aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/firewire/sbp2.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2009-06-16 17:29:46 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2009-06-16 17:29:46 -0400
commitf83b1e616f2f68b56b09b2f5116591981fee0c1c (patch)
treed8c423502853b46ec82c58ee31b695552579f7da /drivers/firewire/sbp2.c
parent2f38d70fb4e97e7d00e12eaac45790cf6ebd7b22 (diff)
parent1e626fdcef61460dc75fe7377f38bb019722b848 (diff)
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux1394-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux1394-2.6: firewire: core: use more outbound tlabels firewire: core: don't update Broadcast_Channel if RFC 2734 conditions aren't met firewire: core: prepare for non-core children of card devices firewire: core: include linux/uaccess.h instead of asm/uaccess.h firewire: add parent-of-unit accessor firewire: rename source files firewire: reorganize header files firewire: clean up includes firewire: ohci: access bus_seconds atomically firewire: also use vendor ID in root directory for driver matches firewire: share device ID table type with ieee1394 firewire: core: add sysfs attribute for easier udev rules firewire: core: check for missing struct update at build time, not run time firewire: core: improve check for local node
Diffstat (limited to 'drivers/firewire/sbp2.c')
-rw-r--r--drivers/firewire/sbp2.c1656
1 files changed, 1656 insertions, 0 deletions
diff --git a/drivers/firewire/sbp2.c b/drivers/firewire/sbp2.c
new file mode 100644
index 000000000000..24c45635376a
--- /dev/null
+++ b/drivers/firewire/sbp2.c
@@ -0,0 +1,1656 @@
1/*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31#include <linux/blkdev.h>
32#include <linux/bug.h>
33#include <linux/completion.h>
34#include <linux/delay.h>
35#include <linux/device.h>
36#include <linux/dma-mapping.h>
37#include <linux/firewire.h>
38#include <linux/firewire-constants.h>
39#include <linux/init.h>
40#include <linux/jiffies.h>
41#include <linux/kernel.h>
42#include <linux/kref.h>
43#include <linux/list.h>
44#include <linux/mod_devicetable.h>
45#include <linux/module.h>
46#include <linux/moduleparam.h>
47#include <linux/scatterlist.h>
48#include <linux/slab.h>
49#include <linux/spinlock.h>
50#include <linux/string.h>
51#include <linux/stringify.h>
52#include <linux/workqueue.h>
53
54#include <asm/byteorder.h>
55#include <asm/system.h>
56
57#include <scsi/scsi.h>
58#include <scsi/scsi_cmnd.h>
59#include <scsi/scsi_device.h>
60#include <scsi/scsi_host.h>
61
62/*
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
66 *
67 * Concurrent logins are useful together with cluster filesystems.
68 */
69static int sbp2_param_exclusive_login = 1;
70module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 "(default = Y, use N for concurrent initiators)");
73
74/*
75 * Flags for firmware oddities
76 *
77 * - 128kB max transfer
78 * Limit transfer size. Necessary for some old bridges.
79 *
80 * - 36 byte inquiry
81 * When scsi_mod probes the device, let the inquiry command look like that
82 * from MS Windows.
83 *
84 * - skip mode page 8
85 * Suppress sending of mode_sense for mode page 8 if the device pretends to
86 * support the SCSI Primary Block commands instead of Reduced Block Commands.
87 *
88 * - fix capacity
89 * Tell sd_mod to correct the last sector number reported by read_capacity.
90 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 * Don't use this with devices which don't have this bug.
92 *
93 * - delay inquiry
94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95 *
96 * - power condition
97 * Set the power condition field in the START STOP UNIT commands sent by
98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 * Some disks need this to spin down or to resume properly.
100 *
101 * - override internal blacklist
102 * Instead of adding to the built-in blacklist, use only the workarounds
103 * specified in the module load parameter.
104 * Useful if a blacklist entry interfered with a non-broken device.
105 */
106#define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
107#define SBP2_WORKAROUND_INQUIRY_36 0x2
108#define SBP2_WORKAROUND_MODE_SENSE_8 0x4
109#define SBP2_WORKAROUND_FIX_CAPACITY 0x8
110#define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
111#define SBP2_INQUIRY_DELAY 12
112#define SBP2_WORKAROUND_POWER_CONDITION 0x20
113#define SBP2_WORKAROUND_OVERRIDE 0x100
114
115static int sbp2_param_workarounds;
116module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 ", set power condition in start stop unit = "
124 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 ", or a combination)");
127
128/* I don't know why the SCSI stack doesn't define something like this... */
129typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
130
131static const char sbp2_driver_name[] = "sbp2";
132
133/*
134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
135 * and one struct scsi_device per sbp2_logical_unit.
136 */
137struct sbp2_logical_unit {
138 struct sbp2_target *tgt;
139 struct list_head link;
140 struct fw_address_handler address_handler;
141 struct list_head orb_list;
142
143 u64 command_block_agent_address;
144 u16 lun;
145 int login_id;
146
147 /*
148 * The generation is updated once we've logged in or reconnected
149 * to the logical unit. Thus, I/O to the device will automatically
150 * fail and get retried if it happens in a window where the device
151 * is not ready, e.g. after a bus reset but before we reconnect.
152 */
153 int generation;
154 int retries;
155 struct delayed_work work;
156 bool has_sdev;
157 bool blocked;
158};
159
160/*
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
163 */
164struct sbp2_target {
165 struct kref kref;
166 struct fw_unit *unit;
167 const char *bus_id;
168 struct list_head lu_list;
169
170 u64 management_agent_address;
171 u64 guid;
172 int directory_id;
173 int node_id;
174 int address_high;
175 unsigned int workarounds;
176 unsigned int mgt_orb_timeout;
177 unsigned int max_payload;
178
179 int dont_block; /* counter for each logical unit */
180 int blocked; /* ditto */
181};
182
183static struct fw_device *target_device(struct sbp2_target *tgt)
184{
185 return fw_parent_device(tgt->unit);
186}
187
188/* Impossible login_id, to detect logout attempt before successful login */
189#define INVALID_LOGIN_ID 0x10000
190
191/*
192 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
193 * provided in the config rom. Most devices do provide a value, which
194 * we'll use for login management orbs, but with some sane limits.
195 */
196#define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
197#define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
198#define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
199#define SBP2_ORB_NULL 0x80000000
200#define SBP2_RETRY_LIMIT 0xf /* 15 retries */
201#define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
202
203/*
204 * The default maximum s/g segment size of a FireWire controller is
205 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
206 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
207 */
208#define SBP2_MAX_SEG_SIZE 0xfffc
209
210/* Unit directory keys */
211#define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
212#define SBP2_CSR_FIRMWARE_REVISION 0x3c
213#define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
214#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
215
216/* Management orb opcodes */
217#define SBP2_LOGIN_REQUEST 0x0
218#define SBP2_QUERY_LOGINS_REQUEST 0x1
219#define SBP2_RECONNECT_REQUEST 0x3
220#define SBP2_SET_PASSWORD_REQUEST 0x4
221#define SBP2_LOGOUT_REQUEST 0x7
222#define SBP2_ABORT_TASK_REQUEST 0xb
223#define SBP2_ABORT_TASK_SET 0xc
224#define SBP2_LOGICAL_UNIT_RESET 0xe
225#define SBP2_TARGET_RESET_REQUEST 0xf
226
227/* Offsets for command block agent registers */
228#define SBP2_AGENT_STATE 0x00
229#define SBP2_AGENT_RESET 0x04
230#define SBP2_ORB_POINTER 0x08
231#define SBP2_DOORBELL 0x10
232#define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
233
234/* Status write response codes */
235#define SBP2_STATUS_REQUEST_COMPLETE 0x0
236#define SBP2_STATUS_TRANSPORT_FAILURE 0x1
237#define SBP2_STATUS_ILLEGAL_REQUEST 0x2
238#define SBP2_STATUS_VENDOR_DEPENDENT 0x3
239
240#define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
241#define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
242#define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
243#define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
244#define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
245#define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
246#define STATUS_GET_ORB_LOW(v) ((v).orb_low)
247#define STATUS_GET_DATA(v) ((v).data)
248
249struct sbp2_status {
250 u32 status;
251 u32 orb_low;
252 u8 data[24];
253};
254
255struct sbp2_pointer {
256 __be32 high;
257 __be32 low;
258};
259
260struct sbp2_orb {
261 struct fw_transaction t;
262 struct kref kref;
263 dma_addr_t request_bus;
264 int rcode;
265 struct sbp2_pointer pointer;
266 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
267 struct list_head link;
268};
269
270#define MANAGEMENT_ORB_LUN(v) ((v))
271#define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
272#define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
273#define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
274#define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
275#define MANAGEMENT_ORB_NOTIFY ((1) << 31)
276
277#define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
278#define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
279
280struct sbp2_management_orb {
281 struct sbp2_orb base;
282 struct {
283 struct sbp2_pointer password;
284 struct sbp2_pointer response;
285 __be32 misc;
286 __be32 length;
287 struct sbp2_pointer status_fifo;
288 } request;
289 __be32 response[4];
290 dma_addr_t response_bus;
291 struct completion done;
292 struct sbp2_status status;
293};
294
295struct sbp2_login_response {
296 __be32 misc;
297 struct sbp2_pointer command_block_agent;
298 __be32 reconnect_hold;
299};
300#define COMMAND_ORB_DATA_SIZE(v) ((v))
301#define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
302#define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
303#define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
304#define COMMAND_ORB_SPEED(v) ((v) << 24)
305#define COMMAND_ORB_DIRECTION ((1) << 27)
306#define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
307#define COMMAND_ORB_NOTIFY ((1) << 31)
308
309struct sbp2_command_orb {
310 struct sbp2_orb base;
311 struct {
312 struct sbp2_pointer next;
313 struct sbp2_pointer data_descriptor;
314 __be32 misc;
315 u8 command_block[12];
316 } request;
317 struct scsi_cmnd *cmd;
318 scsi_done_fn_t done;
319 struct sbp2_logical_unit *lu;
320
321 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
322 dma_addr_t page_table_bus;
323};
324
325#define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
326#define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
327
328/*
329 * List of devices with known bugs.
330 *
331 * The firmware_revision field, masked with 0xffff00, is the best
332 * indicator for the type of bridge chip of a device. It yields a few
333 * false positives but this did not break correctly behaving devices
334 * so far.
335 */
336static const struct {
337 u32 firmware_revision;
338 u32 model;
339 unsigned int workarounds;
340} sbp2_workarounds_table[] = {
341 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
342 .firmware_revision = 0x002800,
343 .model = 0x001010,
344 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
345 SBP2_WORKAROUND_MODE_SENSE_8 |
346 SBP2_WORKAROUND_POWER_CONDITION,
347 },
348 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
349 .firmware_revision = 0x002800,
350 .model = 0x000000,
351 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
352 SBP2_WORKAROUND_POWER_CONDITION,
353 },
354 /* Initio bridges, actually only needed for some older ones */ {
355 .firmware_revision = 0x000200,
356 .model = SBP2_ROM_VALUE_WILDCARD,
357 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
358 },
359 /* PL-3507 bridge with Prolific firmware */ {
360 .firmware_revision = 0x012800,
361 .model = SBP2_ROM_VALUE_WILDCARD,
362 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
363 },
364 /* Symbios bridge */ {
365 .firmware_revision = 0xa0b800,
366 .model = SBP2_ROM_VALUE_WILDCARD,
367 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
368 },
369 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
370 .firmware_revision = 0x002600,
371 .model = SBP2_ROM_VALUE_WILDCARD,
372 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
373 },
374 /*
375 * iPod 2nd generation: needs 128k max transfer size workaround
376 * iPod 3rd generation: needs fix capacity workaround
377 */
378 {
379 .firmware_revision = 0x0a2700,
380 .model = 0x000000,
381 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
382 SBP2_WORKAROUND_FIX_CAPACITY,
383 },
384 /* iPod 4th generation */ {
385 .firmware_revision = 0x0a2700,
386 .model = 0x000021,
387 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
388 },
389 /* iPod mini */ {
390 .firmware_revision = 0x0a2700,
391 .model = 0x000022,
392 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
393 },
394 /* iPod mini */ {
395 .firmware_revision = 0x0a2700,
396 .model = 0x000023,
397 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
398 },
399 /* iPod Photo */ {
400 .firmware_revision = 0x0a2700,
401 .model = 0x00007e,
402 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
403 }
404};
405
406static void free_orb(struct kref *kref)
407{
408 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
409
410 kfree(orb);
411}
412
413static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
414 int tcode, int destination, int source,
415 int generation, int speed,
416 unsigned long long offset,
417 void *payload, size_t length, void *callback_data)
418{
419 struct sbp2_logical_unit *lu = callback_data;
420 struct sbp2_orb *orb;
421 struct sbp2_status status;
422 size_t header_size;
423 unsigned long flags;
424
425 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
426 length == 0 || length > sizeof(status)) {
427 fw_send_response(card, request, RCODE_TYPE_ERROR);
428 return;
429 }
430
431 header_size = min(length, 2 * sizeof(u32));
432 fw_memcpy_from_be32(&status, payload, header_size);
433 if (length > header_size)
434 memcpy(status.data, payload + 8, length - header_size);
435 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
436 fw_notify("non-orb related status write, not handled\n");
437 fw_send_response(card, request, RCODE_COMPLETE);
438 return;
439 }
440
441 /* Lookup the orb corresponding to this status write. */
442 spin_lock_irqsave(&card->lock, flags);
443 list_for_each_entry(orb, &lu->orb_list, link) {
444 if (STATUS_GET_ORB_HIGH(status) == 0 &&
445 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
446 orb->rcode = RCODE_COMPLETE;
447 list_del(&orb->link);
448 break;
449 }
450 }
451 spin_unlock_irqrestore(&card->lock, flags);
452
453 if (&orb->link != &lu->orb_list)
454 orb->callback(orb, &status);
455 else
456 fw_error("status write for unknown orb\n");
457
458 kref_put(&orb->kref, free_orb);
459
460 fw_send_response(card, request, RCODE_COMPLETE);
461}
462
463static void complete_transaction(struct fw_card *card, int rcode,
464 void *payload, size_t length, void *data)
465{
466 struct sbp2_orb *orb = data;
467 unsigned long flags;
468
469 /*
470 * This is a little tricky. We can get the status write for
471 * the orb before we get this callback. The status write
472 * handler above will assume the orb pointer transaction was
473 * successful and set the rcode to RCODE_COMPLETE for the orb.
474 * So this callback only sets the rcode if it hasn't already
475 * been set and only does the cleanup if the transaction
476 * failed and we didn't already get a status write.
477 */
478 spin_lock_irqsave(&card->lock, flags);
479
480 if (orb->rcode == -1)
481 orb->rcode = rcode;
482 if (orb->rcode != RCODE_COMPLETE) {
483 list_del(&orb->link);
484 spin_unlock_irqrestore(&card->lock, flags);
485 orb->callback(orb, NULL);
486 } else {
487 spin_unlock_irqrestore(&card->lock, flags);
488 }
489
490 kref_put(&orb->kref, free_orb);
491}
492
493static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
494 int node_id, int generation, u64 offset)
495{
496 struct fw_device *device = target_device(lu->tgt);
497 unsigned long flags;
498
499 orb->pointer.high = 0;
500 orb->pointer.low = cpu_to_be32(orb->request_bus);
501
502 spin_lock_irqsave(&device->card->lock, flags);
503 list_add_tail(&orb->link, &lu->orb_list);
504 spin_unlock_irqrestore(&device->card->lock, flags);
505
506 /* Take a ref for the orb list and for the transaction callback. */
507 kref_get(&orb->kref);
508 kref_get(&orb->kref);
509
510 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
511 node_id, generation, device->max_speed, offset,
512 &orb->pointer, sizeof(orb->pointer),
513 complete_transaction, orb);
514}
515
516static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
517{
518 struct fw_device *device = target_device(lu->tgt);
519 struct sbp2_orb *orb, *next;
520 struct list_head list;
521 unsigned long flags;
522 int retval = -ENOENT;
523
524 INIT_LIST_HEAD(&list);
525 spin_lock_irqsave(&device->card->lock, flags);
526 list_splice_init(&lu->orb_list, &list);
527 spin_unlock_irqrestore(&device->card->lock, flags);
528
529 list_for_each_entry_safe(orb, next, &list, link) {
530 retval = 0;
531 if (fw_cancel_transaction(device->card, &orb->t) == 0)
532 continue;
533
534 orb->rcode = RCODE_CANCELLED;
535 orb->callback(orb, NULL);
536 }
537
538 return retval;
539}
540
541static void complete_management_orb(struct sbp2_orb *base_orb,
542 struct sbp2_status *status)
543{
544 struct sbp2_management_orb *orb =
545 container_of(base_orb, struct sbp2_management_orb, base);
546
547 if (status)
548 memcpy(&orb->status, status, sizeof(*status));
549 complete(&orb->done);
550}
551
552static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
553 int generation, int function,
554 int lun_or_login_id, void *response)
555{
556 struct fw_device *device = target_device(lu->tgt);
557 struct sbp2_management_orb *orb;
558 unsigned int timeout;
559 int retval = -ENOMEM;
560
561 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
562 return 0;
563
564 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
565 if (orb == NULL)
566 return -ENOMEM;
567
568 kref_init(&orb->base.kref);
569 orb->response_bus =
570 dma_map_single(device->card->device, &orb->response,
571 sizeof(orb->response), DMA_FROM_DEVICE);
572 if (dma_mapping_error(device->card->device, orb->response_bus))
573 goto fail_mapping_response;
574
575 orb->request.response.high = 0;
576 orb->request.response.low = cpu_to_be32(orb->response_bus);
577
578 orb->request.misc = cpu_to_be32(
579 MANAGEMENT_ORB_NOTIFY |
580 MANAGEMENT_ORB_FUNCTION(function) |
581 MANAGEMENT_ORB_LUN(lun_or_login_id));
582 orb->request.length = cpu_to_be32(
583 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
584
585 orb->request.status_fifo.high =
586 cpu_to_be32(lu->address_handler.offset >> 32);
587 orb->request.status_fifo.low =
588 cpu_to_be32(lu->address_handler.offset);
589
590 if (function == SBP2_LOGIN_REQUEST) {
591 /* Ask for 2^2 == 4 seconds reconnect grace period */
592 orb->request.misc |= cpu_to_be32(
593 MANAGEMENT_ORB_RECONNECT(2) |
594 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
595 timeout = lu->tgt->mgt_orb_timeout;
596 } else {
597 timeout = SBP2_ORB_TIMEOUT;
598 }
599
600 init_completion(&orb->done);
601 orb->base.callback = complete_management_orb;
602
603 orb->base.request_bus =
604 dma_map_single(device->card->device, &orb->request,
605 sizeof(orb->request), DMA_TO_DEVICE);
606 if (dma_mapping_error(device->card->device, orb->base.request_bus))
607 goto fail_mapping_request;
608
609 sbp2_send_orb(&orb->base, lu, node_id, generation,
610 lu->tgt->management_agent_address);
611
612 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
613
614 retval = -EIO;
615 if (sbp2_cancel_orbs(lu) == 0) {
616 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
617 lu->tgt->bus_id, orb->base.rcode);
618 goto out;
619 }
620
621 if (orb->base.rcode != RCODE_COMPLETE) {
622 fw_error("%s: management write failed, rcode 0x%02x\n",
623 lu->tgt->bus_id, orb->base.rcode);
624 goto out;
625 }
626
627 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
628 STATUS_GET_SBP_STATUS(orb->status) != 0) {
629 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
630 STATUS_GET_RESPONSE(orb->status),
631 STATUS_GET_SBP_STATUS(orb->status));
632 goto out;
633 }
634
635 retval = 0;
636 out:
637 dma_unmap_single(device->card->device, orb->base.request_bus,
638 sizeof(orb->request), DMA_TO_DEVICE);
639 fail_mapping_request:
640 dma_unmap_single(device->card->device, orb->response_bus,
641 sizeof(orb->response), DMA_FROM_DEVICE);
642 fail_mapping_response:
643 if (response)
644 memcpy(response, orb->response, sizeof(orb->response));
645 kref_put(&orb->base.kref, free_orb);
646
647 return retval;
648}
649
650static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
651{
652 struct fw_device *device = target_device(lu->tgt);
653 __be32 d = 0;
654
655 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
656 lu->tgt->node_id, lu->generation, device->max_speed,
657 lu->command_block_agent_address + SBP2_AGENT_RESET,
658 &d, sizeof(d));
659}
660
661static void complete_agent_reset_write_no_wait(struct fw_card *card,
662 int rcode, void *payload, size_t length, void *data)
663{
664 kfree(data);
665}
666
667static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
668{
669 struct fw_device *device = target_device(lu->tgt);
670 struct fw_transaction *t;
671 static __be32 d;
672
673 t = kmalloc(sizeof(*t), GFP_ATOMIC);
674 if (t == NULL)
675 return;
676
677 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
678 lu->tgt->node_id, lu->generation, device->max_speed,
679 lu->command_block_agent_address + SBP2_AGENT_RESET,
680 &d, sizeof(d), complete_agent_reset_write_no_wait, t);
681}
682
683static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
684{
685 /*
686 * We may access dont_block without taking card->lock here:
687 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
688 * are currently serialized against each other.
689 * And a wrong result in sbp2_conditionally_block()'s access of
690 * dont_block is rather harmless, it simply misses its first chance.
691 */
692 --lu->tgt->dont_block;
693}
694
695/*
696 * Blocks lu->tgt if all of the following conditions are met:
697 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
698 * logical units have been finished (indicated by dont_block == 0).
699 * - lu->generation is stale.
700 *
701 * Note, scsi_block_requests() must be called while holding card->lock,
702 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
703 * unblock the target.
704 */
705static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
706{
707 struct sbp2_target *tgt = lu->tgt;
708 struct fw_card *card = target_device(tgt)->card;
709 struct Scsi_Host *shost =
710 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
711 unsigned long flags;
712
713 spin_lock_irqsave(&card->lock, flags);
714 if (!tgt->dont_block && !lu->blocked &&
715 lu->generation != card->generation) {
716 lu->blocked = true;
717 if (++tgt->blocked == 1)
718 scsi_block_requests(shost);
719 }
720 spin_unlock_irqrestore(&card->lock, flags);
721}
722
723/*
724 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
725 * Note, it is harmless to run scsi_unblock_requests() outside the
726 * card->lock protected section. On the other hand, running it inside
727 * the section might clash with shost->host_lock.
728 */
729static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
730{
731 struct sbp2_target *tgt = lu->tgt;
732 struct fw_card *card = target_device(tgt)->card;
733 struct Scsi_Host *shost =
734 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
735 unsigned long flags;
736 bool unblock = false;
737
738 spin_lock_irqsave(&card->lock, flags);
739 if (lu->blocked && lu->generation == card->generation) {
740 lu->blocked = false;
741 unblock = --tgt->blocked == 0;
742 }
743 spin_unlock_irqrestore(&card->lock, flags);
744
745 if (unblock)
746 scsi_unblock_requests(shost);
747}
748
749/*
750 * Prevents future blocking of tgt and unblocks it.
751 * Note, it is harmless to run scsi_unblock_requests() outside the
752 * card->lock protected section. On the other hand, running it inside
753 * the section might clash with shost->host_lock.
754 */
755static void sbp2_unblock(struct sbp2_target *tgt)
756{
757 struct fw_card *card = target_device(tgt)->card;
758 struct Scsi_Host *shost =
759 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
760 unsigned long flags;
761
762 spin_lock_irqsave(&card->lock, flags);
763 ++tgt->dont_block;
764 spin_unlock_irqrestore(&card->lock, flags);
765
766 scsi_unblock_requests(shost);
767}
768
769static int sbp2_lun2int(u16 lun)
770{
771 struct scsi_lun eight_bytes_lun;
772
773 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
774 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
775 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
776
777 return scsilun_to_int(&eight_bytes_lun);
778}
779
780static void sbp2_release_target(struct kref *kref)
781{
782 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
783 struct sbp2_logical_unit *lu, *next;
784 struct Scsi_Host *shost =
785 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
786 struct scsi_device *sdev;
787 struct fw_device *device = target_device(tgt);
788
789 /* prevent deadlocks */
790 sbp2_unblock(tgt);
791
792 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
793 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
794 if (sdev) {
795 scsi_remove_device(sdev);
796 scsi_device_put(sdev);
797 }
798 if (lu->login_id != INVALID_LOGIN_ID) {
799 int generation, node_id;
800 /*
801 * tgt->node_id may be obsolete here if we failed
802 * during initial login or after a bus reset where
803 * the topology changed.
804 */
805 generation = device->generation;
806 smp_rmb(); /* node_id vs. generation */
807 node_id = device->node_id;
808 sbp2_send_management_orb(lu, node_id, generation,
809 SBP2_LOGOUT_REQUEST,
810 lu->login_id, NULL);
811 }
812 fw_core_remove_address_handler(&lu->address_handler);
813 list_del(&lu->link);
814 kfree(lu);
815 }
816 scsi_remove_host(shost);
817 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
818
819 fw_unit_put(tgt->unit);
820 scsi_host_put(shost);
821 fw_device_put(device);
822}
823
824static struct workqueue_struct *sbp2_wq;
825
826static void sbp2_target_put(struct sbp2_target *tgt)
827{
828 kref_put(&tgt->kref, sbp2_release_target);
829}
830
831/*
832 * Always get the target's kref when scheduling work on one its units.
833 * Each workqueue job is responsible to call sbp2_target_put() upon return.
834 */
835static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
836{
837 kref_get(&lu->tgt->kref);
838 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
839 sbp2_target_put(lu->tgt);
840}
841
842/*
843 * Write retransmit retry values into the BUSY_TIMEOUT register.
844 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
845 * default retry_limit value is 0 (i.e. never retry transmission). We write a
846 * saner value after logging into the device.
847 * - The dual-phase retry protocol is optional to implement, and if not
848 * supported, writes to the dual-phase portion of the register will be
849 * ignored. We try to write the original 1394-1995 default here.
850 * - In the case of devices that are also SBP-3-compliant, all writes are
851 * ignored, as the register is read-only, but contains single-phase retry of
852 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
853 * write attempt is safe and yields more consistent behavior for all devices.
854 *
855 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
856 * and section 6.4 of the SBP-3 spec for further details.
857 */
858static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
859{
860 struct fw_device *device = target_device(lu->tgt);
861 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
862
863 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
864 lu->tgt->node_id, lu->generation, device->max_speed,
865 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
866 &d, sizeof(d));
867}
868
869static void sbp2_reconnect(struct work_struct *work);
870
871static void sbp2_login(struct work_struct *work)
872{
873 struct sbp2_logical_unit *lu =
874 container_of(work, struct sbp2_logical_unit, work.work);
875 struct sbp2_target *tgt = lu->tgt;
876 struct fw_device *device = target_device(tgt);
877 struct Scsi_Host *shost;
878 struct scsi_device *sdev;
879 struct sbp2_login_response response;
880 int generation, node_id, local_node_id;
881
882 if (fw_device_is_shutdown(device))
883 goto out;
884
885 generation = device->generation;
886 smp_rmb(); /* node IDs must not be older than generation */
887 node_id = device->node_id;
888 local_node_id = device->card->node_id;
889
890 /* If this is a re-login attempt, log out, or we might be rejected. */
891 if (lu->has_sdev)
892 sbp2_send_management_orb(lu, device->node_id, generation,
893 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
894
895 if (sbp2_send_management_orb(lu, node_id, generation,
896 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
897 if (lu->retries++ < 5) {
898 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
899 } else {
900 fw_error("%s: failed to login to LUN %04x\n",
901 tgt->bus_id, lu->lun);
902 /* Let any waiting I/O fail from now on. */
903 sbp2_unblock(lu->tgt);
904 }
905 goto out;
906 }
907
908 tgt->node_id = node_id;
909 tgt->address_high = local_node_id << 16;
910 smp_wmb(); /* node IDs must not be older than generation */
911 lu->generation = generation;
912
913 lu->command_block_agent_address =
914 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
915 << 32) | be32_to_cpu(response.command_block_agent.low);
916 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
917
918 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
919 tgt->bus_id, lu->lun, lu->retries);
920
921 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
922 sbp2_set_busy_timeout(lu);
923
924 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
925 sbp2_agent_reset(lu);
926
927 /* This was a re-login. */
928 if (lu->has_sdev) {
929 sbp2_cancel_orbs(lu);
930 sbp2_conditionally_unblock(lu);
931 goto out;
932 }
933
934 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
935 ssleep(SBP2_INQUIRY_DELAY);
936
937 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
938 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
939 /*
940 * FIXME: We are unable to perform reconnects while in sbp2_login().
941 * Therefore __scsi_add_device() will get into trouble if a bus reset
942 * happens in parallel. It will either fail or leave us with an
943 * unusable sdev. As a workaround we check for this and retry the
944 * whole login and SCSI probing.
945 */
946
947 /* Reported error during __scsi_add_device() */
948 if (IS_ERR(sdev))
949 goto out_logout_login;
950
951 /* Unreported error during __scsi_add_device() */
952 smp_rmb(); /* get current card generation */
953 if (generation != device->card->generation) {
954 scsi_remove_device(sdev);
955 scsi_device_put(sdev);
956 goto out_logout_login;
957 }
958
959 /* No error during __scsi_add_device() */
960 lu->has_sdev = true;
961 scsi_device_put(sdev);
962 sbp2_allow_block(lu);
963 goto out;
964
965 out_logout_login:
966 smp_rmb(); /* generation may have changed */
967 generation = device->generation;
968 smp_rmb(); /* node_id must not be older than generation */
969
970 sbp2_send_management_orb(lu, device->node_id, generation,
971 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
972 /*
973 * If a bus reset happened, sbp2_update will have requeued
974 * lu->work already. Reset the work from reconnect to login.
975 */
976 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
977 out:
978 sbp2_target_put(tgt);
979}
980
981static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
982{
983 struct sbp2_logical_unit *lu;
984
985 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
986 if (!lu)
987 return -ENOMEM;
988
989 lu->address_handler.length = 0x100;
990 lu->address_handler.address_callback = sbp2_status_write;
991 lu->address_handler.callback_data = lu;
992
993 if (fw_core_add_address_handler(&lu->address_handler,
994 &fw_high_memory_region) < 0) {
995 kfree(lu);
996 return -ENOMEM;
997 }
998
999 lu->tgt = tgt;
1000 lu->lun = lun_entry & 0xffff;
1001 lu->login_id = INVALID_LOGIN_ID;
1002 lu->retries = 0;
1003 lu->has_sdev = false;
1004 lu->blocked = false;
1005 ++tgt->dont_block;
1006 INIT_LIST_HEAD(&lu->orb_list);
1007 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1008
1009 list_add_tail(&lu->link, &tgt->lu_list);
1010 return 0;
1011}
1012
1013static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1014{
1015 struct fw_csr_iterator ci;
1016 int key, value;
1017
1018 fw_csr_iterator_init(&ci, directory);
1019 while (fw_csr_iterator_next(&ci, &key, &value))
1020 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1021 sbp2_add_logical_unit(tgt, value) < 0)
1022 return -ENOMEM;
1023 return 0;
1024}
1025
1026static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1027 u32 *model, u32 *firmware_revision)
1028{
1029 struct fw_csr_iterator ci;
1030 int key, value;
1031 unsigned int timeout;
1032
1033 fw_csr_iterator_init(&ci, directory);
1034 while (fw_csr_iterator_next(&ci, &key, &value)) {
1035 switch (key) {
1036
1037 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1038 tgt->management_agent_address =
1039 CSR_REGISTER_BASE + 4 * value;
1040 break;
1041
1042 case CSR_DIRECTORY_ID:
1043 tgt->directory_id = value;
1044 break;
1045
1046 case CSR_MODEL:
1047 *model = value;
1048 break;
1049
1050 case SBP2_CSR_FIRMWARE_REVISION:
1051 *firmware_revision = value;
1052 break;
1053
1054 case SBP2_CSR_UNIT_CHARACTERISTICS:
1055 /* the timeout value is stored in 500ms units */
1056 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1057 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1058 tgt->mgt_orb_timeout =
1059 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1060
1061 if (timeout > tgt->mgt_orb_timeout)
1062 fw_notify("%s: config rom contains %ds "
1063 "management ORB timeout, limiting "
1064 "to %ds\n", tgt->bus_id,
1065 timeout / 1000,
1066 tgt->mgt_orb_timeout / 1000);
1067 break;
1068
1069 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1070 if (sbp2_add_logical_unit(tgt, value) < 0)
1071 return -ENOMEM;
1072 break;
1073
1074 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1075 /* Adjust for the increment in the iterator */
1076 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1077 return -ENOMEM;
1078 break;
1079 }
1080 }
1081 return 0;
1082}
1083
1084static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1085 u32 firmware_revision)
1086{
1087 int i;
1088 unsigned int w = sbp2_param_workarounds;
1089
1090 if (w)
1091 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1092 "if you need the workarounds parameter for %s\n",
1093 tgt->bus_id);
1094
1095 if (w & SBP2_WORKAROUND_OVERRIDE)
1096 goto out;
1097
1098 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1099
1100 if (sbp2_workarounds_table[i].firmware_revision !=
1101 (firmware_revision & 0xffffff00))
1102 continue;
1103
1104 if (sbp2_workarounds_table[i].model != model &&
1105 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1106 continue;
1107
1108 w |= sbp2_workarounds_table[i].workarounds;
1109 break;
1110 }
1111 out:
1112 if (w)
1113 fw_notify("Workarounds for %s: 0x%x "
1114 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1115 tgt->bus_id, w, firmware_revision, model);
1116 tgt->workarounds = w;
1117}
1118
1119static struct scsi_host_template scsi_driver_template;
1120
1121static int sbp2_probe(struct device *dev)
1122{
1123 struct fw_unit *unit = fw_unit(dev);
1124 struct fw_device *device = fw_parent_device(unit);
1125 struct sbp2_target *tgt;
1126 struct sbp2_logical_unit *lu;
1127 struct Scsi_Host *shost;
1128 u32 model, firmware_revision;
1129
1130 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1131 BUG_ON(dma_set_max_seg_size(device->card->device,
1132 SBP2_MAX_SEG_SIZE));
1133
1134 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1135 if (shost == NULL)
1136 return -ENOMEM;
1137
1138 tgt = (struct sbp2_target *)shost->hostdata;
1139 dev_set_drvdata(&unit->device, tgt);
1140 tgt->unit = unit;
1141 kref_init(&tgt->kref);
1142 INIT_LIST_HEAD(&tgt->lu_list);
1143 tgt->bus_id = dev_name(&unit->device);
1144 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1145
1146 if (fw_device_enable_phys_dma(device) < 0)
1147 goto fail_shost_put;
1148
1149 if (scsi_add_host(shost, &unit->device) < 0)
1150 goto fail_shost_put;
1151
1152 fw_device_get(device);
1153 fw_unit_get(unit);
1154
1155 /* implicit directory ID */
1156 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1157 + CSR_CONFIG_ROM) & 0xffffff;
1158
1159 firmware_revision = SBP2_ROM_VALUE_MISSING;
1160 model = SBP2_ROM_VALUE_MISSING;
1161
1162 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1163 &firmware_revision) < 0)
1164 goto fail_tgt_put;
1165
1166 sbp2_init_workarounds(tgt, model, firmware_revision);
1167
1168 /*
1169 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1170 * and so on up to 4096 bytes. The SBP-2 max_payload field
1171 * specifies the max payload size as 2 ^ (max_payload + 2), so
1172 * if we set this to max_speed + 7, we get the right value.
1173 */
1174 tgt->max_payload = min(device->max_speed + 7, 10U);
1175 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1176
1177 /* Do the login in a workqueue so we can easily reschedule retries. */
1178 list_for_each_entry(lu, &tgt->lu_list, link)
1179 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1180 return 0;
1181
1182 fail_tgt_put:
1183 sbp2_target_put(tgt);
1184 return -ENOMEM;
1185
1186 fail_shost_put:
1187 scsi_host_put(shost);
1188 return -ENOMEM;
1189}
1190
1191static int sbp2_remove(struct device *dev)
1192{
1193 struct fw_unit *unit = fw_unit(dev);
1194 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1195
1196 sbp2_target_put(tgt);
1197 return 0;
1198}
1199
1200static void sbp2_reconnect(struct work_struct *work)
1201{
1202 struct sbp2_logical_unit *lu =
1203 container_of(work, struct sbp2_logical_unit, work.work);
1204 struct sbp2_target *tgt = lu->tgt;
1205 struct fw_device *device = target_device(tgt);
1206 int generation, node_id, local_node_id;
1207
1208 if (fw_device_is_shutdown(device))
1209 goto out;
1210
1211 generation = device->generation;
1212 smp_rmb(); /* node IDs must not be older than generation */
1213 node_id = device->node_id;
1214 local_node_id = device->card->node_id;
1215
1216 if (sbp2_send_management_orb(lu, node_id, generation,
1217 SBP2_RECONNECT_REQUEST,
1218 lu->login_id, NULL) < 0) {
1219 /*
1220 * If reconnect was impossible even though we are in the
1221 * current generation, fall back and try to log in again.
1222 *
1223 * We could check for "Function rejected" status, but
1224 * looking at the bus generation as simpler and more general.
1225 */
1226 smp_rmb(); /* get current card generation */
1227 if (generation == device->card->generation ||
1228 lu->retries++ >= 5) {
1229 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1230 lu->retries = 0;
1231 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1232 }
1233 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1234 goto out;
1235 }
1236
1237 tgt->node_id = node_id;
1238 tgt->address_high = local_node_id << 16;
1239 smp_wmb(); /* node IDs must not be older than generation */
1240 lu->generation = generation;
1241
1242 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1243 tgt->bus_id, lu->lun, lu->retries);
1244
1245 sbp2_agent_reset(lu);
1246 sbp2_cancel_orbs(lu);
1247 sbp2_conditionally_unblock(lu);
1248 out:
1249 sbp2_target_put(tgt);
1250}
1251
1252static void sbp2_update(struct fw_unit *unit)
1253{
1254 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1255 struct sbp2_logical_unit *lu;
1256
1257 fw_device_enable_phys_dma(fw_parent_device(unit));
1258
1259 /*
1260 * Fw-core serializes sbp2_update() against sbp2_remove().
1261 * Iteration over tgt->lu_list is therefore safe here.
1262 */
1263 list_for_each_entry(lu, &tgt->lu_list, link) {
1264 sbp2_conditionally_block(lu);
1265 lu->retries = 0;
1266 sbp2_queue_work(lu, 0);
1267 }
1268}
1269
1270#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1271#define SBP2_SW_VERSION_ENTRY 0x00010483
1272
1273static const struct ieee1394_device_id sbp2_id_table[] = {
1274 {
1275 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1276 IEEE1394_MATCH_VERSION,
1277 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1278 .version = SBP2_SW_VERSION_ENTRY,
1279 },
1280 { }
1281};
1282
1283static struct fw_driver sbp2_driver = {
1284 .driver = {
1285 .owner = THIS_MODULE,
1286 .name = sbp2_driver_name,
1287 .bus = &fw_bus_type,
1288 .probe = sbp2_probe,
1289 .remove = sbp2_remove,
1290 },
1291 .update = sbp2_update,
1292 .id_table = sbp2_id_table,
1293};
1294
1295static void sbp2_unmap_scatterlist(struct device *card_device,
1296 struct sbp2_command_orb *orb)
1297{
1298 if (scsi_sg_count(orb->cmd))
1299 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1300 scsi_sg_count(orb->cmd),
1301 orb->cmd->sc_data_direction);
1302
1303 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1304 dma_unmap_single(card_device, orb->page_table_bus,
1305 sizeof(orb->page_table), DMA_TO_DEVICE);
1306}
1307
1308static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1309{
1310 int sam_status;
1311
1312 sense_data[0] = 0x70;
1313 sense_data[1] = 0x0;
1314 sense_data[2] = sbp2_status[1];
1315 sense_data[3] = sbp2_status[4];
1316 sense_data[4] = sbp2_status[5];
1317 sense_data[5] = sbp2_status[6];
1318 sense_data[6] = sbp2_status[7];
1319 sense_data[7] = 10;
1320 sense_data[8] = sbp2_status[8];
1321 sense_data[9] = sbp2_status[9];
1322 sense_data[10] = sbp2_status[10];
1323 sense_data[11] = sbp2_status[11];
1324 sense_data[12] = sbp2_status[2];
1325 sense_data[13] = sbp2_status[3];
1326 sense_data[14] = sbp2_status[12];
1327 sense_data[15] = sbp2_status[13];
1328
1329 sam_status = sbp2_status[0] & 0x3f;
1330
1331 switch (sam_status) {
1332 case SAM_STAT_GOOD:
1333 case SAM_STAT_CHECK_CONDITION:
1334 case SAM_STAT_CONDITION_MET:
1335 case SAM_STAT_BUSY:
1336 case SAM_STAT_RESERVATION_CONFLICT:
1337 case SAM_STAT_COMMAND_TERMINATED:
1338 return DID_OK << 16 | sam_status;
1339
1340 default:
1341 return DID_ERROR << 16;
1342 }
1343}
1344
1345static void complete_command_orb(struct sbp2_orb *base_orb,
1346 struct sbp2_status *status)
1347{
1348 struct sbp2_command_orb *orb =
1349 container_of(base_orb, struct sbp2_command_orb, base);
1350 struct fw_device *device = target_device(orb->lu->tgt);
1351 int result;
1352
1353 if (status != NULL) {
1354 if (STATUS_GET_DEAD(*status))
1355 sbp2_agent_reset_no_wait(orb->lu);
1356
1357 switch (STATUS_GET_RESPONSE(*status)) {
1358 case SBP2_STATUS_REQUEST_COMPLETE:
1359 result = DID_OK << 16;
1360 break;
1361 case SBP2_STATUS_TRANSPORT_FAILURE:
1362 result = DID_BUS_BUSY << 16;
1363 break;
1364 case SBP2_STATUS_ILLEGAL_REQUEST:
1365 case SBP2_STATUS_VENDOR_DEPENDENT:
1366 default:
1367 result = DID_ERROR << 16;
1368 break;
1369 }
1370
1371 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1372 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1373 orb->cmd->sense_buffer);
1374 } else {
1375 /*
1376 * If the orb completes with status == NULL, something
1377 * went wrong, typically a bus reset happened mid-orb
1378 * or when sending the write (less likely).
1379 */
1380 result = DID_BUS_BUSY << 16;
1381 sbp2_conditionally_block(orb->lu);
1382 }
1383
1384 dma_unmap_single(device->card->device, orb->base.request_bus,
1385 sizeof(orb->request), DMA_TO_DEVICE);
1386 sbp2_unmap_scatterlist(device->card->device, orb);
1387
1388 orb->cmd->result = result;
1389 orb->done(orb->cmd);
1390}
1391
1392static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1393 struct fw_device *device, struct sbp2_logical_unit *lu)
1394{
1395 struct scatterlist *sg = scsi_sglist(orb->cmd);
1396 int i, n;
1397
1398 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1399 orb->cmd->sc_data_direction);
1400 if (n == 0)
1401 goto fail;
1402
1403 /*
1404 * Handle the special case where there is only one element in
1405 * the scatter list by converting it to an immediate block
1406 * request. This is also a workaround for broken devices such
1407 * as the second generation iPod which doesn't support page
1408 * tables.
1409 */
1410 if (n == 1) {
1411 orb->request.data_descriptor.high =
1412 cpu_to_be32(lu->tgt->address_high);
1413 orb->request.data_descriptor.low =
1414 cpu_to_be32(sg_dma_address(sg));
1415 orb->request.misc |=
1416 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1417 return 0;
1418 }
1419
1420 for_each_sg(sg, sg, n, i) {
1421 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1422 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1423 }
1424
1425 orb->page_table_bus =
1426 dma_map_single(device->card->device, orb->page_table,
1427 sizeof(orb->page_table), DMA_TO_DEVICE);
1428 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1429 goto fail_page_table;
1430
1431 /*
1432 * The data_descriptor pointer is the one case where we need
1433 * to fill in the node ID part of the address. All other
1434 * pointers assume that the data referenced reside on the
1435 * initiator (i.e. us), but data_descriptor can refer to data
1436 * on other nodes so we need to put our ID in descriptor.high.
1437 */
1438 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1439 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1440 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1441 COMMAND_ORB_DATA_SIZE(n));
1442
1443 return 0;
1444
1445 fail_page_table:
1446 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1447 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1448 fail:
1449 return -ENOMEM;
1450}
1451
1452/* SCSI stack integration */
1453
1454static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1455{
1456 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1457 struct fw_device *device = target_device(lu->tgt);
1458 struct sbp2_command_orb *orb;
1459 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1460
1461 /*
1462 * Bidirectional commands are not yet implemented, and unknown
1463 * transfer direction not handled.
1464 */
1465 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1466 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1467 cmd->result = DID_ERROR << 16;
1468 done(cmd);
1469 return 0;
1470 }
1471
1472 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1473 if (orb == NULL) {
1474 fw_notify("failed to alloc orb\n");
1475 return SCSI_MLQUEUE_HOST_BUSY;
1476 }
1477
1478 /* Initialize rcode to something not RCODE_COMPLETE. */
1479 orb->base.rcode = -1;
1480 kref_init(&orb->base.kref);
1481
1482 orb->lu = lu;
1483 orb->done = done;
1484 orb->cmd = cmd;
1485
1486 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1487 orb->request.misc = cpu_to_be32(
1488 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1489 COMMAND_ORB_SPEED(device->max_speed) |
1490 COMMAND_ORB_NOTIFY);
1491
1492 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1493 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1494
1495 generation = device->generation;
1496 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1497
1498 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1499 goto out;
1500
1501 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1502
1503 orb->base.callback = complete_command_orb;
1504 orb->base.request_bus =
1505 dma_map_single(device->card->device, &orb->request,
1506 sizeof(orb->request), DMA_TO_DEVICE);
1507 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1508 sbp2_unmap_scatterlist(device->card->device, orb);
1509 goto out;
1510 }
1511
1512 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1513 lu->command_block_agent_address + SBP2_ORB_POINTER);
1514 retval = 0;
1515 out:
1516 kref_put(&orb->base.kref, free_orb);
1517 return retval;
1518}
1519
1520static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1521{
1522 struct sbp2_logical_unit *lu = sdev->hostdata;
1523
1524 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1525 if (!lu)
1526 return -ENOSYS;
1527
1528 sdev->allow_restart = 1;
1529
1530 /* SBP-2 requires quadlet alignment of the data buffers. */
1531 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1532
1533 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1534 sdev->inquiry_len = 36;
1535
1536 return 0;
1537}
1538
1539static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1540{
1541 struct sbp2_logical_unit *lu = sdev->hostdata;
1542
1543 sdev->use_10_for_rw = 1;
1544
1545 if (sbp2_param_exclusive_login)
1546 sdev->manage_start_stop = 1;
1547
1548 if (sdev->type == TYPE_ROM)
1549 sdev->use_10_for_ms = 1;
1550
1551 if (sdev->type == TYPE_DISK &&
1552 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1553 sdev->skip_ms_page_8 = 1;
1554
1555 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1556 sdev->fix_capacity = 1;
1557
1558 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1559 sdev->start_stop_pwr_cond = 1;
1560
1561 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1562 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1563
1564 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1565
1566 return 0;
1567}
1568
1569/*
1570 * Called by scsi stack when something has really gone wrong. Usually
1571 * called when a command has timed-out for some reason.
1572 */
1573static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1574{
1575 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1576
1577 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1578 sbp2_agent_reset(lu);
1579 sbp2_cancel_orbs(lu);
1580
1581 return SUCCESS;
1582}
1583
1584/*
1585 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1586 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1587 *
1588 * This is the concatenation of target port identifier and logical unit
1589 * identifier as per SAM-2...SAM-4 annex A.
1590 */
1591static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1592 struct device_attribute *attr, char *buf)
1593{
1594 struct scsi_device *sdev = to_scsi_device(dev);
1595 struct sbp2_logical_unit *lu;
1596
1597 if (!sdev)
1598 return 0;
1599
1600 lu = sdev->hostdata;
1601
1602 return sprintf(buf, "%016llx:%06x:%04x\n",
1603 (unsigned long long)lu->tgt->guid,
1604 lu->tgt->directory_id, lu->lun);
1605}
1606
1607static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1608
1609static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1610 &dev_attr_ieee1394_id,
1611 NULL
1612};
1613
1614static struct scsi_host_template scsi_driver_template = {
1615 .module = THIS_MODULE,
1616 .name = "SBP-2 IEEE-1394",
1617 .proc_name = sbp2_driver_name,
1618 .queuecommand = sbp2_scsi_queuecommand,
1619 .slave_alloc = sbp2_scsi_slave_alloc,
1620 .slave_configure = sbp2_scsi_slave_configure,
1621 .eh_abort_handler = sbp2_scsi_abort,
1622 .this_id = -1,
1623 .sg_tablesize = SG_ALL,
1624 .use_clustering = ENABLE_CLUSTERING,
1625 .cmd_per_lun = 1,
1626 .can_queue = 1,
1627 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1628};
1629
1630MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1631MODULE_DESCRIPTION("SCSI over IEEE1394");
1632MODULE_LICENSE("GPL");
1633MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1634
1635/* Provide a module alias so root-on-sbp2 initrds don't break. */
1636#ifndef CONFIG_IEEE1394_SBP2_MODULE
1637MODULE_ALIAS("sbp2");
1638#endif
1639
1640static int __init sbp2_init(void)
1641{
1642 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1643 if (!sbp2_wq)
1644 return -ENOMEM;
1645
1646 return driver_register(&sbp2_driver.driver);
1647}
1648
1649static void __exit sbp2_cleanup(void)
1650{
1651 driver_unregister(&sbp2_driver.driver);
1652 destroy_workqueue(sbp2_wq);
1653}
1654
1655module_init(sbp2_init);
1656module_exit(sbp2_cleanup);