aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/char/stallion.c
diff options
context:
space:
mode:
authorGreg Kroah-Hartman <gregkh@suse.de>2011-02-22 19:57:21 -0500
committerGreg Kroah-Hartman <gregkh@suse.de>2011-02-22 19:57:21 -0500
commit4a6514e6d096716fb7bedf238efaaca877e2a7e8 (patch)
treee3601ee168cca90307ac91e750a86d6ed04eab01 /drivers/char/stallion.c
parent282361a046edd9d58a134f358a3f65a7cb8655d9 (diff)
tty: move obsolete and broken tty drivers to drivers/staging/tty/
As planned by Arnd Bergmann, this moves the following drivers to the drivers/staging/tty/ directory where they will be removed after 2.6.41 if no one steps up to claim them. epca epca ip2 istallion riscom8 serial167 specialix stallion Cc: Arnd Bergmann <arnd@arndb.de> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'drivers/char/stallion.c')
-rw-r--r--drivers/char/stallion.c4651
1 files changed, 0 insertions, 4651 deletions
diff --git a/drivers/char/stallion.c b/drivers/char/stallion.c
deleted file mode 100644
index 4fff5cd3b163..000000000000
--- a/drivers/char/stallion.c
+++ /dev/null
@@ -1,4651 +0,0 @@
1/*****************************************************************************/
2
3/*
4 * stallion.c -- stallion multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27/*****************************************************************************/
28
29#include <linux/module.h>
30#include <linux/sched.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/serial.h>
36#include <linux/seq_file.h>
37#include <linux/cd1400.h>
38#include <linux/sc26198.h>
39#include <linux/comstats.h>
40#include <linux/stallion.h>
41#include <linux/ioport.h>
42#include <linux/init.h>
43#include <linux/device.h>
44#include <linux/delay.h>
45#include <linux/ctype.h>
46
47#include <asm/io.h>
48#include <asm/uaccess.h>
49
50#include <linux/pci.h>
51
52/*****************************************************************************/
53
54/*
55 * Define different board types. Use the standard Stallion "assigned"
56 * board numbers. Boards supported in this driver are abbreviated as
57 * EIO = EasyIO and ECH = EasyConnection 8/32.
58 */
59#define BRD_EASYIO 20
60#define BRD_ECH 21
61#define BRD_ECHMC 22
62#define BRD_ECHPCI 26
63#define BRD_ECH64PCI 27
64#define BRD_EASYIOPCI 28
65
66struct stlconf {
67 unsigned int brdtype;
68 int ioaddr1;
69 int ioaddr2;
70 unsigned long memaddr;
71 int irq;
72 int irqtype;
73};
74
75static unsigned int stl_nrbrds;
76
77/*****************************************************************************/
78
79/*
80 * Define some important driver characteristics. Device major numbers
81 * allocated as per Linux Device Registry.
82 */
83#ifndef STL_SIOMEMMAJOR
84#define STL_SIOMEMMAJOR 28
85#endif
86#ifndef STL_SERIALMAJOR
87#define STL_SERIALMAJOR 24
88#endif
89#ifndef STL_CALLOUTMAJOR
90#define STL_CALLOUTMAJOR 25
91#endif
92
93/*
94 * Set the TX buffer size. Bigger is better, but we don't want
95 * to chew too much memory with buffers!
96 */
97#define STL_TXBUFLOW 512
98#define STL_TXBUFSIZE 4096
99
100/*****************************************************************************/
101
102/*
103 * Define our local driver identity first. Set up stuff to deal with
104 * all the local structures required by a serial tty driver.
105 */
106static char *stl_drvtitle = "Stallion Multiport Serial Driver";
107static char *stl_drvname = "stallion";
108static char *stl_drvversion = "5.6.0";
109
110static struct tty_driver *stl_serial;
111
112/*
113 * Define a local default termios struct. All ports will be created
114 * with this termios initially. Basically all it defines is a raw port
115 * at 9600, 8 data bits, 1 stop bit.
116 */
117static struct ktermios stl_deftermios = {
118 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 9600,
121 .c_ospeed = 9600,
122};
123
124/*
125 * Define global place to put buffer overflow characters.
126 */
127static char stl_unwanted[SC26198_RXFIFOSIZE];
128
129/*****************************************************************************/
130
131static DEFINE_MUTEX(stl_brdslock);
132static struct stlbrd *stl_brds[STL_MAXBRDS];
133
134static const struct tty_port_operations stl_port_ops;
135
136/*
137 * Per board state flags. Used with the state field of the board struct.
138 * Not really much here!
139 */
140#define BRD_FOUND 0x1
141#define STL_PROBED 0x2
142
143
144/*
145 * Define the port structure istate flags. These set of flags are
146 * modified at interrupt time - so setting and reseting them needs
147 * to be atomic. Use the bit clear/setting routines for this.
148 */
149#define ASYI_TXBUSY 1
150#define ASYI_TXLOW 2
151#define ASYI_TXFLOWED 3
152
153/*
154 * Define an array of board names as printable strings. Handy for
155 * referencing boards when printing trace and stuff.
156 */
157static char *stl_brdnames[] = {
158 NULL,
159 NULL,
160 NULL,
161 NULL,
162 NULL,
163 NULL,
164 NULL,
165 NULL,
166 NULL,
167 NULL,
168 NULL,
169 NULL,
170 NULL,
171 NULL,
172 NULL,
173 NULL,
174 NULL,
175 NULL,
176 NULL,
177 NULL,
178 "EasyIO",
179 "EC8/32-AT",
180 "EC8/32-MC",
181 NULL,
182 NULL,
183 NULL,
184 "EC8/32-PCI",
185 "EC8/64-PCI",
186 "EasyIO-PCI",
187};
188
189/*****************************************************************************/
190
191/*
192 * Define some string labels for arguments passed from the module
193 * load line. These allow for easy board definitions, and easy
194 * modification of the io, memory and irq resoucres.
195 */
196static unsigned int stl_nargs;
197static char *board0[4];
198static char *board1[4];
199static char *board2[4];
200static char *board3[4];
201
202static char **stl_brdsp[] = {
203 (char **) &board0,
204 (char **) &board1,
205 (char **) &board2,
206 (char **) &board3
207};
208
209/*
210 * Define a set of common board names, and types. This is used to
211 * parse any module arguments.
212 */
213
214static struct {
215 char *name;
216 int type;
217} stl_brdstr[] = {
218 { "easyio", BRD_EASYIO },
219 { "eio", BRD_EASYIO },
220 { "20", BRD_EASYIO },
221 { "ec8/32", BRD_ECH },
222 { "ec8/32-at", BRD_ECH },
223 { "ec8/32-isa", BRD_ECH },
224 { "ech", BRD_ECH },
225 { "echat", BRD_ECH },
226 { "21", BRD_ECH },
227 { "ec8/32-mc", BRD_ECHMC },
228 { "ec8/32-mca", BRD_ECHMC },
229 { "echmc", BRD_ECHMC },
230 { "echmca", BRD_ECHMC },
231 { "22", BRD_ECHMC },
232 { "ec8/32-pc", BRD_ECHPCI },
233 { "ec8/32-pci", BRD_ECHPCI },
234 { "26", BRD_ECHPCI },
235 { "ec8/64-pc", BRD_ECH64PCI },
236 { "ec8/64-pci", BRD_ECH64PCI },
237 { "ech-pci", BRD_ECH64PCI },
238 { "echpci", BRD_ECH64PCI },
239 { "echpc", BRD_ECH64PCI },
240 { "27", BRD_ECH64PCI },
241 { "easyio-pc", BRD_EASYIOPCI },
242 { "easyio-pci", BRD_EASYIOPCI },
243 { "eio-pci", BRD_EASYIOPCI },
244 { "eiopci", BRD_EASYIOPCI },
245 { "28", BRD_EASYIOPCI },
246};
247
248/*
249 * Define the module agruments.
250 */
251
252module_param_array(board0, charp, &stl_nargs, 0);
253MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
254module_param_array(board1, charp, &stl_nargs, 0);
255MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
256module_param_array(board2, charp, &stl_nargs, 0);
257MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
258module_param_array(board3, charp, &stl_nargs, 0);
259MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
260
261/*****************************************************************************/
262
263/*
264 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
265 * to the directly accessible io ports of these boards (not the uarts -
266 * they are in cd1400.h and sc26198.h).
267 */
268#define EIO_8PORTRS 0x04
269#define EIO_4PORTRS 0x05
270#define EIO_8PORTDI 0x00
271#define EIO_8PORTM 0x06
272#define EIO_MK3 0x03
273#define EIO_IDBITMASK 0x07
274
275#define EIO_BRDMASK 0xf0
276#define ID_BRD4 0x10
277#define ID_BRD8 0x20
278#define ID_BRD16 0x30
279
280#define EIO_INTRPEND 0x08
281#define EIO_INTEDGE 0x00
282#define EIO_INTLEVEL 0x08
283#define EIO_0WS 0x10
284
285#define ECH_ID 0xa0
286#define ECH_IDBITMASK 0xe0
287#define ECH_BRDENABLE 0x08
288#define ECH_BRDDISABLE 0x00
289#define ECH_INTENABLE 0x01
290#define ECH_INTDISABLE 0x00
291#define ECH_INTLEVEL 0x02
292#define ECH_INTEDGE 0x00
293#define ECH_INTRPEND 0x01
294#define ECH_BRDRESET 0x01
295
296#define ECHMC_INTENABLE 0x01
297#define ECHMC_BRDRESET 0x02
298
299#define ECH_PNLSTATUS 2
300#define ECH_PNL16PORT 0x20
301#define ECH_PNLIDMASK 0x07
302#define ECH_PNLXPID 0x40
303#define ECH_PNLINTRPEND 0x80
304
305#define ECH_ADDR2MASK 0x1e0
306
307/*
308 * Define the vector mapping bits for the programmable interrupt board
309 * hardware. These bits encode the interrupt for the board to use - it
310 * is software selectable (except the EIO-8M).
311 */
312static unsigned char stl_vecmap[] = {
313 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
314 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
315};
316
317/*
318 * Lock ordering is that you may not take stallion_lock holding
319 * brd_lock.
320 */
321
322static spinlock_t brd_lock; /* Guard the board mapping */
323static spinlock_t stallion_lock; /* Guard the tty driver */
324
325/*
326 * Set up enable and disable macros for the ECH boards. They require
327 * the secondary io address space to be activated and deactivated.
328 * This way all ECH boards can share their secondary io region.
329 * If this is an ECH-PCI board then also need to set the page pointer
330 * to point to the correct page.
331 */
332#define BRDENABLE(brdnr,pagenr) \
333 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
334 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
335 stl_brds[(brdnr)]->ioctrl); \
336 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
337 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
338
339#define BRDDISABLE(brdnr) \
340 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
341 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
342 stl_brds[(brdnr)]->ioctrl);
343
344#define STL_CD1400MAXBAUD 230400
345#define STL_SC26198MAXBAUD 460800
346
347#define STL_BAUDBASE 115200
348#define STL_CLOSEDELAY (5 * HZ / 10)
349
350/*****************************************************************************/
351
352/*
353 * Define the Stallion PCI vendor and device IDs.
354 */
355#ifndef PCI_VENDOR_ID_STALLION
356#define PCI_VENDOR_ID_STALLION 0x124d
357#endif
358#ifndef PCI_DEVICE_ID_ECHPCI832
359#define PCI_DEVICE_ID_ECHPCI832 0x0000
360#endif
361#ifndef PCI_DEVICE_ID_ECHPCI864
362#define PCI_DEVICE_ID_ECHPCI864 0x0002
363#endif
364#ifndef PCI_DEVICE_ID_EIOPCI
365#define PCI_DEVICE_ID_EIOPCI 0x0003
366#endif
367
368/*
369 * Define structure to hold all Stallion PCI boards.
370 */
371
372static struct pci_device_id stl_pcibrds[] = {
373 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
374 .driver_data = BRD_ECH64PCI },
375 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
376 .driver_data = BRD_EASYIOPCI },
377 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
378 .driver_data = BRD_ECHPCI },
379 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
380 .driver_data = BRD_ECHPCI },
381 { }
382};
383MODULE_DEVICE_TABLE(pci, stl_pcibrds);
384
385/*****************************************************************************/
386
387/*
388 * Define macros to extract a brd/port number from a minor number.
389 */
390#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
391#define MINOR2PORT(min) ((min) & 0x3f)
392
393/*
394 * Define a baud rate table that converts termios baud rate selector
395 * into the actual baud rate value. All baud rate calculations are
396 * based on the actual baud rate required.
397 */
398static unsigned int stl_baudrates[] = {
399 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
400 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
401};
402
403/*****************************************************************************/
404
405/*
406 * Declare all those functions in this driver!
407 */
408
409static long stl_memioctl(struct file *fp, unsigned int cmd, unsigned long arg);
410static int stl_brdinit(struct stlbrd *brdp);
411static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp);
412static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
413
414/*
415 * CD1400 uart specific handling functions.
416 */
417static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
418static int stl_cd1400getreg(struct stlport *portp, int regnr);
419static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
420static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
421static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
422static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
423static int stl_cd1400getsignals(struct stlport *portp);
424static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
425static void stl_cd1400ccrwait(struct stlport *portp);
426static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
427static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
428static void stl_cd1400disableintrs(struct stlport *portp);
429static void stl_cd1400sendbreak(struct stlport *portp, int len);
430static void stl_cd1400flowctrl(struct stlport *portp, int state);
431static void stl_cd1400sendflow(struct stlport *portp, int state);
432static void stl_cd1400flush(struct stlport *portp);
433static int stl_cd1400datastate(struct stlport *portp);
434static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
435static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
436static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
437static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
438static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
439
440static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
441
442/*
443 * SC26198 uart specific handling functions.
444 */
445static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
446static int stl_sc26198getreg(struct stlport *portp, int regnr);
447static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
448static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
449static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
450static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
451static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
452static int stl_sc26198getsignals(struct stlport *portp);
453static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
454static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
455static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
456static void stl_sc26198disableintrs(struct stlport *portp);
457static void stl_sc26198sendbreak(struct stlport *portp, int len);
458static void stl_sc26198flowctrl(struct stlport *portp, int state);
459static void stl_sc26198sendflow(struct stlport *portp, int state);
460static void stl_sc26198flush(struct stlport *portp);
461static int stl_sc26198datastate(struct stlport *portp);
462static void stl_sc26198wait(struct stlport *portp);
463static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
464static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
465static void stl_sc26198txisr(struct stlport *port);
466static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
467static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
468static void stl_sc26198rxbadchars(struct stlport *portp);
469static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
470
471/*****************************************************************************/
472
473/*
474 * Generic UART support structure.
475 */
476typedef struct uart {
477 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
478 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
479 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
480 int (*getsignals)(struct stlport *portp);
481 void (*setsignals)(struct stlport *portp, int dtr, int rts);
482 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
483 void (*startrxtx)(struct stlport *portp, int rx, int tx);
484 void (*disableintrs)(struct stlport *portp);
485 void (*sendbreak)(struct stlport *portp, int len);
486 void (*flowctrl)(struct stlport *portp, int state);
487 void (*sendflow)(struct stlport *portp, int state);
488 void (*flush)(struct stlport *portp);
489 int (*datastate)(struct stlport *portp);
490 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
491} uart_t;
492
493/*
494 * Define some macros to make calling these functions nice and clean.
495 */
496#define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
497#define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
498#define stl_setport (* ((uart_t *) portp->uartp)->setport)
499#define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
500#define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
501#define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
502#define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
503#define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
504#define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
505#define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
506#define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
507#define stl_flush (* ((uart_t *) portp->uartp)->flush)
508#define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
509
510/*****************************************************************************/
511
512/*
513 * CD1400 UART specific data initialization.
514 */
515static uart_t stl_cd1400uart = {
516 stl_cd1400panelinit,
517 stl_cd1400portinit,
518 stl_cd1400setport,
519 stl_cd1400getsignals,
520 stl_cd1400setsignals,
521 stl_cd1400enablerxtx,
522 stl_cd1400startrxtx,
523 stl_cd1400disableintrs,
524 stl_cd1400sendbreak,
525 stl_cd1400flowctrl,
526 stl_cd1400sendflow,
527 stl_cd1400flush,
528 stl_cd1400datastate,
529 stl_cd1400eiointr
530};
531
532/*
533 * Define the offsets within the register bank of a cd1400 based panel.
534 * These io address offsets are common to the EasyIO board as well.
535 */
536#define EREG_ADDR 0
537#define EREG_DATA 4
538#define EREG_RXACK 5
539#define EREG_TXACK 6
540#define EREG_MDACK 7
541
542#define EREG_BANKSIZE 8
543
544#define CD1400_CLK 25000000
545#define CD1400_CLK8M 20000000
546
547/*
548 * Define the cd1400 baud rate clocks. These are used when calculating
549 * what clock and divisor to use for the required baud rate. Also
550 * define the maximum baud rate allowed, and the default base baud.
551 */
552static int stl_cd1400clkdivs[] = {
553 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
554};
555
556/*****************************************************************************/
557
558/*
559 * SC26198 UART specific data initization.
560 */
561static uart_t stl_sc26198uart = {
562 stl_sc26198panelinit,
563 stl_sc26198portinit,
564 stl_sc26198setport,
565 stl_sc26198getsignals,
566 stl_sc26198setsignals,
567 stl_sc26198enablerxtx,
568 stl_sc26198startrxtx,
569 stl_sc26198disableintrs,
570 stl_sc26198sendbreak,
571 stl_sc26198flowctrl,
572 stl_sc26198sendflow,
573 stl_sc26198flush,
574 stl_sc26198datastate,
575 stl_sc26198intr
576};
577
578/*
579 * Define the offsets within the register bank of a sc26198 based panel.
580 */
581#define XP_DATA 0
582#define XP_ADDR 1
583#define XP_MODID 2
584#define XP_STATUS 2
585#define XP_IACK 3
586
587#define XP_BANKSIZE 4
588
589/*
590 * Define the sc26198 baud rate table. Offsets within the table
591 * represent the actual baud rate selector of sc26198 registers.
592 */
593static unsigned int sc26198_baudtable[] = {
594 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
595 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
596 230400, 460800, 921600
597};
598
599#define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
600
601/*****************************************************************************/
602
603/*
604 * Define the driver info for a user level control device. Used mainly
605 * to get at port stats - only not using the port device itself.
606 */
607static const struct file_operations stl_fsiomem = {
608 .owner = THIS_MODULE,
609 .unlocked_ioctl = stl_memioctl,
610 .llseek = noop_llseek,
611};
612
613static struct class *stallion_class;
614
615static void stl_cd_change(struct stlport *portp)
616{
617 unsigned int oldsigs = portp->sigs;
618 struct tty_struct *tty = tty_port_tty_get(&portp->port);
619
620 if (!tty)
621 return;
622
623 portp->sigs = stl_getsignals(portp);
624
625 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
626 wake_up_interruptible(&portp->port.open_wait);
627
628 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
629 if (portp->port.flags & ASYNC_CHECK_CD)
630 tty_hangup(tty);
631 tty_kref_put(tty);
632}
633
634/*
635 * Check for any arguments passed in on the module load command line.
636 */
637
638/*****************************************************************************/
639
640/*
641 * Parse the supplied argument string, into the board conf struct.
642 */
643
644static int __init stl_parsebrd(struct stlconf *confp, char **argp)
645{
646 char *sp;
647 unsigned int i;
648
649 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
650
651 if ((argp[0] == NULL) || (*argp[0] == 0))
652 return 0;
653
654 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
655 *sp = tolower(*sp);
656
657 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
658 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
659 break;
660
661 if (i == ARRAY_SIZE(stl_brdstr)) {
662 printk("STALLION: unknown board name, %s?\n", argp[0]);
663 return 0;
664 }
665
666 confp->brdtype = stl_brdstr[i].type;
667
668 i = 1;
669 if ((argp[i] != NULL) && (*argp[i] != 0))
670 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
671 i++;
672 if (confp->brdtype == BRD_ECH) {
673 if ((argp[i] != NULL) && (*argp[i] != 0))
674 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
675 i++;
676 }
677 if ((argp[i] != NULL) && (*argp[i] != 0))
678 confp->irq = simple_strtoul(argp[i], NULL, 0);
679 return 1;
680}
681
682/*****************************************************************************/
683
684/*
685 * Allocate a new board structure. Fill out the basic info in it.
686 */
687
688static struct stlbrd *stl_allocbrd(void)
689{
690 struct stlbrd *brdp;
691
692 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
693 if (!brdp) {
694 printk("STALLION: failed to allocate memory (size=%Zd)\n",
695 sizeof(struct stlbrd));
696 return NULL;
697 }
698
699 brdp->magic = STL_BOARDMAGIC;
700 return brdp;
701}
702
703/*****************************************************************************/
704
705static int stl_activate(struct tty_port *port, struct tty_struct *tty)
706{
707 struct stlport *portp = container_of(port, struct stlport, port);
708 if (!portp->tx.buf) {
709 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
710 if (!portp->tx.buf)
711 return -ENOMEM;
712 portp->tx.head = portp->tx.buf;
713 portp->tx.tail = portp->tx.buf;
714 }
715 stl_setport(portp, tty->termios);
716 portp->sigs = stl_getsignals(portp);
717 stl_setsignals(portp, 1, 1);
718 stl_enablerxtx(portp, 1, 1);
719 stl_startrxtx(portp, 1, 0);
720 return 0;
721}
722
723static int stl_open(struct tty_struct *tty, struct file *filp)
724{
725 struct stlport *portp;
726 struct stlbrd *brdp;
727 unsigned int minordev, brdnr, panelnr;
728 int portnr;
729
730 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
731
732 minordev = tty->index;
733 brdnr = MINOR2BRD(minordev);
734 if (brdnr >= stl_nrbrds)
735 return -ENODEV;
736 brdp = stl_brds[brdnr];
737 if (brdp == NULL)
738 return -ENODEV;
739
740 minordev = MINOR2PORT(minordev);
741 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
742 if (brdp->panels[panelnr] == NULL)
743 break;
744 if (minordev < brdp->panels[panelnr]->nrports) {
745 portnr = minordev;
746 break;
747 }
748 minordev -= brdp->panels[panelnr]->nrports;
749 }
750 if (portnr < 0)
751 return -ENODEV;
752
753 portp = brdp->panels[panelnr]->ports[portnr];
754 if (portp == NULL)
755 return -ENODEV;
756
757 tty->driver_data = portp;
758 return tty_port_open(&portp->port, tty, filp);
759
760}
761
762/*****************************************************************************/
763
764static int stl_carrier_raised(struct tty_port *port)
765{
766 struct stlport *portp = container_of(port, struct stlport, port);
767 return (portp->sigs & TIOCM_CD) ? 1 : 0;
768}
769
770static void stl_dtr_rts(struct tty_port *port, int on)
771{
772 struct stlport *portp = container_of(port, struct stlport, port);
773 /* Takes brd_lock internally */
774 stl_setsignals(portp, on, on);
775}
776
777/*****************************************************************************/
778
779static void stl_flushbuffer(struct tty_struct *tty)
780{
781 struct stlport *portp;
782
783 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
784
785 portp = tty->driver_data;
786 if (portp == NULL)
787 return;
788
789 stl_flush(portp);
790 tty_wakeup(tty);
791}
792
793/*****************************************************************************/
794
795static void stl_waituntilsent(struct tty_struct *tty, int timeout)
796{
797 struct stlport *portp;
798 unsigned long tend;
799
800 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
801
802 portp = tty->driver_data;
803 if (portp == NULL)
804 return;
805
806 if (timeout == 0)
807 timeout = HZ;
808 tend = jiffies + timeout;
809
810 while (stl_datastate(portp)) {
811 if (signal_pending(current))
812 break;
813 msleep_interruptible(20);
814 if (time_after_eq(jiffies, tend))
815 break;
816 }
817}
818
819/*****************************************************************************/
820
821static void stl_shutdown(struct tty_port *port)
822{
823 struct stlport *portp = container_of(port, struct stlport, port);
824 stl_disableintrs(portp);
825 stl_enablerxtx(portp, 0, 0);
826 stl_flush(portp);
827 portp->istate = 0;
828 if (portp->tx.buf != NULL) {
829 kfree(portp->tx.buf);
830 portp->tx.buf = NULL;
831 portp->tx.head = NULL;
832 portp->tx.tail = NULL;
833 }
834}
835
836static void stl_close(struct tty_struct *tty, struct file *filp)
837{
838 struct stlport*portp;
839 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
840
841 portp = tty->driver_data;
842 if(portp == NULL)
843 return;
844 tty_port_close(&portp->port, tty, filp);
845}
846
847/*****************************************************************************/
848
849/*
850 * Write routine. Take data and stuff it in to the TX ring queue.
851 * If transmit interrupts are not running then start them.
852 */
853
854static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
855{
856 struct stlport *portp;
857 unsigned int len, stlen;
858 unsigned char *chbuf;
859 char *head, *tail;
860
861 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
862
863 portp = tty->driver_data;
864 if (portp == NULL)
865 return 0;
866 if (portp->tx.buf == NULL)
867 return 0;
868
869/*
870 * If copying direct from user space we must cater for page faults,
871 * causing us to "sleep" here for a while. To handle this copy in all
872 * the data we need now, into a local buffer. Then when we got it all
873 * copy it into the TX buffer.
874 */
875 chbuf = (unsigned char *) buf;
876
877 head = portp->tx.head;
878 tail = portp->tx.tail;
879 if (head >= tail) {
880 len = STL_TXBUFSIZE - (head - tail) - 1;
881 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
882 } else {
883 len = tail - head - 1;
884 stlen = len;
885 }
886
887 len = min(len, (unsigned int)count);
888 count = 0;
889 while (len > 0) {
890 stlen = min(len, stlen);
891 memcpy(head, chbuf, stlen);
892 len -= stlen;
893 chbuf += stlen;
894 count += stlen;
895 head += stlen;
896 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
897 head = portp->tx.buf;
898 stlen = tail - head;
899 }
900 }
901 portp->tx.head = head;
902
903 clear_bit(ASYI_TXLOW, &portp->istate);
904 stl_startrxtx(portp, -1, 1);
905
906 return count;
907}
908
909/*****************************************************************************/
910
911static int stl_putchar(struct tty_struct *tty, unsigned char ch)
912{
913 struct stlport *portp;
914 unsigned int len;
915 char *head, *tail;
916
917 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
918
919 portp = tty->driver_data;
920 if (portp == NULL)
921 return -EINVAL;
922 if (portp->tx.buf == NULL)
923 return -EINVAL;
924
925 head = portp->tx.head;
926 tail = portp->tx.tail;
927
928 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
929 len--;
930
931 if (len > 0) {
932 *head++ = ch;
933 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
934 head = portp->tx.buf;
935 }
936 portp->tx.head = head;
937 return 0;
938}
939
940/*****************************************************************************/
941
942/*
943 * If there are any characters in the buffer then make sure that TX
944 * interrupts are on and get'em out. Normally used after the putchar
945 * routine has been called.
946 */
947
948static void stl_flushchars(struct tty_struct *tty)
949{
950 struct stlport *portp;
951
952 pr_debug("stl_flushchars(tty=%p)\n", tty);
953
954 portp = tty->driver_data;
955 if (portp == NULL)
956 return;
957 if (portp->tx.buf == NULL)
958 return;
959
960 stl_startrxtx(portp, -1, 1);
961}
962
963/*****************************************************************************/
964
965static int stl_writeroom(struct tty_struct *tty)
966{
967 struct stlport *portp;
968 char *head, *tail;
969
970 pr_debug("stl_writeroom(tty=%p)\n", tty);
971
972 portp = tty->driver_data;
973 if (portp == NULL)
974 return 0;
975 if (portp->tx.buf == NULL)
976 return 0;
977
978 head = portp->tx.head;
979 tail = portp->tx.tail;
980 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
981}
982
983/*****************************************************************************/
984
985/*
986 * Return number of chars in the TX buffer. Normally we would just
987 * calculate the number of chars in the buffer and return that, but if
988 * the buffer is empty and TX interrupts are still on then we return
989 * that the buffer still has 1 char in it. This way whoever called us
990 * will not think that ALL chars have drained - since the UART still
991 * must have some chars in it (we are busy after all).
992 */
993
994static int stl_charsinbuffer(struct tty_struct *tty)
995{
996 struct stlport *portp;
997 unsigned int size;
998 char *head, *tail;
999
1000 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1001
1002 portp = tty->driver_data;
1003 if (portp == NULL)
1004 return 0;
1005 if (portp->tx.buf == NULL)
1006 return 0;
1007
1008 head = portp->tx.head;
1009 tail = portp->tx.tail;
1010 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1011 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1012 size = 1;
1013 return size;
1014}
1015
1016/*****************************************************************************/
1017
1018/*
1019 * Generate the serial struct info.
1020 */
1021
1022static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1023{
1024 struct serial_struct sio;
1025 struct stlbrd *brdp;
1026
1027 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1028
1029 memset(&sio, 0, sizeof(struct serial_struct));
1030
1031 mutex_lock(&portp->port.mutex);
1032 sio.line = portp->portnr;
1033 sio.port = portp->ioaddr;
1034 sio.flags = portp->port.flags;
1035 sio.baud_base = portp->baud_base;
1036 sio.close_delay = portp->close_delay;
1037 sio.closing_wait = portp->closing_wait;
1038 sio.custom_divisor = portp->custom_divisor;
1039 sio.hub6 = 0;
1040 if (portp->uartp == &stl_cd1400uart) {
1041 sio.type = PORT_CIRRUS;
1042 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1043 } else {
1044 sio.type = PORT_UNKNOWN;
1045 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1046 }
1047
1048 brdp = stl_brds[portp->brdnr];
1049 if (brdp != NULL)
1050 sio.irq = brdp->irq;
1051 mutex_unlock(&portp->port.mutex);
1052
1053 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1054}
1055
1056/*****************************************************************************/
1057
1058/*
1059 * Set port according to the serial struct info.
1060 * At this point we do not do any auto-configure stuff, so we will
1061 * just quietly ignore any requests to change irq, etc.
1062 */
1063
1064static int stl_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1065{
1066 struct stlport * portp = tty->driver_data;
1067 struct serial_struct sio;
1068
1069 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1070
1071 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1072 return -EFAULT;
1073 mutex_lock(&portp->port.mutex);
1074 if (!capable(CAP_SYS_ADMIN)) {
1075 if ((sio.baud_base != portp->baud_base) ||
1076 (sio.close_delay != portp->close_delay) ||
1077 ((sio.flags & ~ASYNC_USR_MASK) !=
1078 (portp->port.flags & ~ASYNC_USR_MASK))) {
1079 mutex_unlock(&portp->port.mutex);
1080 return -EPERM;
1081 }
1082 }
1083
1084 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1085 (sio.flags & ASYNC_USR_MASK);
1086 portp->baud_base = sio.baud_base;
1087 portp->close_delay = sio.close_delay;
1088 portp->closing_wait = sio.closing_wait;
1089 portp->custom_divisor = sio.custom_divisor;
1090 mutex_unlock(&portp->port.mutex);
1091 stl_setport(portp, tty->termios);
1092 return 0;
1093}
1094
1095/*****************************************************************************/
1096
1097static int stl_tiocmget(struct tty_struct *tty)
1098{
1099 struct stlport *portp;
1100
1101 portp = tty->driver_data;
1102 if (portp == NULL)
1103 return -ENODEV;
1104 if (tty->flags & (1 << TTY_IO_ERROR))
1105 return -EIO;
1106
1107 return stl_getsignals(portp);
1108}
1109
1110static int stl_tiocmset(struct tty_struct *tty,
1111 unsigned int set, unsigned int clear)
1112{
1113 struct stlport *portp;
1114 int rts = -1, dtr = -1;
1115
1116 portp = tty->driver_data;
1117 if (portp == NULL)
1118 return -ENODEV;
1119 if (tty->flags & (1 << TTY_IO_ERROR))
1120 return -EIO;
1121
1122 if (set & TIOCM_RTS)
1123 rts = 1;
1124 if (set & TIOCM_DTR)
1125 dtr = 1;
1126 if (clear & TIOCM_RTS)
1127 rts = 0;
1128 if (clear & TIOCM_DTR)
1129 dtr = 0;
1130
1131 stl_setsignals(portp, dtr, rts);
1132 return 0;
1133}
1134
1135static int stl_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg)
1136{
1137 struct stlport *portp;
1138 int rc;
1139 void __user *argp = (void __user *)arg;
1140
1141 pr_debug("stl_ioctl(tty=%p,cmd=%x,arg=%lx)\n", tty, cmd, arg);
1142
1143 portp = tty->driver_data;
1144 if (portp == NULL)
1145 return -ENODEV;
1146
1147 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1148 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1149 if (tty->flags & (1 << TTY_IO_ERROR))
1150 return -EIO;
1151
1152 rc = 0;
1153
1154 switch (cmd) {
1155 case TIOCGSERIAL:
1156 rc = stl_getserial(portp, argp);
1157 break;
1158 case TIOCSSERIAL:
1159 rc = stl_setserial(tty, argp);
1160 break;
1161 case COM_GETPORTSTATS:
1162 rc = stl_getportstats(tty, portp, argp);
1163 break;
1164 case COM_CLRPORTSTATS:
1165 rc = stl_clrportstats(portp, argp);
1166 break;
1167 case TIOCSERCONFIG:
1168 case TIOCSERGWILD:
1169 case TIOCSERSWILD:
1170 case TIOCSERGETLSR:
1171 case TIOCSERGSTRUCT:
1172 case TIOCSERGETMULTI:
1173 case TIOCSERSETMULTI:
1174 default:
1175 rc = -ENOIOCTLCMD;
1176 break;
1177 }
1178 return rc;
1179}
1180
1181/*****************************************************************************/
1182
1183/*
1184 * Start the transmitter again. Just turn TX interrupts back on.
1185 */
1186
1187static void stl_start(struct tty_struct *tty)
1188{
1189 struct stlport *portp;
1190
1191 pr_debug("stl_start(tty=%p)\n", tty);
1192
1193 portp = tty->driver_data;
1194 if (portp == NULL)
1195 return;
1196 stl_startrxtx(portp, -1, 1);
1197}
1198
1199/*****************************************************************************/
1200
1201static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1202{
1203 struct stlport *portp;
1204 struct ktermios *tiosp;
1205
1206 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1207
1208 portp = tty->driver_data;
1209 if (portp == NULL)
1210 return;
1211
1212 tiosp = tty->termios;
1213 if ((tiosp->c_cflag == old->c_cflag) &&
1214 (tiosp->c_iflag == old->c_iflag))
1215 return;
1216
1217 stl_setport(portp, tiosp);
1218 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1219 -1);
1220 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1221 tty->hw_stopped = 0;
1222 stl_start(tty);
1223 }
1224 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1225 wake_up_interruptible(&portp->port.open_wait);
1226}
1227
1228/*****************************************************************************/
1229
1230/*
1231 * Attempt to flow control who ever is sending us data. Based on termios
1232 * settings use software or/and hardware flow control.
1233 */
1234
1235static void stl_throttle(struct tty_struct *tty)
1236{
1237 struct stlport *portp;
1238
1239 pr_debug("stl_throttle(tty=%p)\n", tty);
1240
1241 portp = tty->driver_data;
1242 if (portp == NULL)
1243 return;
1244 stl_flowctrl(portp, 0);
1245}
1246
1247/*****************************************************************************/
1248
1249/*
1250 * Unflow control the device sending us data...
1251 */
1252
1253static void stl_unthrottle(struct tty_struct *tty)
1254{
1255 struct stlport *portp;
1256
1257 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1258
1259 portp = tty->driver_data;
1260 if (portp == NULL)
1261 return;
1262 stl_flowctrl(portp, 1);
1263}
1264
1265/*****************************************************************************/
1266
1267/*
1268 * Stop the transmitter. Basically to do this we will just turn TX
1269 * interrupts off.
1270 */
1271
1272static void stl_stop(struct tty_struct *tty)
1273{
1274 struct stlport *portp;
1275
1276 pr_debug("stl_stop(tty=%p)\n", tty);
1277
1278 portp = tty->driver_data;
1279 if (portp == NULL)
1280 return;
1281 stl_startrxtx(portp, -1, 0);
1282}
1283
1284/*****************************************************************************/
1285
1286/*
1287 * Hangup this port. This is pretty much like closing the port, only
1288 * a little more brutal. No waiting for data to drain. Shutdown the
1289 * port and maybe drop signals.
1290 */
1291
1292static void stl_hangup(struct tty_struct *tty)
1293{
1294 struct stlport *portp = tty->driver_data;
1295 pr_debug("stl_hangup(tty=%p)\n", tty);
1296
1297 if (portp == NULL)
1298 return;
1299 tty_port_hangup(&portp->port);
1300}
1301
1302/*****************************************************************************/
1303
1304static int stl_breakctl(struct tty_struct *tty, int state)
1305{
1306 struct stlport *portp;
1307
1308 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1309
1310 portp = tty->driver_data;
1311 if (portp == NULL)
1312 return -EINVAL;
1313
1314 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1315 return 0;
1316}
1317
1318/*****************************************************************************/
1319
1320static void stl_sendxchar(struct tty_struct *tty, char ch)
1321{
1322 struct stlport *portp;
1323
1324 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1325
1326 portp = tty->driver_data;
1327 if (portp == NULL)
1328 return;
1329
1330 if (ch == STOP_CHAR(tty))
1331 stl_sendflow(portp, 0);
1332 else if (ch == START_CHAR(tty))
1333 stl_sendflow(portp, 1);
1334 else
1335 stl_putchar(tty, ch);
1336}
1337
1338static void stl_portinfo(struct seq_file *m, struct stlport *portp, int portnr)
1339{
1340 int sigs;
1341 char sep;
1342
1343 seq_printf(m, "%d: uart:%s tx:%d rx:%d",
1344 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1345 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1346
1347 if (portp->stats.rxframing)
1348 seq_printf(m, " fe:%d", (int) portp->stats.rxframing);
1349 if (portp->stats.rxparity)
1350 seq_printf(m, " pe:%d", (int) portp->stats.rxparity);
1351 if (portp->stats.rxbreaks)
1352 seq_printf(m, " brk:%d", (int) portp->stats.rxbreaks);
1353 if (portp->stats.rxoverrun)
1354 seq_printf(m, " oe:%d", (int) portp->stats.rxoverrun);
1355
1356 sigs = stl_getsignals(portp);
1357 sep = ' ';
1358 if (sigs & TIOCM_RTS) {
1359 seq_printf(m, "%c%s", sep, "RTS");
1360 sep = '|';
1361 }
1362 if (sigs & TIOCM_CTS) {
1363 seq_printf(m, "%c%s", sep, "CTS");
1364 sep = '|';
1365 }
1366 if (sigs & TIOCM_DTR) {
1367 seq_printf(m, "%c%s", sep, "DTR");
1368 sep = '|';
1369 }
1370 if (sigs & TIOCM_CD) {
1371 seq_printf(m, "%c%s", sep, "DCD");
1372 sep = '|';
1373 }
1374 if (sigs & TIOCM_DSR) {
1375 seq_printf(m, "%c%s", sep, "DSR");
1376 sep = '|';
1377 }
1378 seq_putc(m, '\n');
1379}
1380
1381/*****************************************************************************/
1382
1383/*
1384 * Port info, read from the /proc file system.
1385 */
1386
1387static int stl_proc_show(struct seq_file *m, void *v)
1388{
1389 struct stlbrd *brdp;
1390 struct stlpanel *panelp;
1391 struct stlport *portp;
1392 unsigned int brdnr, panelnr, portnr;
1393 int totalport;
1394
1395 totalport = 0;
1396
1397 seq_printf(m, "%s: version %s\n", stl_drvtitle, stl_drvversion);
1398
1399/*
1400 * We scan through for each board, panel and port. The offset is
1401 * calculated on the fly, and irrelevant ports are skipped.
1402 */
1403 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1404 brdp = stl_brds[brdnr];
1405 if (brdp == NULL)
1406 continue;
1407 if (brdp->state == 0)
1408 continue;
1409
1410 totalport = brdnr * STL_MAXPORTS;
1411 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1412 panelp = brdp->panels[panelnr];
1413 if (panelp == NULL)
1414 continue;
1415
1416 for (portnr = 0; portnr < panelp->nrports; portnr++,
1417 totalport++) {
1418 portp = panelp->ports[portnr];
1419 if (portp == NULL)
1420 continue;
1421 stl_portinfo(m, portp, totalport);
1422 }
1423 }
1424 }
1425 return 0;
1426}
1427
1428static int stl_proc_open(struct inode *inode, struct file *file)
1429{
1430 return single_open(file, stl_proc_show, NULL);
1431}
1432
1433static const struct file_operations stl_proc_fops = {
1434 .owner = THIS_MODULE,
1435 .open = stl_proc_open,
1436 .read = seq_read,
1437 .llseek = seq_lseek,
1438 .release = single_release,
1439};
1440
1441/*****************************************************************************/
1442
1443/*
1444 * All board interrupts are vectored through here first. This code then
1445 * calls off to the approrpriate board interrupt handlers.
1446 */
1447
1448static irqreturn_t stl_intr(int irq, void *dev_id)
1449{
1450 struct stlbrd *brdp = dev_id;
1451
1452 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, brdp->irq);
1453
1454 return IRQ_RETVAL((* brdp->isr)(brdp));
1455}
1456
1457/*****************************************************************************/
1458
1459/*
1460 * Interrupt service routine for EasyIO board types.
1461 */
1462
1463static int stl_eiointr(struct stlbrd *brdp)
1464{
1465 struct stlpanel *panelp;
1466 unsigned int iobase;
1467 int handled = 0;
1468
1469 spin_lock(&brd_lock);
1470 panelp = brdp->panels[0];
1471 iobase = panelp->iobase;
1472 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1473 handled = 1;
1474 (* panelp->isr)(panelp, iobase);
1475 }
1476 spin_unlock(&brd_lock);
1477 return handled;
1478}
1479
1480/*****************************************************************************/
1481
1482/*
1483 * Interrupt service routine for ECH-AT board types.
1484 */
1485
1486static int stl_echatintr(struct stlbrd *brdp)
1487{
1488 struct stlpanel *panelp;
1489 unsigned int ioaddr, bnknr;
1490 int handled = 0;
1491
1492 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1493
1494 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1495 handled = 1;
1496 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1497 ioaddr = brdp->bnkstataddr[bnknr];
1498 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1499 panelp = brdp->bnk2panel[bnknr];
1500 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1501 }
1502 }
1503 }
1504
1505 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1506
1507 return handled;
1508}
1509
1510/*****************************************************************************/
1511
1512/*
1513 * Interrupt service routine for ECH-MCA board types.
1514 */
1515
1516static int stl_echmcaintr(struct stlbrd *brdp)
1517{
1518 struct stlpanel *panelp;
1519 unsigned int ioaddr, bnknr;
1520 int handled = 0;
1521
1522 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1523 handled = 1;
1524 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1525 ioaddr = brdp->bnkstataddr[bnknr];
1526 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1527 panelp = brdp->bnk2panel[bnknr];
1528 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1529 }
1530 }
1531 }
1532 return handled;
1533}
1534
1535/*****************************************************************************/
1536
1537/*
1538 * Interrupt service routine for ECH-PCI board types.
1539 */
1540
1541static int stl_echpciintr(struct stlbrd *brdp)
1542{
1543 struct stlpanel *panelp;
1544 unsigned int ioaddr, bnknr, recheck;
1545 int handled = 0;
1546
1547 while (1) {
1548 recheck = 0;
1549 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1550 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1551 ioaddr = brdp->bnkstataddr[bnknr];
1552 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1553 panelp = brdp->bnk2panel[bnknr];
1554 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1555 recheck++;
1556 handled = 1;
1557 }
1558 }
1559 if (! recheck)
1560 break;
1561 }
1562 return handled;
1563}
1564
1565/*****************************************************************************/
1566
1567/*
1568 * Interrupt service routine for ECH-8/64-PCI board types.
1569 */
1570
1571static int stl_echpci64intr(struct stlbrd *brdp)
1572{
1573 struct stlpanel *panelp;
1574 unsigned int ioaddr, bnknr;
1575 int handled = 0;
1576
1577 while (inb(brdp->ioctrl) & 0x1) {
1578 handled = 1;
1579 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1580 ioaddr = brdp->bnkstataddr[bnknr];
1581 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1582 panelp = brdp->bnk2panel[bnknr];
1583 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1584 }
1585 }
1586 }
1587
1588 return handled;
1589}
1590
1591/*****************************************************************************/
1592
1593/*
1594 * Initialize all the ports on a panel.
1595 */
1596
1597static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1598{
1599 struct stlport *portp;
1600 unsigned int i;
1601 int chipmask;
1602
1603 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1604
1605 chipmask = stl_panelinit(brdp, panelp);
1606
1607/*
1608 * All UART's are initialized (if found!). Now go through and setup
1609 * each ports data structures.
1610 */
1611 for (i = 0; i < panelp->nrports; i++) {
1612 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1613 if (!portp) {
1614 printk("STALLION: failed to allocate memory "
1615 "(size=%Zd)\n", sizeof(struct stlport));
1616 break;
1617 }
1618 tty_port_init(&portp->port);
1619 portp->port.ops = &stl_port_ops;
1620 portp->magic = STL_PORTMAGIC;
1621 portp->portnr = i;
1622 portp->brdnr = panelp->brdnr;
1623 portp->panelnr = panelp->panelnr;
1624 portp->uartp = panelp->uartp;
1625 portp->clk = brdp->clk;
1626 portp->baud_base = STL_BAUDBASE;
1627 portp->close_delay = STL_CLOSEDELAY;
1628 portp->closing_wait = 30 * HZ;
1629 init_waitqueue_head(&portp->port.open_wait);
1630 init_waitqueue_head(&portp->port.close_wait);
1631 portp->stats.brd = portp->brdnr;
1632 portp->stats.panel = portp->panelnr;
1633 portp->stats.port = portp->portnr;
1634 panelp->ports[i] = portp;
1635 stl_portinit(brdp, panelp, portp);
1636 }
1637
1638 return 0;
1639}
1640
1641static void stl_cleanup_panels(struct stlbrd *brdp)
1642{
1643 struct stlpanel *panelp;
1644 struct stlport *portp;
1645 unsigned int j, k;
1646 struct tty_struct *tty;
1647
1648 for (j = 0; j < STL_MAXPANELS; j++) {
1649 panelp = brdp->panels[j];
1650 if (panelp == NULL)
1651 continue;
1652 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1653 portp = panelp->ports[k];
1654 if (portp == NULL)
1655 continue;
1656 tty = tty_port_tty_get(&portp->port);
1657 if (tty != NULL) {
1658 stl_hangup(tty);
1659 tty_kref_put(tty);
1660 }
1661 kfree(portp->tx.buf);
1662 kfree(portp);
1663 }
1664 kfree(panelp);
1665 }
1666}
1667
1668/*****************************************************************************/
1669
1670/*
1671 * Try to find and initialize an EasyIO board.
1672 */
1673
1674static int __devinit stl_initeio(struct stlbrd *brdp)
1675{
1676 struct stlpanel *panelp;
1677 unsigned int status;
1678 char *name;
1679 int retval;
1680
1681 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1682
1683 brdp->ioctrl = brdp->ioaddr1 + 1;
1684 brdp->iostatus = brdp->ioaddr1 + 2;
1685
1686 status = inb(brdp->iostatus);
1687 if ((status & EIO_IDBITMASK) == EIO_MK3)
1688 brdp->ioctrl++;
1689
1690/*
1691 * Handle board specific stuff now. The real difference is PCI
1692 * or not PCI.
1693 */
1694 if (brdp->brdtype == BRD_EASYIOPCI) {
1695 brdp->iosize1 = 0x80;
1696 brdp->iosize2 = 0x80;
1697 name = "serial(EIO-PCI)";
1698 outb(0x41, (brdp->ioaddr2 + 0x4c));
1699 } else {
1700 brdp->iosize1 = 8;
1701 name = "serial(EIO)";
1702 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1703 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1704 printk("STALLION: invalid irq=%d for brd=%d\n",
1705 brdp->irq, brdp->brdnr);
1706 retval = -EINVAL;
1707 goto err;
1708 }
1709 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1710 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1711 brdp->ioctrl);
1712 }
1713
1714 retval = -EBUSY;
1715 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1716 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1717 "%x conflicts with another device\n", brdp->brdnr,
1718 brdp->ioaddr1);
1719 goto err;
1720 }
1721
1722 if (brdp->iosize2 > 0)
1723 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1724 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1725 "address %x conflicts with another device\n",
1726 brdp->brdnr, brdp->ioaddr2);
1727 printk(KERN_WARNING "STALLION: Warning, also "
1728 "releasing board %d I/O address %x \n",
1729 brdp->brdnr, brdp->ioaddr1);
1730 goto err_rel1;
1731 }
1732
1733/*
1734 * Everything looks OK, so let's go ahead and probe for the hardware.
1735 */
1736 brdp->clk = CD1400_CLK;
1737 brdp->isr = stl_eiointr;
1738
1739 retval = -ENODEV;
1740 switch (status & EIO_IDBITMASK) {
1741 case EIO_8PORTM:
1742 brdp->clk = CD1400_CLK8M;
1743 /* fall thru */
1744 case EIO_8PORTRS:
1745 case EIO_8PORTDI:
1746 brdp->nrports = 8;
1747 break;
1748 case EIO_4PORTRS:
1749 brdp->nrports = 4;
1750 break;
1751 case EIO_MK3:
1752 switch (status & EIO_BRDMASK) {
1753 case ID_BRD4:
1754 brdp->nrports = 4;
1755 break;
1756 case ID_BRD8:
1757 brdp->nrports = 8;
1758 break;
1759 case ID_BRD16:
1760 brdp->nrports = 16;
1761 break;
1762 default:
1763 goto err_rel2;
1764 }
1765 break;
1766 default:
1767 goto err_rel2;
1768 }
1769
1770/*
1771 * We have verified that the board is actually present, so now we
1772 * can complete the setup.
1773 */
1774
1775 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1776 if (!panelp) {
1777 printk(KERN_WARNING "STALLION: failed to allocate memory "
1778 "(size=%Zd)\n", sizeof(struct stlpanel));
1779 retval = -ENOMEM;
1780 goto err_rel2;
1781 }
1782
1783 panelp->magic = STL_PANELMAGIC;
1784 panelp->brdnr = brdp->brdnr;
1785 panelp->panelnr = 0;
1786 panelp->nrports = brdp->nrports;
1787 panelp->iobase = brdp->ioaddr1;
1788 panelp->hwid = status;
1789 if ((status & EIO_IDBITMASK) == EIO_MK3) {
1790 panelp->uartp = &stl_sc26198uart;
1791 panelp->isr = stl_sc26198intr;
1792 } else {
1793 panelp->uartp = &stl_cd1400uart;
1794 panelp->isr = stl_cd1400eiointr;
1795 }
1796
1797 brdp->panels[0] = panelp;
1798 brdp->nrpanels = 1;
1799 brdp->state |= BRD_FOUND;
1800 brdp->hwid = status;
1801 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
1802 printk("STALLION: failed to register interrupt "
1803 "routine for %s irq=%d\n", name, brdp->irq);
1804 retval = -ENODEV;
1805 goto err_fr;
1806 }
1807
1808 return 0;
1809err_fr:
1810 stl_cleanup_panels(brdp);
1811err_rel2:
1812 if (brdp->iosize2 > 0)
1813 release_region(brdp->ioaddr2, brdp->iosize2);
1814err_rel1:
1815 release_region(brdp->ioaddr1, brdp->iosize1);
1816err:
1817 return retval;
1818}
1819
1820/*****************************************************************************/
1821
1822/*
1823 * Try to find an ECH board and initialize it. This code is capable of
1824 * dealing with all types of ECH board.
1825 */
1826
1827static int __devinit stl_initech(struct stlbrd *brdp)
1828{
1829 struct stlpanel *panelp;
1830 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
1831 int retval;
1832 char *name;
1833
1834 pr_debug("stl_initech(brdp=%p)\n", brdp);
1835
1836 status = 0;
1837 conflict = 0;
1838
1839/*
1840 * Set up the initial board register contents for boards. This varies a
1841 * bit between the different board types. So we need to handle each
1842 * separately. Also do a check that the supplied IRQ is good.
1843 */
1844 switch (brdp->brdtype) {
1845
1846 case BRD_ECH:
1847 brdp->isr = stl_echatintr;
1848 brdp->ioctrl = brdp->ioaddr1 + 1;
1849 brdp->iostatus = brdp->ioaddr1 + 1;
1850 status = inb(brdp->iostatus);
1851 if ((status & ECH_IDBITMASK) != ECH_ID) {
1852 retval = -ENODEV;
1853 goto err;
1854 }
1855 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1856 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1857 printk("STALLION: invalid irq=%d for brd=%d\n",
1858 brdp->irq, brdp->brdnr);
1859 retval = -EINVAL;
1860 goto err;
1861 }
1862 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
1863 status |= (stl_vecmap[brdp->irq] << 1);
1864 outb((status | ECH_BRDRESET), brdp->ioaddr1);
1865 brdp->ioctrlval = ECH_INTENABLE |
1866 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
1867 for (i = 0; i < 10; i++)
1868 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1869 brdp->iosize1 = 2;
1870 brdp->iosize2 = 32;
1871 name = "serial(EC8/32)";
1872 outb(status, brdp->ioaddr1);
1873 break;
1874
1875 case BRD_ECHMC:
1876 brdp->isr = stl_echmcaintr;
1877 brdp->ioctrl = brdp->ioaddr1 + 0x20;
1878 brdp->iostatus = brdp->ioctrl;
1879 status = inb(brdp->iostatus);
1880 if ((status & ECH_IDBITMASK) != ECH_ID) {
1881 retval = -ENODEV;
1882 goto err;
1883 }
1884 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1885 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1886 printk("STALLION: invalid irq=%d for brd=%d\n",
1887 brdp->irq, brdp->brdnr);
1888 retval = -EINVAL;
1889 goto err;
1890 }
1891 outb(ECHMC_BRDRESET, brdp->ioctrl);
1892 outb(ECHMC_INTENABLE, brdp->ioctrl);
1893 brdp->iosize1 = 64;
1894 name = "serial(EC8/32-MC)";
1895 break;
1896
1897 case BRD_ECHPCI:
1898 brdp->isr = stl_echpciintr;
1899 brdp->ioctrl = brdp->ioaddr1 + 2;
1900 brdp->iosize1 = 4;
1901 brdp->iosize2 = 8;
1902 name = "serial(EC8/32-PCI)";
1903 break;
1904
1905 case BRD_ECH64PCI:
1906 brdp->isr = stl_echpci64intr;
1907 brdp->ioctrl = brdp->ioaddr2 + 0x40;
1908 outb(0x43, (brdp->ioaddr1 + 0x4c));
1909 brdp->iosize1 = 0x80;
1910 brdp->iosize2 = 0x80;
1911 name = "serial(EC8/64-PCI)";
1912 break;
1913
1914 default:
1915 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
1916 retval = -EINVAL;
1917 goto err;
1918 }
1919
1920/*
1921 * Check boards for possible IO address conflicts and return fail status
1922 * if an IO conflict found.
1923 */
1924 retval = -EBUSY;
1925 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1926 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1927 "%x conflicts with another device\n", brdp->brdnr,
1928 brdp->ioaddr1);
1929 goto err;
1930 }
1931
1932 if (brdp->iosize2 > 0)
1933 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1934 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1935 "address %x conflicts with another device\n",
1936 brdp->brdnr, brdp->ioaddr2);
1937 printk(KERN_WARNING "STALLION: Warning, also "
1938 "releasing board %d I/O address %x \n",
1939 brdp->brdnr, brdp->ioaddr1);
1940 goto err_rel1;
1941 }
1942
1943/*
1944 * Scan through the secondary io address space looking for panels.
1945 * As we find'em allocate and initialize panel structures for each.
1946 */
1947 brdp->clk = CD1400_CLK;
1948 brdp->hwid = status;
1949
1950 ioaddr = brdp->ioaddr2;
1951 banknr = 0;
1952 panelnr = 0;
1953 nxtid = 0;
1954
1955 for (i = 0; i < STL_MAXPANELS; i++) {
1956 if (brdp->brdtype == BRD_ECHPCI) {
1957 outb(nxtid, brdp->ioctrl);
1958 ioaddr = brdp->ioaddr2;
1959 }
1960 status = inb(ioaddr + ECH_PNLSTATUS);
1961 if ((status & ECH_PNLIDMASK) != nxtid)
1962 break;
1963 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1964 if (!panelp) {
1965 printk("STALLION: failed to allocate memory "
1966 "(size=%Zd)\n", sizeof(struct stlpanel));
1967 retval = -ENOMEM;
1968 goto err_fr;
1969 }
1970 panelp->magic = STL_PANELMAGIC;
1971 panelp->brdnr = brdp->brdnr;
1972 panelp->panelnr = panelnr;
1973 panelp->iobase = ioaddr;
1974 panelp->pagenr = nxtid;
1975 panelp->hwid = status;
1976 brdp->bnk2panel[banknr] = panelp;
1977 brdp->bnkpageaddr[banknr] = nxtid;
1978 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
1979
1980 if (status & ECH_PNLXPID) {
1981 panelp->uartp = &stl_sc26198uart;
1982 panelp->isr = stl_sc26198intr;
1983 if (status & ECH_PNL16PORT) {
1984 panelp->nrports = 16;
1985 brdp->bnk2panel[banknr] = panelp;
1986 brdp->bnkpageaddr[banknr] = nxtid;
1987 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
1988 ECH_PNLSTATUS;
1989 } else
1990 panelp->nrports = 8;
1991 } else {
1992 panelp->uartp = &stl_cd1400uart;
1993 panelp->isr = stl_cd1400echintr;
1994 if (status & ECH_PNL16PORT) {
1995 panelp->nrports = 16;
1996 panelp->ackmask = 0x80;
1997 if (brdp->brdtype != BRD_ECHPCI)
1998 ioaddr += EREG_BANKSIZE;
1999 brdp->bnk2panel[banknr] = panelp;
2000 brdp->bnkpageaddr[banknr] = ++nxtid;
2001 brdp->bnkstataddr[banknr++] = ioaddr +
2002 ECH_PNLSTATUS;
2003 } else {
2004 panelp->nrports = 8;
2005 panelp->ackmask = 0xc0;
2006 }
2007 }
2008
2009 nxtid++;
2010 ioaddr += EREG_BANKSIZE;
2011 brdp->nrports += panelp->nrports;
2012 brdp->panels[panelnr++] = panelp;
2013 if ((brdp->brdtype != BRD_ECHPCI) &&
2014 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2015 retval = -EINVAL;
2016 goto err_fr;
2017 }
2018 }
2019
2020 brdp->nrpanels = panelnr;
2021 brdp->nrbnks = banknr;
2022 if (brdp->brdtype == BRD_ECH)
2023 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2024
2025 brdp->state |= BRD_FOUND;
2026 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2027 printk("STALLION: failed to register interrupt "
2028 "routine for %s irq=%d\n", name, brdp->irq);
2029 retval = -ENODEV;
2030 goto err_fr;
2031 }
2032
2033 return 0;
2034err_fr:
2035 stl_cleanup_panels(brdp);
2036 if (brdp->iosize2 > 0)
2037 release_region(brdp->ioaddr2, brdp->iosize2);
2038err_rel1:
2039 release_region(brdp->ioaddr1, brdp->iosize1);
2040err:
2041 return retval;
2042}
2043
2044/*****************************************************************************/
2045
2046/*
2047 * Initialize and configure the specified board.
2048 * Scan through all the boards in the configuration and see what we
2049 * can find. Handle EIO and the ECH boards a little differently here
2050 * since the initial search and setup is very different.
2051 */
2052
2053static int __devinit stl_brdinit(struct stlbrd *brdp)
2054{
2055 int i, retval;
2056
2057 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2058
2059 switch (brdp->brdtype) {
2060 case BRD_EASYIO:
2061 case BRD_EASYIOPCI:
2062 retval = stl_initeio(brdp);
2063 if (retval)
2064 goto err;
2065 break;
2066 case BRD_ECH:
2067 case BRD_ECHMC:
2068 case BRD_ECHPCI:
2069 case BRD_ECH64PCI:
2070 retval = stl_initech(brdp);
2071 if (retval)
2072 goto err;
2073 break;
2074 default:
2075 printk("STALLION: board=%d is unknown board type=%d\n",
2076 brdp->brdnr, brdp->brdtype);
2077 retval = -ENODEV;
2078 goto err;
2079 }
2080
2081 if ((brdp->state & BRD_FOUND) == 0) {
2082 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2083 stl_brdnames[brdp->brdtype], brdp->brdnr,
2084 brdp->ioaddr1, brdp->irq);
2085 goto err_free;
2086 }
2087
2088 for (i = 0; i < STL_MAXPANELS; i++)
2089 if (brdp->panels[i] != NULL)
2090 stl_initports(brdp, brdp->panels[i]);
2091
2092 printk("STALLION: %s found, board=%d io=%x irq=%d "
2093 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2094 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2095 brdp->nrports);
2096
2097 return 0;
2098err_free:
2099 free_irq(brdp->irq, brdp);
2100
2101 stl_cleanup_panels(brdp);
2102
2103 release_region(brdp->ioaddr1, brdp->iosize1);
2104 if (brdp->iosize2 > 0)
2105 release_region(brdp->ioaddr2, brdp->iosize2);
2106err:
2107 return retval;
2108}
2109
2110/*****************************************************************************/
2111
2112/*
2113 * Find the next available board number that is free.
2114 */
2115
2116static int __devinit stl_getbrdnr(void)
2117{
2118 unsigned int i;
2119
2120 for (i = 0; i < STL_MAXBRDS; i++)
2121 if (stl_brds[i] == NULL) {
2122 if (i >= stl_nrbrds)
2123 stl_nrbrds = i + 1;
2124 return i;
2125 }
2126
2127 return -1;
2128}
2129
2130/*****************************************************************************/
2131/*
2132 * We have a Stallion board. Allocate a board structure and
2133 * initialize it. Read its IO and IRQ resources from PCI
2134 * configuration space.
2135 */
2136
2137static int __devinit stl_pciprobe(struct pci_dev *pdev,
2138 const struct pci_device_id *ent)
2139{
2140 struct stlbrd *brdp;
2141 unsigned int i, brdtype = ent->driver_data;
2142 int brdnr, retval = -ENODEV;
2143
2144 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2145 goto err;
2146
2147 retval = pci_enable_device(pdev);
2148 if (retval)
2149 goto err;
2150 brdp = stl_allocbrd();
2151 if (brdp == NULL) {
2152 retval = -ENOMEM;
2153 goto err;
2154 }
2155 mutex_lock(&stl_brdslock);
2156 brdnr = stl_getbrdnr();
2157 if (brdnr < 0) {
2158 dev_err(&pdev->dev, "too many boards found, "
2159 "maximum supported %d\n", STL_MAXBRDS);
2160 mutex_unlock(&stl_brdslock);
2161 retval = -ENODEV;
2162 goto err_fr;
2163 }
2164 brdp->brdnr = (unsigned int)brdnr;
2165 stl_brds[brdp->brdnr] = brdp;
2166 mutex_unlock(&stl_brdslock);
2167
2168 brdp->brdtype = brdtype;
2169 brdp->state |= STL_PROBED;
2170
2171/*
2172 * We have all resources from the board, so let's setup the actual
2173 * board structure now.
2174 */
2175 switch (brdtype) {
2176 case BRD_ECHPCI:
2177 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2178 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2179 break;
2180 case BRD_ECH64PCI:
2181 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2182 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2183 break;
2184 case BRD_EASYIOPCI:
2185 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2186 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2187 break;
2188 default:
2189 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2190 break;
2191 }
2192
2193 brdp->irq = pdev->irq;
2194 retval = stl_brdinit(brdp);
2195 if (retval)
2196 goto err_null;
2197
2198 pci_set_drvdata(pdev, brdp);
2199
2200 for (i = 0; i < brdp->nrports; i++)
2201 tty_register_device(stl_serial,
2202 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2203
2204 return 0;
2205err_null:
2206 stl_brds[brdp->brdnr] = NULL;
2207err_fr:
2208 kfree(brdp);
2209err:
2210 return retval;
2211}
2212
2213static void __devexit stl_pciremove(struct pci_dev *pdev)
2214{
2215 struct stlbrd *brdp = pci_get_drvdata(pdev);
2216 unsigned int i;
2217
2218 free_irq(brdp->irq, brdp);
2219
2220 stl_cleanup_panels(brdp);
2221
2222 release_region(brdp->ioaddr1, brdp->iosize1);
2223 if (brdp->iosize2 > 0)
2224 release_region(brdp->ioaddr2, brdp->iosize2);
2225
2226 for (i = 0; i < brdp->nrports; i++)
2227 tty_unregister_device(stl_serial,
2228 brdp->brdnr * STL_MAXPORTS + i);
2229
2230 stl_brds[brdp->brdnr] = NULL;
2231 kfree(brdp);
2232}
2233
2234static struct pci_driver stl_pcidriver = {
2235 .name = "stallion",
2236 .id_table = stl_pcibrds,
2237 .probe = stl_pciprobe,
2238 .remove = __devexit_p(stl_pciremove)
2239};
2240
2241/*****************************************************************************/
2242
2243/*
2244 * Return the board stats structure to user app.
2245 */
2246
2247static int stl_getbrdstats(combrd_t __user *bp)
2248{
2249 combrd_t stl_brdstats;
2250 struct stlbrd *brdp;
2251 struct stlpanel *panelp;
2252 unsigned int i;
2253
2254 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2255 return -EFAULT;
2256 if (stl_brdstats.brd >= STL_MAXBRDS)
2257 return -ENODEV;
2258 brdp = stl_brds[stl_brdstats.brd];
2259 if (brdp == NULL)
2260 return -ENODEV;
2261
2262 memset(&stl_brdstats, 0, sizeof(combrd_t));
2263 stl_brdstats.brd = brdp->brdnr;
2264 stl_brdstats.type = brdp->brdtype;
2265 stl_brdstats.hwid = brdp->hwid;
2266 stl_brdstats.state = brdp->state;
2267 stl_brdstats.ioaddr = brdp->ioaddr1;
2268 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2269 stl_brdstats.irq = brdp->irq;
2270 stl_brdstats.nrpanels = brdp->nrpanels;
2271 stl_brdstats.nrports = brdp->nrports;
2272 for (i = 0; i < brdp->nrpanels; i++) {
2273 panelp = brdp->panels[i];
2274 stl_brdstats.panels[i].panel = i;
2275 stl_brdstats.panels[i].hwid = panelp->hwid;
2276 stl_brdstats.panels[i].nrports = panelp->nrports;
2277 }
2278
2279 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2280}
2281
2282/*****************************************************************************/
2283
2284/*
2285 * Resolve the referenced port number into a port struct pointer.
2286 */
2287
2288static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2289{
2290 struct stlbrd *brdp;
2291 struct stlpanel *panelp;
2292
2293 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2294 return NULL;
2295 brdp = stl_brds[brdnr];
2296 if (brdp == NULL)
2297 return NULL;
2298 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2299 return NULL;
2300 panelp = brdp->panels[panelnr];
2301 if (panelp == NULL)
2302 return NULL;
2303 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2304 return NULL;
2305 return panelp->ports[portnr];
2306}
2307
2308/*****************************************************************************/
2309
2310/*
2311 * Return the port stats structure to user app. A NULL port struct
2312 * pointer passed in means that we need to find out from the app
2313 * what port to get stats for (used through board control device).
2314 */
2315
2316static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp)
2317{
2318 comstats_t stl_comstats;
2319 unsigned char *head, *tail;
2320 unsigned long flags;
2321
2322 if (!portp) {
2323 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2324 return -EFAULT;
2325 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2326 stl_comstats.port);
2327 if (portp == NULL)
2328 return -ENODEV;
2329 }
2330
2331 mutex_lock(&portp->port.mutex);
2332 portp->stats.state = portp->istate;
2333 portp->stats.flags = portp->port.flags;
2334 portp->stats.hwid = portp->hwid;
2335
2336 portp->stats.ttystate = 0;
2337 portp->stats.cflags = 0;
2338 portp->stats.iflags = 0;
2339 portp->stats.oflags = 0;
2340 portp->stats.lflags = 0;
2341 portp->stats.rxbuffered = 0;
2342
2343 spin_lock_irqsave(&stallion_lock, flags);
2344 if (tty != NULL && portp->port.tty == tty) {
2345 portp->stats.ttystate = tty->flags;
2346 /* No longer available as a statistic */
2347 portp->stats.rxbuffered = 1; /*tty->flip.count; */
2348 if (tty->termios != NULL) {
2349 portp->stats.cflags = tty->termios->c_cflag;
2350 portp->stats.iflags = tty->termios->c_iflag;
2351 portp->stats.oflags = tty->termios->c_oflag;
2352 portp->stats.lflags = tty->termios->c_lflag;
2353 }
2354 }
2355 spin_unlock_irqrestore(&stallion_lock, flags);
2356
2357 head = portp->tx.head;
2358 tail = portp->tx.tail;
2359 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2360 (STL_TXBUFSIZE - (tail - head));
2361
2362 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2363 mutex_unlock(&portp->port.mutex);
2364
2365 return copy_to_user(cp, &portp->stats,
2366 sizeof(comstats_t)) ? -EFAULT : 0;
2367}
2368
2369/*****************************************************************************/
2370
2371/*
2372 * Clear the port stats structure. We also return it zeroed out...
2373 */
2374
2375static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2376{
2377 comstats_t stl_comstats;
2378
2379 if (!portp) {
2380 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2381 return -EFAULT;
2382 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2383 stl_comstats.port);
2384 if (portp == NULL)
2385 return -ENODEV;
2386 }
2387
2388 mutex_lock(&portp->port.mutex);
2389 memset(&portp->stats, 0, sizeof(comstats_t));
2390 portp->stats.brd = portp->brdnr;
2391 portp->stats.panel = portp->panelnr;
2392 portp->stats.port = portp->portnr;
2393 mutex_unlock(&portp->port.mutex);
2394 return copy_to_user(cp, &portp->stats,
2395 sizeof(comstats_t)) ? -EFAULT : 0;
2396}
2397
2398/*****************************************************************************/
2399
2400/*
2401 * Return the entire driver ports structure to a user app.
2402 */
2403
2404static int stl_getportstruct(struct stlport __user *arg)
2405{
2406 struct stlport stl_dummyport;
2407 struct stlport *portp;
2408
2409 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2410 return -EFAULT;
2411 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2412 stl_dummyport.portnr);
2413 if (!portp)
2414 return -ENODEV;
2415 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2416}
2417
2418/*****************************************************************************/
2419
2420/*
2421 * Return the entire driver board structure to a user app.
2422 */
2423
2424static int stl_getbrdstruct(struct stlbrd __user *arg)
2425{
2426 struct stlbrd stl_dummybrd;
2427 struct stlbrd *brdp;
2428
2429 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2430 return -EFAULT;
2431 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2432 return -ENODEV;
2433 brdp = stl_brds[stl_dummybrd.brdnr];
2434 if (!brdp)
2435 return -ENODEV;
2436 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2437}
2438
2439/*****************************************************************************/
2440
2441/*
2442 * The "staliomem" device is also required to do some special operations
2443 * on the board and/or ports. In this driver it is mostly used for stats
2444 * collection.
2445 */
2446
2447static long stl_memioctl(struct file *fp, unsigned int cmd, unsigned long arg)
2448{
2449 int brdnr, rc;
2450 void __user *argp = (void __user *)arg;
2451
2452 pr_debug("stl_memioctl(fp=%p,cmd=%x,arg=%lx)\n", fp, cmd,arg);
2453
2454 brdnr = iminor(fp->f_dentry->d_inode);
2455 if (brdnr >= STL_MAXBRDS)
2456 return -ENODEV;
2457 rc = 0;
2458
2459 switch (cmd) {
2460 case COM_GETPORTSTATS:
2461 rc = stl_getportstats(NULL, NULL, argp);
2462 break;
2463 case COM_CLRPORTSTATS:
2464 rc = stl_clrportstats(NULL, argp);
2465 break;
2466 case COM_GETBRDSTATS:
2467 rc = stl_getbrdstats(argp);
2468 break;
2469 case COM_READPORT:
2470 rc = stl_getportstruct(argp);
2471 break;
2472 case COM_READBOARD:
2473 rc = stl_getbrdstruct(argp);
2474 break;
2475 default:
2476 rc = -ENOIOCTLCMD;
2477 break;
2478 }
2479 return rc;
2480}
2481
2482static const struct tty_operations stl_ops = {
2483 .open = stl_open,
2484 .close = stl_close,
2485 .write = stl_write,
2486 .put_char = stl_putchar,
2487 .flush_chars = stl_flushchars,
2488 .write_room = stl_writeroom,
2489 .chars_in_buffer = stl_charsinbuffer,
2490 .ioctl = stl_ioctl,
2491 .set_termios = stl_settermios,
2492 .throttle = stl_throttle,
2493 .unthrottle = stl_unthrottle,
2494 .stop = stl_stop,
2495 .start = stl_start,
2496 .hangup = stl_hangup,
2497 .flush_buffer = stl_flushbuffer,
2498 .break_ctl = stl_breakctl,
2499 .wait_until_sent = stl_waituntilsent,
2500 .send_xchar = stl_sendxchar,
2501 .tiocmget = stl_tiocmget,
2502 .tiocmset = stl_tiocmset,
2503 .proc_fops = &stl_proc_fops,
2504};
2505
2506static const struct tty_port_operations stl_port_ops = {
2507 .carrier_raised = stl_carrier_raised,
2508 .dtr_rts = stl_dtr_rts,
2509 .activate = stl_activate,
2510 .shutdown = stl_shutdown,
2511};
2512
2513/*****************************************************************************/
2514/* CD1400 HARDWARE FUNCTIONS */
2515/*****************************************************************************/
2516
2517/*
2518 * These functions get/set/update the registers of the cd1400 UARTs.
2519 * Access to the cd1400 registers is via an address/data io port pair.
2520 * (Maybe should make this inline...)
2521 */
2522
2523static int stl_cd1400getreg(struct stlport *portp, int regnr)
2524{
2525 outb((regnr + portp->uartaddr), portp->ioaddr);
2526 return inb(portp->ioaddr + EREG_DATA);
2527}
2528
2529static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2530{
2531 outb(regnr + portp->uartaddr, portp->ioaddr);
2532 outb(value, portp->ioaddr + EREG_DATA);
2533}
2534
2535static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2536{
2537 outb(regnr + portp->uartaddr, portp->ioaddr);
2538 if (inb(portp->ioaddr + EREG_DATA) != value) {
2539 outb(value, portp->ioaddr + EREG_DATA);
2540 return 1;
2541 }
2542 return 0;
2543}
2544
2545/*****************************************************************************/
2546
2547/*
2548 * Inbitialize the UARTs in a panel. We don't care what sort of board
2549 * these ports are on - since the port io registers are almost
2550 * identical when dealing with ports.
2551 */
2552
2553static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2554{
2555 unsigned int gfrcr;
2556 int chipmask, i, j;
2557 int nrchips, uartaddr, ioaddr;
2558 unsigned long flags;
2559
2560 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2561
2562 spin_lock_irqsave(&brd_lock, flags);
2563 BRDENABLE(panelp->brdnr, panelp->pagenr);
2564
2565/*
2566 * Check that each chip is present and started up OK.
2567 */
2568 chipmask = 0;
2569 nrchips = panelp->nrports / CD1400_PORTS;
2570 for (i = 0; i < nrchips; i++) {
2571 if (brdp->brdtype == BRD_ECHPCI) {
2572 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2573 ioaddr = panelp->iobase;
2574 } else
2575 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2576 uartaddr = (i & 0x01) ? 0x080 : 0;
2577 outb((GFRCR + uartaddr), ioaddr);
2578 outb(0, (ioaddr + EREG_DATA));
2579 outb((CCR + uartaddr), ioaddr);
2580 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2581 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2582 outb((GFRCR + uartaddr), ioaddr);
2583 for (j = 0; j < CCR_MAXWAIT; j++)
2584 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2585 break;
2586
2587 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2588 printk("STALLION: cd1400 not responding, "
2589 "brd=%d panel=%d chip=%d\n",
2590 panelp->brdnr, panelp->panelnr, i);
2591 continue;
2592 }
2593 chipmask |= (0x1 << i);
2594 outb((PPR + uartaddr), ioaddr);
2595 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2596 }
2597
2598 BRDDISABLE(panelp->brdnr);
2599 spin_unlock_irqrestore(&brd_lock, flags);
2600 return chipmask;
2601}
2602
2603/*****************************************************************************/
2604
2605/*
2606 * Initialize hardware specific port registers.
2607 */
2608
2609static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2610{
2611 unsigned long flags;
2612 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2613 panelp, portp);
2614
2615 if ((brdp == NULL) || (panelp == NULL) ||
2616 (portp == NULL))
2617 return;
2618
2619 spin_lock_irqsave(&brd_lock, flags);
2620 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2621 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2622 portp->uartaddr = (portp->portnr & 0x04) << 5;
2623 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2624
2625 BRDENABLE(portp->brdnr, portp->pagenr);
2626 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2627 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2628 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2629 BRDDISABLE(portp->brdnr);
2630 spin_unlock_irqrestore(&brd_lock, flags);
2631}
2632
2633/*****************************************************************************/
2634
2635/*
2636 * Wait for the command register to be ready. We will poll this,
2637 * since it won't usually take too long to be ready.
2638 */
2639
2640static void stl_cd1400ccrwait(struct stlport *portp)
2641{
2642 int i;
2643
2644 for (i = 0; i < CCR_MAXWAIT; i++)
2645 if (stl_cd1400getreg(portp, CCR) == 0)
2646 return;
2647
2648 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2649 portp->portnr, portp->panelnr, portp->brdnr);
2650}
2651
2652/*****************************************************************************/
2653
2654/*
2655 * Set up the cd1400 registers for a port based on the termios port
2656 * settings.
2657 */
2658
2659static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2660{
2661 struct stlbrd *brdp;
2662 unsigned long flags;
2663 unsigned int clkdiv, baudrate;
2664 unsigned char cor1, cor2, cor3;
2665 unsigned char cor4, cor5, ccr;
2666 unsigned char srer, sreron, sreroff;
2667 unsigned char mcor1, mcor2, rtpr;
2668 unsigned char clk, div;
2669
2670 cor1 = 0;
2671 cor2 = 0;
2672 cor3 = 0;
2673 cor4 = 0;
2674 cor5 = 0;
2675 ccr = 0;
2676 rtpr = 0;
2677 clk = 0;
2678 div = 0;
2679 mcor1 = 0;
2680 mcor2 = 0;
2681 sreron = 0;
2682 sreroff = 0;
2683
2684 brdp = stl_brds[portp->brdnr];
2685 if (brdp == NULL)
2686 return;
2687
2688/*
2689 * Set up the RX char ignore mask with those RX error types we
2690 * can ignore. We can get the cd1400 to help us out a little here,
2691 * it will ignore parity errors and breaks for us.
2692 */
2693 portp->rxignoremsk = 0;
2694 if (tiosp->c_iflag & IGNPAR) {
2695 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2696 cor1 |= COR1_PARIGNORE;
2697 }
2698 if (tiosp->c_iflag & IGNBRK) {
2699 portp->rxignoremsk |= ST_BREAK;
2700 cor4 |= COR4_IGNBRK;
2701 }
2702
2703 portp->rxmarkmsk = ST_OVERRUN;
2704 if (tiosp->c_iflag & (INPCK | PARMRK))
2705 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2706 if (tiosp->c_iflag & BRKINT)
2707 portp->rxmarkmsk |= ST_BREAK;
2708
2709/*
2710 * Go through the char size, parity and stop bits and set all the
2711 * option register appropriately.
2712 */
2713 switch (tiosp->c_cflag & CSIZE) {
2714 case CS5:
2715 cor1 |= COR1_CHL5;
2716 break;
2717 case CS6:
2718 cor1 |= COR1_CHL6;
2719 break;
2720 case CS7:
2721 cor1 |= COR1_CHL7;
2722 break;
2723 default:
2724 cor1 |= COR1_CHL8;
2725 break;
2726 }
2727
2728 if (tiosp->c_cflag & CSTOPB)
2729 cor1 |= COR1_STOP2;
2730 else
2731 cor1 |= COR1_STOP1;
2732
2733 if (tiosp->c_cflag & PARENB) {
2734 if (tiosp->c_cflag & PARODD)
2735 cor1 |= (COR1_PARENB | COR1_PARODD);
2736 else
2737 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2738 } else {
2739 cor1 |= COR1_PARNONE;
2740 }
2741
2742/*
2743 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2744 * space for hardware flow control and the like. This should be set to
2745 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2746 * really be based on VTIME.
2747 */
2748 cor3 |= FIFO_RXTHRESHOLD;
2749 rtpr = 2;
2750
2751/*
2752 * Calculate the baud rate timers. For now we will just assume that
2753 * the input and output baud are the same. Could have used a baud
2754 * table here, but this way we can generate virtually any baud rate
2755 * we like!
2756 */
2757 baudrate = tiosp->c_cflag & CBAUD;
2758 if (baudrate & CBAUDEX) {
2759 baudrate &= ~CBAUDEX;
2760 if ((baudrate < 1) || (baudrate > 4))
2761 tiosp->c_cflag &= ~CBAUDEX;
2762 else
2763 baudrate += 15;
2764 }
2765 baudrate = stl_baudrates[baudrate];
2766 if ((tiosp->c_cflag & CBAUD) == B38400) {
2767 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2768 baudrate = 57600;
2769 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2770 baudrate = 115200;
2771 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2772 baudrate = 230400;
2773 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2774 baudrate = 460800;
2775 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2776 baudrate = (portp->baud_base / portp->custom_divisor);
2777 }
2778 if (baudrate > STL_CD1400MAXBAUD)
2779 baudrate = STL_CD1400MAXBAUD;
2780
2781 if (baudrate > 0) {
2782 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2783 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2784 if (clkdiv < 0x100)
2785 break;
2786 }
2787 div = (unsigned char) clkdiv;
2788 }
2789
2790/*
2791 * Check what form of modem signaling is required and set it up.
2792 */
2793 if ((tiosp->c_cflag & CLOCAL) == 0) {
2794 mcor1 |= MCOR1_DCD;
2795 mcor2 |= MCOR2_DCD;
2796 sreron |= SRER_MODEM;
2797 portp->port.flags |= ASYNC_CHECK_CD;
2798 } else
2799 portp->port.flags &= ~ASYNC_CHECK_CD;
2800
2801/*
2802 * Setup cd1400 enhanced modes if we can. In particular we want to
2803 * handle as much of the flow control as possible automatically. As
2804 * well as saving a few CPU cycles it will also greatly improve flow
2805 * control reliability.
2806 */
2807 if (tiosp->c_iflag & IXON) {
2808 cor2 |= COR2_TXIBE;
2809 cor3 |= COR3_SCD12;
2810 if (tiosp->c_iflag & IXANY)
2811 cor2 |= COR2_IXM;
2812 }
2813
2814 if (tiosp->c_cflag & CRTSCTS) {
2815 cor2 |= COR2_CTSAE;
2816 mcor1 |= FIFO_RTSTHRESHOLD;
2817 }
2818
2819/*
2820 * All cd1400 register values calculated so go through and set
2821 * them all up.
2822 */
2823
2824 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
2825 portp->portnr, portp->panelnr, portp->brdnr);
2826 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
2827 cor1, cor2, cor3, cor4, cor5);
2828 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
2829 mcor1, mcor2, rtpr, sreron, sreroff);
2830 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
2831 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
2832 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
2833 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
2834
2835 spin_lock_irqsave(&brd_lock, flags);
2836 BRDENABLE(portp->brdnr, portp->pagenr);
2837 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
2838 srer = stl_cd1400getreg(portp, SRER);
2839 stl_cd1400setreg(portp, SRER, 0);
2840 if (stl_cd1400updatereg(portp, COR1, cor1))
2841 ccr = 1;
2842 if (stl_cd1400updatereg(portp, COR2, cor2))
2843 ccr = 1;
2844 if (stl_cd1400updatereg(portp, COR3, cor3))
2845 ccr = 1;
2846 if (ccr) {
2847 stl_cd1400ccrwait(portp);
2848 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
2849 }
2850 stl_cd1400setreg(portp, COR4, cor4);
2851 stl_cd1400setreg(portp, COR5, cor5);
2852 stl_cd1400setreg(portp, MCOR1, mcor1);
2853 stl_cd1400setreg(portp, MCOR2, mcor2);
2854 if (baudrate > 0) {
2855 stl_cd1400setreg(portp, TCOR, clk);
2856 stl_cd1400setreg(portp, TBPR, div);
2857 stl_cd1400setreg(portp, RCOR, clk);
2858 stl_cd1400setreg(portp, RBPR, div);
2859 }
2860 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
2861 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
2862 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
2863 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
2864 stl_cd1400setreg(portp, RTPR, rtpr);
2865 mcor1 = stl_cd1400getreg(portp, MSVR1);
2866 if (mcor1 & MSVR1_DCD)
2867 portp->sigs |= TIOCM_CD;
2868 else
2869 portp->sigs &= ~TIOCM_CD;
2870 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
2871 BRDDISABLE(portp->brdnr);
2872 spin_unlock_irqrestore(&brd_lock, flags);
2873}
2874
2875/*****************************************************************************/
2876
2877/*
2878 * Set the state of the DTR and RTS signals.
2879 */
2880
2881static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
2882{
2883 unsigned char msvr1, msvr2;
2884 unsigned long flags;
2885
2886 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
2887 portp, dtr, rts);
2888
2889 msvr1 = 0;
2890 msvr2 = 0;
2891 if (dtr > 0)
2892 msvr1 = MSVR1_DTR;
2893 if (rts > 0)
2894 msvr2 = MSVR2_RTS;
2895
2896 spin_lock_irqsave(&brd_lock, flags);
2897 BRDENABLE(portp->brdnr, portp->pagenr);
2898 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2899 if (rts >= 0)
2900 stl_cd1400setreg(portp, MSVR2, msvr2);
2901 if (dtr >= 0)
2902 stl_cd1400setreg(portp, MSVR1, msvr1);
2903 BRDDISABLE(portp->brdnr);
2904 spin_unlock_irqrestore(&brd_lock, flags);
2905}
2906
2907/*****************************************************************************/
2908
2909/*
2910 * Return the state of the signals.
2911 */
2912
2913static int stl_cd1400getsignals(struct stlport *portp)
2914{
2915 unsigned char msvr1, msvr2;
2916 unsigned long flags;
2917 int sigs;
2918
2919 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
2920
2921 spin_lock_irqsave(&brd_lock, flags);
2922 BRDENABLE(portp->brdnr, portp->pagenr);
2923 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2924 msvr1 = stl_cd1400getreg(portp, MSVR1);
2925 msvr2 = stl_cd1400getreg(portp, MSVR2);
2926 BRDDISABLE(portp->brdnr);
2927 spin_unlock_irqrestore(&brd_lock, flags);
2928
2929 sigs = 0;
2930 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
2931 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
2932 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
2933 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
2934#if 0
2935 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
2936 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
2937#else
2938 sigs |= TIOCM_DSR;
2939#endif
2940 return sigs;
2941}
2942
2943/*****************************************************************************/
2944
2945/*
2946 * Enable/Disable the Transmitter and/or Receiver.
2947 */
2948
2949static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
2950{
2951 unsigned char ccr;
2952 unsigned long flags;
2953
2954 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
2955
2956 ccr = 0;
2957
2958 if (tx == 0)
2959 ccr |= CCR_TXDISABLE;
2960 else if (tx > 0)
2961 ccr |= CCR_TXENABLE;
2962 if (rx == 0)
2963 ccr |= CCR_RXDISABLE;
2964 else if (rx > 0)
2965 ccr |= CCR_RXENABLE;
2966
2967 spin_lock_irqsave(&brd_lock, flags);
2968 BRDENABLE(portp->brdnr, portp->pagenr);
2969 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2970 stl_cd1400ccrwait(portp);
2971 stl_cd1400setreg(portp, CCR, ccr);
2972 stl_cd1400ccrwait(portp);
2973 BRDDISABLE(portp->brdnr);
2974 spin_unlock_irqrestore(&brd_lock, flags);
2975}
2976
2977/*****************************************************************************/
2978
2979/*
2980 * Start/stop the Transmitter and/or Receiver.
2981 */
2982
2983static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
2984{
2985 unsigned char sreron, sreroff;
2986 unsigned long flags;
2987
2988 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
2989
2990 sreron = 0;
2991 sreroff = 0;
2992 if (tx == 0)
2993 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
2994 else if (tx == 1)
2995 sreron |= SRER_TXDATA;
2996 else if (tx >= 2)
2997 sreron |= SRER_TXEMPTY;
2998 if (rx == 0)
2999 sreroff |= SRER_RXDATA;
3000 else if (rx > 0)
3001 sreron |= SRER_RXDATA;
3002
3003 spin_lock_irqsave(&brd_lock, flags);
3004 BRDENABLE(portp->brdnr, portp->pagenr);
3005 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3006 stl_cd1400setreg(portp, SRER,
3007 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3008 BRDDISABLE(portp->brdnr);
3009 if (tx > 0)
3010 set_bit(ASYI_TXBUSY, &portp->istate);
3011 spin_unlock_irqrestore(&brd_lock, flags);
3012}
3013
3014/*****************************************************************************/
3015
3016/*
3017 * Disable all interrupts from this port.
3018 */
3019
3020static void stl_cd1400disableintrs(struct stlport *portp)
3021{
3022 unsigned long flags;
3023
3024 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3025
3026 spin_lock_irqsave(&brd_lock, flags);
3027 BRDENABLE(portp->brdnr, portp->pagenr);
3028 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3029 stl_cd1400setreg(portp, SRER, 0);
3030 BRDDISABLE(portp->brdnr);
3031 spin_unlock_irqrestore(&brd_lock, flags);
3032}
3033
3034/*****************************************************************************/
3035
3036static void stl_cd1400sendbreak(struct stlport *portp, int len)
3037{
3038 unsigned long flags;
3039
3040 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3041
3042 spin_lock_irqsave(&brd_lock, flags);
3043 BRDENABLE(portp->brdnr, portp->pagenr);
3044 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3045 stl_cd1400setreg(portp, SRER,
3046 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3047 SRER_TXEMPTY));
3048 BRDDISABLE(portp->brdnr);
3049 portp->brklen = len;
3050 if (len == 1)
3051 portp->stats.txbreaks++;
3052 spin_unlock_irqrestore(&brd_lock, flags);
3053}
3054
3055/*****************************************************************************/
3056
3057/*
3058 * Take flow control actions...
3059 */
3060
3061static void stl_cd1400flowctrl(struct stlport *portp, int state)
3062{
3063 struct tty_struct *tty;
3064 unsigned long flags;
3065
3066 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3067
3068 if (portp == NULL)
3069 return;
3070 tty = tty_port_tty_get(&portp->port);
3071 if (tty == NULL)
3072 return;
3073
3074 spin_lock_irqsave(&brd_lock, flags);
3075 BRDENABLE(portp->brdnr, portp->pagenr);
3076 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3077
3078 if (state) {
3079 if (tty->termios->c_iflag & IXOFF) {
3080 stl_cd1400ccrwait(portp);
3081 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3082 portp->stats.rxxon++;
3083 stl_cd1400ccrwait(portp);
3084 }
3085/*
3086 * Question: should we return RTS to what it was before? It may
3087 * have been set by an ioctl... Suppose not, since if you have
3088 * hardware flow control set then it is pretty silly to go and
3089 * set the RTS line by hand.
3090 */
3091 if (tty->termios->c_cflag & CRTSCTS) {
3092 stl_cd1400setreg(portp, MCOR1,
3093 (stl_cd1400getreg(portp, MCOR1) |
3094 FIFO_RTSTHRESHOLD));
3095 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3096 portp->stats.rxrtson++;
3097 }
3098 } else {
3099 if (tty->termios->c_iflag & IXOFF) {
3100 stl_cd1400ccrwait(portp);
3101 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3102 portp->stats.rxxoff++;
3103 stl_cd1400ccrwait(portp);
3104 }
3105 if (tty->termios->c_cflag & CRTSCTS) {
3106 stl_cd1400setreg(portp, MCOR1,
3107 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3108 stl_cd1400setreg(portp, MSVR2, 0);
3109 portp->stats.rxrtsoff++;
3110 }
3111 }
3112
3113 BRDDISABLE(portp->brdnr);
3114 spin_unlock_irqrestore(&brd_lock, flags);
3115 tty_kref_put(tty);
3116}
3117
3118/*****************************************************************************/
3119
3120/*
3121 * Send a flow control character...
3122 */
3123
3124static void stl_cd1400sendflow(struct stlport *portp, int state)
3125{
3126 struct tty_struct *tty;
3127 unsigned long flags;
3128
3129 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3130
3131 if (portp == NULL)
3132 return;
3133 tty = tty_port_tty_get(&portp->port);
3134 if (tty == NULL)
3135 return;
3136
3137 spin_lock_irqsave(&brd_lock, flags);
3138 BRDENABLE(portp->brdnr, portp->pagenr);
3139 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3140 if (state) {
3141 stl_cd1400ccrwait(portp);
3142 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3143 portp->stats.rxxon++;
3144 stl_cd1400ccrwait(portp);
3145 } else {
3146 stl_cd1400ccrwait(portp);
3147 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3148 portp->stats.rxxoff++;
3149 stl_cd1400ccrwait(portp);
3150 }
3151 BRDDISABLE(portp->brdnr);
3152 spin_unlock_irqrestore(&brd_lock, flags);
3153 tty_kref_put(tty);
3154}
3155
3156/*****************************************************************************/
3157
3158static void stl_cd1400flush(struct stlport *portp)
3159{
3160 unsigned long flags;
3161
3162 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3163
3164 if (portp == NULL)
3165 return;
3166
3167 spin_lock_irqsave(&brd_lock, flags);
3168 BRDENABLE(portp->brdnr, portp->pagenr);
3169 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3170 stl_cd1400ccrwait(portp);
3171 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3172 stl_cd1400ccrwait(portp);
3173 portp->tx.tail = portp->tx.head;
3174 BRDDISABLE(portp->brdnr);
3175 spin_unlock_irqrestore(&brd_lock, flags);
3176}
3177
3178/*****************************************************************************/
3179
3180/*
3181 * Return the current state of data flow on this port. This is only
3182 * really interesting when determining if data has fully completed
3183 * transmission or not... This is easy for the cd1400, it accurately
3184 * maintains the busy port flag.
3185 */
3186
3187static int stl_cd1400datastate(struct stlport *portp)
3188{
3189 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3190
3191 if (portp == NULL)
3192 return 0;
3193
3194 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3195}
3196
3197/*****************************************************************************/
3198
3199/*
3200 * Interrupt service routine for cd1400 EasyIO boards.
3201 */
3202
3203static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3204{
3205 unsigned char svrtype;
3206
3207 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3208
3209 spin_lock(&brd_lock);
3210 outb(SVRR, iobase);
3211 svrtype = inb(iobase + EREG_DATA);
3212 if (panelp->nrports > 4) {
3213 outb((SVRR + 0x80), iobase);
3214 svrtype |= inb(iobase + EREG_DATA);
3215 }
3216
3217 if (svrtype & SVRR_RX)
3218 stl_cd1400rxisr(panelp, iobase);
3219 else if (svrtype & SVRR_TX)
3220 stl_cd1400txisr(panelp, iobase);
3221 else if (svrtype & SVRR_MDM)
3222 stl_cd1400mdmisr(panelp, iobase);
3223
3224 spin_unlock(&brd_lock);
3225}
3226
3227/*****************************************************************************/
3228
3229/*
3230 * Interrupt service routine for cd1400 panels.
3231 */
3232
3233static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3234{
3235 unsigned char svrtype;
3236
3237 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3238
3239 outb(SVRR, iobase);
3240 svrtype = inb(iobase + EREG_DATA);
3241 outb((SVRR + 0x80), iobase);
3242 svrtype |= inb(iobase + EREG_DATA);
3243 if (svrtype & SVRR_RX)
3244 stl_cd1400rxisr(panelp, iobase);
3245 else if (svrtype & SVRR_TX)
3246 stl_cd1400txisr(panelp, iobase);
3247 else if (svrtype & SVRR_MDM)
3248 stl_cd1400mdmisr(panelp, iobase);
3249}
3250
3251
3252/*****************************************************************************/
3253
3254/*
3255 * Unfortunately we need to handle breaks in the TX data stream, since
3256 * this is the only way to generate them on the cd1400.
3257 */
3258
3259static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3260{
3261 if (portp->brklen == 1) {
3262 outb((COR2 + portp->uartaddr), ioaddr);
3263 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3264 (ioaddr + EREG_DATA));
3265 outb((TDR + portp->uartaddr), ioaddr);
3266 outb(ETC_CMD, (ioaddr + EREG_DATA));
3267 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3268 outb((SRER + portp->uartaddr), ioaddr);
3269 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3270 (ioaddr + EREG_DATA));
3271 return 1;
3272 } else if (portp->brklen > 1) {
3273 outb((TDR + portp->uartaddr), ioaddr);
3274 outb(ETC_CMD, (ioaddr + EREG_DATA));
3275 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3276 portp->brklen = -1;
3277 return 1;
3278 } else {
3279 outb((COR2 + portp->uartaddr), ioaddr);
3280 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3281 (ioaddr + EREG_DATA));
3282 portp->brklen = 0;
3283 }
3284 return 0;
3285}
3286
3287/*****************************************************************************/
3288
3289/*
3290 * Transmit interrupt handler. This has gotta be fast! Handling TX
3291 * chars is pretty simple, stuff as many as possible from the TX buffer
3292 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3293 * are embedded as commands in the data stream. Oh no, had to use a goto!
3294 * This could be optimized more, will do when I get time...
3295 * In practice it is possible that interrupts are enabled but that the
3296 * port has been hung up. Need to handle not having any TX buffer here,
3297 * this is done by using the side effect that head and tail will also
3298 * be NULL if the buffer has been freed.
3299 */
3300
3301static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3302{
3303 struct stlport *portp;
3304 int len, stlen;
3305 char *head, *tail;
3306 unsigned char ioack, srer;
3307 struct tty_struct *tty;
3308
3309 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3310
3311 ioack = inb(ioaddr + EREG_TXACK);
3312 if (((ioack & panelp->ackmask) != 0) ||
3313 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3314 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3315 return;
3316 }
3317 portp = panelp->ports[(ioack >> 3)];
3318
3319/*
3320 * Unfortunately we need to handle breaks in the data stream, since
3321 * this is the only way to generate them on the cd1400. Do it now if
3322 * a break is to be sent.
3323 */
3324 if (portp->brklen != 0)
3325 if (stl_cd1400breakisr(portp, ioaddr))
3326 goto stl_txalldone;
3327
3328 head = portp->tx.head;
3329 tail = portp->tx.tail;
3330 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3331 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3332 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3333 set_bit(ASYI_TXLOW, &portp->istate);
3334 tty = tty_port_tty_get(&portp->port);
3335 if (tty) {
3336 tty_wakeup(tty);
3337 tty_kref_put(tty);
3338 }
3339 }
3340
3341 if (len == 0) {
3342 outb((SRER + portp->uartaddr), ioaddr);
3343 srer = inb(ioaddr + EREG_DATA);
3344 if (srer & SRER_TXDATA) {
3345 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3346 } else {
3347 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3348 clear_bit(ASYI_TXBUSY, &portp->istate);
3349 }
3350 outb(srer, (ioaddr + EREG_DATA));
3351 } else {
3352 len = min(len, CD1400_TXFIFOSIZE);
3353 portp->stats.txtotal += len;
3354 stlen = min_t(unsigned int, len,
3355 (portp->tx.buf + STL_TXBUFSIZE) - tail);
3356 outb((TDR + portp->uartaddr), ioaddr);
3357 outsb((ioaddr + EREG_DATA), tail, stlen);
3358 len -= stlen;
3359 tail += stlen;
3360 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3361 tail = portp->tx.buf;
3362 if (len > 0) {
3363 outsb((ioaddr + EREG_DATA), tail, len);
3364 tail += len;
3365 }
3366 portp->tx.tail = tail;
3367 }
3368
3369stl_txalldone:
3370 outb((EOSRR + portp->uartaddr), ioaddr);
3371 outb(0, (ioaddr + EREG_DATA));
3372}
3373
3374/*****************************************************************************/
3375
3376/*
3377 * Receive character interrupt handler. Determine if we have good chars
3378 * or bad chars and then process appropriately. Good chars are easy
3379 * just shove the lot into the RX buffer and set all status byte to 0.
3380 * If a bad RX char then process as required. This routine needs to be
3381 * fast! In practice it is possible that we get an interrupt on a port
3382 * that is closed. This can happen on hangups - since they completely
3383 * shutdown a port not in user context. Need to handle this case.
3384 */
3385
3386static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3387{
3388 struct stlport *portp;
3389 struct tty_struct *tty;
3390 unsigned int ioack, len, buflen;
3391 unsigned char status;
3392 char ch;
3393
3394 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3395
3396 ioack = inb(ioaddr + EREG_RXACK);
3397 if ((ioack & panelp->ackmask) != 0) {
3398 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3399 return;
3400 }
3401 portp = panelp->ports[(ioack >> 3)];
3402 tty = tty_port_tty_get(&portp->port);
3403
3404 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3405 outb((RDCR + portp->uartaddr), ioaddr);
3406 len = inb(ioaddr + EREG_DATA);
3407 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3408 len = min_t(unsigned int, len, sizeof(stl_unwanted));
3409 outb((RDSR + portp->uartaddr), ioaddr);
3410 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3411 portp->stats.rxlost += len;
3412 portp->stats.rxtotal += len;
3413 } else {
3414 len = min(len, buflen);
3415 if (len > 0) {
3416 unsigned char *ptr;
3417 outb((RDSR + portp->uartaddr), ioaddr);
3418 tty_prepare_flip_string(tty, &ptr, len);
3419 insb((ioaddr + EREG_DATA), ptr, len);
3420 tty_schedule_flip(tty);
3421 portp->stats.rxtotal += len;
3422 }
3423 }
3424 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3425 outb((RDSR + portp->uartaddr), ioaddr);
3426 status = inb(ioaddr + EREG_DATA);
3427 ch = inb(ioaddr + EREG_DATA);
3428 if (status & ST_PARITY)
3429 portp->stats.rxparity++;
3430 if (status & ST_FRAMING)
3431 portp->stats.rxframing++;
3432 if (status & ST_OVERRUN)
3433 portp->stats.rxoverrun++;
3434 if (status & ST_BREAK)
3435 portp->stats.rxbreaks++;
3436 if (status & ST_SCHARMASK) {
3437 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3438 portp->stats.txxon++;
3439 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3440 portp->stats.txxoff++;
3441 goto stl_rxalldone;
3442 }
3443 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3444 if (portp->rxmarkmsk & status) {
3445 if (status & ST_BREAK) {
3446 status = TTY_BREAK;
3447 if (portp->port.flags & ASYNC_SAK) {
3448 do_SAK(tty);
3449 BRDENABLE(portp->brdnr, portp->pagenr);
3450 }
3451 } else if (status & ST_PARITY)
3452 status = TTY_PARITY;
3453 else if (status & ST_FRAMING)
3454 status = TTY_FRAME;
3455 else if(status & ST_OVERRUN)
3456 status = TTY_OVERRUN;
3457 else
3458 status = 0;
3459 } else
3460 status = 0;
3461 tty_insert_flip_char(tty, ch, status);
3462 tty_schedule_flip(tty);
3463 }
3464 } else {
3465 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3466 tty_kref_put(tty);
3467 return;
3468 }
3469
3470stl_rxalldone:
3471 tty_kref_put(tty);
3472 outb((EOSRR + portp->uartaddr), ioaddr);
3473 outb(0, (ioaddr + EREG_DATA));
3474}
3475
3476/*****************************************************************************/
3477
3478/*
3479 * Modem interrupt handler. The is called when the modem signal line
3480 * (DCD) has changed state. Leave most of the work to the off-level
3481 * processing routine.
3482 */
3483
3484static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3485{
3486 struct stlport *portp;
3487 unsigned int ioack;
3488 unsigned char misr;
3489
3490 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3491
3492 ioack = inb(ioaddr + EREG_MDACK);
3493 if (((ioack & panelp->ackmask) != 0) ||
3494 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3495 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3496 return;
3497 }
3498 portp = panelp->ports[(ioack >> 3)];
3499
3500 outb((MISR + portp->uartaddr), ioaddr);
3501 misr = inb(ioaddr + EREG_DATA);
3502 if (misr & MISR_DCD) {
3503 stl_cd_change(portp);
3504 portp->stats.modem++;
3505 }
3506
3507 outb((EOSRR + portp->uartaddr), ioaddr);
3508 outb(0, (ioaddr + EREG_DATA));
3509}
3510
3511/*****************************************************************************/
3512/* SC26198 HARDWARE FUNCTIONS */
3513/*****************************************************************************/
3514
3515/*
3516 * These functions get/set/update the registers of the sc26198 UARTs.
3517 * Access to the sc26198 registers is via an address/data io port pair.
3518 * (Maybe should make this inline...)
3519 */
3520
3521static int stl_sc26198getreg(struct stlport *portp, int regnr)
3522{
3523 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3524 return inb(portp->ioaddr + XP_DATA);
3525}
3526
3527static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3528{
3529 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3530 outb(value, (portp->ioaddr + XP_DATA));
3531}
3532
3533static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3534{
3535 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3536 if (inb(portp->ioaddr + XP_DATA) != value) {
3537 outb(value, (portp->ioaddr + XP_DATA));
3538 return 1;
3539 }
3540 return 0;
3541}
3542
3543/*****************************************************************************/
3544
3545/*
3546 * Functions to get and set the sc26198 global registers.
3547 */
3548
3549static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3550{
3551 outb(regnr, (portp->ioaddr + XP_ADDR));
3552 return inb(portp->ioaddr + XP_DATA);
3553}
3554
3555#if 0
3556static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3557{
3558 outb(regnr, (portp->ioaddr + XP_ADDR));
3559 outb(value, (portp->ioaddr + XP_DATA));
3560}
3561#endif
3562
3563/*****************************************************************************/
3564
3565/*
3566 * Inbitialize the UARTs in a panel. We don't care what sort of board
3567 * these ports are on - since the port io registers are almost
3568 * identical when dealing with ports.
3569 */
3570
3571static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3572{
3573 int chipmask, i;
3574 int nrchips, ioaddr;
3575
3576 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3577
3578 BRDENABLE(panelp->brdnr, panelp->pagenr);
3579
3580/*
3581 * Check that each chip is present and started up OK.
3582 */
3583 chipmask = 0;
3584 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3585 if (brdp->brdtype == BRD_ECHPCI)
3586 outb(panelp->pagenr, brdp->ioctrl);
3587
3588 for (i = 0; i < nrchips; i++) {
3589 ioaddr = panelp->iobase + (i * 4);
3590 outb(SCCR, (ioaddr + XP_ADDR));
3591 outb(CR_RESETALL, (ioaddr + XP_DATA));
3592 outb(TSTR, (ioaddr + XP_ADDR));
3593 if (inb(ioaddr + XP_DATA) != 0) {
3594 printk("STALLION: sc26198 not responding, "
3595 "brd=%d panel=%d chip=%d\n",
3596 panelp->brdnr, panelp->panelnr, i);
3597 continue;
3598 }
3599 chipmask |= (0x1 << i);
3600 outb(GCCR, (ioaddr + XP_ADDR));
3601 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3602 outb(WDTRCR, (ioaddr + XP_ADDR));
3603 outb(0xff, (ioaddr + XP_DATA));
3604 }
3605
3606 BRDDISABLE(panelp->brdnr);
3607 return chipmask;
3608}
3609
3610/*****************************************************************************/
3611
3612/*
3613 * Initialize hardware specific port registers.
3614 */
3615
3616static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3617{
3618 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3619 panelp, portp);
3620
3621 if ((brdp == NULL) || (panelp == NULL) ||
3622 (portp == NULL))
3623 return;
3624
3625 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3626 portp->uartaddr = (portp->portnr & 0x07) << 4;
3627 portp->pagenr = panelp->pagenr;
3628 portp->hwid = 0x1;
3629
3630 BRDENABLE(portp->brdnr, portp->pagenr);
3631 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3632 BRDDISABLE(portp->brdnr);
3633}
3634
3635/*****************************************************************************/
3636
3637/*
3638 * Set up the sc26198 registers for a port based on the termios port
3639 * settings.
3640 */
3641
3642static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3643{
3644 struct stlbrd *brdp;
3645 unsigned long flags;
3646 unsigned int baudrate;
3647 unsigned char mr0, mr1, mr2, clk;
3648 unsigned char imron, imroff, iopr, ipr;
3649
3650 mr0 = 0;
3651 mr1 = 0;
3652 mr2 = 0;
3653 clk = 0;
3654 iopr = 0;
3655 imron = 0;
3656 imroff = 0;
3657
3658 brdp = stl_brds[portp->brdnr];
3659 if (brdp == NULL)
3660 return;
3661
3662/*
3663 * Set up the RX char ignore mask with those RX error types we
3664 * can ignore.
3665 */
3666 portp->rxignoremsk = 0;
3667 if (tiosp->c_iflag & IGNPAR)
3668 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3669 SR_RXOVERRUN);
3670 if (tiosp->c_iflag & IGNBRK)
3671 portp->rxignoremsk |= SR_RXBREAK;
3672
3673 portp->rxmarkmsk = SR_RXOVERRUN;
3674 if (tiosp->c_iflag & (INPCK | PARMRK))
3675 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3676 if (tiosp->c_iflag & BRKINT)
3677 portp->rxmarkmsk |= SR_RXBREAK;
3678
3679/*
3680 * Go through the char size, parity and stop bits and set all the
3681 * option register appropriately.
3682 */
3683 switch (tiosp->c_cflag & CSIZE) {
3684 case CS5:
3685 mr1 |= MR1_CS5;
3686 break;
3687 case CS6:
3688 mr1 |= MR1_CS6;
3689 break;
3690 case CS7:
3691 mr1 |= MR1_CS7;
3692 break;
3693 default:
3694 mr1 |= MR1_CS8;
3695 break;
3696 }
3697
3698 if (tiosp->c_cflag & CSTOPB)
3699 mr2 |= MR2_STOP2;
3700 else
3701 mr2 |= MR2_STOP1;
3702
3703 if (tiosp->c_cflag & PARENB) {
3704 if (tiosp->c_cflag & PARODD)
3705 mr1 |= (MR1_PARENB | MR1_PARODD);
3706 else
3707 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3708 } else
3709 mr1 |= MR1_PARNONE;
3710
3711 mr1 |= MR1_ERRBLOCK;
3712
3713/*
3714 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3715 * space for hardware flow control and the like. This should be set to
3716 * VMIN.
3717 */
3718 mr2 |= MR2_RXFIFOHALF;
3719
3720/*
3721 * Calculate the baud rate timers. For now we will just assume that
3722 * the input and output baud are the same. The sc26198 has a fixed
3723 * baud rate table, so only discrete baud rates possible.
3724 */
3725 baudrate = tiosp->c_cflag & CBAUD;
3726 if (baudrate & CBAUDEX) {
3727 baudrate &= ~CBAUDEX;
3728 if ((baudrate < 1) || (baudrate > 4))
3729 tiosp->c_cflag &= ~CBAUDEX;
3730 else
3731 baudrate += 15;
3732 }
3733 baudrate = stl_baudrates[baudrate];
3734 if ((tiosp->c_cflag & CBAUD) == B38400) {
3735 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3736 baudrate = 57600;
3737 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3738 baudrate = 115200;
3739 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3740 baudrate = 230400;
3741 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3742 baudrate = 460800;
3743 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3744 baudrate = (portp->baud_base / portp->custom_divisor);
3745 }
3746 if (baudrate > STL_SC26198MAXBAUD)
3747 baudrate = STL_SC26198MAXBAUD;
3748
3749 if (baudrate > 0)
3750 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3751 if (baudrate <= sc26198_baudtable[clk])
3752 break;
3753
3754/*
3755 * Check what form of modem signaling is required and set it up.
3756 */
3757 if (tiosp->c_cflag & CLOCAL) {
3758 portp->port.flags &= ~ASYNC_CHECK_CD;
3759 } else {
3760 iopr |= IOPR_DCDCOS;
3761 imron |= IR_IOPORT;
3762 portp->port.flags |= ASYNC_CHECK_CD;
3763 }
3764
3765/*
3766 * Setup sc26198 enhanced modes if we can. In particular we want to
3767 * handle as much of the flow control as possible automatically. As
3768 * well as saving a few CPU cycles it will also greatly improve flow
3769 * control reliability.
3770 */
3771 if (tiosp->c_iflag & IXON) {
3772 mr0 |= MR0_SWFTX | MR0_SWFT;
3773 imron |= IR_XONXOFF;
3774 } else
3775 imroff |= IR_XONXOFF;
3776
3777 if (tiosp->c_iflag & IXOFF)
3778 mr0 |= MR0_SWFRX;
3779
3780 if (tiosp->c_cflag & CRTSCTS) {
3781 mr2 |= MR2_AUTOCTS;
3782 mr1 |= MR1_AUTORTS;
3783 }
3784
3785/*
3786 * All sc26198 register values calculated so go through and set
3787 * them all up.
3788 */
3789
3790 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3791 portp->portnr, portp->panelnr, portp->brdnr);
3792 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3793 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3794 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3795 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3796 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3797
3798 spin_lock_irqsave(&brd_lock, flags);
3799 BRDENABLE(portp->brdnr, portp->pagenr);
3800 stl_sc26198setreg(portp, IMR, 0);
3801 stl_sc26198updatereg(portp, MR0, mr0);
3802 stl_sc26198updatereg(portp, MR1, mr1);
3803 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
3804 stl_sc26198updatereg(portp, MR2, mr2);
3805 stl_sc26198updatereg(portp, IOPIOR,
3806 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
3807
3808 if (baudrate > 0) {
3809 stl_sc26198setreg(portp, TXCSR, clk);
3810 stl_sc26198setreg(portp, RXCSR, clk);
3811 }
3812
3813 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
3814 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
3815
3816 ipr = stl_sc26198getreg(portp, IPR);
3817 if (ipr & IPR_DCD)
3818 portp->sigs &= ~TIOCM_CD;
3819 else
3820 portp->sigs |= TIOCM_CD;
3821
3822 portp->imr = (portp->imr & ~imroff) | imron;
3823 stl_sc26198setreg(portp, IMR, portp->imr);
3824 BRDDISABLE(portp->brdnr);
3825 spin_unlock_irqrestore(&brd_lock, flags);
3826}
3827
3828/*****************************************************************************/
3829
3830/*
3831 * Set the state of the DTR and RTS signals.
3832 */
3833
3834static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
3835{
3836 unsigned char iopioron, iopioroff;
3837 unsigned long flags;
3838
3839 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
3840 dtr, rts);
3841
3842 iopioron = 0;
3843 iopioroff = 0;
3844 if (dtr == 0)
3845 iopioroff |= IPR_DTR;
3846 else if (dtr > 0)
3847 iopioron |= IPR_DTR;
3848 if (rts == 0)
3849 iopioroff |= IPR_RTS;
3850 else if (rts > 0)
3851 iopioron |= IPR_RTS;
3852
3853 spin_lock_irqsave(&brd_lock, flags);
3854 BRDENABLE(portp->brdnr, portp->pagenr);
3855 stl_sc26198setreg(portp, IOPIOR,
3856 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
3857 BRDDISABLE(portp->brdnr);
3858 spin_unlock_irqrestore(&brd_lock, flags);
3859}
3860
3861/*****************************************************************************/
3862
3863/*
3864 * Return the state of the signals.
3865 */
3866
3867static int stl_sc26198getsignals(struct stlport *portp)
3868{
3869 unsigned char ipr;
3870 unsigned long flags;
3871 int sigs;
3872
3873 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
3874
3875 spin_lock_irqsave(&brd_lock, flags);
3876 BRDENABLE(portp->brdnr, portp->pagenr);
3877 ipr = stl_sc26198getreg(portp, IPR);
3878 BRDDISABLE(portp->brdnr);
3879 spin_unlock_irqrestore(&brd_lock, flags);
3880
3881 sigs = 0;
3882 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
3883 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
3884 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
3885 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
3886 sigs |= TIOCM_DSR;
3887 return sigs;
3888}
3889
3890/*****************************************************************************/
3891
3892/*
3893 * Enable/Disable the Transmitter and/or Receiver.
3894 */
3895
3896static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
3897{
3898 unsigned char ccr;
3899 unsigned long flags;
3900
3901 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
3902
3903 ccr = portp->crenable;
3904 if (tx == 0)
3905 ccr &= ~CR_TXENABLE;
3906 else if (tx > 0)
3907 ccr |= CR_TXENABLE;
3908 if (rx == 0)
3909 ccr &= ~CR_RXENABLE;
3910 else if (rx > 0)
3911 ccr |= CR_RXENABLE;
3912
3913 spin_lock_irqsave(&brd_lock, flags);
3914 BRDENABLE(portp->brdnr, portp->pagenr);
3915 stl_sc26198setreg(portp, SCCR, ccr);
3916 BRDDISABLE(portp->brdnr);
3917 portp->crenable = ccr;
3918 spin_unlock_irqrestore(&brd_lock, flags);
3919}
3920
3921/*****************************************************************************/
3922
3923/*
3924 * Start/stop the Transmitter and/or Receiver.
3925 */
3926
3927static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
3928{
3929 unsigned char imr;
3930 unsigned long flags;
3931
3932 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3933
3934 imr = portp->imr;
3935 if (tx == 0)
3936 imr &= ~IR_TXRDY;
3937 else if (tx == 1)
3938 imr |= IR_TXRDY;
3939 if (rx == 0)
3940 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
3941 else if (rx > 0)
3942 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
3943
3944 spin_lock_irqsave(&brd_lock, flags);
3945 BRDENABLE(portp->brdnr, portp->pagenr);
3946 stl_sc26198setreg(portp, IMR, imr);
3947 BRDDISABLE(portp->brdnr);
3948 portp->imr = imr;
3949 if (tx > 0)
3950 set_bit(ASYI_TXBUSY, &portp->istate);
3951 spin_unlock_irqrestore(&brd_lock, flags);
3952}
3953
3954/*****************************************************************************/
3955
3956/*
3957 * Disable all interrupts from this port.
3958 */
3959
3960static void stl_sc26198disableintrs(struct stlport *portp)
3961{
3962 unsigned long flags;
3963
3964 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
3965
3966 spin_lock_irqsave(&brd_lock, flags);
3967 BRDENABLE(portp->brdnr, portp->pagenr);
3968 portp->imr = 0;
3969 stl_sc26198setreg(portp, IMR, 0);
3970 BRDDISABLE(portp->brdnr);
3971 spin_unlock_irqrestore(&brd_lock, flags);
3972}
3973
3974/*****************************************************************************/
3975
3976static void stl_sc26198sendbreak(struct stlport *portp, int len)
3977{
3978 unsigned long flags;
3979
3980 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
3981
3982 spin_lock_irqsave(&brd_lock, flags);
3983 BRDENABLE(portp->brdnr, portp->pagenr);
3984 if (len == 1) {
3985 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
3986 portp->stats.txbreaks++;
3987 } else
3988 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
3989
3990 BRDDISABLE(portp->brdnr);
3991 spin_unlock_irqrestore(&brd_lock, flags);
3992}
3993
3994/*****************************************************************************/
3995
3996/*
3997 * Take flow control actions...
3998 */
3999
4000static void stl_sc26198flowctrl(struct stlport *portp, int state)
4001{
4002 struct tty_struct *tty;
4003 unsigned long flags;
4004 unsigned char mr0;
4005
4006 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4007
4008 if (portp == NULL)
4009 return;
4010 tty = tty_port_tty_get(&portp->port);
4011 if (tty == NULL)
4012 return;
4013
4014 spin_lock_irqsave(&brd_lock, flags);
4015 BRDENABLE(portp->brdnr, portp->pagenr);
4016
4017 if (state) {
4018 if (tty->termios->c_iflag & IXOFF) {
4019 mr0 = stl_sc26198getreg(portp, MR0);
4020 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4021 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4022 mr0 |= MR0_SWFRX;
4023 portp->stats.rxxon++;
4024 stl_sc26198wait(portp);
4025 stl_sc26198setreg(portp, MR0, mr0);
4026 }
4027/*
4028 * Question: should we return RTS to what it was before? It may
4029 * have been set by an ioctl... Suppose not, since if you have
4030 * hardware flow control set then it is pretty silly to go and
4031 * set the RTS line by hand.
4032 */
4033 if (tty->termios->c_cflag & CRTSCTS) {
4034 stl_sc26198setreg(portp, MR1,
4035 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4036 stl_sc26198setreg(portp, IOPIOR,
4037 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4038 portp->stats.rxrtson++;
4039 }
4040 } else {
4041 if (tty->termios->c_iflag & IXOFF) {
4042 mr0 = stl_sc26198getreg(portp, MR0);
4043 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4044 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4045 mr0 &= ~MR0_SWFRX;
4046 portp->stats.rxxoff++;
4047 stl_sc26198wait(portp);
4048 stl_sc26198setreg(portp, MR0, mr0);
4049 }
4050 if (tty->termios->c_cflag & CRTSCTS) {
4051 stl_sc26198setreg(portp, MR1,
4052 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4053 stl_sc26198setreg(portp, IOPIOR,
4054 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4055 portp->stats.rxrtsoff++;
4056 }
4057 }
4058
4059 BRDDISABLE(portp->brdnr);
4060 spin_unlock_irqrestore(&brd_lock, flags);
4061 tty_kref_put(tty);
4062}
4063
4064/*****************************************************************************/
4065
4066/*
4067 * Send a flow control character.
4068 */
4069
4070static void stl_sc26198sendflow(struct stlport *portp, int state)
4071{
4072 struct tty_struct *tty;
4073 unsigned long flags;
4074 unsigned char mr0;
4075
4076 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4077
4078 if (portp == NULL)
4079 return;
4080 tty = tty_port_tty_get(&portp->port);
4081 if (tty == NULL)
4082 return;
4083
4084 spin_lock_irqsave(&brd_lock, flags);
4085 BRDENABLE(portp->brdnr, portp->pagenr);
4086 if (state) {
4087 mr0 = stl_sc26198getreg(portp, MR0);
4088 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4089 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4090 mr0 |= MR0_SWFRX;
4091 portp->stats.rxxon++;
4092 stl_sc26198wait(portp);
4093 stl_sc26198setreg(portp, MR0, mr0);
4094 } else {
4095 mr0 = stl_sc26198getreg(portp, MR0);
4096 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4097 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4098 mr0 &= ~MR0_SWFRX;
4099 portp->stats.rxxoff++;
4100 stl_sc26198wait(portp);
4101 stl_sc26198setreg(portp, MR0, mr0);
4102 }
4103 BRDDISABLE(portp->brdnr);
4104 spin_unlock_irqrestore(&brd_lock, flags);
4105 tty_kref_put(tty);
4106}
4107
4108/*****************************************************************************/
4109
4110static void stl_sc26198flush(struct stlport *portp)
4111{
4112 unsigned long flags;
4113
4114 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4115
4116 if (portp == NULL)
4117 return;
4118
4119 spin_lock_irqsave(&brd_lock, flags);
4120 BRDENABLE(portp->brdnr, portp->pagenr);
4121 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4122 stl_sc26198setreg(portp, SCCR, portp->crenable);
4123 BRDDISABLE(portp->brdnr);
4124 portp->tx.tail = portp->tx.head;
4125 spin_unlock_irqrestore(&brd_lock, flags);
4126}
4127
4128/*****************************************************************************/
4129
4130/*
4131 * Return the current state of data flow on this port. This is only
4132 * really interesting when determining if data has fully completed
4133 * transmission or not... The sc26198 interrupt scheme cannot
4134 * determine when all data has actually drained, so we need to
4135 * check the port statusy register to be sure.
4136 */
4137
4138static int stl_sc26198datastate(struct stlport *portp)
4139{
4140 unsigned long flags;
4141 unsigned char sr;
4142
4143 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4144
4145 if (portp == NULL)
4146 return 0;
4147 if (test_bit(ASYI_TXBUSY, &portp->istate))
4148 return 1;
4149
4150 spin_lock_irqsave(&brd_lock, flags);
4151 BRDENABLE(portp->brdnr, portp->pagenr);
4152 sr = stl_sc26198getreg(portp, SR);
4153 BRDDISABLE(portp->brdnr);
4154 spin_unlock_irqrestore(&brd_lock, flags);
4155
4156 return (sr & SR_TXEMPTY) ? 0 : 1;
4157}
4158
4159/*****************************************************************************/
4160
4161/*
4162 * Delay for a small amount of time, to give the sc26198 a chance
4163 * to process a command...
4164 */
4165
4166static void stl_sc26198wait(struct stlport *portp)
4167{
4168 int i;
4169
4170 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4171
4172 if (portp == NULL)
4173 return;
4174
4175 for (i = 0; i < 20; i++)
4176 stl_sc26198getglobreg(portp, TSTR);
4177}
4178
4179/*****************************************************************************/
4180
4181/*
4182 * If we are TX flow controlled and in IXANY mode then we may
4183 * need to unflow control here. We gotta do this because of the
4184 * automatic flow control modes of the sc26198.
4185 */
4186
4187static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4188{
4189 unsigned char mr0;
4190
4191 mr0 = stl_sc26198getreg(portp, MR0);
4192 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4193 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4194 stl_sc26198wait(portp);
4195 stl_sc26198setreg(portp, MR0, mr0);
4196 clear_bit(ASYI_TXFLOWED, &portp->istate);
4197}
4198
4199/*****************************************************************************/
4200
4201/*
4202 * Interrupt service routine for sc26198 panels.
4203 */
4204
4205static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4206{
4207 struct stlport *portp;
4208 unsigned int iack;
4209
4210 spin_lock(&brd_lock);
4211
4212/*
4213 * Work around bug in sc26198 chip... Cannot have A6 address
4214 * line of UART high, else iack will be returned as 0.
4215 */
4216 outb(0, (iobase + 1));
4217
4218 iack = inb(iobase + XP_IACK);
4219 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4220
4221 if (iack & IVR_RXDATA)
4222 stl_sc26198rxisr(portp, iack);
4223 else if (iack & IVR_TXDATA)
4224 stl_sc26198txisr(portp);
4225 else
4226 stl_sc26198otherisr(portp, iack);
4227
4228 spin_unlock(&brd_lock);
4229}
4230
4231/*****************************************************************************/
4232
4233/*
4234 * Transmit interrupt handler. This has gotta be fast! Handling TX
4235 * chars is pretty simple, stuff as many as possible from the TX buffer
4236 * into the sc26198 FIFO.
4237 * In practice it is possible that interrupts are enabled but that the
4238 * port has been hung up. Need to handle not having any TX buffer here,
4239 * this is done by using the side effect that head and tail will also
4240 * be NULL if the buffer has been freed.
4241 */
4242
4243static void stl_sc26198txisr(struct stlport *portp)
4244{
4245 struct tty_struct *tty;
4246 unsigned int ioaddr;
4247 unsigned char mr0;
4248 int len, stlen;
4249 char *head, *tail;
4250
4251 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4252
4253 ioaddr = portp->ioaddr;
4254 head = portp->tx.head;
4255 tail = portp->tx.tail;
4256 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4257 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4258 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4259 set_bit(ASYI_TXLOW, &portp->istate);
4260 tty = tty_port_tty_get(&portp->port);
4261 if (tty) {
4262 tty_wakeup(tty);
4263 tty_kref_put(tty);
4264 }
4265 }
4266
4267 if (len == 0) {
4268 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4269 mr0 = inb(ioaddr + XP_DATA);
4270 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4271 portp->imr &= ~IR_TXRDY;
4272 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4273 outb(portp->imr, (ioaddr + XP_DATA));
4274 clear_bit(ASYI_TXBUSY, &portp->istate);
4275 } else {
4276 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4277 outb(mr0, (ioaddr + XP_DATA));
4278 }
4279 } else {
4280 len = min(len, SC26198_TXFIFOSIZE);
4281 portp->stats.txtotal += len;
4282 stlen = min_t(unsigned int, len,
4283 (portp->tx.buf + STL_TXBUFSIZE) - tail);
4284 outb(GTXFIFO, (ioaddr + XP_ADDR));
4285 outsb((ioaddr + XP_DATA), tail, stlen);
4286 len -= stlen;
4287 tail += stlen;
4288 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4289 tail = portp->tx.buf;
4290 if (len > 0) {
4291 outsb((ioaddr + XP_DATA), tail, len);
4292 tail += len;
4293 }
4294 portp->tx.tail = tail;
4295 }
4296}
4297
4298/*****************************************************************************/
4299
4300/*
4301 * Receive character interrupt handler. Determine if we have good chars
4302 * or bad chars and then process appropriately. Good chars are easy
4303 * just shove the lot into the RX buffer and set all status byte to 0.
4304 * If a bad RX char then process as required. This routine needs to be
4305 * fast! In practice it is possible that we get an interrupt on a port
4306 * that is closed. This can happen on hangups - since they completely
4307 * shutdown a port not in user context. Need to handle this case.
4308 */
4309
4310static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4311{
4312 struct tty_struct *tty;
4313 unsigned int len, buflen, ioaddr;
4314
4315 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4316
4317 tty = tty_port_tty_get(&portp->port);
4318 ioaddr = portp->ioaddr;
4319 outb(GIBCR, (ioaddr + XP_ADDR));
4320 len = inb(ioaddr + XP_DATA) + 1;
4321
4322 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4323 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4324 len = min_t(unsigned int, len, sizeof(stl_unwanted));
4325 outb(GRXFIFO, (ioaddr + XP_ADDR));
4326 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4327 portp->stats.rxlost += len;
4328 portp->stats.rxtotal += len;
4329 } else {
4330 len = min(len, buflen);
4331 if (len > 0) {
4332 unsigned char *ptr;
4333 outb(GRXFIFO, (ioaddr + XP_ADDR));
4334 tty_prepare_flip_string(tty, &ptr, len);
4335 insb((ioaddr + XP_DATA), ptr, len);
4336 tty_schedule_flip(tty);
4337 portp->stats.rxtotal += len;
4338 }
4339 }
4340 } else {
4341 stl_sc26198rxbadchars(portp);
4342 }
4343
4344/*
4345 * If we are TX flow controlled and in IXANY mode then we may need
4346 * to unflow control here. We gotta do this because of the automatic
4347 * flow control modes of the sc26198.
4348 */
4349 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4350 if ((tty != NULL) &&
4351 (tty->termios != NULL) &&
4352 (tty->termios->c_iflag & IXANY)) {
4353 stl_sc26198txunflow(portp, tty);
4354 }
4355 }
4356 tty_kref_put(tty);
4357}
4358
4359/*****************************************************************************/
4360
4361/*
4362 * Process an RX bad character.
4363 */
4364
4365static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4366{
4367 struct tty_struct *tty;
4368 unsigned int ioaddr;
4369
4370 tty = tty_port_tty_get(&portp->port);
4371 ioaddr = portp->ioaddr;
4372
4373 if (status & SR_RXPARITY)
4374 portp->stats.rxparity++;
4375 if (status & SR_RXFRAMING)
4376 portp->stats.rxframing++;
4377 if (status & SR_RXOVERRUN)
4378 portp->stats.rxoverrun++;
4379 if (status & SR_RXBREAK)
4380 portp->stats.rxbreaks++;
4381
4382 if ((tty != NULL) &&
4383 ((portp->rxignoremsk & status) == 0)) {
4384 if (portp->rxmarkmsk & status) {
4385 if (status & SR_RXBREAK) {
4386 status = TTY_BREAK;
4387 if (portp->port.flags & ASYNC_SAK) {
4388 do_SAK(tty);
4389 BRDENABLE(portp->brdnr, portp->pagenr);
4390 }
4391 } else if (status & SR_RXPARITY)
4392 status = TTY_PARITY;
4393 else if (status & SR_RXFRAMING)
4394 status = TTY_FRAME;
4395 else if(status & SR_RXOVERRUN)
4396 status = TTY_OVERRUN;
4397 else
4398 status = 0;
4399 } else
4400 status = 0;
4401
4402 tty_insert_flip_char(tty, ch, status);
4403 tty_schedule_flip(tty);
4404
4405 if (status == 0)
4406 portp->stats.rxtotal++;
4407 }
4408 tty_kref_put(tty);
4409}
4410
4411/*****************************************************************************/
4412
4413/*
4414 * Process all characters in the RX FIFO of the UART. Check all char
4415 * status bytes as well, and process as required. We need to check
4416 * all bytes in the FIFO, in case some more enter the FIFO while we
4417 * are here. To get the exact character error type we need to switch
4418 * into CHAR error mode (that is why we need to make sure we empty
4419 * the FIFO).
4420 */
4421
4422static void stl_sc26198rxbadchars(struct stlport *portp)
4423{
4424 unsigned char status, mr1;
4425 char ch;
4426
4427/*
4428 * To get the precise error type for each character we must switch
4429 * back into CHAR error mode.
4430 */
4431 mr1 = stl_sc26198getreg(portp, MR1);
4432 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4433
4434 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4435 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4436 ch = stl_sc26198getreg(portp, RXFIFO);
4437 stl_sc26198rxbadch(portp, status, ch);
4438 }
4439
4440/*
4441 * To get correct interrupt class we must switch back into BLOCK
4442 * error mode.
4443 */
4444 stl_sc26198setreg(portp, MR1, mr1);
4445}
4446
4447/*****************************************************************************/
4448
4449/*
4450 * Other interrupt handler. This includes modem signals, flow
4451 * control actions, etc. Most stuff is left to off-level interrupt
4452 * processing time.
4453 */
4454
4455static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4456{
4457 unsigned char cir, ipr, xisr;
4458
4459 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4460
4461 cir = stl_sc26198getglobreg(portp, CIR);
4462
4463 switch (cir & CIR_SUBTYPEMASK) {
4464 case CIR_SUBCOS:
4465 ipr = stl_sc26198getreg(portp, IPR);
4466 if (ipr & IPR_DCDCHANGE) {
4467 stl_cd_change(portp);
4468 portp->stats.modem++;
4469 }
4470 break;
4471 case CIR_SUBXONXOFF:
4472 xisr = stl_sc26198getreg(portp, XISR);
4473 if (xisr & XISR_RXXONGOT) {
4474 set_bit(ASYI_TXFLOWED, &portp->istate);
4475 portp->stats.txxoff++;
4476 }
4477 if (xisr & XISR_RXXOFFGOT) {
4478 clear_bit(ASYI_TXFLOWED, &portp->istate);
4479 portp->stats.txxon++;
4480 }
4481 break;
4482 case CIR_SUBBREAK:
4483 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4484 stl_sc26198rxbadchars(portp);
4485 break;
4486 default:
4487 break;
4488 }
4489}
4490
4491static void stl_free_isabrds(void)
4492{
4493 struct stlbrd *brdp;
4494 unsigned int i;
4495
4496 for (i = 0; i < stl_nrbrds; i++) {
4497 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4498 continue;
4499
4500 free_irq(brdp->irq, brdp);
4501
4502 stl_cleanup_panels(brdp);
4503
4504 release_region(brdp->ioaddr1, brdp->iosize1);
4505 if (brdp->iosize2 > 0)
4506 release_region(brdp->ioaddr2, brdp->iosize2);
4507
4508 kfree(brdp);
4509 stl_brds[i] = NULL;
4510 }
4511}
4512
4513/*
4514 * Loadable module initialization stuff.
4515 */
4516static int __init stallion_module_init(void)
4517{
4518 struct stlbrd *brdp;
4519 struct stlconf conf;
4520 unsigned int i, j;
4521 int retval;
4522
4523 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4524
4525 spin_lock_init(&stallion_lock);
4526 spin_lock_init(&brd_lock);
4527
4528 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4529 if (!stl_serial) {
4530 retval = -ENOMEM;
4531 goto err;
4532 }
4533
4534 stl_serial->owner = THIS_MODULE;
4535 stl_serial->driver_name = stl_drvname;
4536 stl_serial->name = "ttyE";
4537 stl_serial->major = STL_SERIALMAJOR;
4538 stl_serial->minor_start = 0;
4539 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4540 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4541 stl_serial->init_termios = stl_deftermios;
4542 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4543 tty_set_operations(stl_serial, &stl_ops);
4544
4545 retval = tty_register_driver(stl_serial);
4546 if (retval) {
4547 printk("STALLION: failed to register serial driver\n");
4548 goto err_frtty;
4549 }
4550
4551/*
4552 * Find any dynamically supported boards. That is via module load
4553 * line options.
4554 */
4555 for (i = stl_nrbrds; i < stl_nargs; i++) {
4556 memset(&conf, 0, sizeof(conf));
4557 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4558 continue;
4559 if ((brdp = stl_allocbrd()) == NULL)
4560 continue;
4561 brdp->brdnr = i;
4562 brdp->brdtype = conf.brdtype;
4563 brdp->ioaddr1 = conf.ioaddr1;
4564 brdp->ioaddr2 = conf.ioaddr2;
4565 brdp->irq = conf.irq;
4566 brdp->irqtype = conf.irqtype;
4567 stl_brds[brdp->brdnr] = brdp;
4568 if (stl_brdinit(brdp)) {
4569 stl_brds[brdp->brdnr] = NULL;
4570 kfree(brdp);
4571 } else {
4572 for (j = 0; j < brdp->nrports; j++)
4573 tty_register_device(stl_serial,
4574 brdp->brdnr * STL_MAXPORTS + j, NULL);
4575 stl_nrbrds = i + 1;
4576 }
4577 }
4578
4579 /* this has to be _after_ isa finding because of locking */
4580 retval = pci_register_driver(&stl_pcidriver);
4581 if (retval && stl_nrbrds == 0) {
4582 printk(KERN_ERR "STALLION: can't register pci driver\n");
4583 goto err_unrtty;
4584 }
4585
4586/*
4587 * Set up a character driver for per board stuff. This is mainly used
4588 * to do stats ioctls on the ports.
4589 */
4590 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4591 printk("STALLION: failed to register serial board device\n");
4592
4593 stallion_class = class_create(THIS_MODULE, "staliomem");
4594 if (IS_ERR(stallion_class))
4595 printk("STALLION: failed to create class\n");
4596 for (i = 0; i < 4; i++)
4597 device_create(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4598 NULL, "staliomem%d", i);
4599
4600 return 0;
4601err_unrtty:
4602 tty_unregister_driver(stl_serial);
4603err_frtty:
4604 put_tty_driver(stl_serial);
4605err:
4606 return retval;
4607}
4608
4609static void __exit stallion_module_exit(void)
4610{
4611 struct stlbrd *brdp;
4612 unsigned int i, j;
4613
4614 pr_debug("cleanup_module()\n");
4615
4616 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4617 stl_drvversion);
4618
4619/*
4620 * Free up all allocated resources used by the ports. This includes
4621 * memory and interrupts. As part of this process we will also do
4622 * a hangup on every open port - to try to flush out any processes
4623 * hanging onto ports.
4624 */
4625 for (i = 0; i < stl_nrbrds; i++) {
4626 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4627 continue;
4628 for (j = 0; j < brdp->nrports; j++)
4629 tty_unregister_device(stl_serial,
4630 brdp->brdnr * STL_MAXPORTS + j);
4631 }
4632
4633 for (i = 0; i < 4; i++)
4634 device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4635 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4636 class_destroy(stallion_class);
4637
4638 pci_unregister_driver(&stl_pcidriver);
4639
4640 stl_free_isabrds();
4641
4642 tty_unregister_driver(stl_serial);
4643 put_tty_driver(stl_serial);
4644}
4645
4646module_init(stallion_module_init);
4647module_exit(stallion_module_exit);
4648
4649MODULE_AUTHOR("Greg Ungerer");
4650MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4651MODULE_LICENSE("GPL");