aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/dma/imx-sdma.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2010-10-27 22:04:36 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2010-10-27 22:04:36 -0400
commite3e1288e86a07cdeb0aee5860a2dff111c6eff79 (patch)
treecd22f8051a456c9d2b95698b6fe402776a67469b /drivers/dma/imx-sdma.c
parent9ae6d039224def926656206725ae6e89d1331417 (diff)
parent964dc256bb91e990277010a3f6dc66daa130be8b (diff)
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx: (48 commits) DMAENGINE: move COH901318 to arch_initcall dma: imx-dma: fix signedness bug dma/timberdale: simplify conditional ste_dma40: remove channel_type ste_dma40: remove enum for endianess ste_dma40: remove TIM_FOR_LINK option ste_dma40: move mode_opt to separate config ste_dma40: move channel mode to a separate field ste_dma40: move priority to separate field ste_dma40: add variable to indicate valid dma_cfg async_tx: make async_tx channel switching opt-in move async raid6 test to lib/Kconfig.debug dmaengine: Add Freescale i.MX1/21/27 DMA driver intel_mid_dma: change the slave interface intel_mid_dma: fix the WARN_ONs intel_mid_dma: Add sg list support to DMA driver intel_mid_dma: Allow DMAC2 to share interrupt intel_mid_dma: Allow IRQ sharing intel_mid_dma: Add runtime PM support DMAENGINE: define a dummy filter function for ste_dma40 ...
Diffstat (limited to 'drivers/dma/imx-sdma.c')
-rw-r--r--drivers/dma/imx-sdma.c1392
1 files changed, 1392 insertions, 0 deletions
diff --git a/drivers/dma/imx-sdma.c b/drivers/dma/imx-sdma.c
new file mode 100644
index 000000000000..0834323a0599
--- /dev/null
+++ b/drivers/dma/imx-sdma.c
@@ -0,0 +1,1392 @@
1/*
2 * drivers/dma/imx-sdma.c
3 *
4 * This file contains a driver for the Freescale Smart DMA engine
5 *
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7 *
8 * Based on code from Freescale:
9 *
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11 *
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
15 *
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20#include <linux/init.h>
21#include <linux/types.h>
22#include <linux/mm.h>
23#include <linux/interrupt.h>
24#include <linux/clk.h>
25#include <linux/wait.h>
26#include <linux/sched.h>
27#include <linux/semaphore.h>
28#include <linux/spinlock.h>
29#include <linux/device.h>
30#include <linux/dma-mapping.h>
31#include <linux/firmware.h>
32#include <linux/slab.h>
33#include <linux/platform_device.h>
34#include <linux/dmaengine.h>
35
36#include <asm/irq.h>
37#include <mach/sdma.h>
38#include <mach/dma.h>
39#include <mach/hardware.h>
40
41/* SDMA registers */
42#define SDMA_H_C0PTR 0x000
43#define SDMA_H_INTR 0x004
44#define SDMA_H_STATSTOP 0x008
45#define SDMA_H_START 0x00c
46#define SDMA_H_EVTOVR 0x010
47#define SDMA_H_DSPOVR 0x014
48#define SDMA_H_HOSTOVR 0x018
49#define SDMA_H_EVTPEND 0x01c
50#define SDMA_H_DSPENBL 0x020
51#define SDMA_H_RESET 0x024
52#define SDMA_H_EVTERR 0x028
53#define SDMA_H_INTRMSK 0x02c
54#define SDMA_H_PSW 0x030
55#define SDMA_H_EVTERRDBG 0x034
56#define SDMA_H_CONFIG 0x038
57#define SDMA_ONCE_ENB 0x040
58#define SDMA_ONCE_DATA 0x044
59#define SDMA_ONCE_INSTR 0x048
60#define SDMA_ONCE_STAT 0x04c
61#define SDMA_ONCE_CMD 0x050
62#define SDMA_EVT_MIRROR 0x054
63#define SDMA_ILLINSTADDR 0x058
64#define SDMA_CHN0ADDR 0x05c
65#define SDMA_ONCE_RTB 0x060
66#define SDMA_XTRIG_CONF1 0x070
67#define SDMA_XTRIG_CONF2 0x074
68#define SDMA_CHNENBL0_V2 0x200
69#define SDMA_CHNENBL0_V1 0x080
70#define SDMA_CHNPRI_0 0x100
71
72/*
73 * Buffer descriptor status values.
74 */
75#define BD_DONE 0x01
76#define BD_WRAP 0x02
77#define BD_CONT 0x04
78#define BD_INTR 0x08
79#define BD_RROR 0x10
80#define BD_LAST 0x20
81#define BD_EXTD 0x80
82
83/*
84 * Data Node descriptor status values.
85 */
86#define DND_END_OF_FRAME 0x80
87#define DND_END_OF_XFER 0x40
88#define DND_DONE 0x20
89#define DND_UNUSED 0x01
90
91/*
92 * IPCV2 descriptor status values.
93 */
94#define BD_IPCV2_END_OF_FRAME 0x40
95
96#define IPCV2_MAX_NODES 50
97/*
98 * Error bit set in the CCB status field by the SDMA,
99 * in setbd routine, in case of a transfer error
100 */
101#define DATA_ERROR 0x10000000
102
103/*
104 * Buffer descriptor commands.
105 */
106#define C0_ADDR 0x01
107#define C0_LOAD 0x02
108#define C0_DUMP 0x03
109#define C0_SETCTX 0x07
110#define C0_GETCTX 0x03
111#define C0_SETDM 0x01
112#define C0_SETPM 0x04
113#define C0_GETDM 0x02
114#define C0_GETPM 0x08
115/*
116 * Change endianness indicator in the BD command field
117 */
118#define CHANGE_ENDIANNESS 0x80
119
120/*
121 * Mode/Count of data node descriptors - IPCv2
122 */
123struct sdma_mode_count {
124 u32 count : 16; /* size of the buffer pointed by this BD */
125 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
126 u32 command : 8; /* command mostlky used for channel 0 */
127};
128
129/*
130 * Buffer descriptor
131 */
132struct sdma_buffer_descriptor {
133 struct sdma_mode_count mode;
134 u32 buffer_addr; /* address of the buffer described */
135 u32 ext_buffer_addr; /* extended buffer address */
136} __attribute__ ((packed));
137
138/**
139 * struct sdma_channel_control - Channel control Block
140 *
141 * @current_bd_ptr current buffer descriptor processed
142 * @base_bd_ptr first element of buffer descriptor array
143 * @unused padding. The SDMA engine expects an array of 128 byte
144 * control blocks
145 */
146struct sdma_channel_control {
147 u32 current_bd_ptr;
148 u32 base_bd_ptr;
149 u32 unused[2];
150} __attribute__ ((packed));
151
152/**
153 * struct sdma_state_registers - SDMA context for a channel
154 *
155 * @pc: program counter
156 * @t: test bit: status of arithmetic & test instruction
157 * @rpc: return program counter
158 * @sf: source fault while loading data
159 * @spc: loop start program counter
160 * @df: destination fault while storing data
161 * @epc: loop end program counter
162 * @lm: loop mode
163 */
164struct sdma_state_registers {
165 u32 pc :14;
166 u32 unused1: 1;
167 u32 t : 1;
168 u32 rpc :14;
169 u32 unused0: 1;
170 u32 sf : 1;
171 u32 spc :14;
172 u32 unused2: 1;
173 u32 df : 1;
174 u32 epc :14;
175 u32 lm : 2;
176} __attribute__ ((packed));
177
178/**
179 * struct sdma_context_data - sdma context specific to a channel
180 *
181 * @channel_state: channel state bits
182 * @gReg: general registers
183 * @mda: burst dma destination address register
184 * @msa: burst dma source address register
185 * @ms: burst dma status register
186 * @md: burst dma data register
187 * @pda: peripheral dma destination address register
188 * @psa: peripheral dma source address register
189 * @ps: peripheral dma status register
190 * @pd: peripheral dma data register
191 * @ca: CRC polynomial register
192 * @cs: CRC accumulator register
193 * @dda: dedicated core destination address register
194 * @dsa: dedicated core source address register
195 * @ds: dedicated core status register
196 * @dd: dedicated core data register
197 */
198struct sdma_context_data {
199 struct sdma_state_registers channel_state;
200 u32 gReg[8];
201 u32 mda;
202 u32 msa;
203 u32 ms;
204 u32 md;
205 u32 pda;
206 u32 psa;
207 u32 ps;
208 u32 pd;
209 u32 ca;
210 u32 cs;
211 u32 dda;
212 u32 dsa;
213 u32 ds;
214 u32 dd;
215 u32 scratch0;
216 u32 scratch1;
217 u32 scratch2;
218 u32 scratch3;
219 u32 scratch4;
220 u32 scratch5;
221 u32 scratch6;
222 u32 scratch7;
223} __attribute__ ((packed));
224
225#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
226
227struct sdma_engine;
228
229/**
230 * struct sdma_channel - housekeeping for a SDMA channel
231 *
232 * @sdma pointer to the SDMA engine for this channel
233 * @channel the channel number, matches dmaengine chan_id
234 * @direction transfer type. Needed for setting SDMA script
235 * @peripheral_type Peripheral type. Needed for setting SDMA script
236 * @event_id0 aka dma request line
237 * @event_id1 for channels that use 2 events
238 * @word_size peripheral access size
239 * @buf_tail ID of the buffer that was processed
240 * @done channel completion
241 * @num_bd max NUM_BD. number of descriptors currently handling
242 */
243struct sdma_channel {
244 struct sdma_engine *sdma;
245 unsigned int channel;
246 enum dma_data_direction direction;
247 enum sdma_peripheral_type peripheral_type;
248 unsigned int event_id0;
249 unsigned int event_id1;
250 enum dma_slave_buswidth word_size;
251 unsigned int buf_tail;
252 struct completion done;
253 unsigned int num_bd;
254 struct sdma_buffer_descriptor *bd;
255 dma_addr_t bd_phys;
256 unsigned int pc_from_device, pc_to_device;
257 unsigned long flags;
258 dma_addr_t per_address;
259 u32 event_mask0, event_mask1;
260 u32 watermark_level;
261 u32 shp_addr, per_addr;
262 struct dma_chan chan;
263 spinlock_t lock;
264 struct dma_async_tx_descriptor desc;
265 dma_cookie_t last_completed;
266 enum dma_status status;
267};
268
269#define IMX_DMA_SG_LOOP (1 << 0)
270
271#define MAX_DMA_CHANNELS 32
272#define MXC_SDMA_DEFAULT_PRIORITY 1
273#define MXC_SDMA_MIN_PRIORITY 1
274#define MXC_SDMA_MAX_PRIORITY 7
275
276/**
277 * struct sdma_script_start_addrs - SDMA script start pointers
278 *
279 * start addresses of the different functions in the physical
280 * address space of the SDMA engine.
281 */
282struct sdma_script_start_addrs {
283 u32 ap_2_ap_addr;
284 u32 ap_2_bp_addr;
285 u32 ap_2_ap_fixed_addr;
286 u32 bp_2_ap_addr;
287 u32 loopback_on_dsp_side_addr;
288 u32 mcu_interrupt_only_addr;
289 u32 firi_2_per_addr;
290 u32 firi_2_mcu_addr;
291 u32 per_2_firi_addr;
292 u32 mcu_2_firi_addr;
293 u32 uart_2_per_addr;
294 u32 uart_2_mcu_addr;
295 u32 per_2_app_addr;
296 u32 mcu_2_app_addr;
297 u32 per_2_per_addr;
298 u32 uartsh_2_per_addr;
299 u32 uartsh_2_mcu_addr;
300 u32 per_2_shp_addr;
301 u32 mcu_2_shp_addr;
302 u32 ata_2_mcu_addr;
303 u32 mcu_2_ata_addr;
304 u32 app_2_per_addr;
305 u32 app_2_mcu_addr;
306 u32 shp_2_per_addr;
307 u32 shp_2_mcu_addr;
308 u32 mshc_2_mcu_addr;
309 u32 mcu_2_mshc_addr;
310 u32 spdif_2_mcu_addr;
311 u32 mcu_2_spdif_addr;
312 u32 asrc_2_mcu_addr;
313 u32 ext_mem_2_ipu_addr;
314 u32 descrambler_addr;
315 u32 dptc_dvfs_addr;
316 u32 utra_addr;
317 u32 ram_code_start_addr;
318};
319
320#define SDMA_FIRMWARE_MAGIC 0x414d4453
321
322/**
323 * struct sdma_firmware_header - Layout of the firmware image
324 *
325 * @magic "SDMA"
326 * @version_major increased whenever layout of struct sdma_script_start_addrs
327 * changes.
328 * @version_minor firmware minor version (for binary compatible changes)
329 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
330 * @num_script_addrs Number of script addresses in this image
331 * @ram_code_start offset of SDMA ram image in this firmware image
332 * @ram_code_size size of SDMA ram image
333 * @script_addrs Stores the start address of the SDMA scripts
334 * (in SDMA memory space)
335 */
336struct sdma_firmware_header {
337 u32 magic;
338 u32 version_major;
339 u32 version_minor;
340 u32 script_addrs_start;
341 u32 num_script_addrs;
342 u32 ram_code_start;
343 u32 ram_code_size;
344};
345
346struct sdma_engine {
347 struct device *dev;
348 struct sdma_channel channel[MAX_DMA_CHANNELS];
349 struct sdma_channel_control *channel_control;
350 void __iomem *regs;
351 unsigned int version;
352 unsigned int num_events;
353 struct sdma_context_data *context;
354 dma_addr_t context_phys;
355 struct dma_device dma_device;
356 struct clk *clk;
357 struct sdma_script_start_addrs *script_addrs;
358};
359
360#define SDMA_H_CONFIG_DSPDMA (1 << 12) /* indicates if the DSPDMA is used */
361#define SDMA_H_CONFIG_RTD_PINS (1 << 11) /* indicates if Real-Time Debug pins are enabled */
362#define SDMA_H_CONFIG_ACR (1 << 4) /* indicates if AHB freq /core freq = 2 or 1 */
363#define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
364
365static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
366{
367 u32 chnenbl0 = (sdma->version == 2 ? SDMA_CHNENBL0_V2 : SDMA_CHNENBL0_V1);
368
369 return chnenbl0 + event * 4;
370}
371
372static int sdma_config_ownership(struct sdma_channel *sdmac,
373 bool event_override, bool mcu_override, bool dsp_override)
374{
375 struct sdma_engine *sdma = sdmac->sdma;
376 int channel = sdmac->channel;
377 u32 evt, mcu, dsp;
378
379 if (event_override && mcu_override && dsp_override)
380 return -EINVAL;
381
382 evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
383 mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
384 dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
385
386 if (dsp_override)
387 dsp &= ~(1 << channel);
388 else
389 dsp |= (1 << channel);
390
391 if (event_override)
392 evt &= ~(1 << channel);
393 else
394 evt |= (1 << channel);
395
396 if (mcu_override)
397 mcu &= ~(1 << channel);
398 else
399 mcu |= (1 << channel);
400
401 __raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
402 __raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
403 __raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
404
405 return 0;
406}
407
408/*
409 * sdma_run_channel - run a channel and wait till it's done
410 */
411static int sdma_run_channel(struct sdma_channel *sdmac)
412{
413 struct sdma_engine *sdma = sdmac->sdma;
414 int channel = sdmac->channel;
415 int ret;
416
417 init_completion(&sdmac->done);
418
419 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
420
421 ret = wait_for_completion_timeout(&sdmac->done, HZ);
422
423 return ret ? 0 : -ETIMEDOUT;
424}
425
426static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
427 u32 address)
428{
429 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
430 void *buf_virt;
431 dma_addr_t buf_phys;
432 int ret;
433
434 buf_virt = dma_alloc_coherent(NULL,
435 size,
436 &buf_phys, GFP_KERNEL);
437 if (!buf_virt)
438 return -ENOMEM;
439
440 bd0->mode.command = C0_SETPM;
441 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
442 bd0->mode.count = size / 2;
443 bd0->buffer_addr = buf_phys;
444 bd0->ext_buffer_addr = address;
445
446 memcpy(buf_virt, buf, size);
447
448 ret = sdma_run_channel(&sdma->channel[0]);
449
450 dma_free_coherent(NULL, size, buf_virt, buf_phys);
451
452 return ret;
453}
454
455static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
456{
457 struct sdma_engine *sdma = sdmac->sdma;
458 int channel = sdmac->channel;
459 u32 val;
460 u32 chnenbl = chnenbl_ofs(sdma, event);
461
462 val = __raw_readl(sdma->regs + chnenbl);
463 val |= (1 << channel);
464 __raw_writel(val, sdma->regs + chnenbl);
465}
466
467static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
468{
469 struct sdma_engine *sdma = sdmac->sdma;
470 int channel = sdmac->channel;
471 u32 chnenbl = chnenbl_ofs(sdma, event);
472 u32 val;
473
474 val = __raw_readl(sdma->regs + chnenbl);
475 val &= ~(1 << channel);
476 __raw_writel(val, sdma->regs + chnenbl);
477}
478
479static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
480{
481 struct sdma_buffer_descriptor *bd;
482
483 /*
484 * loop mode. Iterate over descriptors, re-setup them and
485 * call callback function.
486 */
487 while (1) {
488 bd = &sdmac->bd[sdmac->buf_tail];
489
490 if (bd->mode.status & BD_DONE)
491 break;
492
493 if (bd->mode.status & BD_RROR)
494 sdmac->status = DMA_ERROR;
495 else
496 sdmac->status = DMA_SUCCESS;
497
498 bd->mode.status |= BD_DONE;
499 sdmac->buf_tail++;
500 sdmac->buf_tail %= sdmac->num_bd;
501
502 if (sdmac->desc.callback)
503 sdmac->desc.callback(sdmac->desc.callback_param);
504 }
505}
506
507static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
508{
509 struct sdma_buffer_descriptor *bd;
510 int i, error = 0;
511
512 /*
513 * non loop mode. Iterate over all descriptors, collect
514 * errors and call callback function
515 */
516 for (i = 0; i < sdmac->num_bd; i++) {
517 bd = &sdmac->bd[i];
518
519 if (bd->mode.status & (BD_DONE | BD_RROR))
520 error = -EIO;
521 }
522
523 if (error)
524 sdmac->status = DMA_ERROR;
525 else
526 sdmac->status = DMA_SUCCESS;
527
528 if (sdmac->desc.callback)
529 sdmac->desc.callback(sdmac->desc.callback_param);
530 sdmac->last_completed = sdmac->desc.cookie;
531}
532
533static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
534{
535 complete(&sdmac->done);
536
537 /* not interested in channel 0 interrupts */
538 if (sdmac->channel == 0)
539 return;
540
541 if (sdmac->flags & IMX_DMA_SG_LOOP)
542 sdma_handle_channel_loop(sdmac);
543 else
544 mxc_sdma_handle_channel_normal(sdmac);
545}
546
547static irqreturn_t sdma_int_handler(int irq, void *dev_id)
548{
549 struct sdma_engine *sdma = dev_id;
550 u32 stat;
551
552 stat = __raw_readl(sdma->regs + SDMA_H_INTR);
553 __raw_writel(stat, sdma->regs + SDMA_H_INTR);
554
555 while (stat) {
556 int channel = fls(stat) - 1;
557 struct sdma_channel *sdmac = &sdma->channel[channel];
558
559 mxc_sdma_handle_channel(sdmac);
560
561 stat &= ~(1 << channel);
562 }
563
564 return IRQ_HANDLED;
565}
566
567/*
568 * sets the pc of SDMA script according to the peripheral type
569 */
570static void sdma_get_pc(struct sdma_channel *sdmac,
571 enum sdma_peripheral_type peripheral_type)
572{
573 struct sdma_engine *sdma = sdmac->sdma;
574 int per_2_emi = 0, emi_2_per = 0;
575 /*
576 * These are needed once we start to support transfers between
577 * two peripherals or memory-to-memory transfers
578 */
579 int per_2_per = 0, emi_2_emi = 0;
580
581 sdmac->pc_from_device = 0;
582 sdmac->pc_to_device = 0;
583
584 switch (peripheral_type) {
585 case IMX_DMATYPE_MEMORY:
586 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
587 break;
588 case IMX_DMATYPE_DSP:
589 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
590 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
591 break;
592 case IMX_DMATYPE_FIRI:
593 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
594 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
595 break;
596 case IMX_DMATYPE_UART:
597 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
598 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
599 break;
600 case IMX_DMATYPE_UART_SP:
601 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
602 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
603 break;
604 case IMX_DMATYPE_ATA:
605 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
606 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
607 break;
608 case IMX_DMATYPE_CSPI:
609 case IMX_DMATYPE_EXT:
610 case IMX_DMATYPE_SSI:
611 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
612 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
613 break;
614 case IMX_DMATYPE_SSI_SP:
615 case IMX_DMATYPE_MMC:
616 case IMX_DMATYPE_SDHC:
617 case IMX_DMATYPE_CSPI_SP:
618 case IMX_DMATYPE_ESAI:
619 case IMX_DMATYPE_MSHC_SP:
620 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
621 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
622 break;
623 case IMX_DMATYPE_ASRC:
624 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
625 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
626 per_2_per = sdma->script_addrs->per_2_per_addr;
627 break;
628 case IMX_DMATYPE_MSHC:
629 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
630 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
631 break;
632 case IMX_DMATYPE_CCM:
633 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
634 break;
635 case IMX_DMATYPE_SPDIF:
636 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
637 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
638 break;
639 case IMX_DMATYPE_IPU_MEMORY:
640 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
641 break;
642 default:
643 break;
644 }
645
646 sdmac->pc_from_device = per_2_emi;
647 sdmac->pc_to_device = emi_2_per;
648}
649
650static int sdma_load_context(struct sdma_channel *sdmac)
651{
652 struct sdma_engine *sdma = sdmac->sdma;
653 int channel = sdmac->channel;
654 int load_address;
655 struct sdma_context_data *context = sdma->context;
656 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
657 int ret;
658
659 if (sdmac->direction == DMA_FROM_DEVICE) {
660 load_address = sdmac->pc_from_device;
661 } else {
662 load_address = sdmac->pc_to_device;
663 }
664
665 if (load_address < 0)
666 return load_address;
667
668 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
669 dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
670 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
671 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
672 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
673 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
674
675 memset(context, 0, sizeof(*context));
676 context->channel_state.pc = load_address;
677
678 /* Send by context the event mask,base address for peripheral
679 * and watermark level
680 */
681 context->gReg[0] = sdmac->event_mask1;
682 context->gReg[1] = sdmac->event_mask0;
683 context->gReg[2] = sdmac->per_addr;
684 context->gReg[6] = sdmac->shp_addr;
685 context->gReg[7] = sdmac->watermark_level;
686
687 bd0->mode.command = C0_SETDM;
688 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
689 bd0->mode.count = sizeof(*context) / 4;
690 bd0->buffer_addr = sdma->context_phys;
691 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
692
693 ret = sdma_run_channel(&sdma->channel[0]);
694
695 return ret;
696}
697
698static void sdma_disable_channel(struct sdma_channel *sdmac)
699{
700 struct sdma_engine *sdma = sdmac->sdma;
701 int channel = sdmac->channel;
702
703 __raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
704 sdmac->status = DMA_ERROR;
705}
706
707static int sdma_config_channel(struct sdma_channel *sdmac)
708{
709 int ret;
710
711 sdma_disable_channel(sdmac);
712
713 sdmac->event_mask0 = 0;
714 sdmac->event_mask1 = 0;
715 sdmac->shp_addr = 0;
716 sdmac->per_addr = 0;
717
718 if (sdmac->event_id0) {
719 if (sdmac->event_id0 > 32)
720 return -EINVAL;
721 sdma_event_enable(sdmac, sdmac->event_id0);
722 }
723
724 switch (sdmac->peripheral_type) {
725 case IMX_DMATYPE_DSP:
726 sdma_config_ownership(sdmac, false, true, true);
727 break;
728 case IMX_DMATYPE_MEMORY:
729 sdma_config_ownership(sdmac, false, true, false);
730 break;
731 default:
732 sdma_config_ownership(sdmac, true, true, false);
733 break;
734 }
735
736 sdma_get_pc(sdmac, sdmac->peripheral_type);
737
738 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
739 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
740 /* Handle multiple event channels differently */
741 if (sdmac->event_id1) {
742 sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
743 if (sdmac->event_id1 > 31)
744 sdmac->watermark_level |= 1 << 31;
745 sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
746 if (sdmac->event_id0 > 31)
747 sdmac->watermark_level |= 1 << 30;
748 } else {
749 sdmac->event_mask0 = 1 << sdmac->event_id0;
750 sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
751 }
752 /* Watermark Level */
753 sdmac->watermark_level |= sdmac->watermark_level;
754 /* Address */
755 sdmac->shp_addr = sdmac->per_address;
756 } else {
757 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
758 }
759
760 ret = sdma_load_context(sdmac);
761
762 return ret;
763}
764
765static int sdma_set_channel_priority(struct sdma_channel *sdmac,
766 unsigned int priority)
767{
768 struct sdma_engine *sdma = sdmac->sdma;
769 int channel = sdmac->channel;
770
771 if (priority < MXC_SDMA_MIN_PRIORITY
772 || priority > MXC_SDMA_MAX_PRIORITY) {
773 return -EINVAL;
774 }
775
776 __raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
777
778 return 0;
779}
780
781static int sdma_request_channel(struct sdma_channel *sdmac)
782{
783 struct sdma_engine *sdma = sdmac->sdma;
784 int channel = sdmac->channel;
785 int ret = -EBUSY;
786
787 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
788 if (!sdmac->bd) {
789 ret = -ENOMEM;
790 goto out;
791 }
792
793 memset(sdmac->bd, 0, PAGE_SIZE);
794
795 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
796 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
797
798 clk_enable(sdma->clk);
799
800 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
801
802 init_completion(&sdmac->done);
803
804 sdmac->buf_tail = 0;
805
806 return 0;
807out:
808
809 return ret;
810}
811
812static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
813{
814 __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
815}
816
817static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdma)
818{
819 dma_cookie_t cookie = sdma->chan.cookie;
820
821 if (++cookie < 0)
822 cookie = 1;
823
824 sdma->chan.cookie = cookie;
825 sdma->desc.cookie = cookie;
826
827 return cookie;
828}
829
830static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
831{
832 return container_of(chan, struct sdma_channel, chan);
833}
834
835static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
836{
837 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
838 struct sdma_engine *sdma = sdmac->sdma;
839 dma_cookie_t cookie;
840
841 spin_lock_irq(&sdmac->lock);
842
843 cookie = sdma_assign_cookie(sdmac);
844
845 sdma_enable_channel(sdma, tx->chan->chan_id);
846
847 spin_unlock_irq(&sdmac->lock);
848
849 return cookie;
850}
851
852static int sdma_alloc_chan_resources(struct dma_chan *chan)
853{
854 struct sdma_channel *sdmac = to_sdma_chan(chan);
855 struct imx_dma_data *data = chan->private;
856 int prio, ret;
857
858 /* No need to execute this for internal channel 0 */
859 if (chan->chan_id == 0)
860 return 0;
861
862 if (!data)
863 return -EINVAL;
864
865 switch (data->priority) {
866 case DMA_PRIO_HIGH:
867 prio = 3;
868 break;
869 case DMA_PRIO_MEDIUM:
870 prio = 2;
871 break;
872 case DMA_PRIO_LOW:
873 default:
874 prio = 1;
875 break;
876 }
877
878 sdmac->peripheral_type = data->peripheral_type;
879 sdmac->event_id0 = data->dma_request;
880 ret = sdma_set_channel_priority(sdmac, prio);
881 if (ret)
882 return ret;
883
884 ret = sdma_request_channel(sdmac);
885 if (ret)
886 return ret;
887
888 dma_async_tx_descriptor_init(&sdmac->desc, chan);
889 sdmac->desc.tx_submit = sdma_tx_submit;
890 /* txd.flags will be overwritten in prep funcs */
891 sdmac->desc.flags = DMA_CTRL_ACK;
892
893 return 0;
894}
895
896static void sdma_free_chan_resources(struct dma_chan *chan)
897{
898 struct sdma_channel *sdmac = to_sdma_chan(chan);
899 struct sdma_engine *sdma = sdmac->sdma;
900
901 sdma_disable_channel(sdmac);
902
903 if (sdmac->event_id0)
904 sdma_event_disable(sdmac, sdmac->event_id0);
905 if (sdmac->event_id1)
906 sdma_event_disable(sdmac, sdmac->event_id1);
907
908 sdmac->event_id0 = 0;
909 sdmac->event_id1 = 0;
910
911 sdma_set_channel_priority(sdmac, 0);
912
913 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
914
915 clk_disable(sdma->clk);
916}
917
918static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
919 struct dma_chan *chan, struct scatterlist *sgl,
920 unsigned int sg_len, enum dma_data_direction direction,
921 unsigned long flags)
922{
923 struct sdma_channel *sdmac = to_sdma_chan(chan);
924 struct sdma_engine *sdma = sdmac->sdma;
925 int ret, i, count;
926 int channel = chan->chan_id;
927 struct scatterlist *sg;
928
929 if (sdmac->status == DMA_IN_PROGRESS)
930 return NULL;
931 sdmac->status = DMA_IN_PROGRESS;
932
933 sdmac->flags = 0;
934
935 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
936 sg_len, channel);
937
938 sdmac->direction = direction;
939 ret = sdma_load_context(sdmac);
940 if (ret)
941 goto err_out;
942
943 if (sg_len > NUM_BD) {
944 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
945 channel, sg_len, NUM_BD);
946 ret = -EINVAL;
947 goto err_out;
948 }
949
950 for_each_sg(sgl, sg, sg_len, i) {
951 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
952 int param;
953
954 bd->buffer_addr = sgl->dma_address;
955
956 count = sg->length;
957
958 if (count > 0xffff) {
959 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
960 channel, count, 0xffff);
961 ret = -EINVAL;
962 goto err_out;
963 }
964
965 bd->mode.count = count;
966
967 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
968 ret = -EINVAL;
969 goto err_out;
970 }
971 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
972 bd->mode.command = 0;
973 else
974 bd->mode.command = sdmac->word_size;
975
976 param = BD_DONE | BD_EXTD | BD_CONT;
977
978 if (sdmac->flags & IMX_DMA_SG_LOOP) {
979 param |= BD_INTR;
980 if (i + 1 == sg_len)
981 param |= BD_WRAP;
982 }
983
984 if (i + 1 == sg_len)
985 param |= BD_INTR;
986
987 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
988 i, count, sg->dma_address,
989 param & BD_WRAP ? "wrap" : "",
990 param & BD_INTR ? " intr" : "");
991
992 bd->mode.status = param;
993 }
994
995 sdmac->num_bd = sg_len;
996 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
997
998 return &sdmac->desc;
999err_out:
1000 return NULL;
1001}
1002
1003static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1004 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1005 size_t period_len, enum dma_data_direction direction)
1006{
1007 struct sdma_channel *sdmac = to_sdma_chan(chan);
1008 struct sdma_engine *sdma = sdmac->sdma;
1009 int num_periods = buf_len / period_len;
1010 int channel = chan->chan_id;
1011 int ret, i = 0, buf = 0;
1012
1013 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1014
1015 if (sdmac->status == DMA_IN_PROGRESS)
1016 return NULL;
1017
1018 sdmac->status = DMA_IN_PROGRESS;
1019
1020 sdmac->flags |= IMX_DMA_SG_LOOP;
1021 sdmac->direction = direction;
1022 ret = sdma_load_context(sdmac);
1023 if (ret)
1024 goto err_out;
1025
1026 if (num_periods > NUM_BD) {
1027 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1028 channel, num_periods, NUM_BD);
1029 goto err_out;
1030 }
1031
1032 if (period_len > 0xffff) {
1033 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1034 channel, period_len, 0xffff);
1035 goto err_out;
1036 }
1037
1038 while (buf < buf_len) {
1039 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1040 int param;
1041
1042 bd->buffer_addr = dma_addr;
1043
1044 bd->mode.count = period_len;
1045
1046 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1047 goto err_out;
1048 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1049 bd->mode.command = 0;
1050 else
1051 bd->mode.command = sdmac->word_size;
1052
1053 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1054 if (i + 1 == num_periods)
1055 param |= BD_WRAP;
1056
1057 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1058 i, period_len, dma_addr,
1059 param & BD_WRAP ? "wrap" : "",
1060 param & BD_INTR ? " intr" : "");
1061
1062 bd->mode.status = param;
1063
1064 dma_addr += period_len;
1065 buf += period_len;
1066
1067 i++;
1068 }
1069
1070 sdmac->num_bd = num_periods;
1071 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1072
1073 return &sdmac->desc;
1074err_out:
1075 sdmac->status = DMA_ERROR;
1076 return NULL;
1077}
1078
1079static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1080 unsigned long arg)
1081{
1082 struct sdma_channel *sdmac = to_sdma_chan(chan);
1083 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1084
1085 switch (cmd) {
1086 case DMA_TERMINATE_ALL:
1087 sdma_disable_channel(sdmac);
1088 return 0;
1089 case DMA_SLAVE_CONFIG:
1090 if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
1091 sdmac->per_address = dmaengine_cfg->src_addr;
1092 sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1093 sdmac->word_size = dmaengine_cfg->src_addr_width;
1094 } else {
1095 sdmac->per_address = dmaengine_cfg->dst_addr;
1096 sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1097 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1098 }
1099 return sdma_config_channel(sdmac);
1100 default:
1101 return -ENOSYS;
1102 }
1103
1104 return -EINVAL;
1105}
1106
1107static enum dma_status sdma_tx_status(struct dma_chan *chan,
1108 dma_cookie_t cookie,
1109 struct dma_tx_state *txstate)
1110{
1111 struct sdma_channel *sdmac = to_sdma_chan(chan);
1112 dma_cookie_t last_used;
1113 enum dma_status ret;
1114
1115 last_used = chan->cookie;
1116
1117 ret = dma_async_is_complete(cookie, sdmac->last_completed, last_used);
1118 dma_set_tx_state(txstate, sdmac->last_completed, last_used, 0);
1119
1120 return ret;
1121}
1122
1123static void sdma_issue_pending(struct dma_chan *chan)
1124{
1125 /*
1126 * Nothing to do. We only have a single descriptor
1127 */
1128}
1129
1130static int __init sdma_init(struct sdma_engine *sdma,
1131 void *ram_code, int ram_code_size)
1132{
1133 int i, ret;
1134 dma_addr_t ccb_phys;
1135
1136 switch (sdma->version) {
1137 case 1:
1138 sdma->num_events = 32;
1139 break;
1140 case 2:
1141 sdma->num_events = 48;
1142 break;
1143 default:
1144 dev_err(sdma->dev, "Unknown version %d. aborting\n", sdma->version);
1145 return -ENODEV;
1146 }
1147
1148 clk_enable(sdma->clk);
1149
1150 /* Be sure SDMA has not started yet */
1151 __raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1152
1153 sdma->channel_control = dma_alloc_coherent(NULL,
1154 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1155 sizeof(struct sdma_context_data),
1156 &ccb_phys, GFP_KERNEL);
1157
1158 if (!sdma->channel_control) {
1159 ret = -ENOMEM;
1160 goto err_dma_alloc;
1161 }
1162
1163 sdma->context = (void *)sdma->channel_control +
1164 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1165 sdma->context_phys = ccb_phys +
1166 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1167
1168 /* Zero-out the CCB structures array just allocated */
1169 memset(sdma->channel_control, 0,
1170 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1171
1172 /* disable all channels */
1173 for (i = 0; i < sdma->num_events; i++)
1174 __raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1175
1176 /* All channels have priority 0 */
1177 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1178 __raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1179
1180 ret = sdma_request_channel(&sdma->channel[0]);
1181 if (ret)
1182 goto err_dma_alloc;
1183
1184 sdma_config_ownership(&sdma->channel[0], false, true, false);
1185
1186 /* Set Command Channel (Channel Zero) */
1187 __raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1188
1189 /* Set bits of CONFIG register but with static context switching */
1190 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1191 __raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1192
1193 __raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1194
1195 /* download the RAM image for SDMA */
1196 sdma_load_script(sdma, ram_code,
1197 ram_code_size,
1198 sdma->script_addrs->ram_code_start_addr);
1199
1200 /* Set bits of CONFIG register with given context switching mode */
1201 __raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1202
1203 /* Initializes channel's priorities */
1204 sdma_set_channel_priority(&sdma->channel[0], 7);
1205
1206 clk_disable(sdma->clk);
1207
1208 return 0;
1209
1210err_dma_alloc:
1211 clk_disable(sdma->clk);
1212 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1213 return ret;
1214}
1215
1216static int __init sdma_probe(struct platform_device *pdev)
1217{
1218 int ret;
1219 const struct firmware *fw;
1220 const struct sdma_firmware_header *header;
1221 const struct sdma_script_start_addrs *addr;
1222 int irq;
1223 unsigned short *ram_code;
1224 struct resource *iores;
1225 struct sdma_platform_data *pdata = pdev->dev.platform_data;
1226 char *fwname;
1227 int i;
1228 dma_cap_mask_t mask;
1229 struct sdma_engine *sdma;
1230
1231 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1232 if (!sdma)
1233 return -ENOMEM;
1234
1235 sdma->dev = &pdev->dev;
1236
1237 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1238 irq = platform_get_irq(pdev, 0);
1239 if (!iores || irq < 0 || !pdata) {
1240 ret = -EINVAL;
1241 goto err_irq;
1242 }
1243
1244 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1245 ret = -EBUSY;
1246 goto err_request_region;
1247 }
1248
1249 sdma->clk = clk_get(&pdev->dev, NULL);
1250 if (IS_ERR(sdma->clk)) {
1251 ret = PTR_ERR(sdma->clk);
1252 goto err_clk;
1253 }
1254
1255 sdma->regs = ioremap(iores->start, resource_size(iores));
1256 if (!sdma->regs) {
1257 ret = -ENOMEM;
1258 goto err_ioremap;
1259 }
1260
1261 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1262 if (ret)
1263 goto err_request_irq;
1264
1265 fwname = kasprintf(GFP_KERNEL, "sdma-%s-to%d.bin",
1266 pdata->cpu_name, pdata->to_version);
1267 if (!fwname) {
1268 ret = -ENOMEM;
1269 goto err_cputype;
1270 }
1271
1272 ret = request_firmware(&fw, fwname, &pdev->dev);
1273 if (ret) {
1274 dev_err(&pdev->dev, "request firmware \"%s\" failed with %d\n",
1275 fwname, ret);
1276 kfree(fwname);
1277 goto err_cputype;
1278 }
1279 kfree(fwname);
1280
1281 if (fw->size < sizeof(*header))
1282 goto err_firmware;
1283
1284 header = (struct sdma_firmware_header *)fw->data;
1285
1286 if (header->magic != SDMA_FIRMWARE_MAGIC)
1287 goto err_firmware;
1288 if (header->ram_code_start + header->ram_code_size > fw->size)
1289 goto err_firmware;
1290
1291 addr = (void *)header + header->script_addrs_start;
1292 ram_code = (void *)header + header->ram_code_start;
1293 sdma->script_addrs = kmalloc(sizeof(*addr), GFP_KERNEL);
1294 if (!sdma->script_addrs)
1295 goto err_firmware;
1296 memcpy(sdma->script_addrs, addr, sizeof(*addr));
1297
1298 sdma->version = pdata->sdma_version;
1299
1300 INIT_LIST_HEAD(&sdma->dma_device.channels);
1301 /* Initialize channel parameters */
1302 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1303 struct sdma_channel *sdmac = &sdma->channel[i];
1304
1305 sdmac->sdma = sdma;
1306 spin_lock_init(&sdmac->lock);
1307
1308 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1309 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1310
1311 sdmac->chan.device = &sdma->dma_device;
1312 sdmac->chan.chan_id = i;
1313 sdmac->channel = i;
1314
1315 /* Add the channel to the DMAC list */
1316 list_add_tail(&sdmac->chan.device_node, &sdma->dma_device.channels);
1317 }
1318
1319 ret = sdma_init(sdma, ram_code, header->ram_code_size);
1320 if (ret)
1321 goto err_init;
1322
1323 sdma->dma_device.dev = &pdev->dev;
1324
1325 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1326 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1327 sdma->dma_device.device_tx_status = sdma_tx_status;
1328 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1329 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1330 sdma->dma_device.device_control = sdma_control;
1331 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1332
1333 ret = dma_async_device_register(&sdma->dma_device);
1334 if (ret) {
1335 dev_err(&pdev->dev, "unable to register\n");
1336 goto err_init;
1337 }
1338
1339 dev_info(&pdev->dev, "initialized (firmware %d.%d)\n",
1340 header->version_major,
1341 header->version_minor);
1342
1343 /* request channel 0. This is an internal control channel
1344 * to the SDMA engine and not available to clients.
1345 */
1346 dma_cap_zero(mask);
1347 dma_cap_set(DMA_SLAVE, mask);
1348 dma_request_channel(mask, NULL, NULL);
1349
1350 release_firmware(fw);
1351
1352 return 0;
1353
1354err_init:
1355 kfree(sdma->script_addrs);
1356err_firmware:
1357 release_firmware(fw);
1358err_cputype:
1359 free_irq(irq, sdma);
1360err_request_irq:
1361 iounmap(sdma->regs);
1362err_ioremap:
1363 clk_put(sdma->clk);
1364err_clk:
1365 release_mem_region(iores->start, resource_size(iores));
1366err_request_region:
1367err_irq:
1368 kfree(sdma);
1369 return 0;
1370}
1371
1372static int __exit sdma_remove(struct platform_device *pdev)
1373{
1374 return -EBUSY;
1375}
1376
1377static struct platform_driver sdma_driver = {
1378 .driver = {
1379 .name = "imx-sdma",
1380 },
1381 .remove = __exit_p(sdma_remove),
1382};
1383
1384static int __init sdma_module_init(void)
1385{
1386 return platform_driver_probe(&sdma_driver, sdma_probe);
1387}
1388subsys_initcall(sdma_module_init);
1389
1390MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1391MODULE_DESCRIPTION("i.MX SDMA driver");
1392MODULE_LICENSE("GPL");