aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/firewire/net.c
diff options
context:
space:
mode:
authorStefan Richter <stefanr@s5r6.in-berlin.de>2009-06-07 16:57:53 -0400
committerStefan Richter <stefanr@s5r6.in-berlin.de>2009-06-14 08:26:29 -0400
commitb9530fd6c3f057bda258c8e2631ad1a25959f4a2 (patch)
tree509bc37394a27822b0a98b940f38d4c0401a4a6a /drivers/firewire/net.c
parentc76acec6d55107b652a37c90b36c00bc8b04dabb (diff)
firewire: net: add Kconfig item, rename driver
The driver is now called firewire-net. It might implement the transport of other networking protocols in the future, notably IPv6 per RFC 3146. Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
Diffstat (limited to 'drivers/firewire/net.c')
-rw-r--r--drivers/firewire/net.c1819
1 files changed, 1819 insertions, 0 deletions
diff --git a/drivers/firewire/net.c b/drivers/firewire/net.c
new file mode 100644
index 000000000000..15353886bd80
--- /dev/null
+++ b/drivers/firewire/net.c
@@ -0,0 +1,1819 @@
1/*
2 * IPv4 over IEEE 1394, per RFC 2734
3 *
4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5 *
6 * based on eth1394 by Ben Collins et al
7 */
8
9#include <linux/device.h>
10#include <linux/ethtool.h>
11#include <linux/firewire.h>
12#include <linux/firewire-constants.h>
13#include <linux/highmem.h>
14#include <linux/in.h>
15#include <linux/ip.h>
16#include <linux/mod_devicetable.h>
17#include <linux/module.h>
18#include <linux/moduleparam.h>
19#include <linux/netdevice.h>
20#include <linux/skbuff.h>
21
22#include <asm/unaligned.h>
23#include <net/arp.h>
24
25/* Things to potentially make runtime cofigurable */
26/* must be at least as large as our maximum receive size */
27#define FIFO_SIZE 4096
28/* Network timeout in glibbles */
29#define IPV4_TIMEOUT 100000
30
31/* Runitme configurable paramaters */
32static int ipv4_mpd = 25;
33static int ipv4_max_xmt = 0;
34/* 16k for receiving arp and broadcast packets. Enough? */
35static int ipv4_iso_page_count = 4;
36
37MODULE_AUTHOR("Jay Fenlason (fenlason@redhat.com)");
38MODULE_DESCRIPTION("Firewire IPv4 Driver (IPv4-over-IEEE1394 as per RFC 2734)");
39MODULE_LICENSE("GPL");
40MODULE_DEVICE_TABLE(ieee1394, ipv4_id_table);
41module_param_named(max_partial_datagrams, ipv4_mpd, int, S_IRUGO | S_IWUSR);
42MODULE_PARM_DESC(max_partial_datagrams, "Maximum number of received"
43 " incomplete fragmented datagrams (default = 25).");
44
45/* Max xmt is useful for forcing fragmentation, which makes testing easier. */
46module_param_named(max_transmit, ipv4_max_xmt, int, S_IRUGO | S_IWUSR);
47MODULE_PARM_DESC(max_transmit, "Maximum datagram size to transmit"
48 " (larger datagrams will be fragmented) (default = 0 (use hardware defaults).");
49
50/* iso page count controls how many pages will be used for receiving broadcast packets. */
51module_param_named(iso_pages, ipv4_iso_page_count, int, S_IRUGO | S_IWUSR);
52MODULE_PARM_DESC(iso_pages, "Number of pages to use for receiving broadcast packets"
53 " (default = 4).");
54
55/* uncomment this line to do debugging */
56#define fw_debug(s, args...) printk(KERN_DEBUG KBUILD_MODNAME ": " s, ## args)
57
58/* comment out these lines to do debugging. */
59/* #undef fw_debug */
60/* #define fw_debug(s...) */
61/* #define print_hex_dump(l...) */
62
63/* Define a fake hardware header format for the networking core. Note that
64 * header size cannot exceed 16 bytes as that is the size of the header cache.
65 * Also, we do not need the source address in the header so we omit it and
66 * keep the header to under 16 bytes */
67#define IPV4_ALEN (8)
68/* This must equal sizeof(struct ipv4_ether_hdr) */
69#define IPV4_HLEN (10)
70
71/* FIXME: what's a good size for this? */
72#define INVALID_FIFO_ADDR (u64)~0ULL
73
74/* Things specified by standards */
75#define BROADCAST_CHANNEL 31
76
77#define S100_BUFFER_SIZE 512
78#define MAX_BUFFER_SIZE 4096
79
80#define IPV4_GASP_SPECIFIER_ID 0x00005EU
81#define IPV4_GASP_VERSION 0x00000001U
82
83#define IPV4_GASP_OVERHEAD (2 * sizeof(u32)) /* for GASP header */
84
85#define IPV4_UNFRAG_HDR_SIZE sizeof(u32)
86#define IPV4_FRAG_HDR_SIZE (2 * sizeof(u32))
87#define IPV4_FRAG_OVERHEAD sizeof(u32)
88
89#define ALL_NODES (0xffc0 | 0x003f)
90
91#define IPV4_HDR_UNFRAG 0 /* unfragmented */
92#define IPV4_HDR_FIRSTFRAG 1 /* first fragment */
93#define IPV4_HDR_LASTFRAG 2 /* last fragment */
94#define IPV4_HDR_INTFRAG 3 /* interior fragment */
95
96/* Our arp packet (ARPHRD_IEEE1394) */
97/* FIXME: note that this is probably bogus on weird-endian machines */
98struct ipv4_arp {
99 u16 hw_type; /* 0x0018 */
100 u16 proto_type; /* 0x0806 */
101 u8 hw_addr_len; /* 16 */
102 u8 ip_addr_len; /* 4 */
103 u16 opcode; /* ARP Opcode */
104 /* Above is exactly the same format as struct arphdr */
105
106 u64 s_uniq_id; /* Sender's 64bit EUI */
107 u8 max_rec; /* Sender's max packet size */
108 u8 sspd; /* Sender's max speed */
109 u16 fifo_hi; /* hi 16bits of sender's FIFO addr */
110 u32 fifo_lo; /* lo 32bits of sender's FIFO addr */
111 u32 sip; /* Sender's IP Address */
112 u32 tip; /* IP Address of requested hw addr */
113} __attribute__((packed));
114
115struct ipv4_ether_hdr {
116 unsigned char h_dest[IPV4_ALEN]; /* destination address */
117 unsigned short h_proto; /* packet type ID field */
118} __attribute__((packed));
119
120static inline struct ipv4_ether_hdr *ipv4_ether_hdr(const struct sk_buff *skb)
121{
122 return (struct ipv4_ether_hdr *)skb_mac_header(skb);
123}
124
125enum ipv4_tx_type {
126 IPV4_UNKNOWN = 0,
127 IPV4_GASP = 1,
128 IPV4_WRREQ = 2,
129};
130
131enum ipv4_broadcast_state {
132 IPV4_BROADCAST_ERROR,
133 IPV4_BROADCAST_RUNNING,
134 IPV4_BROADCAST_STOPPED,
135};
136
137#define ipv4_get_hdr_lf(h) (((h)->w0&0xC0000000)>>30)
138#define ipv4_get_hdr_ether_type(h) (((h)->w0&0x0000FFFF) )
139#define ipv4_get_hdr_dg_size(h) (((h)->w0&0x0FFF0000)>>16)
140#define ipv4_get_hdr_fg_off(h) (((h)->w0&0x00000FFF) )
141#define ipv4_get_hdr_dgl(h) (((h)->w1&0xFFFF0000)>>16)
142
143#define ipv4_set_hdr_lf(lf) (( lf)<<30)
144#define ipv4_set_hdr_ether_type(et) (( et) )
145#define ipv4_set_hdr_dg_size(dgs) ((dgs)<<16)
146#define ipv4_set_hdr_fg_off(fgo) ((fgo) )
147
148#define ipv4_set_hdr_dgl(dgl) ((dgl)<<16)
149
150struct ipv4_hdr {
151 u32 w0;
152 u32 w1;
153};
154
155static inline void ipv4_make_uf_hdr( struct ipv4_hdr *hdr, unsigned ether_type) {
156 hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_UNFRAG)
157 |ipv4_set_hdr_ether_type(ether_type);
158 fw_debug ( "Setting unfragmented header %p to %x\n", hdr, hdr->w0 );
159}
160
161static inline void ipv4_make_ff_hdr ( struct ipv4_hdr *hdr, unsigned ether_type, unsigned dg_size, unsigned dgl ) {
162 hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_FIRSTFRAG)
163 |ipv4_set_hdr_dg_size(dg_size)
164 |ipv4_set_hdr_ether_type(ether_type);
165 hdr->w1 = ipv4_set_hdr_dgl(dgl);
166 fw_debug ( "Setting fragmented header %p to first_frag %x,%x (et %x, dgs %x, dgl %x)\n", hdr, hdr->w0, hdr->w1,
167 ether_type, dg_size, dgl );
168}
169
170static inline void ipv4_make_sf_hdr ( struct ipv4_hdr *hdr, unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) {
171 hdr->w0 = ipv4_set_hdr_lf(lf)
172 |ipv4_set_hdr_dg_size(dg_size)
173 |ipv4_set_hdr_fg_off(fg_off);
174 hdr->w1 = ipv4_set_hdr_dgl(dgl);
175 fw_debug ( "Setting fragmented header %p to %x,%x (lf %x, dgs %x, fo %x dgl %x)\n",
176 hdr, hdr->w0, hdr->w1,
177 lf, dg_size, fg_off, dgl );
178}
179
180/* End of IP1394 headers */
181
182/* Fragment types */
183#define ETH1394_HDR_LF_UF 0 /* unfragmented */
184#define ETH1394_HDR_LF_FF 1 /* first fragment */
185#define ETH1394_HDR_LF_LF 2 /* last fragment */
186#define ETH1394_HDR_LF_IF 3 /* interior fragment */
187
188#define IP1394_HW_ADDR_LEN 16 /* As per RFC */
189
190/* This list keeps track of what parts of the datagram have been filled in */
191struct ipv4_fragment_info {
192 struct list_head fragment_info;
193 u16 offset;
194 u16 len;
195};
196
197struct ipv4_partial_datagram {
198 struct list_head pdg_list;
199 struct list_head fragment_info;
200 struct sk_buff *skb;
201 /* FIXME Why not use skb->data? */
202 char *pbuf;
203 u16 datagram_label;
204 u16 ether_type;
205 u16 datagram_size;
206};
207
208/*
209 * We keep one of these for each IPv4 capable device attached to a fw_card.
210 * The list of them is stored in the fw_card structure rather than in the
211 * ipv4_priv because the remote IPv4 nodes may be probed before the card is,
212 * so we need a place to store them before the ipv4_priv structure is
213 * allocated.
214 */
215struct ipv4_node {
216 struct list_head ipv4_nodes;
217 /* guid of the remote node */
218 u64 guid;
219 /* FIFO address to transmit datagrams to, or INVALID_FIFO_ADDR */
220 u64 fifo;
221
222 spinlock_t pdg_lock; /* partial datagram lock */
223 /* List of partial datagrams received from this node */
224 struct list_head pdg_list;
225 /* Number of entries in pdg_list at the moment */
226 unsigned pdg_size;
227
228 /* max payload to transmit to this remote node */
229 /* This already includes the IPV4_FRAG_HDR_SIZE overhead */
230 u16 max_payload;
231 /* outgoing datagram label */
232 u16 datagram_label;
233 /* Current node_id of the remote node */
234 u16 nodeid;
235 /* current generation of the remote node */
236 u8 generation;
237 /* max speed that this node can receive at */
238 u8 xmt_speed;
239};
240
241struct ipv4_priv {
242 spinlock_t lock;
243
244 enum ipv4_broadcast_state broadcast_state;
245 struct fw_iso_context *broadcast_rcv_context;
246 struct fw_iso_buffer broadcast_rcv_buffer;
247 void **broadcast_rcv_buffer_ptrs;
248 unsigned broadcast_rcv_next_ptr;
249 unsigned num_broadcast_rcv_ptrs;
250 unsigned rcv_buffer_size;
251 /*
252 * This value is the maximum unfragmented datagram size that can be
253 * sent by the hardware. It already has the GASP overhead and the
254 * unfragmented datagram header overhead calculated into it.
255 */
256 unsigned broadcast_xmt_max_payload;
257 u16 broadcast_xmt_datagramlabel;
258
259 /*
260 * The csr address that remote nodes must send datagrams to for us to
261 * receive them.
262 */
263 struct fw_address_handler handler;
264 u64 local_fifo;
265
266 /* Wake up to xmt */
267 /* struct work_struct wake;*/
268 /* List of packets to be sent */
269 struct list_head packet_list;
270 /*
271 * List of packets that were broadcasted. When we get an ISO interrupt
272 * one of them has been sent
273 */
274 struct list_head broadcasted_list;
275 /* List of packets that have been sent but not yet acked */
276 struct list_head sent_list;
277
278 struct fw_card *card;
279};
280
281/* This is our task struct. It's used for the packet complete callback. */
282struct ipv4_packet_task {
283 /*
284 * ptask can actually be on priv->packet_list, priv->broadcasted_list,
285 * or priv->sent_list depending on its current state.
286 */
287 struct list_head packet_list;
288 struct fw_transaction transaction;
289 struct ipv4_hdr hdr;
290 struct sk_buff *skb;
291 struct ipv4_priv *priv;
292 enum ipv4_tx_type tx_type;
293 int outstanding_pkts;
294 unsigned max_payload;
295 u64 fifo_addr;
296 u16 dest_node;
297 u8 generation;
298 u8 speed;
299};
300
301static struct kmem_cache *ipv4_packet_task_cache;
302
303static const char ipv4_driver_name[] = "firewire-ipv4";
304
305static const struct ieee1394_device_id ipv4_id_table[] = {
306 {
307 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
308 IEEE1394_MATCH_VERSION,
309 .specifier_id = IPV4_GASP_SPECIFIER_ID,
310 .version = IPV4_GASP_VERSION,
311 },
312 { }
313};
314
315static u32 ipv4_unit_directory_data[] = {
316 0x00040000, /* unit directory */
317 0x12000000 | IPV4_GASP_SPECIFIER_ID, /* specifier ID */
318 0x81000003, /* text descriptor */
319 0x13000000 | IPV4_GASP_VERSION, /* version */
320 0x81000005, /* text descriptor */
321
322 0x00030000, /* Three quadlets */
323 0x00000000, /* Text */
324 0x00000000, /* Language 0 */
325 0x49414e41, /* I A N A */
326 0x00030000, /* Three quadlets */
327 0x00000000, /* Text */
328 0x00000000, /* Language 0 */
329 0x49507634, /* I P v 4 */
330};
331
332static struct fw_descriptor ipv4_unit_directory = {
333 .length = ARRAY_SIZE(ipv4_unit_directory_data),
334 .key = 0xd1000000,
335 .data = ipv4_unit_directory_data
336};
337
338static int ipv4_send_packet(struct ipv4_packet_task *ptask );
339
340/* ------------------------------------------------------------------ */
341/******************************************
342 * HW Header net device functions
343 ******************************************/
344 /* These functions have been adapted from net/ethernet/eth.c */
345
346/* Create a fake MAC header for an arbitrary protocol layer.
347 * saddr=NULL means use device source address
348 * daddr=NULL means leave destination address (eg unresolved arp). */
349
350static int ipv4_header ( struct sk_buff *skb, struct net_device *dev,
351 unsigned short type, const void *daddr,
352 const void *saddr, unsigned len) {
353 struct ipv4_ether_hdr *eth;
354
355 eth = (struct ipv4_ether_hdr *)skb_push(skb, sizeof(*eth));
356 eth->h_proto = htons(type);
357
358 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
359 memset(eth->h_dest, 0, dev->addr_len);
360 return dev->hard_header_len;
361 }
362
363 if (daddr) {
364 memcpy(eth->h_dest, daddr, dev->addr_len);
365 return dev->hard_header_len;
366 }
367
368 return -dev->hard_header_len;
369}
370
371/* Rebuild the faked MAC header. This is called after an ARP
372 * (or in future other address resolution) has completed on this
373 * sk_buff. We now let ARP fill in the other fields.
374 *
375 * This routine CANNOT use cached dst->neigh!
376 * Really, it is used only when dst->neigh is wrong.
377 */
378
379static int ipv4_rebuild_header(struct sk_buff *skb)
380{
381 struct ipv4_ether_hdr *eth;
382
383 eth = (struct ipv4_ether_hdr *)skb->data;
384 if (eth->h_proto == htons(ETH_P_IP))
385 return arp_find((unsigned char *)&eth->h_dest, skb);
386
387 fw_notify ( "%s: unable to resolve type %04x addresses\n",
388 skb->dev->name,ntohs(eth->h_proto) );
389 return 0;
390}
391
392static int ipv4_header_cache(const struct neighbour *neigh, struct hh_cache *hh) {
393 unsigned short type = hh->hh_type;
394 struct net_device *dev;
395 struct ipv4_ether_hdr *eth;
396
397 if (type == htons(ETH_P_802_3))
398 return -1;
399 dev = neigh->dev;
400 eth = (struct ipv4_ether_hdr *)((u8 *)hh->hh_data + 16 - sizeof(*eth));
401 eth->h_proto = type;
402 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
403
404 hh->hh_len = IPV4_HLEN;
405 return 0;
406}
407
408/* Called by Address Resolution module to notify changes in address. */
409static void ipv4_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char * haddr ) {
410 memcpy((u8 *)hh->hh_data + 16 - IPV4_HLEN, haddr, dev->addr_len);
411}
412
413static int ipv4_header_parse(const struct sk_buff *skb, unsigned char *haddr) {
414 memcpy(haddr, skb->dev->dev_addr, IPV4_ALEN);
415 return IPV4_ALEN;
416}
417
418static const struct header_ops ipv4_header_ops = {
419 .create = ipv4_header,
420 .rebuild = ipv4_rebuild_header,
421 .cache = ipv4_header_cache,
422 .cache_update = ipv4_header_cache_update,
423 .parse = ipv4_header_parse,
424};
425
426/* ------------------------------------------------------------------ */
427
428/* FIXME: is this correct for all cases? */
429static bool ipv4_frag_overlap(struct ipv4_partial_datagram *pd, unsigned offset, unsigned len)
430{
431 struct ipv4_fragment_info *fi;
432 unsigned end = offset + len;
433
434 list_for_each_entry(fi, &pd->fragment_info, fragment_info) {
435 if (offset < fi->offset + fi->len && end > fi->offset) {
436 fw_debug ( "frag_overlap pd %p fi %p (%x@%x) with %x@%x\n", pd, fi, fi->len, fi->offset, len, offset );
437 return true;
438 }
439 }
440 fw_debug ( "frag_overlap %p does not overlap with %x@%x\n", pd, len, offset );
441 return false;
442}
443
444/* Assumes that new fragment does not overlap any existing fragments */
445static struct ipv4_fragment_info *ipv4_frag_new ( struct ipv4_partial_datagram *pd, unsigned offset, unsigned len ) {
446 struct ipv4_fragment_info *fi, *fi2, *new;
447 struct list_head *list;
448
449 fw_debug ( "frag_new pd %p %x@%x\n", pd, len, offset );
450 list = &pd->fragment_info;
451 list_for_each_entry(fi, &pd->fragment_info, fragment_info) {
452 if (fi->offset + fi->len == offset) {
453 /* The new fragment can be tacked on to the end */
454 /* Did the new fragment plug a hole? */
455 fi2 = list_entry(fi->fragment_info.next, struct ipv4_fragment_info, fragment_info);
456 if (fi->offset + fi->len == fi2->offset) {
457 fw_debug ( "pd %p: hole filling %p (%x@%x) and %p(%x@%x): now %x@%x\n", pd, fi, fi->len, fi->offset,
458 fi2, fi2->len, fi2->offset, fi->len + len + fi2->len, fi->offset );
459 /* glue fragments together */
460 fi->len += len + fi2->len;
461 list_del(&fi2->fragment_info);
462 kfree(fi2);
463 } else {
464 fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, fi->len+len, fi->offset );
465 fi->len += len;
466 }
467 return fi;
468 }
469 if (offset + len == fi->offset) {
470 /* The new fragment can be tacked on to the beginning */
471 /* Did the new fragment plug a hole? */
472 fi2 = list_entry(fi->fragment_info.prev, struct ipv4_fragment_info, fragment_info);
473 if (fi2->offset + fi2->len == fi->offset) {
474 /* glue fragments together */
475 fw_debug ( "pd %p: extending %p and merging with %p from %x@%x to %x@%x\n",
476 pd, fi2, fi, fi2->len, fi2->offset, fi2->len + fi->len + len, fi2->offset );
477 fi2->len += fi->len + len;
478 list_del(&fi->fragment_info);
479 kfree(fi);
480 return fi2;
481 }
482 fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, offset, fi->len + len );
483 fi->offset = offset;
484 fi->len += len;
485 return fi;
486 }
487 if (offset > fi->offset + fi->len) {
488 list = &fi->fragment_info;
489 break;
490 }
491 if (offset + len < fi->offset) {
492 list = fi->fragment_info.prev;
493 break;
494 }
495 }
496
497 new = kmalloc(sizeof(*new), GFP_ATOMIC);
498 if (!new) {
499 fw_error ( "out of memory in fragment handling!\n" );
500 return NULL;
501 }
502
503 new->offset = offset;
504 new->len = len;
505 list_add(&new->fragment_info, list);
506 fw_debug ( "pd %p: new frag %p %x@%x\n", pd, new, new->len, new->offset );
507 list_for_each_entry( fi, &pd->fragment_info, fragment_info )
508 fw_debug ( "fi %p %x@%x\n", fi, fi->len, fi->offset );
509 return new;
510}
511
512/* ------------------------------------------------------------------ */
513
514static struct ipv4_partial_datagram *ipv4_pd_new(struct net_device *netdev,
515 struct ipv4_node *node, u16 datagram_label, unsigned dg_size, u32 *frag_buf,
516 unsigned frag_off, unsigned frag_len) {
517 struct ipv4_partial_datagram *new;
518 struct ipv4_fragment_info *fi;
519
520 new = kmalloc(sizeof(*new), GFP_ATOMIC);
521 if (!new)
522 goto fail;
523 INIT_LIST_HEAD(&new->fragment_info);
524 fi = ipv4_frag_new ( new, frag_off, frag_len);
525 if ( fi == NULL )
526 goto fail_w_new;
527 new->datagram_label = datagram_label;
528 new->datagram_size = dg_size;
529 new->skb = dev_alloc_skb(dg_size + netdev->hard_header_len + 15);
530 if ( new->skb == NULL )
531 goto fail_w_fi;
532 skb_reserve(new->skb, (netdev->hard_header_len + 15) & ~15);
533 new->pbuf = skb_put(new->skb, dg_size);
534 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
535 list_add_tail(&new->pdg_list, &node->pdg_list);
536 fw_debug ( "pd_new: new pd %p { dgl %u, dg_size %u, skb %p, pbuf %p } on node %p\n",
537 new, new->datagram_label, new->datagram_size, new->skb, new->pbuf, node );
538 return new;
539
540fail_w_fi:
541 kfree(fi);
542fail_w_new:
543 kfree(new);
544fail:
545 fw_error("ipv4_pd_new: no memory\n");
546 return NULL;
547}
548
549static struct ipv4_partial_datagram *ipv4_pd_find(struct ipv4_node *node, u16 datagram_label) {
550 struct ipv4_partial_datagram *pd;
551
552 list_for_each_entry(pd, &node->pdg_list, pdg_list) {
553 if ( pd->datagram_label == datagram_label ) {
554 fw_debug ( "pd_find(node %p, label %u): pd %p\n", node, datagram_label, pd );
555 return pd;
556 }
557 }
558 fw_debug ( "pd_find(node %p, label %u) no entry\n", node, datagram_label );
559 return NULL;
560}
561
562
563static void ipv4_pd_delete ( struct ipv4_partial_datagram *old ) {
564 struct ipv4_fragment_info *fi, *n;
565
566 fw_debug ( "pd_delete %p\n", old );
567 list_for_each_entry_safe(fi, n, &old->fragment_info, fragment_info) {
568 fw_debug ( "Freeing fi %p\n", fi );
569 kfree(fi);
570 }
571 list_del(&old->pdg_list);
572 dev_kfree_skb_any(old->skb);
573 kfree(old);
574}
575
576static bool ipv4_pd_update ( struct ipv4_node *node, struct ipv4_partial_datagram *pd,
577 u32 *frag_buf, unsigned frag_off, unsigned frag_len) {
578 fw_debug ( "pd_update node %p, pd %p, frag_buf %p, %x@%x\n", node, pd, frag_buf, frag_len, frag_off );
579 if ( ipv4_frag_new ( pd, frag_off, frag_len ) == NULL)
580 return false;
581 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
582
583 /*
584 * Move list entry to beginnig of list so that oldest partial
585 * datagrams percolate to the end of the list
586 */
587 list_move_tail(&pd->pdg_list, &node->pdg_list);
588 fw_debug ( "New pd list:\n" );
589 list_for_each_entry ( pd, &node->pdg_list, pdg_list ) {
590 fw_debug ( "pd %p\n", pd );
591 }
592 return true;
593}
594
595static bool ipv4_pd_is_complete ( struct ipv4_partial_datagram *pd ) {
596 struct ipv4_fragment_info *fi;
597 bool ret;
598
599 fi = list_entry(pd->fragment_info.next, struct ipv4_fragment_info, fragment_info);
600
601 ret = (fi->len == pd->datagram_size);
602 fw_debug ( "pd_is_complete (pd %p, dgs %x): fi %p (%x@%x) %s\n", pd, pd->datagram_size, fi, fi->len, fi->offset, ret ? "yes" : "no" );
603 return ret;
604}
605
606/* ------------------------------------------------------------------ */
607
608static int ipv4_node_new ( struct fw_card *card, struct fw_device *device ) {
609 struct ipv4_node *node;
610
611 node = kmalloc ( sizeof(*node), GFP_KERNEL );
612 if ( ! node ) {
613 fw_error ( "allocate new node failed\n" );
614 return -ENOMEM;
615 }
616 node->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
617 node->fifo = INVALID_FIFO_ADDR;
618 INIT_LIST_HEAD(&node->pdg_list);
619 spin_lock_init(&node->pdg_lock);
620 node->pdg_size = 0;
621 node->generation = device->generation;
622 rmb();
623 node->nodeid = device->node_id;
624 /* FIXME what should it really be? */
625 node->max_payload = S100_BUFFER_SIZE - IPV4_UNFRAG_HDR_SIZE;
626 node->datagram_label = 0U;
627 node->xmt_speed = device->max_speed;
628 list_add_tail ( &node->ipv4_nodes, &card->ipv4_nodes );
629 fw_debug ( "node_new: %p { guid %016llx, generation %u, nodeid %x, max_payload %x, xmt_speed %x } added\n",
630 node, (unsigned long long)node->guid, node->generation, node->nodeid, node->max_payload, node->xmt_speed );
631 return 0;
632}
633
634static struct ipv4_node *ipv4_node_find_by_guid(struct ipv4_priv *priv, u64 guid) {
635 struct ipv4_node *node;
636 unsigned long flags;
637
638 spin_lock_irqsave(&priv->lock, flags);
639 list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes)
640 if (node->guid == guid) {
641 /* FIXME: lock the node first? */
642 spin_unlock_irqrestore ( &priv->lock, flags );
643 fw_debug ( "node_find_by_guid (%016llx) found %p\n", (unsigned long long)guid, node );
644 return node;
645 }
646
647 spin_unlock_irqrestore ( &priv->lock, flags );
648 fw_debug ( "node_find_by_guid (%016llx) not found\n", (unsigned long long)guid );
649 return NULL;
650}
651
652static struct ipv4_node *ipv4_node_find_by_nodeid(struct ipv4_priv *priv, u16 nodeid) {
653 struct ipv4_node *node;
654 unsigned long flags;
655
656 spin_lock_irqsave(&priv->lock, flags);
657 list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes)
658 if (node->nodeid == nodeid) {
659 /* FIXME: lock the node first? */
660 spin_unlock_irqrestore ( &priv->lock, flags );
661 fw_debug ( "node_find_by_nodeid (%x) found %p\n", nodeid, node );
662 return node;
663 }
664 fw_debug ( "node_find_by_nodeid (%x) not found\n", nodeid );
665 spin_unlock_irqrestore ( &priv->lock, flags );
666 return NULL;
667}
668
669/* This is only complicated because we can't assume priv exists */
670static void ipv4_node_delete ( struct fw_card *card, struct fw_device *device ) {
671 struct net_device *netdev;
672 struct ipv4_priv *priv;
673 struct ipv4_node *node;
674 u64 guid;
675 unsigned long flags;
676 struct ipv4_partial_datagram *pd, *pd_next;
677
678 guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
679 netdev = card->netdev;
680 if ( netdev )
681 priv = netdev_priv ( netdev );
682 else
683 priv = NULL;
684 if ( priv )
685 spin_lock_irqsave ( &priv->lock, flags );
686 list_for_each_entry( node, &card->ipv4_nodes, ipv4_nodes ) {
687 if ( node->guid == guid ) {
688 list_del ( &node->ipv4_nodes );
689 list_for_each_entry_safe( pd, pd_next, &node->pdg_list, pdg_list )
690 ipv4_pd_delete ( pd );
691 break;
692 }
693 }
694 if ( priv )
695 spin_unlock_irqrestore ( &priv->lock, flags );
696}
697
698/* ------------------------------------------------------------------ */
699
700
701static int ipv4_finish_incoming_packet ( struct net_device *netdev,
702 struct sk_buff *skb, u16 source_node_id, bool is_broadcast, u16 ether_type ) {
703 struct ipv4_priv *priv;
704 static u64 broadcast_hw = ~0ULL;
705 int status;
706 u64 guid;
707
708 fw_debug ( "ipv4_finish_incoming_packet(%p, %p, %x, %s, %x\n",
709 netdev, skb, source_node_id, is_broadcast ? "true" : "false", ether_type );
710 priv = netdev_priv(netdev);
711 /* Write metadata, and then pass to the receive level */
712 skb->dev = netdev;
713 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
714
715 /*
716 * Parse the encapsulation header. This actually does the job of
717 * converting to an ethernet frame header, as well as arp
718 * conversion if needed. ARP conversion is easier in this
719 * direction, since we are using ethernet as our backend.
720 */
721 /*
722 * If this is an ARP packet, convert it. First, we want to make
723 * use of some of the fields, since they tell us a little bit
724 * about the sending machine.
725 */
726 if (ether_type == ETH_P_ARP) {
727 struct ipv4_arp *arp1394;
728 struct arphdr *arp;
729 unsigned char *arp_ptr;
730 u64 fifo_addr;
731 u8 max_rec;
732 u8 sspd;
733 u16 max_payload;
734 struct ipv4_node *node;
735 static const u16 ipv4_speed_to_max_payload[] = {
736 /* S100, S200, S400, S800, S1600, S3200 */
737 512, 1024, 2048, 4096, 4096, 4096
738 };
739
740 /* fw_debug ( "ARP packet\n" ); */
741 arp1394 = (struct ipv4_arp *)skb->data;
742 arp = (struct arphdr *)skb->data;
743 arp_ptr = (unsigned char *)(arp + 1);
744 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
745 ntohl(arp1394->fifo_lo);
746 max_rec = priv->card->max_receive;
747 if ( arp1394->max_rec < max_rec )
748 max_rec = arp1394->max_rec;
749 sspd = arp1394->sspd;
750 /*
751 * Sanity check. MacOSX seems to be sending us 131 in this
752 * field (atleast on my Panther G5). Not sure why.
753 */
754 if (sspd > 5 ) {
755 fw_notify ( "sspd %x out of range\n", sspd );
756 sspd = 0;
757 }
758
759 max_payload = min(ipv4_speed_to_max_payload[sspd],
760 (u16)(1 << (max_rec + 1))) - IPV4_UNFRAG_HDR_SIZE;
761
762 guid = be64_to_cpu(get_unaligned(&arp1394->s_uniq_id));
763 node = ipv4_node_find_by_guid(priv, guid);
764 if (!node) {
765 fw_notify ( "No node for ARP packet from %llx\n", guid );
766 goto failed_proto;
767 }
768 if ( node->nodeid != source_node_id || node->generation != priv->card->generation ) {
769 fw_notify ( "Internal error: node->nodeid (%x) != soucre_node_id (%x) or node->generation (%x) != priv->card->generation(%x)\n",
770 node->nodeid, source_node_id, node->generation, priv->card->generation );
771 node->nodeid = source_node_id;
772 node->generation = priv->card->generation;
773 }
774
775 /* FIXME: for debugging */
776 if ( sspd > SCODE_400 )
777 sspd = SCODE_400;
778 /* Update our speed/payload/fifo_offset table */
779 /*
780 * FIXME: this does not handle cases where two high-speed endpoints must use a slower speed because of
781 * a lower speed hub between them. We need to look at the actual topology map here.
782 */
783 fw_debug ( "Setting node %p fifo %llx (was %llx), max_payload %x (was %x), speed %x (was %x)\n",
784 node, fifo_addr, node->fifo, max_payload, node->max_payload, sspd, node->xmt_speed );
785 node->fifo = fifo_addr;
786 node->max_payload = max_payload;
787 /*
788 * Only allow speeds to go down from their initial value.
789 * Otherwise a local node that can only do S400 or slower may
790 * be told to transmit at S800 to a faster remote node.
791 */
792 if ( node->xmt_speed > sspd )
793 node->xmt_speed = sspd;
794
795 /*
796 * Now that we're done with the 1394 specific stuff, we'll
797 * need to alter some of the data. Believe it or not, all
798 * that needs to be done is sender_IP_address needs to be
799 * moved, the destination hardware address get stuffed
800 * in and the hardware address length set to 8.
801 *
802 * IMPORTANT: The code below overwrites 1394 specific data
803 * needed above so keep the munging of the data for the
804 * higher level IP stack last.
805 */
806
807 arp->ar_hln = 8;
808 arp_ptr += arp->ar_hln; /* skip over sender unique id */
809 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
810 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
811
812 if (arp->ar_op == htons(ARPOP_REQUEST))
813 memset(arp_ptr, 0, sizeof(u64));
814 else
815 memcpy(arp_ptr, netdev->dev_addr, sizeof(u64));
816 }
817
818 /* Now add the ethernet header. */
819 guid = cpu_to_be64(priv->card->guid);
820 if (dev_hard_header(skb, netdev, ether_type, is_broadcast ? &broadcast_hw : &guid, NULL,
821 skb->len) >= 0) {
822 struct ipv4_ether_hdr *eth;
823 u16 *rawp;
824 __be16 protocol;
825
826 skb_reset_mac_header(skb);
827 skb_pull(skb, sizeof(*eth));
828 eth = ipv4_ether_hdr(skb);
829 if (*eth->h_dest & 1) {
830 if (memcmp(eth->h_dest, netdev->broadcast, netdev->addr_len) == 0) {
831 fw_debug ( "Broadcast\n" );
832 skb->pkt_type = PACKET_BROADCAST;
833 }
834#if 0
835 else
836 skb->pkt_type = PACKET_MULTICAST;
837#endif
838 } else {
839 if (memcmp(eth->h_dest, netdev->dev_addr, netdev->addr_len)) {
840 u64 a1, a2;
841
842 memcpy ( &a1, eth->h_dest, sizeof(u64));
843 memcpy ( &a2, netdev->dev_addr, sizeof(u64));
844 fw_debug ( "Otherhost %llx %llx %x\n", a1, a2, netdev->addr_len );
845 skb->pkt_type = PACKET_OTHERHOST;
846 }
847 }
848 if (ntohs(eth->h_proto) >= 1536) {
849 fw_debug ( " proto %x %x\n", eth->h_proto, ntohs(eth->h_proto) );
850 protocol = eth->h_proto;
851 } else {
852 rawp = (u16 *)skb->data;
853 if (*rawp == 0xFFFF) {
854 fw_debug ( "proto 802_3\n" );
855 protocol = htons(ETH_P_802_3);
856 } else {
857 fw_debug ( "proto 802_2\n" );
858 protocol = htons(ETH_P_802_2);
859 }
860 }
861 skb->protocol = protocol;
862 }
863 status = netif_rx(skb);
864 if ( status == NET_RX_DROP) {
865 netdev->stats.rx_errors++;
866 netdev->stats.rx_dropped++;
867 } else {
868 netdev->stats.rx_packets++;
869 netdev->stats.rx_bytes += skb->len;
870 }
871 if (netif_queue_stopped(netdev))
872 netif_wake_queue(netdev);
873 return 0;
874
875 failed_proto:
876 netdev->stats.rx_errors++;
877 netdev->stats.rx_dropped++;
878 dev_kfree_skb_any(skb);
879 if (netif_queue_stopped(netdev))
880 netif_wake_queue(netdev);
881 netdev->last_rx = jiffies;
882 return 0;
883}
884
885/* ------------------------------------------------------------------ */
886
887static int ipv4_incoming_packet ( struct ipv4_priv *priv, u32 *buf, int len, u16 source_node_id, bool is_broadcast ) {
888 struct sk_buff *skb;
889 struct net_device *netdev;
890 struct ipv4_hdr hdr;
891 unsigned lf;
892 unsigned long flags;
893 struct ipv4_node *node;
894 struct ipv4_partial_datagram *pd;
895 int fg_off;
896 int dg_size;
897 u16 datagram_label;
898 int retval;
899 u16 ether_type;
900
901 fw_debug ( "ipv4_incoming_packet(%p, %p, %d, %x, %s)\n", priv, buf, len, source_node_id, is_broadcast ? "true" : "false" );
902 netdev = priv->card->netdev;
903
904 hdr.w0 = ntohl(buf[0]);
905 lf = ipv4_get_hdr_lf(&hdr);
906 if ( lf == IPV4_HDR_UNFRAG ) {
907 /*
908 * An unfragmented datagram has been received by the ieee1394
909 * bus. Build an skbuff around it so we can pass it to the
910 * high level network layer.
911 */
912 ether_type = ipv4_get_hdr_ether_type(&hdr);
913 fw_debug ( "header w0 = %x, lf = %x, ether_type = %x\n", hdr.w0, lf, ether_type );
914 buf++;
915 len -= IPV4_UNFRAG_HDR_SIZE;
916
917 skb = dev_alloc_skb(len + netdev->hard_header_len + 15);
918 if (unlikely(!skb)) {
919 fw_error ( "Out of memory for incoming packet\n");
920 netdev->stats.rx_dropped++;
921 return -1;
922 }
923 skb_reserve(skb, (netdev->hard_header_len + 15) & ~15);
924 memcpy(skb_put(skb, len), buf, len );
925 return ipv4_finish_incoming_packet(netdev, skb, source_node_id, is_broadcast, ether_type );
926 }
927 /* A datagram fragment has been received, now the fun begins. */
928 hdr.w1 = ntohl(buf[1]);
929 buf +=2;
930 len -= IPV4_FRAG_HDR_SIZE;
931 if ( lf ==IPV4_HDR_FIRSTFRAG ) {
932 ether_type = ipv4_get_hdr_ether_type(&hdr);
933 fg_off = 0;
934 } else {
935 fg_off = ipv4_get_hdr_fg_off(&hdr);
936 ether_type = 0; /* Shut up compiler! */
937 }
938 datagram_label = ipv4_get_hdr_dgl(&hdr);
939 dg_size = ipv4_get_hdr_dg_size(&hdr); /* ??? + 1 */
940 fw_debug ( "fragmented: %x.%x = lf %x, ether_type %x, fg_off %x, dgl %x, dg_size %x\n", hdr.w0, hdr.w1, lf, ether_type, fg_off, datagram_label, dg_size );
941 node = ipv4_node_find_by_nodeid ( priv, source_node_id);
942 spin_lock_irqsave(&node->pdg_lock, flags);
943 pd = ipv4_pd_find( node, datagram_label );
944 if (pd == NULL) {
945 while ( node->pdg_size >= ipv4_mpd ) {
946 /* remove the oldest */
947 ipv4_pd_delete ( list_first_entry(&node->pdg_list, struct ipv4_partial_datagram, pdg_list) );
948 node->pdg_size--;
949 }
950 pd = ipv4_pd_new ( netdev, node, datagram_label, dg_size,
951 buf, fg_off, len);
952 if ( pd == NULL) {
953 retval = -ENOMEM;
954 goto bad_proto;
955 }
956 node->pdg_size++;
957 } else {
958 if (ipv4_frag_overlap(pd, fg_off, len) || pd->datagram_size != dg_size) {
959 /*
960 * Differing datagram sizes or overlapping fragments,
961 * Either way the remote machine is playing silly buggers
962 * with us: obliterate the old datagram and start a new one.
963 */
964 ipv4_pd_delete ( pd );
965 pd = ipv4_pd_new ( netdev, node, datagram_label,
966 dg_size, buf, fg_off, len);
967 if ( pd == NULL ) {
968 retval = -ENOMEM;
969 node->pdg_size--;
970 goto bad_proto;
971 }
972 } else {
973 bool worked;
974
975 worked = ipv4_pd_update ( node, pd,
976 buf, fg_off, len );
977 if ( ! worked ) {
978 /*
979 * Couldn't save off fragment anyway
980 * so might as well obliterate the
981 * datagram now.
982 */
983 ipv4_pd_delete ( pd );
984 node->pdg_size--;
985 goto bad_proto;
986 }
987 }
988 } /* new datagram or add to existing one */
989
990 if ( lf == IPV4_HDR_FIRSTFRAG )
991 pd->ether_type = ether_type;
992 if ( ipv4_pd_is_complete ( pd ) ) {
993 ether_type = pd->ether_type;
994 node->pdg_size--;
995 skb = skb_get(pd->skb);
996 ipv4_pd_delete ( pd );
997 spin_unlock_irqrestore(&node->pdg_lock, flags);
998 return ipv4_finish_incoming_packet ( netdev, skb, source_node_id, false, ether_type );
999 }
1000 /*
1001 * Datagram is not complete, we're done for the
1002 * moment.
1003 */
1004 spin_unlock_irqrestore(&node->pdg_lock, flags);
1005 return 0;
1006
1007 bad_proto:
1008 spin_unlock_irqrestore(&node->pdg_lock, flags);
1009 if (netif_queue_stopped(netdev))
1010 netif_wake_queue(netdev);
1011 return 0;
1012}
1013
1014static void ipv4_receive_packet ( struct fw_card *card, struct fw_request *r,
1015 int tcode, int destination, int source, int generation, int speed,
1016 unsigned long long offset, void *payload, size_t length, void *callback_data ) {
1017 struct ipv4_priv *priv;
1018 int status;
1019
1020 fw_debug ( "ipv4_receive_packet(%p,%p,%x,%x,%x,%x,%x,%llx,%p,%lx,%p)\n",
1021 card, r, tcode, destination, source, generation, speed, offset, payload,
1022 (unsigned long)length, callback_data);
1023 print_hex_dump ( KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 32, 1, payload, length, false );
1024 priv = callback_data;
1025 if ( tcode != TCODE_WRITE_BLOCK_REQUEST
1026 || destination != card->node_id
1027 || generation != card->generation
1028 || offset != priv->handler.offset ) {
1029 fw_send_response(card, r, RCODE_CONFLICT_ERROR);
1030 fw_debug("Conflict error card node_id=%x, card generation=%x, local offset %llx\n",
1031 card->node_id, card->generation, (unsigned long long)priv->handler.offset );
1032 return;
1033 }
1034 status = ipv4_incoming_packet ( priv, payload, length, source, false );
1035 if ( status != 0 ) {
1036 fw_error ( "Incoming packet failure\n" );
1037 fw_send_response ( card, r, RCODE_CONFLICT_ERROR );
1038 return;
1039 }
1040 fw_send_response ( card, r, RCODE_COMPLETE );
1041}
1042
1043static void ipv4_receive_broadcast(struct fw_iso_context *context, u32 cycle,
1044 size_t header_length, void *header, void *data) {
1045 struct ipv4_priv *priv;
1046 struct fw_iso_packet packet;
1047 struct fw_card *card;
1048 u16 *hdr_ptr;
1049 u32 *buf_ptr;
1050 int retval;
1051 u32 length;
1052 u16 source_node_id;
1053 u32 specifier_id;
1054 u32 ver;
1055 unsigned long offset;
1056 unsigned long flags;
1057
1058 fw_debug ( "ipv4_receive_broadcast ( context=%p, cycle=%x, header_length=%lx, header=%p, data=%p )\n", context, cycle, (unsigned long)header_length, header, data );
1059 print_hex_dump ( KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 32, 1, header, header_length, false );
1060 priv = data;
1061 card = priv->card;
1062 hdr_ptr = header;
1063 length = ntohs(hdr_ptr[0]);
1064 spin_lock_irqsave(&priv->lock,flags);
1065 offset = priv->rcv_buffer_size * priv->broadcast_rcv_next_ptr;
1066 buf_ptr = priv->broadcast_rcv_buffer_ptrs[priv->broadcast_rcv_next_ptr++];
1067 if ( priv->broadcast_rcv_next_ptr == priv->num_broadcast_rcv_ptrs )
1068 priv->broadcast_rcv_next_ptr = 0;
1069 spin_unlock_irqrestore(&priv->lock,flags);
1070 fw_debug ( "length %u at %p\n", length, buf_ptr );
1071 print_hex_dump ( KERN_DEBUG, "buffer: ", DUMP_PREFIX_OFFSET, 32, 1, buf_ptr, length, false );
1072
1073 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
1074 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
1075 ver = be32_to_cpu(buf_ptr[1]) & 0xFFFFFF;
1076 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
1077 /* fw_debug ( "source %x SpecID %x ver %x\n", source_node_id, specifier_id, ver ); */
1078 if ( specifier_id == IPV4_GASP_SPECIFIER_ID && ver == IPV4_GASP_VERSION ) {
1079 buf_ptr += 2;
1080 length -= IPV4_GASP_OVERHEAD;
1081 ipv4_incoming_packet(priv, buf_ptr, length, source_node_id, true);
1082 } else
1083 fw_debug ( "Ignoring packet: not GASP\n" );
1084 packet.payload_length = priv->rcv_buffer_size;
1085 packet.interrupt = 1;
1086 packet.skip = 0;
1087 packet.tag = 3;
1088 packet.sy = 0;
1089 packet.header_length = IPV4_GASP_OVERHEAD;
1090 spin_lock_irqsave(&priv->lock,flags);
1091 retval = fw_iso_context_queue ( priv->broadcast_rcv_context, &packet,
1092 &priv->broadcast_rcv_buffer, offset );
1093 spin_unlock_irqrestore(&priv->lock,flags);
1094 if ( retval < 0 )
1095 fw_error ( "requeue failed\n" );
1096}
1097
1098static void debug_ptask ( struct ipv4_packet_task *ptask ) {
1099 static const char *tx_types[] = { "Unknown", "GASP", "Write" };
1100
1101 fw_debug ( "packet %p { hdr { w0 %x w1 %x }, skb %p, priv %p,"
1102 " tx_type %s, outstanding_pkts %d, max_payload %x, fifo %llx,"
1103 " speed %x, dest_node %x, generation %x }\n",
1104 ptask, ptask->hdr.w0, ptask->hdr.w1, ptask->skb, ptask->priv,
1105 ptask->tx_type > IPV4_WRREQ ? "Invalid" : tx_types[ptask->tx_type],
1106 ptask->outstanding_pkts, ptask->max_payload,
1107 ptask->fifo_addr, ptask->speed, ptask->dest_node, ptask->generation );
1108 print_hex_dump ( KERN_DEBUG, "packet :", DUMP_PREFIX_OFFSET, 32, 1,
1109 ptask->skb->data, ptask->skb->len, false );
1110}
1111
1112static void ipv4_transmit_packet_done ( struct ipv4_packet_task *ptask ) {
1113 struct ipv4_priv *priv;
1114 unsigned long flags;
1115
1116 priv = ptask->priv;
1117 spin_lock_irqsave ( &priv->lock, flags );
1118 list_del ( &ptask->packet_list );
1119 spin_unlock_irqrestore ( &priv->lock, flags );
1120 ptask->outstanding_pkts--;
1121 if ( ptask->outstanding_pkts > 0 ) {
1122 u16 dg_size;
1123 u16 fg_off;
1124 u16 datagram_label;
1125 u16 lf;
1126 struct sk_buff *skb;
1127
1128 /* Update the ptask to point to the next fragment and send it */
1129 lf = ipv4_get_hdr_lf(&ptask->hdr);
1130 switch (lf) {
1131 case IPV4_HDR_LASTFRAG:
1132 case IPV4_HDR_UNFRAG:
1133 default:
1134 fw_error ( "Outstanding packet %x lf %x, header %x,%x\n", ptask->outstanding_pkts, lf, ptask->hdr.w0, ptask->hdr.w1 );
1135 BUG();
1136
1137 case IPV4_HDR_FIRSTFRAG:
1138 /* Set frag type here for future interior fragments */
1139 dg_size = ipv4_get_hdr_dg_size(&ptask->hdr);
1140 fg_off = ptask->max_payload - IPV4_FRAG_HDR_SIZE;
1141 datagram_label = ipv4_get_hdr_dgl(&ptask->hdr);
1142 break;
1143
1144 case IPV4_HDR_INTFRAG:
1145 dg_size = ipv4_get_hdr_dg_size(&ptask->hdr);
1146 fg_off = ipv4_get_hdr_fg_off(&ptask->hdr) + ptask->max_payload - IPV4_FRAG_HDR_SIZE;
1147 datagram_label = ipv4_get_hdr_dgl(&ptask->hdr);
1148 break;
1149 }
1150 skb = ptask->skb;
1151 skb_pull ( skb, ptask->max_payload );
1152 if ( ptask->outstanding_pkts > 1 ) {
1153 ipv4_make_sf_hdr ( &ptask->hdr,
1154 IPV4_HDR_INTFRAG, dg_size, fg_off, datagram_label );
1155 } else {
1156 ipv4_make_sf_hdr ( &ptask->hdr,
1157 IPV4_HDR_LASTFRAG, dg_size, fg_off, datagram_label );
1158 ptask->max_payload = skb->len + IPV4_FRAG_HDR_SIZE;
1159
1160 }
1161 ipv4_send_packet ( ptask );
1162 } else {
1163 dev_kfree_skb_any ( ptask->skb );
1164 kmem_cache_free( ipv4_packet_task_cache, ptask );
1165 }
1166}
1167
1168static void ipv4_write_complete ( struct fw_card *card, int rcode,
1169 void *payload, size_t length, void *data ) {
1170 struct ipv4_packet_task *ptask;
1171
1172 ptask = data;
1173 fw_debug ( "ipv4_write_complete ( %p, %x, %p, %lx, %p )\n",
1174 card, rcode, payload, (unsigned long)length, data );
1175 debug_ptask ( ptask );
1176
1177 if ( rcode == RCODE_COMPLETE ) {
1178 ipv4_transmit_packet_done ( ptask );
1179 } else {
1180 fw_error ( "ipv4_write_complete: failed: %x\n", rcode );
1181 /* ??? error recovery */
1182 }
1183}
1184
1185static int ipv4_send_packet ( struct ipv4_packet_task *ptask ) {
1186 struct ipv4_priv *priv;
1187 unsigned tx_len;
1188 struct ipv4_hdr *bufhdr;
1189 unsigned long flags;
1190 struct net_device *netdev;
1191#if 0 /* stefanr */
1192 int retval;
1193#endif
1194
1195 fw_debug ( "ipv4_send_packet\n" );
1196 debug_ptask ( ptask );
1197 priv = ptask->priv;
1198 tx_len = ptask->max_payload;
1199 switch (ipv4_get_hdr_lf(&ptask->hdr)) {
1200 case IPV4_HDR_UNFRAG:
1201 bufhdr = (struct ipv4_hdr *)skb_push(ptask->skb, IPV4_UNFRAG_HDR_SIZE);
1202 bufhdr->w0 = htonl(ptask->hdr.w0);
1203 break;
1204
1205 case IPV4_HDR_FIRSTFRAG:
1206 case IPV4_HDR_INTFRAG:
1207 case IPV4_HDR_LASTFRAG:
1208 bufhdr = (struct ipv4_hdr *)skb_push(ptask->skb, IPV4_FRAG_HDR_SIZE);
1209 bufhdr->w0 = htonl(ptask->hdr.w0);
1210 bufhdr->w1 = htonl(ptask->hdr.w1);
1211 break;
1212
1213 default:
1214 BUG();
1215 }
1216 if ( ptask->tx_type == IPV4_GASP ) {
1217 u32 *packets;
1218 int generation;
1219 int nodeid;
1220
1221 /* ptask->generation may not have been set yet */
1222 generation = priv->card->generation;
1223 smp_rmb();
1224 nodeid = priv->card->node_id;
1225 packets = (u32 *)skb_push(ptask->skb, sizeof(u32)*2);
1226 packets[0] = htonl(nodeid << 16 | (IPV4_GASP_SPECIFIER_ID>>8));
1227 packets[1] = htonl((IPV4_GASP_SPECIFIER_ID & 0xFF) << 24 | IPV4_GASP_VERSION);
1228 fw_send_request ( priv->card, &ptask->transaction, TCODE_STREAM_DATA,
1229 fw_stream_packet_destination_id(3, BROADCAST_CHANNEL, 0),
1230 generation, SCODE_100, 0ULL, ptask->skb->data, tx_len + 8, ipv4_write_complete, ptask );
1231 spin_lock_irqsave(&priv->lock,flags);
1232 list_add_tail ( &ptask->packet_list, &priv->broadcasted_list );
1233 spin_unlock_irqrestore(&priv->lock,flags);
1234#if 0 /* stefanr */
1235 return retval;
1236#else
1237 return 0;
1238#endif
1239 }
1240 fw_debug("send_request (%p, %p, WRITE_BLOCK, %x, %x, %x, %llx, %p, %d, %p, %p\n",
1241 priv->card, &ptask->transaction, ptask->dest_node, ptask->generation,
1242 ptask->speed, (unsigned long long)ptask->fifo_addr, ptask->skb->data, tx_len,
1243 ipv4_write_complete, ptask );
1244 fw_send_request ( priv->card, &ptask->transaction,
1245 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, ptask->generation, ptask->speed,
1246 ptask->fifo_addr, ptask->skb->data, tx_len, ipv4_write_complete, ptask );
1247 spin_lock_irqsave(&priv->lock,flags);
1248 list_add_tail ( &ptask->packet_list, &priv->sent_list );
1249 spin_unlock_irqrestore(&priv->lock,flags);
1250 netdev = priv->card->netdev;
1251 netdev->trans_start = jiffies;
1252 return 0;
1253}
1254
1255static int ipv4_broadcast_start ( struct ipv4_priv *priv ) {
1256 struct fw_iso_context *context;
1257 int retval;
1258 unsigned num_packets;
1259 unsigned max_receive;
1260 struct fw_iso_packet packet;
1261 unsigned long offset;
1262 unsigned u;
1263 /* unsigned transmit_speed; */
1264
1265#if 0 /* stefanr */
1266 if ( priv->card->broadcast_channel != (BROADCAST_CHANNEL_VALID|BROADCAST_CHANNEL_INITIAL)) {
1267 fw_notify ( "Invalid broadcast channel %x\n", priv->card->broadcast_channel );
1268 /* FIXME: try again later? */
1269 /* return -EINVAL; */
1270 }
1271#endif
1272 if ( priv->local_fifo == INVALID_FIFO_ADDR ) {
1273 struct fw_address_region region;
1274
1275 priv->handler.length = FIFO_SIZE;
1276 priv->handler.address_callback = ipv4_receive_packet;
1277 priv->handler.callback_data = priv;
1278 /* FIXME: this is OHCI, but what about others? */
1279 region.start = 0xffff00000000ULL;
1280 region.end = 0xfffffffffffcULL;
1281
1282 retval = fw_core_add_address_handler ( &priv->handler, &region );
1283 if ( retval < 0 )
1284 goto failed_initial;
1285 priv->local_fifo = priv->handler.offset;
1286 }
1287
1288 /*
1289 * FIXME: rawiso limits us to PAGE_SIZE. This only matters if we ever have
1290 * a machine with PAGE_SIZE < 4096
1291 */
1292 max_receive = 1U << (priv->card->max_receive + 1);
1293 num_packets = ( ipv4_iso_page_count * PAGE_SIZE ) / max_receive;
1294 if ( ! priv->broadcast_rcv_context ) {
1295 void **ptrptr;
1296
1297 context = fw_iso_context_create ( priv->card,
1298 FW_ISO_CONTEXT_RECEIVE, BROADCAST_CHANNEL,
1299 priv->card->link_speed, 8, ipv4_receive_broadcast, priv );
1300 if (IS_ERR(context)) {
1301 retval = PTR_ERR(context);
1302 goto failed_context_create;
1303 }
1304 retval = fw_iso_buffer_init ( &priv->broadcast_rcv_buffer,
1305 priv->card, ipv4_iso_page_count, DMA_FROM_DEVICE );
1306 if ( retval < 0 )
1307 goto failed_buffer_init;
1308 ptrptr = kmalloc ( sizeof(void*)*num_packets, GFP_KERNEL );
1309 if ( ! ptrptr ) {
1310 retval = -ENOMEM;
1311 goto failed_ptrs_alloc;
1312 }
1313 priv->broadcast_rcv_buffer_ptrs = ptrptr;
1314 for ( u = 0; u < ipv4_iso_page_count; u++ ) {
1315 void *ptr;
1316 unsigned v;
1317
1318 ptr = kmap ( priv->broadcast_rcv_buffer.pages[u] );
1319 for ( v = 0; v < num_packets / ipv4_iso_page_count; v++ )
1320 *ptrptr++ = (void *)((char *)ptr + v * max_receive);
1321 }
1322 priv->broadcast_rcv_context = context;
1323 } else
1324 context = priv->broadcast_rcv_context;
1325
1326 packet.payload_length = max_receive;
1327 packet.interrupt = 1;
1328 packet.skip = 0;
1329 packet.tag = 3;
1330 packet.sy = 0;
1331 packet.header_length = IPV4_GASP_OVERHEAD;
1332 offset = 0;
1333 for ( u = 0; u < num_packets; u++ ) {
1334 retval = fw_iso_context_queue ( context, &packet,
1335 &priv->broadcast_rcv_buffer, offset );
1336 if ( retval < 0 )
1337 goto failed_rcv_queue;
1338 offset += max_receive;
1339 }
1340 priv->num_broadcast_rcv_ptrs = num_packets;
1341 priv->rcv_buffer_size = max_receive;
1342 priv->broadcast_rcv_next_ptr = 0U;
1343 retval = fw_iso_context_start ( context, -1, 0, FW_ISO_CONTEXT_MATCH_ALL_TAGS ); /* ??? sync */
1344 if ( retval < 0 )
1345 goto failed_rcv_queue;
1346 /* FIXME: adjust this when we know the max receive speeds of all other IP nodes on the bus. */
1347 /* since we only xmt at S100 ??? */
1348 priv->broadcast_xmt_max_payload = S100_BUFFER_SIZE - IPV4_GASP_OVERHEAD - IPV4_UNFRAG_HDR_SIZE;
1349 priv->broadcast_state = IPV4_BROADCAST_RUNNING;
1350 return 0;
1351
1352 failed_rcv_queue:
1353 kfree ( priv->broadcast_rcv_buffer_ptrs );
1354 priv->broadcast_rcv_buffer_ptrs = NULL;
1355 failed_ptrs_alloc:
1356 fw_iso_buffer_destroy ( &priv->broadcast_rcv_buffer, priv->card );
1357 failed_buffer_init:
1358 fw_iso_context_destroy ( context );
1359 priv->broadcast_rcv_context = NULL;
1360 failed_context_create:
1361 fw_core_remove_address_handler ( &priv->handler );
1362 failed_initial:
1363 priv->local_fifo = INVALID_FIFO_ADDR;
1364 return retval;
1365}
1366
1367/* This is called after an "ifup" */
1368static int ipv4_open(struct net_device *dev) {
1369 struct ipv4_priv *priv;
1370 int ret;
1371
1372 priv = netdev_priv(dev);
1373 if (priv->broadcast_state == IPV4_BROADCAST_ERROR) {
1374 ret = ipv4_broadcast_start ( priv );
1375 if (ret)
1376 return ret;
1377 }
1378 netif_start_queue(dev);
1379 return 0;
1380}
1381
1382/* This is called after an "ifdown" */
1383static int ipv4_stop(struct net_device *netdev)
1384{
1385 /* flush priv->wake */
1386 /* flush_scheduled_work(); */
1387
1388 netif_stop_queue(netdev);
1389 return 0;
1390}
1391
1392/* Transmit a packet (called by kernel) */
1393static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev)
1394{
1395 struct ipv4_ether_hdr hdr_buf;
1396 struct ipv4_priv *priv = netdev_priv(netdev);
1397 __be16 proto;
1398 u16 dest_node;
1399 enum ipv4_tx_type tx_type;
1400 unsigned max_payload;
1401 u16 dg_size;
1402 u16 *datagram_label_ptr;
1403 struct ipv4_packet_task *ptask;
1404 struct ipv4_node *node = NULL;
1405
1406 ptask = kmem_cache_alloc(ipv4_packet_task_cache, GFP_ATOMIC);
1407 if (ptask == NULL)
1408 goto fail;
1409
1410 skb = skb_share_check(skb, GFP_ATOMIC);
1411 if (!skb)
1412 goto fail;
1413
1414 /*
1415 * Get rid of the fake ipv4 header, but first make a copy.
1416 * We might need to rebuild the header on tx failure.
1417 */
1418 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1419 skb_pull(skb, sizeof(hdr_buf));
1420
1421 proto = hdr_buf.h_proto;
1422 dg_size = skb->len;
1423
1424 /*
1425 * Set the transmission type for the packet. ARP packets and IP
1426 * broadcast packets are sent via GASP.
1427 */
1428 if ( memcmp(hdr_buf.h_dest, netdev->broadcast, IPV4_ALEN) == 0
1429 || proto == htons(ETH_P_ARP)
1430 || ( proto == htons(ETH_P_IP)
1431 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)) ) ) {
1432 /* fw_debug ( "transmitting arp or multicast packet\n" );*/
1433 tx_type = IPV4_GASP;
1434 dest_node = ALL_NODES;
1435 max_payload = priv->broadcast_xmt_max_payload;
1436 /* BUG_ON(max_payload < S100_BUFFER_SIZE - IPV4_GASP_OVERHEAD); */
1437 datagram_label_ptr = &priv->broadcast_xmt_datagramlabel;
1438 ptask->fifo_addr = INVALID_FIFO_ADDR;
1439 ptask->generation = 0U;
1440 ptask->dest_node = 0U;
1441 ptask->speed = 0;
1442 } else {
1443 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1444 u8 generation;
1445
1446 node = ipv4_node_find_by_guid(priv, be64_to_cpu(guid));
1447 if (!node) {
1448 fw_debug ( "Normal packet but no node\n" );
1449 goto fail;
1450 }
1451
1452 if (node->fifo == INVALID_FIFO_ADDR) {
1453 fw_debug ( "Normal packet but no fifo addr\n" );
1454 goto fail;
1455 }
1456
1457 /* fw_debug ( "Transmitting normal packet to %x at %llxx\n", node->nodeid, node->fifo ); */
1458 generation = node->generation;
1459 dest_node = node->nodeid;
1460 max_payload = node->max_payload;
1461 /* BUG_ON(max_payload < S100_BUFFER_SIZE - IPV4_FRAG_HDR_SIZE); */
1462
1463 datagram_label_ptr = &node->datagram_label;
1464 tx_type = IPV4_WRREQ;
1465 ptask->fifo_addr = node->fifo;
1466 ptask->generation = generation;
1467 ptask->dest_node = dest_node;
1468 ptask->speed = node->xmt_speed;
1469 }
1470
1471 /* If this is an ARP packet, convert it */
1472 if (proto == htons(ETH_P_ARP)) {
1473 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1474 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1475 * needs to be munged a bit. The remainder of the arphdr is formatted based
1476 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1477 * judge.
1478 *
1479 * Now that the EUI is used for the hardware address all we need to do to make
1480 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1481 * speed, and unicast FIFO address information between the sender_unique_id
1482 * and the IP addresses.
1483 */
1484 struct arphdr *arp = (struct arphdr *)skb->data;
1485 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1486 struct ipv4_arp *arp1394 = (struct ipv4_arp *)skb->data;
1487 u32 ipaddr;
1488
1489 ipaddr = *(u32*)(arp_ptr + IPV4_ALEN);
1490 arp1394->hw_addr_len = 16;
1491 arp1394->max_rec = priv->card->max_receive;
1492 arp1394->sspd = priv->card->link_speed;
1493 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1494 arp1394->fifo_lo = htonl(priv->local_fifo & 0xFFFFFFFF);
1495 arp1394->sip = ipaddr;
1496 }
1497 if ( ipv4_max_xmt && max_payload > ipv4_max_xmt )
1498 max_payload = ipv4_max_xmt;
1499
1500 ptask->hdr.w0 = 0;
1501 ptask->hdr.w1 = 0;
1502 ptask->skb = skb;
1503 ptask->priv = priv;
1504 ptask->tx_type = tx_type;
1505 /* Does it all fit in one packet? */
1506 if ( dg_size <= max_payload ) {
1507 ipv4_make_uf_hdr(&ptask->hdr, be16_to_cpu(proto));
1508 ptask->outstanding_pkts = 1;
1509 max_payload = dg_size + IPV4_UNFRAG_HDR_SIZE;
1510 } else {
1511 u16 datagram_label;
1512
1513 max_payload -= IPV4_FRAG_OVERHEAD;
1514 datagram_label = (*datagram_label_ptr)++;
1515 ipv4_make_ff_hdr(&ptask->hdr, be16_to_cpu(proto), dg_size, datagram_label );
1516 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1517 max_payload += IPV4_FRAG_HDR_SIZE;
1518 }
1519 ptask->max_payload = max_payload;
1520 ipv4_send_packet ( ptask );
1521 return NETDEV_TX_OK;
1522
1523 fail:
1524 if (ptask)
1525 kmem_cache_free(ipv4_packet_task_cache, ptask);
1526
1527 if (skb != NULL)
1528 dev_kfree_skb(skb);
1529
1530 netdev->stats.tx_dropped++;
1531 netdev->stats.tx_errors++;
1532
1533 /*
1534 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1535 * causes serious problems" here, allegedly. Before that patch,
1536 * -ERRNO was returned which is not appropriate under Linux 2.6.
1537 * Perhaps more needs to be done? Stop the queue in serious
1538 * conditions and restart it elsewhere?
1539 */
1540 return NETDEV_TX_OK;
1541}
1542
1543/*
1544 * FIXME: What to do if we timeout? I think a host reset is probably in order,
1545 * so that's what we do. Should we increment the stat counters too?
1546 */
1547static void ipv4_tx_timeout(struct net_device *dev) {
1548 struct ipv4_priv *priv;
1549
1550 priv = netdev_priv(dev);
1551 fw_error ( "%s: Timeout, resetting host\n", dev->name );
1552#if 0 /* stefanr */
1553 fw_core_initiate_bus_reset ( priv->card, 1 );
1554#endif
1555}
1556
1557static int ipv4_change_mtu ( struct net_device *dev, int new_mtu ) {
1558#if 0
1559 int max_mtu;
1560 struct ipv4_priv *priv;
1561#endif
1562
1563 if (new_mtu < 68)
1564 return -EINVAL;
1565
1566#if 0
1567 priv = netdev_priv(dev);
1568 /* This is not actually true because we can fragment packets at the firewire layer */
1569 max_mtu = (1 << (priv->card->max_receive + 1))
1570 - sizeof(struct ipv4_hdr) - IPV4_GASP_OVERHEAD;
1571 if (new_mtu > max_mtu) {
1572 fw_notify ( "%s: Local node constrains MTU to %d\n", dev->name, max_mtu);
1573 return -ERANGE;
1574 }
1575#endif
1576 dev->mtu = new_mtu;
1577 return 0;
1578}
1579
1580static void ipv4_get_drvinfo(struct net_device *dev,
1581struct ethtool_drvinfo *info) {
1582 strcpy(info->driver, ipv4_driver_name);
1583 strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1584}
1585
1586static struct ethtool_ops ipv4_ethtool_ops = {
1587 .get_drvinfo = ipv4_get_drvinfo,
1588};
1589
1590static const struct net_device_ops ipv4_netdev_ops = {
1591 .ndo_open = ipv4_open,
1592 .ndo_stop = ipv4_stop,
1593 .ndo_start_xmit = ipv4_tx,
1594 .ndo_tx_timeout = ipv4_tx_timeout,
1595 .ndo_change_mtu = ipv4_change_mtu,
1596};
1597
1598static void ipv4_init_dev ( struct net_device *dev ) {
1599 dev->header_ops = &ipv4_header_ops;
1600 dev->netdev_ops = &ipv4_netdev_ops;
1601 SET_ETHTOOL_OPS(dev, &ipv4_ethtool_ops);
1602
1603 dev->watchdog_timeo = IPV4_TIMEOUT;
1604 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
1605 dev->features = NETIF_F_HIGHDMA;
1606 dev->addr_len = IPV4_ALEN;
1607 dev->hard_header_len = IPV4_HLEN;
1608 dev->type = ARPHRD_IEEE1394;
1609
1610 /* FIXME: This value was copied from ether_setup(). Is it too much? */
1611 dev->tx_queue_len = 1000;
1612}
1613
1614static int ipv4_probe ( struct device *dev ) {
1615 struct fw_unit * unit;
1616 struct fw_device *device;
1617 struct fw_card *card;
1618 struct net_device *netdev;
1619 struct ipv4_priv *priv;
1620 unsigned max_mtu;
1621 __be64 guid;
1622
1623 fw_debug("ipv4 Probing\n" );
1624 unit = fw_unit ( dev );
1625 device = fw_device ( unit->device.parent );
1626 card = device->card;
1627
1628 if ( ! device->is_local ) {
1629 int added;
1630
1631 fw_debug ( "Non-local, adding remote node entry\n" );
1632 added = ipv4_node_new ( card, device );
1633 return added;
1634 }
1635 fw_debug("ipv4 Local: adding netdev\n" );
1636 netdev = alloc_netdev ( sizeof(*priv), "firewire%d", ipv4_init_dev );
1637 if ( netdev == NULL) {
1638 fw_error( "Out of memory\n");
1639 goto out;
1640 }
1641
1642 SET_NETDEV_DEV(netdev, card->device);
1643 priv = netdev_priv(netdev);
1644
1645 spin_lock_init(&priv->lock);
1646 priv->broadcast_state = IPV4_BROADCAST_ERROR;
1647 priv->broadcast_rcv_context = NULL;
1648 priv->broadcast_xmt_max_payload = 0;
1649 priv->broadcast_xmt_datagramlabel = 0;
1650
1651 priv->local_fifo = INVALID_FIFO_ADDR;
1652
1653 /* INIT_WORK(&priv->wake, ipv4_handle_queue);*/
1654 INIT_LIST_HEAD(&priv->packet_list);
1655 INIT_LIST_HEAD(&priv->broadcasted_list);
1656 INIT_LIST_HEAD(&priv->sent_list );
1657
1658 priv->card = card;
1659
1660 /*
1661 * Use the RFC 2734 default 1500 octets or the maximum payload
1662 * as initial MTU
1663 */
1664 max_mtu = (1 << (card->max_receive + 1))
1665 - sizeof(struct ipv4_hdr) - IPV4_GASP_OVERHEAD;
1666 netdev->mtu = min(1500U, max_mtu);
1667
1668 /* Set our hardware address while we're at it */
1669 guid = cpu_to_be64(card->guid);
1670 memcpy(netdev->dev_addr, &guid, sizeof(u64));
1671 memset(netdev->broadcast, 0xff, sizeof(u64));
1672 if ( register_netdev ( netdev ) ) {
1673 fw_error ( "Cannot register the driver\n");
1674 goto out;
1675 }
1676
1677 fw_notify ( "%s: IPv4 over Firewire on device %016llx\n",
1678 netdev->name, card->guid );
1679 card->netdev = netdev;
1680
1681 return 0 /* ipv4_new_node ( ud ) */;
1682 out:
1683 if ( netdev )
1684 free_netdev ( netdev );
1685 return -ENOENT;
1686}
1687
1688
1689static int ipv4_remove ( struct device *dev ) {
1690 struct fw_unit * unit;
1691 struct fw_device *device;
1692 struct fw_card *card;
1693 struct net_device *netdev;
1694 struct ipv4_priv *priv;
1695 struct ipv4_node *node;
1696 struct ipv4_partial_datagram *pd, *pd_next;
1697 struct ipv4_packet_task *ptask, *pt_next;
1698
1699 fw_debug("ipv4 Removing\n" );
1700 unit = fw_unit ( dev );
1701 device = fw_device ( unit->device.parent );
1702 card = device->card;
1703
1704 if ( ! device->is_local ) {
1705 fw_debug ( "Node %x is non-local, removing remote node entry\n", device->node_id );
1706 ipv4_node_delete ( card, device );
1707 return 0;
1708 }
1709 netdev = card->netdev;
1710 if ( netdev ) {
1711 fw_debug ( "Node %x is local: deleting netdev\n", device->node_id );
1712 priv = netdev_priv ( netdev );
1713 unregister_netdev ( netdev );
1714 fw_debug ( "unregistered\n" );
1715 if ( priv->local_fifo != INVALID_FIFO_ADDR )
1716 fw_core_remove_address_handler ( &priv->handler );
1717 fw_debug ( "address handler gone\n" );
1718 if ( priv->broadcast_rcv_context ) {
1719 fw_iso_context_stop ( priv->broadcast_rcv_context );
1720 fw_iso_buffer_destroy ( &priv->broadcast_rcv_buffer, priv->card );
1721 fw_iso_context_destroy ( priv->broadcast_rcv_context );
1722 fw_debug ( "rcv stopped\n" );
1723 }
1724 list_for_each_entry_safe( ptask, pt_next, &priv->packet_list, packet_list ) {
1725 dev_kfree_skb_any ( ptask->skb );
1726 kmem_cache_free( ipv4_packet_task_cache, ptask );
1727 }
1728 list_for_each_entry_safe( ptask, pt_next, &priv->broadcasted_list, packet_list ) {
1729 dev_kfree_skb_any ( ptask->skb );
1730 kmem_cache_free( ipv4_packet_task_cache, ptask );
1731 }
1732 list_for_each_entry_safe( ptask, pt_next, &priv->sent_list, packet_list ) {
1733 dev_kfree_skb_any ( ptask->skb );
1734 kmem_cache_free( ipv4_packet_task_cache, ptask );
1735 }
1736 fw_debug ( "lists emptied\n" );
1737 list_for_each_entry( node, &card->ipv4_nodes, ipv4_nodes ) {
1738 if ( node->pdg_size ) {
1739 list_for_each_entry_safe( pd, pd_next, &node->pdg_list, pdg_list )
1740 ipv4_pd_delete ( pd );
1741 node->pdg_size = 0;
1742 }
1743 node->fifo = INVALID_FIFO_ADDR;
1744 }
1745 fw_debug ( "nodes cleaned up\n" );
1746 free_netdev ( netdev );
1747 card->netdev = NULL;
1748 fw_debug ( "done\n" );
1749 }
1750 return 0;
1751}
1752
1753static void ipv4_update ( struct fw_unit *unit ) {
1754 struct fw_device *device;
1755 struct fw_card *card;
1756
1757 fw_debug ( "ipv4_update unit %p\n", unit );
1758 device = fw_device ( unit->device.parent );
1759 card = device->card;
1760 if ( ! device->is_local ) {
1761 struct ipv4_node *node;
1762 u64 guid;
1763 struct net_device *netdev;
1764 struct ipv4_priv *priv;
1765
1766 netdev = card->netdev;
1767 if ( netdev ) {
1768 priv = netdev_priv ( netdev );
1769 guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1770 node = ipv4_node_find_by_guid ( priv, guid );
1771 if ( ! node ) {
1772 fw_error ( "ipv4_update: no node for device %llx\n", guid );
1773 return;
1774 }
1775 fw_debug ( "Non-local, updating remote node entry for guid %llx old generation %x, old nodeid %x\n", guid, node->generation, node->nodeid );
1776 node->generation = device->generation;
1777 rmb();
1778 node->nodeid = device->node_id;
1779 fw_debug ( "New generation %x, new nodeid %x\n", node->generation, node->nodeid );
1780 } else
1781 fw_error ( "nonlocal, but no netdev? How can that be?\n" );
1782 } else {
1783 /* FIXME: What do we need to do on bus reset? */
1784 fw_debug ( "Local, doing nothing\n" );
1785 }
1786}
1787
1788static struct fw_driver ipv4_driver = {
1789 .driver = {
1790 .owner = THIS_MODULE,
1791 .name = ipv4_driver_name,
1792 .bus = &fw_bus_type,
1793 .probe = ipv4_probe,
1794 .remove = ipv4_remove,
1795 },
1796 .update = ipv4_update,
1797 .id_table = ipv4_id_table,
1798};
1799
1800static int __init ipv4_init ( void ) {
1801 int added;
1802
1803 added = fw_core_add_descriptor ( &ipv4_unit_directory );
1804 if ( added < 0 )
1805 fw_error ( "Failed to add descriptor" );
1806 ipv4_packet_task_cache = kmem_cache_create("packet_task",
1807 sizeof(struct ipv4_packet_task), 0, 0, NULL);
1808 fw_debug("Adding ipv4 module\n" );
1809 return driver_register ( &ipv4_driver.driver );
1810}
1811
1812static void __exit ipv4_cleanup ( void ) {
1813 fw_core_remove_descriptor ( &ipv4_unit_directory );
1814 fw_debug("Removing ipv4 module\n" );
1815 driver_unregister ( &ipv4_driver.driver );
1816}
1817
1818module_init(ipv4_init);
1819module_exit(ipv4_cleanup);