2 = i2c_smbus_read_byte_data(tps->client, TPS_LED1_PER);
264 seq_printf(s, "led1 %s, on=%02x, per=%02x, %d/%d msec\n",
265 (value & 0x80)
266 ? ((v2 & 0x80) ? "on" : "off")
267 : ((v2 & 0x80) ? "blink" : "(nPG)"),
268 value, v2,
269 (value & 0x7f) * 10, (v2 & 0x7f) * 100);
270
271 value = i2c_smbus_read_byte_data(tps->client, TPS_LED2_ON);
272 v2 = i2c_smbus_read_byte_data(tps->client, TPS_LED2_PER);
273 seq_printf(s, "led2 %s, on=%02x, per=%02x, %d/%d msec\n",
274 (value & 0x80)
275 ? ((v2 & 0x80) ? "on" : "off")
276 : ((v2 & 0x80) ? "blink" : "off"),
277 value, v2,
278 (value & 0x7f) * 10, (v2 & 0x7f) * 100);
279
280 value = i2c_smbus_read_byte_data(tps->client, TPS_DEFGPIO);
281 v2 = i2c_smbus_read_byte_data(tps->client, TPS_MASK3);
282 seq_printf(s, "defgpio %02x mask3 %02x\n", value, v2);
283
284 for (i = 0; i < 4; i++) {
285 if (value & (1 << (4 + i)))
286 seq_printf(s, " gpio%d-out %s\n", i + 1,
287 (value & (1 << i)) ? "low" : "hi ");
288 else
289 seq_printf(s, " gpio%d-in %s %s %s\n", i + 1,
290 (value & (1 << i)) ? "hi " : "low",
291 (v2 & (1 << i)) ? "no-irq" : "irq",
292 (v2 & (1 << (4 + i))) ? "rising" : "falling");
293 }
294
295 mutex_unlock(&tps->lock);
296 return 0;
297}
298
299static int dbg_tps_open(struct inode *inode, struct file *file)
300{
301 return single_open(file, dbg_show, inode->i_private);
302}
303
304static const struct file_operations debug_fops = {
305 .open = dbg_tps_open,
306 .read = seq_read,
307 .llseek = seq_lseek,
308 .release = single_release,
309};
310
311#define DEBUG_FOPS &debug_fops
312
313#else
314#define DEBUG_FOPS NULL
315#endif
316
317/*-------------------------------------------------------------------------*/
318
319/* handle IRQS in a task context, so we can use I2C calls */
320static void tps65010_interrupt(struct tps65010 *tps)
321{
322 u8 tmp = 0, mask, poll;
323
324 /* IRQs won't trigger for certain events, but we can get
325 * others by polling (normally, with external power applied).
326 */
327 poll = 0;
328
329 /* regstatus irqs */
330 if (tps->nmask2) {
331 tmp = i2c_smbus_read_byte_data(tps->client, TPS_REGSTATUS);
332 mask = tmp ^ tps->regstatus;
333 tps->regstatus = tmp;
334 mask &= tps->nmask2;
335 } else
336 mask = 0;
337 if (mask) {
338 tps->regstatus = tmp;
339 /* may need to shut something down ... */
340
341 /* "off" usually means deep sleep */
342 if (tmp & TPS_REG_ONOFF) {
343 pr_info("%s: power off button\n", DRIVER_NAME);
344#if 0
345 /* REVISIT: this might need its own workqueue
346 * plus tweaks including deadlock avoidance ...
347 * also needs to get error handling and probably
348 * an #ifdef CONFIG_HIBERNATION
349 */
350 hibernate();
351#endif
352 poll = 1;
353 }
354 }
355
356 /* chgstatus irqs */
357 if (tps->nmask1) {
358 tmp = i2c_smbus_read_byte_data(tps->client, TPS_CHGSTATUS);
359 mask = tmp ^ tps->chgstatus;
360 tps->chgstatus = tmp;
361 mask &= tps->nmask1;
362 } else
363 mask = 0;
364 if (mask) {
365 unsigned charging = 0;
366
367 show_chgstatus("chg/irq", tmp);
368 if (tmp & (TPS_CHG_USB|TPS_CHG_AC))
369 show_chgconfig(tps->por, "conf", tps->chgconf);
370
371 /* Unless it was turned off or disabled, we charge any
372 * battery whenever there's power available for it
373 * and the charger hasn't been disabled.
374 */
375 if (!(tps->chgstatus & ~(TPS_CHG_USB|TPS_CHG_AC))
376 && (tps->chgstatus & (TPS_CHG_USB|TPS_CHG_AC))
377 && (tps->chgconf & TPS_CHARGE_ENABLE)
378 ) {
379 if (tps->chgstatus & TPS_CHG_USB) {
380 /* VBUS options are readonly until reconnect */
381 if (mask & TPS_CHG_USB)
382 set_bit(FLAG_VBUS_CHANGED, &tps->flags);
383 charging = 1;
384 } else if (tps->chgstatus & TPS_CHG_AC)
385 charging = 1;
386 }
387 if (charging != tps->charging) {
388 tps->charging = charging;
389 pr_info("%s: battery %scharging\n",
390 DRIVER_NAME, charging ? "" :
391 ((tps->chgstatus & (TPS_CHG_USB|TPS_CHG_AC))
392 ? "NOT " : "dis"));
393 }
394 }
395
396 /* always poll to detect (a) power removal, without tps65013
397 * NO_CHG IRQ; or (b) restart of charging after stop.
398 */
399 if ((tps->model != TPS65013 || !tps->charging)
400 && (tps->chgstatus & (TPS_CHG_USB|TPS_CHG_AC)))
401 poll = 1;
402 if (poll)
403 (void) schedule_delayed_work(&tps->work, POWER_POLL_DELAY);
404
405 /* also potentially gpio-in rise or fall */
406}
407
408/* handle IRQs and polling using keventd for now */
409static void tps65010_work(struct work_struct *work)
410{
411 struct tps65010 *tps;
412
413 tps = container_of(work, struct tps65010, work.work);
414 mutex_lock(&tps->lock);
415
416 tps65010_interrupt(tps);
417
418 if (test_and_clear_bit(FLAG_VBUS_CHANGED, &tps->flags)) {
419 int status;
420 u8 chgconfig, tmp;
421
422 chgconfig = i2c_smbus_read_byte_data(tps->client,
423 TPS_CHGCONFIG);
424 chgconfig &= ~(TPS_VBUS_500MA | TPS_VBUS_CHARGING);
425 if (tps->vbus == 500)
426 chgconfig |= TPS_VBUS_500MA | TPS_VBUS_CHARGING;
427 else if (tps->vbus >= 100)
428 chgconfig |= TPS_VBUS_CHARGING;
429
430 status = i2c_smbus_write_byte_data(tps->client,
431 TPS_CHGCONFIG, chgconfig);
432
433 /* vbus update fails unless VBUS is connected! */
434 tmp = i2c_smbus_read_byte_data(tps->client, TPS_CHGCONFIG);
435 tps->chgconf = tmp;
436 show_chgconfig(tps->por, "update vbus", tmp);
437 }
438
439 if (test_and_clear_bit(FLAG_IRQ_ENABLE, &tps->flags))
440 enable_irq(tps->client->irq);
441
442 mutex_unlock(&tps->lock);
443}
444
445static irqreturn_t tps65010_irq(int irq, void *_tps)
446{
447 struct tps65010 *tps = _tps;
448
449 disable_irq_nosync(irq);
450 set_bit(FLAG_IRQ_ENABLE, &tps->flags);
451 (void) schedule_work(&tps->work.work);
452 return IRQ_HANDLED;
453}
454
455/*-------------------------------------------------------------------------*/
456
457/* offsets 0..3 == GPIO1..GPIO4
458 * offsets 4..5 == LED1/nPG, LED2 (we set one of the non-BLINK modes)
459 * offset 6 == vibrator motor driver
460 */
461static void
462tps65010_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
463{
464 if (offset < 4)
465 tps65010_set_gpio_out_value(offset + 1, value);
466 else if (offset < 6)
467 tps65010_set_led(offset - 3, value ? ON : OFF);
468 else
469 tps65010_set_vib(value);
470}
471
472static int
473tps65010_output(struct gpio_chip *chip, unsigned offset, int value)
474{
475 /* GPIOs may be input-only */
476 if (offset < 4) {
477 struct tps65010 *tps;
478
479 tps = container_of(chip, struct tps65010, chip);
480 if (!(tps->outmask & (1 << offset)))
481 return -EINVAL;
482 tps65010_set_gpio_out_value(offset + 1, value);
483 } else if (offset < 6)
484 tps65010_set_led(offset - 3, value ? ON : OFF);
485 else
486 tps65010_set_vib(value);
487
488 return 0;
489}
490
491static int tps65010_gpio_get(struct gpio_chip *chip, unsigned offset)
492{
493 int value;
494 struct tps65010 *tps;
495
496 tps = container_of(chip, struct tps65010, chip);
497
498 if (offset < 4) {
499 value = i2c_smbus_read_byte_data(tps->client, TPS_DEFGPIO);
500 if (value < 0)
501 return 0;
502 if (value & (1 << (offset + 4))) /* output */
503 return !(value & (1 << offset));
504 else /* input */
505 return (value & (1 << offset));
506 }
507
508 /* REVISIT we *could* report LED1/nPG and LED2 state ... */
509 return 0;
510}
511
512
513/*-------------------------------------------------------------------------*/
514
515static struct tps65010 *the_tps;
516
517static int __exit tps65010_remove(struct i2c_client *client)
518{
519 struct tps65010 *tps = i2c_get_clientdata(client);
520 struct tps65010_board *board = client->dev.platform_data;
521
522 if (board && board->teardown) {
523 int status = board->teardown(client, board->context);
524 if (status < 0)
525 dev_dbg(&client->dev, "board %s %s err %d\n",
526 "teardown", client->name, status);
527 }
528 if (client->irq > 0)
529 free_irq(client->irq, tps);
530 cancel_delayed_work(&tps->work);
531 flush_scheduled_work();
532 debugfs_remove(tps->file);
533 kfree(tps);
534 i2c_set_clientdata(client, NULL);
535 the_tps = NULL;
536 return 0;
537}
538
539static int tps65010_probe(struct i2c_client *client,
540 const struct i2c_device_id *id)
541{
542 struct tps65010 *tps;
543 int status;
544 struct tps65010_board *board = client->dev.platform_data;
545
546 if (the_tps) {
547 dev_dbg(&client->dev, "only one tps6501x chip allowed\n");
548 return -ENODEV;
549 }
550
551 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
552 return -EINVAL;
553
554 tps = kzalloc(sizeof *tps, GFP_KERNEL);
555 if (!tps)
556 return -ENOMEM;
557
558 mutex_init(&tps->lock);
559 INIT_DELAYED_WORK(&tps->work, tps65010_work);
560 tps->client = client;
561 tps->model = id->driver_data;
562
563 /* the IRQ is active low, but many gpio lines can't support that
564 * so this driver uses falling-edge triggers instead.
565 */
566 if (client->irq > 0) {
567 status = request_irq(client->irq, tps65010_irq,
568 IRQF_SAMPLE_RANDOM | IRQF_TRIGGER_FALLING,
569 DRIVER_NAME, tps);
570 if (status < 0) {
571 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n",
572 client->irq, status);
573 goto fail1;
574 }
575 /* annoying race here, ideally we'd have an option
576 * to claim the irq now and enable it later.
577 * FIXME genirq IRQF_NOAUTOEN now solves that ...
578 */
579 disable_irq(client->irq);
580 set_bit(FLAG_IRQ_ENABLE, &tps->flags);
581 } else
582 dev_warn(&client->dev, "IRQ not configured!\n");
583
584
585 switch (tps->model) {
586 case TPS65010:
587 case TPS65012:
588 tps->por = 1;
589 break;
590 /* else CHGCONFIG.POR is replaced by AUA, enabling a WAIT mode */
591 }
592 tps->chgconf = i2c_smbus_read_byte_data(client, TPS_CHGCONFIG);
593 show_chgconfig(tps->por, "conf/init", tps->chgconf);
594
595 show_chgstatus("chg/init",
596 i2c_smbus_read_byte_data(client, TPS_CHGSTATUS));
597 show_regstatus("reg/init",
598 i2c_smbus_read_byte_data(client, TPS_REGSTATUS));
599
600 pr_debug("%s: vdcdc1 0x%02x, vdcdc2 %02x, vregs1 %02x\n", DRIVER_NAME,
601 i2c_smbus_read_byte_data(client, TPS_VDCDC1),
602 i2c_smbus_read_byte_data(client, TPS_VDCDC2),
603 i2c_smbus_read_byte_data(client, TPS_VREGS1));
604 pr_debug("%s: defgpio 0x%02x, mask3 0x%02x\n", DRIVER_NAME,
605 i2c_smbus_read_byte_data(client, TPS_DEFGPIO),
606 i2c_smbus_read_byte_data(client, TPS_MASK3));
607
608 i2c_set_clientdata(client, tps);
609 the_tps = tps;
610
611#if defined(CONFIG_USB_GADGET) && !defined(CONFIG_USB_OTG)
612 /* USB hosts can't draw VBUS. OTG devices could, later
613 * when OTG infrastructure enables it. USB peripherals
614 * could be relying on VBUS while booting, though.
615 */
616 tps->vbus = 100;
617#endif
618
619 /* unmask the "interesting" irqs, then poll once to
620 * kickstart monitoring, initialize shadowed status
621 * registers, and maybe disable VBUS draw.
622 */
623 tps->nmask1 = ~0;
624 (void) i2c_smbus_write_byte_data(client, TPS_MASK1, ~tps->nmask1);
625
626 tps->nmask2 = TPS_REG_ONOFF;
627 if (tps->model == TPS65013)
628 tps->nmask2 |= TPS_REG_NO_CHG;
629 (void) i2c_smbus_write_byte_data(client, TPS_MASK2, ~tps->nmask2);
630
631 (void) i2c_smbus_write_byte_data(client, TPS_MASK3, 0x0f
632 | i2c_smbus_read_byte_data(client, TPS_MASK3));
633
634 tps65010_work(&tps->work.work);
635
636 tps->file = debugfs_create_file(DRIVER_NAME, S_IRUGO, NULL,
637 tps, DEBUG_FOPS);
638
639 /* optionally register GPIOs */
640 if (board && board->base > 0) {
641 tps->outmask = board->outmask;
642
643 tps->chip.label = client->name;
644 tps->chip.dev = &client->dev;
645 tps->chip.owner = THIS_MODULE;
646
647 tps->chip.set = tps65010_gpio_set;
648 tps->chip.direction_output = tps65010_output;
649
650 /* NOTE: only partial support for inputs; nyet IRQs */
651 tps->chip.get = tps65010_gpio_get;
652
653 tps->chip.base = board->base;
654 tps->chip.ngpio = 7;
655 tps->chip.can_sleep = 1;
656
657 status = gpiochip_add(&tps->chip);
658 if (status < 0)
659 dev_err(&client->dev, "can't add gpiochip, err %d\n",
660 status);
661 else if (board->setup) {
662 status = board->setup(client, board->context);
663 if (status < 0) {
664 dev_dbg(&client->dev,
665 "board %s %s err %d\n",
666 "setup", client->name, status);
667 status = 0;
668 }
669 }
670 }
671
672 return 0;
673fail1:
674 kfree(tps);
675 return status;
676}
677
678static const struct i2c_device_id tps65010_id[] = {
679 { "tps65010", TPS65010 },
680 { "tps65011", TPS65011 },
681 { "tps65012", TPS65012 },
682 { "tps65013", TPS65013 },
683 { "tps65014", TPS65011 }, /* tps65011 charging at 6.5V max */
684 { }
685};
686MODULE_DEVICE_TABLE(i2c, tps65010_id);
687
688static struct i2c_driver tps65010_driver = {
689 .driver = {
690 .name = "tps65010",
691 },
692 .probe = tps65010_probe,
693 .remove = __exit_p(tps65010_remove),
694 .id_table = tps65010_id,
695};
696
697/*-------------------------------------------------------------------------*/
698
699/* Draw from VBUS:
700 * 0 mA -- DON'T DRAW (might supply power instead)
701 * 100 mA -- usb unit load (slowest charge rate)
702 * 500 mA -- usb high power (fast battery charge)
703 */
704int tps65010_set_vbus_draw(unsigned mA)
705{
706 unsigned long flags;
707
708 if (!the_tps)
709 return -ENODEV;
710
711 /* assumes non-SMP */
712 local_irq_save(flags);
713 if (mA >= 500)
714 mA = 500;
715 else if (mA >= 100)
716 mA = 100;
717 else
718 mA = 0;
719 the_tps->vbus = mA;
720 if ((the_tps->chgstatus & TPS_CHG_USB)
721 && test_and_set_bit(
722 FLAG_VBUS_CHANGED, &the_tps->flags)) {
723 /* gadget drivers call this in_irq() */
724 (void) schedule_work(&the_tps->work.work);
725 }
726 local_irq_restore(flags);
727
728 return 0;
729}
730EXPORT_SYMBOL(tps65010_set_vbus_draw);
731
732/*-------------------------------------------------------------------------*/
733/* tps65010_set_gpio_out_value parameter:
734 * gpio: GPIO1, GPIO2, GPIO3 or GPIO4
735 * value: LOW or HIGH
736 */
737int tps65010_set_gpio_out_value(unsigned gpio, unsigned value)
738{
739 int status;
740 unsigned defgpio;
741
742 if (!the_tps)
743 return -ENODEV;
744 if ((gpio < GPIO1) || (gpio > GPIO4))
745 return -EINVAL;
746
747 mutex_lock(&the_tps->lock);
748
749 defgpio = i2c_smbus_read_byte_data(the_tps->client, TPS_DEFGPIO);
750
751 /* Configure GPIO for output */
752 defgpio |= 1 << (gpio + 3);
753
754 /* Writing 1 forces a logic 0 on that GPIO and vice versa */
755 switch (value) {
756 case LOW:
757 defgpio |= 1 << (gpio - 1); /* set GPIO low by writing 1 */
758 break;
759 /* case HIGH: */
760 default:
761 defgpio &= ~(1 << (gpio - 1)); /* set GPIO high by writing 0 */
762 break;
763 }
764
765 status = i2c_smbus_write_byte_data(the_tps->client,
766 TPS_DEFGPIO, defgpio);
767
768 pr_debug("%s: gpio%dout = %s, defgpio 0x%02x\n", DRIVER_NAME,
769 gpio, value ? "high" : "low",
770 i2c_smbus_read_byte_data(the_tps->client, TPS_DEFGPIO));
771
772 mutex_unlock(&the_tps->lock);
773 return status;
774}
775EXPORT_SYMBOL(tps65010_set_gpio_out_value);
776
777/*-------------------------------------------------------------------------*/
778/* tps65010_set_led parameter:
779 * led: LED1 or LED2
780 * mode: ON, OFF or BLINK
781 */
782int tps65010_set_led(unsigned led, unsigned mode)
783{
784 int status;
785 unsigned led_on, led_per, offs;
786
787 if (!the_tps)
788 return -ENODEV;
789
790 if (led == LED1)
791 offs = 0;
792 else {
793 offs = 2;
794 led = LED2;
795 }
796
797 mutex_lock(&the_tps->lock);
798
799 pr_debug("%s: led%i_on 0x%02x\n", DRIVER_NAME, led,
800 i2c_smbus_read_byte_data(the_tps->client,
801 TPS_LED1_ON + offs));
802
803 pr_debug("%s: led%i_per 0x%02x\n", DRIVER_NAME, led,
804 i2c_smbus_read_byte_data(the_tps->client,
805 TPS_LED1_PER + offs));
806
807 switch (mode) {
808 case OFF:
809 led_on = 1 << 7;
810 led_per = 0 << 7;
811 break;
812 case ON:
813 led_on = 1 << 7;
814 led_per = 1 << 7;
815 break;
816 case BLINK:
817 led_on = 0x30 | (0 << 7);
818 led_per = 0x08 | (1 << 7);
819 break;
820 default:
821 printk(KERN_ERR "%s: Wrong mode parameter for set_led()\n",
822 DRIVER_NAME);
823 mutex_unlock(&the_tps->lock);
824 return -EINVAL;
825 }
826
827 status = i2c_smbus_write_byte_data(the_tps->client,
828 TPS_LED1_ON + offs, led_on);
829
830 if (status != 0) {
831 printk(KERN_ERR "%s: Failed to write led%i_on register\n",
832 DRIVER_NAME, led);
833 mutex_unlock(&the_tps->lock);
834 return status;
835 }
836
837 pr_debug("%s: led%i_on 0x%02x\n", DRIVER_NAME, led,
838 i2c_smbus_read_byte_data(the_tps->client, TPS_LED1_ON + offs));
839
840 status = i2c_smbus_write_byte_data(the_tps->client,
841 TPS_LED1_PER + offs, led_per);
842
843 if (status != 0) {
844 printk(KERN_ERR "%s: Failed to write led%i_per register\n",
845 DRIVER_NAME, led);
846 mutex_unlock(&the_tps->lock);
847 return status;
848 }
849
850 pr_debug("%s: led%i_per 0x%02x\n", DRIVER_NAME, led,
851 i2c_smbus_read_byte_data(the_tps->client,
852 TPS_LED1_PER + offs));
853
854 mutex_unlock(&the_tps->lock);
855
856 return status;
857}
858EXPORT_SYMBOL(tps65010_set_led);
859
860/*-------------------------------------------------------------------------*/
861/* tps65010_set_vib parameter:
862 * value: ON or OFF
863 */
864int tps65010_set_vib(unsigned value)
865{
866 int status;
867 unsigned vdcdc2;
868
869 if (!the_tps)
870 return -ENODEV;
871
872 mutex_lock(&the_tps->lock);
873
874 vdcdc2 = i2c_smbus_read_byte_data(the_tps->client, TPS_VDCDC2);
875 vdcdc2 &= ~(1 << 1);
876 if (value)
877 vdcdc2 |= (1 << 1);
878 status = i2c_smbus_write_byte_data(the_tps->client,
879 TPS_VDCDC2, vdcdc2);
880
881 pr_debug("%s: vibrator %s\n", DRIVER_NAME, value ? "on" : "off");
882
883 mutex_unlock(&the_tps->lock);
884 return status;
885}
886EXPORT_SYMBOL(tps65010_set_vib);
887
888/*-------------------------------------------------------------------------*/
889/* tps65010_set_low_pwr parameter:
890 * mode: ON or OFF
891 */
892int tps65010_set_low_pwr(unsigned mode)
893{
894 int status;
895 unsigned vdcdc1;
896
897 if (!the_tps)
898 return -ENODEV;
899
900 mutex_lock(&the_tps->lock);
901
902 pr_debug("%s: %s low_pwr, vdcdc1 0x%02x\n", DRIVER_NAME,
903 mode ? "enable" : "disable",
904 i2c_smbus_read_byte_data(the_tps->client, TPS_VDCDC1));
905
906 vdcdc1 = i2c_smbus_read_byte_data(the_tps->client, TPS_VDCDC1);
907
908 switch (mode) {
909 case OFF:
910 vdcdc1 &= ~TPS_ENABLE_LP; /* disable ENABLE_LP bit */
911 break;
912 /* case ON: */
913 default:
914 vdcdc1 |= TPS_ENABLE_LP; /* enable ENABLE_LP bit */
915 break;
916 }
917
918 status = i2c_smbus_write_byte_data(the_tps->client,
919 TPS_VDCDC1, vdcdc1);
920
921 if (status != 0)
922 printk(KERN_ERR "%s: Failed to write vdcdc1 register\n",
923 DRIVER_NAME);
924 else
925 pr_debug("%s: vdcdc1 0x%02x\n", DRIVER_NAME,
926 i2c_smbus_read_byte_data(the_tps->client, TPS_VDCDC1));
927
928 mutex_unlock(&the_tps->lock);
929
930 return status;
931}
932EXPORT_SYMBOL(tps65010_set_low_pwr);
933
934/*-------------------------------------------------------------------------*/
935/* tps65010_config_vregs1 parameter:
936 * value to be written to VREGS1 register
937 * Note: The complete register is written, set all bits you need
938 */
939int tps65010_config_vregs1(unsigned value)
940{
941 int status;
942
943 if (!the_tps)
944 return -ENODEV;
945
946 mutex_lock(&the_tps->lock);
947
948 pr_debug("%s: vregs1 0x%02x\n", DRIVER_NAME,
949 i2c_smbus_read_byte_data(the_tps->client, TPS_VREGS1));
950
951 status = i2c_smbus_write_byte_data(the_tps->client,
952 TPS_VREGS1, value);
953
954 if (status != 0)
955 printk(KERN_ERR "%s: Failed to write vregs1 register\n",
956 DRIVER_NAME);
957 else
958 pr_debug("%s: vregs1 0x%02x\n", DRIVER_NAME,
959 i2c_smbus_read_byte_data(the_tps->client, TPS_VREGS1));
960
961 mutex_unlock(&the_tps->lock);
962
963 return status;
964}
965EXPORT_SYMBOL(tps65010_config_vregs1);
966
967/*-------------------------------------------------------------------------*/
968/* tps65013_set_low_pwr parameter:
969 * mode: ON or OFF
970 */
971
972/* FIXME: Assumes AC or USB power is present. Setting AUA bit is not
973 required if power supply is through a battery */
974
975int tps65013_set_low_pwr(unsigned mode)
976{
977 int status;
978 unsigned vdcdc1, chgconfig;
979
980 if (!the_tps || the_tps->por)
981 return -ENODEV;
982
983 mutex_lock(&the_tps->lock);
984
985 pr_debug("%s: %s low_pwr, chgconfig 0x%02x vdcdc1 0x%02x\n",
986 DRIVER_NAME,
987 mode ? "enable" : "disable",
988 i2c_smbus_read_byte_data(the_tps->client, TPS_CHGCONFIG),
989 i2c_smbus_read_byte_data(the_tps->client, TPS_VDCDC1));
990
991 chgconfig = i2c_smbus_read_byte_data(the_tps->client, TPS_CHGCONFIG);
992 vdcdc1 = i2c_smbus_read_byte_data(the_tps->client, TPS_VDCDC1);
993
994 switch (mode) {
995 case OFF:
996 chgconfig &= ~TPS65013_AUA; /* disable AUA bit */
997 vdcdc1 &= ~TPS_ENABLE_LP; /* disable ENABLE_LP bit */
998 break;
999 /* case ON: */
1000 default:
1001 chgconfig |= TPS65013_AUA; /* enable AUA bit */
1002 vdcdc1 |= TPS_ENABLE_LP; /* enable ENABLE_LP bit */
1003 break;
1004 }
1005
1006 status = i2c_smbus_write_byte_data(the_tps->client,
1007 TPS_CHGCONFIG, chgconfig);
1008 if (status != 0) {
1009 printk(KERN_ERR "%s: Failed to write chconfig register\n",
1010 DRIVER_NAME);
1011 mutex_unlock(&the_tps->lock);
1012 return status;
1013 }
1014
1015 chgconfig = i2c_smbus_read_byte_data(the_tps->client, TPS_CHGCONFIG);
1016 the_tps->chgconf = chgconfig;
1017 show_chgconfig(0, "chgconf", chgconfig);
1018
1019 status = i2c_smbus_write_byte_data(the_tps->client,
1020 TPS_VDCDC1, vdcdc1);
1021
1022 if (status != 0)
1023 printk(KERN_ERR "%s: Failed to write vdcdc1 register\n",
1024 DRIVER_NAME);
1025 else
1026 pr_debug("%s: vdcdc1 0x%02x\n", DRIVER_NAME,
1027 i2c_smbus_read_byte_data(the_tps->client, TPS_VDCDC1));
1028
1029 mutex_unlock(&the_tps->lock);
1030
1031 return status;
1032}
1033EXPORT_SYMBOL(tps65013_set_low_pwr);
1034
1035/*-------------------------------------------------------------------------*/
1036
1037static int __init tps_init(void)
1038{
1039 u32 tries = 3;
1040 int status = -ENODEV;
1041
1042 printk(KERN_INFO "%s: version %s\n", DRIVER_NAME, DRIVER_VERSION);
1043
1044 /* some boards have startup glitches */
1045 while (tries--) {
1046 status = i2c_add_driver(&tps65010_driver);
1047 if (the_tps)
1048 break;
1049 i2c_del_driver(&tps65010_driver);
1050 if (!tries) {
1051 printk(KERN_ERR "%s: no chip?\n", DRIVER_NAME);
1052 return -ENODEV;
1053 }
1054 pr_debug("%s: re-probe ...\n", DRIVER_NAME);
1055 msleep(10);
1056 }
1057
1058 return status;
1059}
1060/* NOTE: this MUST be initialized before the other parts of the system
1061 * that rely on it ... but after the i2c bus on which this relies.
1062 * That is, much earlier than on PC-type systems, which don't often use
1063 * I2C as a core system bus.
1064 */
1065subsys_initcall(tps_init);
1066
1067static void __exit tps_exit(void)
1068{
1069 i2c_del_driver(&tps65010_driver);
1070}
1071module_exit(tps_exit);
1072