diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/char/rtc.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/char/rtc.c')
-rw-r--r-- | drivers/char/rtc.c | 1354 |
1 files changed, 1354 insertions, 0 deletions
diff --git a/drivers/char/rtc.c b/drivers/char/rtc.c new file mode 100644 index 000000000000..ff4f09804865 --- /dev/null +++ b/drivers/char/rtc.c | |||
@@ -0,0 +1,1354 @@ | |||
1 | /* | ||
2 | * Real Time Clock interface for Linux | ||
3 | * | ||
4 | * Copyright (C) 1996 Paul Gortmaker | ||
5 | * | ||
6 | * This driver allows use of the real time clock (built into | ||
7 | * nearly all computers) from user space. It exports the /dev/rtc | ||
8 | * interface supporting various ioctl() and also the | ||
9 | * /proc/driver/rtc pseudo-file for status information. | ||
10 | * | ||
11 | * The ioctls can be used to set the interrupt behaviour and | ||
12 | * generation rate from the RTC via IRQ 8. Then the /dev/rtc | ||
13 | * interface can be used to make use of these timer interrupts, | ||
14 | * be they interval or alarm based. | ||
15 | * | ||
16 | * The /dev/rtc interface will block on reads until an interrupt | ||
17 | * has been received. If a RTC interrupt has already happened, | ||
18 | * it will output an unsigned long and then block. The output value | ||
19 | * contains the interrupt status in the low byte and the number of | ||
20 | * interrupts since the last read in the remaining high bytes. The | ||
21 | * /dev/rtc interface can also be used with the select(2) call. | ||
22 | * | ||
23 | * This program is free software; you can redistribute it and/or | ||
24 | * modify it under the terms of the GNU General Public License | ||
25 | * as published by the Free Software Foundation; either version | ||
26 | * 2 of the License, or (at your option) any later version. | ||
27 | * | ||
28 | * Based on other minimal char device drivers, like Alan's | ||
29 | * watchdog, Ted's random, etc. etc. | ||
30 | * | ||
31 | * 1.07 Paul Gortmaker. | ||
32 | * 1.08 Miquel van Smoorenburg: disallow certain things on the | ||
33 | * DEC Alpha as the CMOS clock is also used for other things. | ||
34 | * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup. | ||
35 | * 1.09a Pete Zaitcev: Sun SPARC | ||
36 | * 1.09b Jeff Garzik: Modularize, init cleanup | ||
37 | * 1.09c Jeff Garzik: SMP cleanup | ||
38 | * 1.10 Paul Barton-Davis: add support for async I/O | ||
39 | * 1.10a Andrea Arcangeli: Alpha updates | ||
40 | * 1.10b Andrew Morton: SMP lock fix | ||
41 | * 1.10c Cesar Barros: SMP locking fixes and cleanup | ||
42 | * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit | ||
43 | * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness. | ||
44 | * 1.11 Takashi Iwai: Kernel access functions | ||
45 | * rtc_register/rtc_unregister/rtc_control | ||
46 | * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init | ||
47 | * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer | ||
48 | * CONFIG_HPET_EMULATE_RTC | ||
49 | * | ||
50 | */ | ||
51 | |||
52 | #define RTC_VERSION "1.12" | ||
53 | |||
54 | #define RTC_IO_EXTENT 0x8 | ||
55 | |||
56 | /* | ||
57 | * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with | ||
58 | * interrupts disabled. Due to the index-port/data-port (0x70/0x71) | ||
59 | * design of the RTC, we don't want two different things trying to | ||
60 | * get to it at once. (e.g. the periodic 11 min sync from time.c vs. | ||
61 | * this driver.) | ||
62 | */ | ||
63 | |||
64 | #include <linux/config.h> | ||
65 | #include <linux/interrupt.h> | ||
66 | #include <linux/module.h> | ||
67 | #include <linux/kernel.h> | ||
68 | #include <linux/types.h> | ||
69 | #include <linux/miscdevice.h> | ||
70 | #include <linux/ioport.h> | ||
71 | #include <linux/fcntl.h> | ||
72 | #include <linux/mc146818rtc.h> | ||
73 | #include <linux/init.h> | ||
74 | #include <linux/poll.h> | ||
75 | #include <linux/proc_fs.h> | ||
76 | #include <linux/seq_file.h> | ||
77 | #include <linux/spinlock.h> | ||
78 | #include <linux/sysctl.h> | ||
79 | #include <linux/wait.h> | ||
80 | #include <linux/bcd.h> | ||
81 | |||
82 | #include <asm/current.h> | ||
83 | #include <asm/uaccess.h> | ||
84 | #include <asm/system.h> | ||
85 | |||
86 | #if defined(__i386__) | ||
87 | #include <asm/hpet.h> | ||
88 | #endif | ||
89 | |||
90 | #ifdef __sparc__ | ||
91 | #include <linux/pci.h> | ||
92 | #include <asm/ebus.h> | ||
93 | #ifdef __sparc_v9__ | ||
94 | #include <asm/isa.h> | ||
95 | #endif | ||
96 | |||
97 | static unsigned long rtc_port; | ||
98 | static int rtc_irq = PCI_IRQ_NONE; | ||
99 | #endif | ||
100 | |||
101 | #ifdef CONFIG_HPET_RTC_IRQ | ||
102 | #undef RTC_IRQ | ||
103 | #endif | ||
104 | |||
105 | #ifdef RTC_IRQ | ||
106 | static int rtc_has_irq = 1; | ||
107 | #endif | ||
108 | |||
109 | #ifndef CONFIG_HPET_EMULATE_RTC | ||
110 | #define is_hpet_enabled() 0 | ||
111 | #define hpet_set_alarm_time(hrs, min, sec) 0 | ||
112 | #define hpet_set_periodic_freq(arg) 0 | ||
113 | #define hpet_mask_rtc_irq_bit(arg) 0 | ||
114 | #define hpet_set_rtc_irq_bit(arg) 0 | ||
115 | #define hpet_rtc_timer_init() do { } while (0) | ||
116 | #define hpet_rtc_dropped_irq() 0 | ||
117 | static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;} | ||
118 | #else | ||
119 | extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs); | ||
120 | #endif | ||
121 | |||
122 | /* | ||
123 | * We sponge a minor off of the misc major. No need slurping | ||
124 | * up another valuable major dev number for this. If you add | ||
125 | * an ioctl, make sure you don't conflict with SPARC's RTC | ||
126 | * ioctls. | ||
127 | */ | ||
128 | |||
129 | static struct fasync_struct *rtc_async_queue; | ||
130 | |||
131 | static DECLARE_WAIT_QUEUE_HEAD(rtc_wait); | ||
132 | |||
133 | #ifdef RTC_IRQ | ||
134 | static struct timer_list rtc_irq_timer; | ||
135 | #endif | ||
136 | |||
137 | static ssize_t rtc_read(struct file *file, char __user *buf, | ||
138 | size_t count, loff_t *ppos); | ||
139 | |||
140 | static int rtc_ioctl(struct inode *inode, struct file *file, | ||
141 | unsigned int cmd, unsigned long arg); | ||
142 | |||
143 | #ifdef RTC_IRQ | ||
144 | static unsigned int rtc_poll(struct file *file, poll_table *wait); | ||
145 | #endif | ||
146 | |||
147 | static void get_rtc_alm_time (struct rtc_time *alm_tm); | ||
148 | #ifdef RTC_IRQ | ||
149 | static void rtc_dropped_irq(unsigned long data); | ||
150 | |||
151 | static void set_rtc_irq_bit(unsigned char bit); | ||
152 | static void mask_rtc_irq_bit(unsigned char bit); | ||
153 | #endif | ||
154 | |||
155 | static int rtc_proc_open(struct inode *inode, struct file *file); | ||
156 | |||
157 | /* | ||
158 | * Bits in rtc_status. (6 bits of room for future expansion) | ||
159 | */ | ||
160 | |||
161 | #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */ | ||
162 | #define RTC_TIMER_ON 0x02 /* missed irq timer active */ | ||
163 | |||
164 | /* | ||
165 | * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is | ||
166 | * protected by the big kernel lock. However, ioctl can still disable the timer | ||
167 | * in rtc_status and then with del_timer after the interrupt has read | ||
168 | * rtc_status but before mod_timer is called, which would then reenable the | ||
169 | * timer (but you would need to have an awful timing before you'd trip on it) | ||
170 | */ | ||
171 | static unsigned long rtc_status = 0; /* bitmapped status byte. */ | ||
172 | static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */ | ||
173 | static unsigned long rtc_irq_data = 0; /* our output to the world */ | ||
174 | static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */ | ||
175 | |||
176 | #ifdef RTC_IRQ | ||
177 | /* | ||
178 | * rtc_task_lock nests inside rtc_lock. | ||
179 | */ | ||
180 | static DEFINE_SPINLOCK(rtc_task_lock); | ||
181 | static rtc_task_t *rtc_callback = NULL; | ||
182 | #endif | ||
183 | |||
184 | /* | ||
185 | * If this driver ever becomes modularised, it will be really nice | ||
186 | * to make the epoch retain its value across module reload... | ||
187 | */ | ||
188 | |||
189 | static unsigned long epoch = 1900; /* year corresponding to 0x00 */ | ||
190 | |||
191 | static const unsigned char days_in_mo[] = | ||
192 | {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; | ||
193 | |||
194 | /* | ||
195 | * Returns true if a clock update is in progress | ||
196 | */ | ||
197 | static inline unsigned char rtc_is_updating(void) | ||
198 | { | ||
199 | unsigned char uip; | ||
200 | |||
201 | spin_lock_irq(&rtc_lock); | ||
202 | uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); | ||
203 | spin_unlock_irq(&rtc_lock); | ||
204 | return uip; | ||
205 | } | ||
206 | |||
207 | #ifdef RTC_IRQ | ||
208 | /* | ||
209 | * A very tiny interrupt handler. It runs with SA_INTERRUPT set, | ||
210 | * but there is possibility of conflicting with the set_rtc_mmss() | ||
211 | * call (the rtc irq and the timer irq can easily run at the same | ||
212 | * time in two different CPUs). So we need to serialize | ||
213 | * accesses to the chip with the rtc_lock spinlock that each | ||
214 | * architecture should implement in the timer code. | ||
215 | * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.) | ||
216 | */ | ||
217 | |||
218 | irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
219 | { | ||
220 | /* | ||
221 | * Can be an alarm interrupt, update complete interrupt, | ||
222 | * or a periodic interrupt. We store the status in the | ||
223 | * low byte and the number of interrupts received since | ||
224 | * the last read in the remainder of rtc_irq_data. | ||
225 | */ | ||
226 | |||
227 | spin_lock (&rtc_lock); | ||
228 | rtc_irq_data += 0x100; | ||
229 | rtc_irq_data &= ~0xff; | ||
230 | if (is_hpet_enabled()) { | ||
231 | /* | ||
232 | * In this case it is HPET RTC interrupt handler | ||
233 | * calling us, with the interrupt information | ||
234 | * passed as arg1, instead of irq. | ||
235 | */ | ||
236 | rtc_irq_data |= (unsigned long)irq & 0xF0; | ||
237 | } else { | ||
238 | rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); | ||
239 | } | ||
240 | |||
241 | if (rtc_status & RTC_TIMER_ON) | ||
242 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); | ||
243 | |||
244 | spin_unlock (&rtc_lock); | ||
245 | |||
246 | /* Now do the rest of the actions */ | ||
247 | spin_lock(&rtc_task_lock); | ||
248 | if (rtc_callback) | ||
249 | rtc_callback->func(rtc_callback->private_data); | ||
250 | spin_unlock(&rtc_task_lock); | ||
251 | wake_up_interruptible(&rtc_wait); | ||
252 | |||
253 | kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); | ||
254 | |||
255 | return IRQ_HANDLED; | ||
256 | } | ||
257 | #endif | ||
258 | |||
259 | /* | ||
260 | * sysctl-tuning infrastructure. | ||
261 | */ | ||
262 | static ctl_table rtc_table[] = { | ||
263 | { | ||
264 | .ctl_name = 1, | ||
265 | .procname = "max-user-freq", | ||
266 | .data = &rtc_max_user_freq, | ||
267 | .maxlen = sizeof(int), | ||
268 | .mode = 0644, | ||
269 | .proc_handler = &proc_dointvec, | ||
270 | }, | ||
271 | { .ctl_name = 0 } | ||
272 | }; | ||
273 | |||
274 | static ctl_table rtc_root[] = { | ||
275 | { | ||
276 | .ctl_name = 1, | ||
277 | .procname = "rtc", | ||
278 | .maxlen = 0, | ||
279 | .mode = 0555, | ||
280 | .child = rtc_table, | ||
281 | }, | ||
282 | { .ctl_name = 0 } | ||
283 | }; | ||
284 | |||
285 | static ctl_table dev_root[] = { | ||
286 | { | ||
287 | .ctl_name = CTL_DEV, | ||
288 | .procname = "dev", | ||
289 | .maxlen = 0, | ||
290 | .mode = 0555, | ||
291 | .child = rtc_root, | ||
292 | }, | ||
293 | { .ctl_name = 0 } | ||
294 | }; | ||
295 | |||
296 | static struct ctl_table_header *sysctl_header; | ||
297 | |||
298 | static int __init init_sysctl(void) | ||
299 | { | ||
300 | sysctl_header = register_sysctl_table(dev_root, 0); | ||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | static void __exit cleanup_sysctl(void) | ||
305 | { | ||
306 | unregister_sysctl_table(sysctl_header); | ||
307 | } | ||
308 | |||
309 | /* | ||
310 | * Now all the various file operations that we export. | ||
311 | */ | ||
312 | |||
313 | static ssize_t rtc_read(struct file *file, char __user *buf, | ||
314 | size_t count, loff_t *ppos) | ||
315 | { | ||
316 | #ifndef RTC_IRQ | ||
317 | return -EIO; | ||
318 | #else | ||
319 | DECLARE_WAITQUEUE(wait, current); | ||
320 | unsigned long data; | ||
321 | ssize_t retval; | ||
322 | |||
323 | if (rtc_has_irq == 0) | ||
324 | return -EIO; | ||
325 | |||
326 | if (count < sizeof(unsigned)) | ||
327 | return -EINVAL; | ||
328 | |||
329 | add_wait_queue(&rtc_wait, &wait); | ||
330 | |||
331 | do { | ||
332 | /* First make it right. Then make it fast. Putting this whole | ||
333 | * block within the parentheses of a while would be too | ||
334 | * confusing. And no, xchg() is not the answer. */ | ||
335 | |||
336 | __set_current_state(TASK_INTERRUPTIBLE); | ||
337 | |||
338 | spin_lock_irq (&rtc_lock); | ||
339 | data = rtc_irq_data; | ||
340 | rtc_irq_data = 0; | ||
341 | spin_unlock_irq (&rtc_lock); | ||
342 | |||
343 | if (data != 0) | ||
344 | break; | ||
345 | |||
346 | if (file->f_flags & O_NONBLOCK) { | ||
347 | retval = -EAGAIN; | ||
348 | goto out; | ||
349 | } | ||
350 | if (signal_pending(current)) { | ||
351 | retval = -ERESTARTSYS; | ||
352 | goto out; | ||
353 | } | ||
354 | schedule(); | ||
355 | } while (1); | ||
356 | |||
357 | if (count < sizeof(unsigned long)) | ||
358 | retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int); | ||
359 | else | ||
360 | retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long); | ||
361 | out: | ||
362 | current->state = TASK_RUNNING; | ||
363 | remove_wait_queue(&rtc_wait, &wait); | ||
364 | |||
365 | return retval; | ||
366 | #endif | ||
367 | } | ||
368 | |||
369 | static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) | ||
370 | { | ||
371 | struct rtc_time wtime; | ||
372 | |||
373 | #ifdef RTC_IRQ | ||
374 | if (rtc_has_irq == 0) { | ||
375 | switch (cmd) { | ||
376 | case RTC_AIE_OFF: | ||
377 | case RTC_AIE_ON: | ||
378 | case RTC_PIE_OFF: | ||
379 | case RTC_PIE_ON: | ||
380 | case RTC_UIE_OFF: | ||
381 | case RTC_UIE_ON: | ||
382 | case RTC_IRQP_READ: | ||
383 | case RTC_IRQP_SET: | ||
384 | return -EINVAL; | ||
385 | }; | ||
386 | } | ||
387 | #endif | ||
388 | |||
389 | switch (cmd) { | ||
390 | #ifdef RTC_IRQ | ||
391 | case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ | ||
392 | { | ||
393 | mask_rtc_irq_bit(RTC_AIE); | ||
394 | return 0; | ||
395 | } | ||
396 | case RTC_AIE_ON: /* Allow alarm interrupts. */ | ||
397 | { | ||
398 | set_rtc_irq_bit(RTC_AIE); | ||
399 | return 0; | ||
400 | } | ||
401 | case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ | ||
402 | { | ||
403 | mask_rtc_irq_bit(RTC_PIE); | ||
404 | if (rtc_status & RTC_TIMER_ON) { | ||
405 | spin_lock_irq (&rtc_lock); | ||
406 | rtc_status &= ~RTC_TIMER_ON; | ||
407 | del_timer(&rtc_irq_timer); | ||
408 | spin_unlock_irq (&rtc_lock); | ||
409 | } | ||
410 | return 0; | ||
411 | } | ||
412 | case RTC_PIE_ON: /* Allow periodic ints */ | ||
413 | { | ||
414 | |||
415 | /* | ||
416 | * We don't really want Joe User enabling more | ||
417 | * than 64Hz of interrupts on a multi-user machine. | ||
418 | */ | ||
419 | if (!kernel && (rtc_freq > rtc_max_user_freq) && | ||
420 | (!capable(CAP_SYS_RESOURCE))) | ||
421 | return -EACCES; | ||
422 | |||
423 | if (!(rtc_status & RTC_TIMER_ON)) { | ||
424 | spin_lock_irq (&rtc_lock); | ||
425 | rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100; | ||
426 | add_timer(&rtc_irq_timer); | ||
427 | rtc_status |= RTC_TIMER_ON; | ||
428 | spin_unlock_irq (&rtc_lock); | ||
429 | } | ||
430 | set_rtc_irq_bit(RTC_PIE); | ||
431 | return 0; | ||
432 | } | ||
433 | case RTC_UIE_OFF: /* Mask ints from RTC updates. */ | ||
434 | { | ||
435 | mask_rtc_irq_bit(RTC_UIE); | ||
436 | return 0; | ||
437 | } | ||
438 | case RTC_UIE_ON: /* Allow ints for RTC updates. */ | ||
439 | { | ||
440 | set_rtc_irq_bit(RTC_UIE); | ||
441 | return 0; | ||
442 | } | ||
443 | #endif | ||
444 | case RTC_ALM_READ: /* Read the present alarm time */ | ||
445 | { | ||
446 | /* | ||
447 | * This returns a struct rtc_time. Reading >= 0xc0 | ||
448 | * means "don't care" or "match all". Only the tm_hour, | ||
449 | * tm_min, and tm_sec values are filled in. | ||
450 | */ | ||
451 | memset(&wtime, 0, sizeof(struct rtc_time)); | ||
452 | get_rtc_alm_time(&wtime); | ||
453 | break; | ||
454 | } | ||
455 | case RTC_ALM_SET: /* Store a time into the alarm */ | ||
456 | { | ||
457 | /* | ||
458 | * This expects a struct rtc_time. Writing 0xff means | ||
459 | * "don't care" or "match all". Only the tm_hour, | ||
460 | * tm_min and tm_sec are used. | ||
461 | */ | ||
462 | unsigned char hrs, min, sec; | ||
463 | struct rtc_time alm_tm; | ||
464 | |||
465 | if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg, | ||
466 | sizeof(struct rtc_time))) | ||
467 | return -EFAULT; | ||
468 | |||
469 | hrs = alm_tm.tm_hour; | ||
470 | min = alm_tm.tm_min; | ||
471 | sec = alm_tm.tm_sec; | ||
472 | |||
473 | spin_lock_irq(&rtc_lock); | ||
474 | if (hpet_set_alarm_time(hrs, min, sec)) { | ||
475 | /* | ||
476 | * Fallthru and set alarm time in CMOS too, | ||
477 | * so that we will get proper value in RTC_ALM_READ | ||
478 | */ | ||
479 | } | ||
480 | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || | ||
481 | RTC_ALWAYS_BCD) | ||
482 | { | ||
483 | if (sec < 60) BIN_TO_BCD(sec); | ||
484 | else sec = 0xff; | ||
485 | |||
486 | if (min < 60) BIN_TO_BCD(min); | ||
487 | else min = 0xff; | ||
488 | |||
489 | if (hrs < 24) BIN_TO_BCD(hrs); | ||
490 | else hrs = 0xff; | ||
491 | } | ||
492 | CMOS_WRITE(hrs, RTC_HOURS_ALARM); | ||
493 | CMOS_WRITE(min, RTC_MINUTES_ALARM); | ||
494 | CMOS_WRITE(sec, RTC_SECONDS_ALARM); | ||
495 | spin_unlock_irq(&rtc_lock); | ||
496 | |||
497 | return 0; | ||
498 | } | ||
499 | case RTC_RD_TIME: /* Read the time/date from RTC */ | ||
500 | { | ||
501 | memset(&wtime, 0, sizeof(struct rtc_time)); | ||
502 | rtc_get_rtc_time(&wtime); | ||
503 | break; | ||
504 | } | ||
505 | case RTC_SET_TIME: /* Set the RTC */ | ||
506 | { | ||
507 | struct rtc_time rtc_tm; | ||
508 | unsigned char mon, day, hrs, min, sec, leap_yr; | ||
509 | unsigned char save_control, save_freq_select; | ||
510 | unsigned int yrs; | ||
511 | #ifdef CONFIG_MACH_DECSTATION | ||
512 | unsigned int real_yrs; | ||
513 | #endif | ||
514 | |||
515 | if (!capable(CAP_SYS_TIME)) | ||
516 | return -EACCES; | ||
517 | |||
518 | if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg, | ||
519 | sizeof(struct rtc_time))) | ||
520 | return -EFAULT; | ||
521 | |||
522 | yrs = rtc_tm.tm_year + 1900; | ||
523 | mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ | ||
524 | day = rtc_tm.tm_mday; | ||
525 | hrs = rtc_tm.tm_hour; | ||
526 | min = rtc_tm.tm_min; | ||
527 | sec = rtc_tm.tm_sec; | ||
528 | |||
529 | if (yrs < 1970) | ||
530 | return -EINVAL; | ||
531 | |||
532 | leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); | ||
533 | |||
534 | if ((mon > 12) || (day == 0)) | ||
535 | return -EINVAL; | ||
536 | |||
537 | if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) | ||
538 | return -EINVAL; | ||
539 | |||
540 | if ((hrs >= 24) || (min >= 60) || (sec >= 60)) | ||
541 | return -EINVAL; | ||
542 | |||
543 | if ((yrs -= epoch) > 255) /* They are unsigned */ | ||
544 | return -EINVAL; | ||
545 | |||
546 | spin_lock_irq(&rtc_lock); | ||
547 | #ifdef CONFIG_MACH_DECSTATION | ||
548 | real_yrs = yrs; | ||
549 | yrs = 72; | ||
550 | |||
551 | /* | ||
552 | * We want to keep the year set to 73 until March | ||
553 | * for non-leap years, so that Feb, 29th is handled | ||
554 | * correctly. | ||
555 | */ | ||
556 | if (!leap_yr && mon < 3) { | ||
557 | real_yrs--; | ||
558 | yrs = 73; | ||
559 | } | ||
560 | #endif | ||
561 | /* These limits and adjustments are independent of | ||
562 | * whether the chip is in binary mode or not. | ||
563 | */ | ||
564 | if (yrs > 169) { | ||
565 | spin_unlock_irq(&rtc_lock); | ||
566 | return -EINVAL; | ||
567 | } | ||
568 | if (yrs >= 100) | ||
569 | yrs -= 100; | ||
570 | |||
571 | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) | ||
572 | || RTC_ALWAYS_BCD) { | ||
573 | BIN_TO_BCD(sec); | ||
574 | BIN_TO_BCD(min); | ||
575 | BIN_TO_BCD(hrs); | ||
576 | BIN_TO_BCD(day); | ||
577 | BIN_TO_BCD(mon); | ||
578 | BIN_TO_BCD(yrs); | ||
579 | } | ||
580 | |||
581 | save_control = CMOS_READ(RTC_CONTROL); | ||
582 | CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); | ||
583 | save_freq_select = CMOS_READ(RTC_FREQ_SELECT); | ||
584 | CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); | ||
585 | |||
586 | #ifdef CONFIG_MACH_DECSTATION | ||
587 | CMOS_WRITE(real_yrs, RTC_DEC_YEAR); | ||
588 | #endif | ||
589 | CMOS_WRITE(yrs, RTC_YEAR); | ||
590 | CMOS_WRITE(mon, RTC_MONTH); | ||
591 | CMOS_WRITE(day, RTC_DAY_OF_MONTH); | ||
592 | CMOS_WRITE(hrs, RTC_HOURS); | ||
593 | CMOS_WRITE(min, RTC_MINUTES); | ||
594 | CMOS_WRITE(sec, RTC_SECONDS); | ||
595 | |||
596 | CMOS_WRITE(save_control, RTC_CONTROL); | ||
597 | CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); | ||
598 | |||
599 | spin_unlock_irq(&rtc_lock); | ||
600 | return 0; | ||
601 | } | ||
602 | #ifdef RTC_IRQ | ||
603 | case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ | ||
604 | { | ||
605 | return put_user(rtc_freq, (unsigned long __user *)arg); | ||
606 | } | ||
607 | case RTC_IRQP_SET: /* Set periodic IRQ rate. */ | ||
608 | { | ||
609 | int tmp = 0; | ||
610 | unsigned char val; | ||
611 | |||
612 | /* | ||
613 | * The max we can do is 8192Hz. | ||
614 | */ | ||
615 | if ((arg < 2) || (arg > 8192)) | ||
616 | return -EINVAL; | ||
617 | /* | ||
618 | * We don't really want Joe User generating more | ||
619 | * than 64Hz of interrupts on a multi-user machine. | ||
620 | */ | ||
621 | if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE))) | ||
622 | return -EACCES; | ||
623 | |||
624 | while (arg > (1<<tmp)) | ||
625 | tmp++; | ||
626 | |||
627 | /* | ||
628 | * Check that the input was really a power of 2. | ||
629 | */ | ||
630 | if (arg != (1<<tmp)) | ||
631 | return -EINVAL; | ||
632 | |||
633 | spin_lock_irq(&rtc_lock); | ||
634 | if (hpet_set_periodic_freq(arg)) { | ||
635 | spin_unlock_irq(&rtc_lock); | ||
636 | return 0; | ||
637 | } | ||
638 | rtc_freq = arg; | ||
639 | |||
640 | val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0; | ||
641 | val |= (16 - tmp); | ||
642 | CMOS_WRITE(val, RTC_FREQ_SELECT); | ||
643 | spin_unlock_irq(&rtc_lock); | ||
644 | return 0; | ||
645 | } | ||
646 | #endif | ||
647 | case RTC_EPOCH_READ: /* Read the epoch. */ | ||
648 | { | ||
649 | return put_user (epoch, (unsigned long __user *)arg); | ||
650 | } | ||
651 | case RTC_EPOCH_SET: /* Set the epoch. */ | ||
652 | { | ||
653 | /* | ||
654 | * There were no RTC clocks before 1900. | ||
655 | */ | ||
656 | if (arg < 1900) | ||
657 | return -EINVAL; | ||
658 | |||
659 | if (!capable(CAP_SYS_TIME)) | ||
660 | return -EACCES; | ||
661 | |||
662 | epoch = arg; | ||
663 | return 0; | ||
664 | } | ||
665 | default: | ||
666 | return -ENOTTY; | ||
667 | } | ||
668 | return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; | ||
669 | } | ||
670 | |||
671 | static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, | ||
672 | unsigned long arg) | ||
673 | { | ||
674 | return rtc_do_ioctl(cmd, arg, 0); | ||
675 | } | ||
676 | |||
677 | /* | ||
678 | * We enforce only one user at a time here with the open/close. | ||
679 | * Also clear the previous interrupt data on an open, and clean | ||
680 | * up things on a close. | ||
681 | */ | ||
682 | |||
683 | /* We use rtc_lock to protect against concurrent opens. So the BKL is not | ||
684 | * needed here. Or anywhere else in this driver. */ | ||
685 | static int rtc_open(struct inode *inode, struct file *file) | ||
686 | { | ||
687 | spin_lock_irq (&rtc_lock); | ||
688 | |||
689 | if(rtc_status & RTC_IS_OPEN) | ||
690 | goto out_busy; | ||
691 | |||
692 | rtc_status |= RTC_IS_OPEN; | ||
693 | |||
694 | rtc_irq_data = 0; | ||
695 | spin_unlock_irq (&rtc_lock); | ||
696 | return 0; | ||
697 | |||
698 | out_busy: | ||
699 | spin_unlock_irq (&rtc_lock); | ||
700 | return -EBUSY; | ||
701 | } | ||
702 | |||
703 | static int rtc_fasync (int fd, struct file *filp, int on) | ||
704 | |||
705 | { | ||
706 | return fasync_helper (fd, filp, on, &rtc_async_queue); | ||
707 | } | ||
708 | |||
709 | static int rtc_release(struct inode *inode, struct file *file) | ||
710 | { | ||
711 | #ifdef RTC_IRQ | ||
712 | unsigned char tmp; | ||
713 | |||
714 | if (rtc_has_irq == 0) | ||
715 | goto no_irq; | ||
716 | |||
717 | /* | ||
718 | * Turn off all interrupts once the device is no longer | ||
719 | * in use, and clear the data. | ||
720 | */ | ||
721 | |||
722 | spin_lock_irq(&rtc_lock); | ||
723 | if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { | ||
724 | tmp = CMOS_READ(RTC_CONTROL); | ||
725 | tmp &= ~RTC_PIE; | ||
726 | tmp &= ~RTC_AIE; | ||
727 | tmp &= ~RTC_UIE; | ||
728 | CMOS_WRITE(tmp, RTC_CONTROL); | ||
729 | CMOS_READ(RTC_INTR_FLAGS); | ||
730 | } | ||
731 | if (rtc_status & RTC_TIMER_ON) { | ||
732 | rtc_status &= ~RTC_TIMER_ON; | ||
733 | del_timer(&rtc_irq_timer); | ||
734 | } | ||
735 | spin_unlock_irq(&rtc_lock); | ||
736 | |||
737 | if (file->f_flags & FASYNC) { | ||
738 | rtc_fasync (-1, file, 0); | ||
739 | } | ||
740 | no_irq: | ||
741 | #endif | ||
742 | |||
743 | spin_lock_irq (&rtc_lock); | ||
744 | rtc_irq_data = 0; | ||
745 | rtc_status &= ~RTC_IS_OPEN; | ||
746 | spin_unlock_irq (&rtc_lock); | ||
747 | return 0; | ||
748 | } | ||
749 | |||
750 | #ifdef RTC_IRQ | ||
751 | /* Called without the kernel lock - fine */ | ||
752 | static unsigned int rtc_poll(struct file *file, poll_table *wait) | ||
753 | { | ||
754 | unsigned long l; | ||
755 | |||
756 | if (rtc_has_irq == 0) | ||
757 | return 0; | ||
758 | |||
759 | poll_wait(file, &rtc_wait, wait); | ||
760 | |||
761 | spin_lock_irq (&rtc_lock); | ||
762 | l = rtc_irq_data; | ||
763 | spin_unlock_irq (&rtc_lock); | ||
764 | |||
765 | if (l != 0) | ||
766 | return POLLIN | POLLRDNORM; | ||
767 | return 0; | ||
768 | } | ||
769 | #endif | ||
770 | |||
771 | /* | ||
772 | * exported stuffs | ||
773 | */ | ||
774 | |||
775 | EXPORT_SYMBOL(rtc_register); | ||
776 | EXPORT_SYMBOL(rtc_unregister); | ||
777 | EXPORT_SYMBOL(rtc_control); | ||
778 | |||
779 | int rtc_register(rtc_task_t *task) | ||
780 | { | ||
781 | #ifndef RTC_IRQ | ||
782 | return -EIO; | ||
783 | #else | ||
784 | if (task == NULL || task->func == NULL) | ||
785 | return -EINVAL; | ||
786 | spin_lock_irq(&rtc_lock); | ||
787 | if (rtc_status & RTC_IS_OPEN) { | ||
788 | spin_unlock_irq(&rtc_lock); | ||
789 | return -EBUSY; | ||
790 | } | ||
791 | spin_lock(&rtc_task_lock); | ||
792 | if (rtc_callback) { | ||
793 | spin_unlock(&rtc_task_lock); | ||
794 | spin_unlock_irq(&rtc_lock); | ||
795 | return -EBUSY; | ||
796 | } | ||
797 | rtc_status |= RTC_IS_OPEN; | ||
798 | rtc_callback = task; | ||
799 | spin_unlock(&rtc_task_lock); | ||
800 | spin_unlock_irq(&rtc_lock); | ||
801 | return 0; | ||
802 | #endif | ||
803 | } | ||
804 | |||
805 | int rtc_unregister(rtc_task_t *task) | ||
806 | { | ||
807 | #ifndef RTC_IRQ | ||
808 | return -EIO; | ||
809 | #else | ||
810 | unsigned char tmp; | ||
811 | |||
812 | spin_lock_irq(&rtc_lock); | ||
813 | spin_lock(&rtc_task_lock); | ||
814 | if (rtc_callback != task) { | ||
815 | spin_unlock(&rtc_task_lock); | ||
816 | spin_unlock_irq(&rtc_lock); | ||
817 | return -ENXIO; | ||
818 | } | ||
819 | rtc_callback = NULL; | ||
820 | |||
821 | /* disable controls */ | ||
822 | if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { | ||
823 | tmp = CMOS_READ(RTC_CONTROL); | ||
824 | tmp &= ~RTC_PIE; | ||
825 | tmp &= ~RTC_AIE; | ||
826 | tmp &= ~RTC_UIE; | ||
827 | CMOS_WRITE(tmp, RTC_CONTROL); | ||
828 | CMOS_READ(RTC_INTR_FLAGS); | ||
829 | } | ||
830 | if (rtc_status & RTC_TIMER_ON) { | ||
831 | rtc_status &= ~RTC_TIMER_ON; | ||
832 | del_timer(&rtc_irq_timer); | ||
833 | } | ||
834 | rtc_status &= ~RTC_IS_OPEN; | ||
835 | spin_unlock(&rtc_task_lock); | ||
836 | spin_unlock_irq(&rtc_lock); | ||
837 | return 0; | ||
838 | #endif | ||
839 | } | ||
840 | |||
841 | int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg) | ||
842 | { | ||
843 | #ifndef RTC_IRQ | ||
844 | return -EIO; | ||
845 | #else | ||
846 | spin_lock_irq(&rtc_task_lock); | ||
847 | if (rtc_callback != task) { | ||
848 | spin_unlock_irq(&rtc_task_lock); | ||
849 | return -ENXIO; | ||
850 | } | ||
851 | spin_unlock_irq(&rtc_task_lock); | ||
852 | return rtc_do_ioctl(cmd, arg, 1); | ||
853 | #endif | ||
854 | } | ||
855 | |||
856 | |||
857 | /* | ||
858 | * The various file operations we support. | ||
859 | */ | ||
860 | |||
861 | static struct file_operations rtc_fops = { | ||
862 | .owner = THIS_MODULE, | ||
863 | .llseek = no_llseek, | ||
864 | .read = rtc_read, | ||
865 | #ifdef RTC_IRQ | ||
866 | .poll = rtc_poll, | ||
867 | #endif | ||
868 | .ioctl = rtc_ioctl, | ||
869 | .open = rtc_open, | ||
870 | .release = rtc_release, | ||
871 | .fasync = rtc_fasync, | ||
872 | }; | ||
873 | |||
874 | static struct miscdevice rtc_dev = { | ||
875 | .minor = RTC_MINOR, | ||
876 | .name = "rtc", | ||
877 | .fops = &rtc_fops, | ||
878 | }; | ||
879 | |||
880 | static struct file_operations rtc_proc_fops = { | ||
881 | .owner = THIS_MODULE, | ||
882 | .open = rtc_proc_open, | ||
883 | .read = seq_read, | ||
884 | .llseek = seq_lseek, | ||
885 | .release = single_release, | ||
886 | }; | ||
887 | |||
888 | #if defined(RTC_IRQ) && !defined(__sparc__) | ||
889 | static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs); | ||
890 | #endif | ||
891 | |||
892 | static int __init rtc_init(void) | ||
893 | { | ||
894 | struct proc_dir_entry *ent; | ||
895 | #if defined(__alpha__) || defined(__mips__) | ||
896 | unsigned int year, ctrl; | ||
897 | unsigned long uip_watchdog; | ||
898 | char *guess = NULL; | ||
899 | #endif | ||
900 | #ifdef __sparc__ | ||
901 | struct linux_ebus *ebus; | ||
902 | struct linux_ebus_device *edev; | ||
903 | #ifdef __sparc_v9__ | ||
904 | struct sparc_isa_bridge *isa_br; | ||
905 | struct sparc_isa_device *isa_dev; | ||
906 | #endif | ||
907 | #endif | ||
908 | |||
909 | #ifdef __sparc__ | ||
910 | for_each_ebus(ebus) { | ||
911 | for_each_ebusdev(edev, ebus) { | ||
912 | if(strcmp(edev->prom_name, "rtc") == 0) { | ||
913 | rtc_port = edev->resource[0].start; | ||
914 | rtc_irq = edev->irqs[0]; | ||
915 | goto found; | ||
916 | } | ||
917 | } | ||
918 | } | ||
919 | #ifdef __sparc_v9__ | ||
920 | for_each_isa(isa_br) { | ||
921 | for_each_isadev(isa_dev, isa_br) { | ||
922 | if (strcmp(isa_dev->prom_name, "rtc") == 0) { | ||
923 | rtc_port = isa_dev->resource.start; | ||
924 | rtc_irq = isa_dev->irq; | ||
925 | goto found; | ||
926 | } | ||
927 | } | ||
928 | } | ||
929 | #endif | ||
930 | printk(KERN_ERR "rtc_init: no PC rtc found\n"); | ||
931 | return -EIO; | ||
932 | |||
933 | found: | ||
934 | if (rtc_irq == PCI_IRQ_NONE) { | ||
935 | rtc_has_irq = 0; | ||
936 | goto no_irq; | ||
937 | } | ||
938 | |||
939 | /* | ||
940 | * XXX Interrupt pin #7 in Espresso is shared between RTC and | ||
941 | * PCI Slot 2 INTA# (and some INTx# in Slot 1). SA_INTERRUPT here | ||
942 | * is asking for trouble with add-on boards. Change to SA_SHIRQ. | ||
943 | */ | ||
944 | if (request_irq(rtc_irq, rtc_interrupt, SA_INTERRUPT, "rtc", (void *)&rtc_port)) { | ||
945 | /* | ||
946 | * Standard way for sparc to print irq's is to use | ||
947 | * __irq_itoa(). I think for EBus it's ok to use %d. | ||
948 | */ | ||
949 | printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq); | ||
950 | return -EIO; | ||
951 | } | ||
952 | no_irq: | ||
953 | #else | ||
954 | if (!request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc")) { | ||
955 | printk(KERN_ERR "rtc: I/O port %d is not free.\n", RTC_PORT (0)); | ||
956 | return -EIO; | ||
957 | } | ||
958 | |||
959 | #ifdef RTC_IRQ | ||
960 | if (is_hpet_enabled()) { | ||
961 | rtc_int_handler_ptr = hpet_rtc_interrupt; | ||
962 | } else { | ||
963 | rtc_int_handler_ptr = rtc_interrupt; | ||
964 | } | ||
965 | |||
966 | if(request_irq(RTC_IRQ, rtc_int_handler_ptr, SA_INTERRUPT, "rtc", NULL)) { | ||
967 | /* Yeah right, seeing as irq 8 doesn't even hit the bus. */ | ||
968 | printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ); | ||
969 | release_region(RTC_PORT(0), RTC_IO_EXTENT); | ||
970 | return -EIO; | ||
971 | } | ||
972 | hpet_rtc_timer_init(); | ||
973 | |||
974 | #endif | ||
975 | |||
976 | #endif /* __sparc__ vs. others */ | ||
977 | |||
978 | if (misc_register(&rtc_dev)) { | ||
979 | #ifdef RTC_IRQ | ||
980 | free_irq(RTC_IRQ, NULL); | ||
981 | #endif | ||
982 | release_region(RTC_PORT(0), RTC_IO_EXTENT); | ||
983 | return -ENODEV; | ||
984 | } | ||
985 | |||
986 | ent = create_proc_entry("driver/rtc", 0, NULL); | ||
987 | if (!ent) { | ||
988 | #ifdef RTC_IRQ | ||
989 | free_irq(RTC_IRQ, NULL); | ||
990 | #endif | ||
991 | release_region(RTC_PORT(0), RTC_IO_EXTENT); | ||
992 | misc_deregister(&rtc_dev); | ||
993 | return -ENOMEM; | ||
994 | } | ||
995 | ent->proc_fops = &rtc_proc_fops; | ||
996 | |||
997 | #if defined(__alpha__) || defined(__mips__) | ||
998 | rtc_freq = HZ; | ||
999 | |||
1000 | /* Each operating system on an Alpha uses its own epoch. | ||
1001 | Let's try to guess which one we are using now. */ | ||
1002 | |||
1003 | uip_watchdog = jiffies; | ||
1004 | if (rtc_is_updating() != 0) | ||
1005 | while (jiffies - uip_watchdog < 2*HZ/100) { | ||
1006 | barrier(); | ||
1007 | cpu_relax(); | ||
1008 | } | ||
1009 | |||
1010 | spin_lock_irq(&rtc_lock); | ||
1011 | year = CMOS_READ(RTC_YEAR); | ||
1012 | ctrl = CMOS_READ(RTC_CONTROL); | ||
1013 | spin_unlock_irq(&rtc_lock); | ||
1014 | |||
1015 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | ||
1016 | BCD_TO_BIN(year); /* This should never happen... */ | ||
1017 | |||
1018 | if (year < 20) { | ||
1019 | epoch = 2000; | ||
1020 | guess = "SRM (post-2000)"; | ||
1021 | } else if (year >= 20 && year < 48) { | ||
1022 | epoch = 1980; | ||
1023 | guess = "ARC console"; | ||
1024 | } else if (year >= 48 && year < 72) { | ||
1025 | epoch = 1952; | ||
1026 | guess = "Digital UNIX"; | ||
1027 | #if defined(__mips__) | ||
1028 | } else if (year >= 72 && year < 74) { | ||
1029 | epoch = 2000; | ||
1030 | guess = "Digital DECstation"; | ||
1031 | #else | ||
1032 | } else if (year >= 70) { | ||
1033 | epoch = 1900; | ||
1034 | guess = "Standard PC (1900)"; | ||
1035 | #endif | ||
1036 | } | ||
1037 | if (guess) | ||
1038 | printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch); | ||
1039 | #endif | ||
1040 | #ifdef RTC_IRQ | ||
1041 | if (rtc_has_irq == 0) | ||
1042 | goto no_irq2; | ||
1043 | |||
1044 | init_timer(&rtc_irq_timer); | ||
1045 | rtc_irq_timer.function = rtc_dropped_irq; | ||
1046 | spin_lock_irq(&rtc_lock); | ||
1047 | rtc_freq = 1024; | ||
1048 | if (!hpet_set_periodic_freq(rtc_freq)) { | ||
1049 | /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */ | ||
1050 | CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT); | ||
1051 | } | ||
1052 | spin_unlock_irq(&rtc_lock); | ||
1053 | no_irq2: | ||
1054 | #endif | ||
1055 | |||
1056 | (void) init_sysctl(); | ||
1057 | |||
1058 | printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n"); | ||
1059 | |||
1060 | return 0; | ||
1061 | } | ||
1062 | |||
1063 | static void __exit rtc_exit (void) | ||
1064 | { | ||
1065 | cleanup_sysctl(); | ||
1066 | remove_proc_entry ("driver/rtc", NULL); | ||
1067 | misc_deregister(&rtc_dev); | ||
1068 | |||
1069 | #ifdef __sparc__ | ||
1070 | if (rtc_has_irq) | ||
1071 | free_irq (rtc_irq, &rtc_port); | ||
1072 | #else | ||
1073 | release_region (RTC_PORT (0), RTC_IO_EXTENT); | ||
1074 | #ifdef RTC_IRQ | ||
1075 | if (rtc_has_irq) | ||
1076 | free_irq (RTC_IRQ, NULL); | ||
1077 | #endif | ||
1078 | #endif /* __sparc__ */ | ||
1079 | } | ||
1080 | |||
1081 | module_init(rtc_init); | ||
1082 | module_exit(rtc_exit); | ||
1083 | |||
1084 | #ifdef RTC_IRQ | ||
1085 | /* | ||
1086 | * At IRQ rates >= 4096Hz, an interrupt may get lost altogether. | ||
1087 | * (usually during an IDE disk interrupt, with IRQ unmasking off) | ||
1088 | * Since the interrupt handler doesn't get called, the IRQ status | ||
1089 | * byte doesn't get read, and the RTC stops generating interrupts. | ||
1090 | * A timer is set, and will call this function if/when that happens. | ||
1091 | * To get it out of this stalled state, we just read the status. | ||
1092 | * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost. | ||
1093 | * (You *really* shouldn't be trying to use a non-realtime system | ||
1094 | * for something that requires a steady > 1KHz signal anyways.) | ||
1095 | */ | ||
1096 | |||
1097 | static void rtc_dropped_irq(unsigned long data) | ||
1098 | { | ||
1099 | unsigned long freq; | ||
1100 | |||
1101 | spin_lock_irq (&rtc_lock); | ||
1102 | |||
1103 | if (hpet_rtc_dropped_irq()) { | ||
1104 | spin_unlock_irq(&rtc_lock); | ||
1105 | return; | ||
1106 | } | ||
1107 | |||
1108 | /* Just in case someone disabled the timer from behind our back... */ | ||
1109 | if (rtc_status & RTC_TIMER_ON) | ||
1110 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); | ||
1111 | |||
1112 | rtc_irq_data += ((rtc_freq/HZ)<<8); | ||
1113 | rtc_irq_data &= ~0xff; | ||
1114 | rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */ | ||
1115 | |||
1116 | freq = rtc_freq; | ||
1117 | |||
1118 | spin_unlock_irq(&rtc_lock); | ||
1119 | |||
1120 | printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq); | ||
1121 | |||
1122 | /* Now we have new data */ | ||
1123 | wake_up_interruptible(&rtc_wait); | ||
1124 | |||
1125 | kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); | ||
1126 | } | ||
1127 | #endif | ||
1128 | |||
1129 | /* | ||
1130 | * Info exported via "/proc/driver/rtc". | ||
1131 | */ | ||
1132 | |||
1133 | static int rtc_proc_show(struct seq_file *seq, void *v) | ||
1134 | { | ||
1135 | #define YN(bit) ((ctrl & bit) ? "yes" : "no") | ||
1136 | #define NY(bit) ((ctrl & bit) ? "no" : "yes") | ||
1137 | struct rtc_time tm; | ||
1138 | unsigned char batt, ctrl; | ||
1139 | unsigned long freq; | ||
1140 | |||
1141 | spin_lock_irq(&rtc_lock); | ||
1142 | batt = CMOS_READ(RTC_VALID) & RTC_VRT; | ||
1143 | ctrl = CMOS_READ(RTC_CONTROL); | ||
1144 | freq = rtc_freq; | ||
1145 | spin_unlock_irq(&rtc_lock); | ||
1146 | |||
1147 | |||
1148 | rtc_get_rtc_time(&tm); | ||
1149 | |||
1150 | /* | ||
1151 | * There is no way to tell if the luser has the RTC set for local | ||
1152 | * time or for Universal Standard Time (GMT). Probably local though. | ||
1153 | */ | ||
1154 | seq_printf(seq, | ||
1155 | "rtc_time\t: %02d:%02d:%02d\n" | ||
1156 | "rtc_date\t: %04d-%02d-%02d\n" | ||
1157 | "rtc_epoch\t: %04lu\n", | ||
1158 | tm.tm_hour, tm.tm_min, tm.tm_sec, | ||
1159 | tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); | ||
1160 | |||
1161 | get_rtc_alm_time(&tm); | ||
1162 | |||
1163 | /* | ||
1164 | * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will | ||
1165 | * match any value for that particular field. Values that are | ||
1166 | * greater than a valid time, but less than 0xc0 shouldn't appear. | ||
1167 | */ | ||
1168 | seq_puts(seq, "alarm\t\t: "); | ||
1169 | if (tm.tm_hour <= 24) | ||
1170 | seq_printf(seq, "%02d:", tm.tm_hour); | ||
1171 | else | ||
1172 | seq_puts(seq, "**:"); | ||
1173 | |||
1174 | if (tm.tm_min <= 59) | ||
1175 | seq_printf(seq, "%02d:", tm.tm_min); | ||
1176 | else | ||
1177 | seq_puts(seq, "**:"); | ||
1178 | |||
1179 | if (tm.tm_sec <= 59) | ||
1180 | seq_printf(seq, "%02d\n", tm.tm_sec); | ||
1181 | else | ||
1182 | seq_puts(seq, "**\n"); | ||
1183 | |||
1184 | seq_printf(seq, | ||
1185 | "DST_enable\t: %s\n" | ||
1186 | "BCD\t\t: %s\n" | ||
1187 | "24hr\t\t: %s\n" | ||
1188 | "square_wave\t: %s\n" | ||
1189 | "alarm_IRQ\t: %s\n" | ||
1190 | "update_IRQ\t: %s\n" | ||
1191 | "periodic_IRQ\t: %s\n" | ||
1192 | "periodic_freq\t: %ld\n" | ||
1193 | "batt_status\t: %s\n", | ||
1194 | YN(RTC_DST_EN), | ||
1195 | NY(RTC_DM_BINARY), | ||
1196 | YN(RTC_24H), | ||
1197 | YN(RTC_SQWE), | ||
1198 | YN(RTC_AIE), | ||
1199 | YN(RTC_UIE), | ||
1200 | YN(RTC_PIE), | ||
1201 | freq, | ||
1202 | batt ? "okay" : "dead"); | ||
1203 | |||
1204 | return 0; | ||
1205 | #undef YN | ||
1206 | #undef NY | ||
1207 | } | ||
1208 | |||
1209 | static int rtc_proc_open(struct inode *inode, struct file *file) | ||
1210 | { | ||
1211 | return single_open(file, rtc_proc_show, NULL); | ||
1212 | } | ||
1213 | |||
1214 | void rtc_get_rtc_time(struct rtc_time *rtc_tm) | ||
1215 | { | ||
1216 | unsigned long uip_watchdog = jiffies; | ||
1217 | unsigned char ctrl; | ||
1218 | #ifdef CONFIG_MACH_DECSTATION | ||
1219 | unsigned int real_year; | ||
1220 | #endif | ||
1221 | |||
1222 | /* | ||
1223 | * read RTC once any update in progress is done. The update | ||
1224 | * can take just over 2ms. We wait 10 to 20ms. There is no need to | ||
1225 | * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP. | ||
1226 | * If you need to know *exactly* when a second has started, enable | ||
1227 | * periodic update complete interrupts, (via ioctl) and then | ||
1228 | * immediately read /dev/rtc which will block until you get the IRQ. | ||
1229 | * Once the read clears, read the RTC time (again via ioctl). Easy. | ||
1230 | */ | ||
1231 | |||
1232 | if (rtc_is_updating() != 0) | ||
1233 | while (jiffies - uip_watchdog < 2*HZ/100) { | ||
1234 | barrier(); | ||
1235 | cpu_relax(); | ||
1236 | } | ||
1237 | |||
1238 | /* | ||
1239 | * Only the values that we read from the RTC are set. We leave | ||
1240 | * tm_wday, tm_yday and tm_isdst untouched. Even though the | ||
1241 | * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated | ||
1242 | * by the RTC when initially set to a non-zero value. | ||
1243 | */ | ||
1244 | spin_lock_irq(&rtc_lock); | ||
1245 | rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS); | ||
1246 | rtc_tm->tm_min = CMOS_READ(RTC_MINUTES); | ||
1247 | rtc_tm->tm_hour = CMOS_READ(RTC_HOURS); | ||
1248 | rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH); | ||
1249 | rtc_tm->tm_mon = CMOS_READ(RTC_MONTH); | ||
1250 | rtc_tm->tm_year = CMOS_READ(RTC_YEAR); | ||
1251 | #ifdef CONFIG_MACH_DECSTATION | ||
1252 | real_year = CMOS_READ(RTC_DEC_YEAR); | ||
1253 | #endif | ||
1254 | ctrl = CMOS_READ(RTC_CONTROL); | ||
1255 | spin_unlock_irq(&rtc_lock); | ||
1256 | |||
1257 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | ||
1258 | { | ||
1259 | BCD_TO_BIN(rtc_tm->tm_sec); | ||
1260 | BCD_TO_BIN(rtc_tm->tm_min); | ||
1261 | BCD_TO_BIN(rtc_tm->tm_hour); | ||
1262 | BCD_TO_BIN(rtc_tm->tm_mday); | ||
1263 | BCD_TO_BIN(rtc_tm->tm_mon); | ||
1264 | BCD_TO_BIN(rtc_tm->tm_year); | ||
1265 | } | ||
1266 | |||
1267 | #ifdef CONFIG_MACH_DECSTATION | ||
1268 | rtc_tm->tm_year += real_year - 72; | ||
1269 | #endif | ||
1270 | |||
1271 | /* | ||
1272 | * Account for differences between how the RTC uses the values | ||
1273 | * and how they are defined in a struct rtc_time; | ||
1274 | */ | ||
1275 | if ((rtc_tm->tm_year += (epoch - 1900)) <= 69) | ||
1276 | rtc_tm->tm_year += 100; | ||
1277 | |||
1278 | rtc_tm->tm_mon--; | ||
1279 | } | ||
1280 | |||
1281 | static void get_rtc_alm_time(struct rtc_time *alm_tm) | ||
1282 | { | ||
1283 | unsigned char ctrl; | ||
1284 | |||
1285 | /* | ||
1286 | * Only the values that we read from the RTC are set. That | ||
1287 | * means only tm_hour, tm_min, and tm_sec. | ||
1288 | */ | ||
1289 | spin_lock_irq(&rtc_lock); | ||
1290 | alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); | ||
1291 | alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM); | ||
1292 | alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM); | ||
1293 | ctrl = CMOS_READ(RTC_CONTROL); | ||
1294 | spin_unlock_irq(&rtc_lock); | ||
1295 | |||
1296 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | ||
1297 | { | ||
1298 | BCD_TO_BIN(alm_tm->tm_sec); | ||
1299 | BCD_TO_BIN(alm_tm->tm_min); | ||
1300 | BCD_TO_BIN(alm_tm->tm_hour); | ||
1301 | } | ||
1302 | } | ||
1303 | |||
1304 | #ifdef RTC_IRQ | ||
1305 | /* | ||
1306 | * Used to disable/enable interrupts for any one of UIE, AIE, PIE. | ||
1307 | * Rumour has it that if you frob the interrupt enable/disable | ||
1308 | * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to | ||
1309 | * ensure you actually start getting interrupts. Probably for | ||
1310 | * compatibility with older/broken chipset RTC implementations. | ||
1311 | * We also clear out any old irq data after an ioctl() that | ||
1312 | * meddles with the interrupt enable/disable bits. | ||
1313 | */ | ||
1314 | |||
1315 | static void mask_rtc_irq_bit(unsigned char bit) | ||
1316 | { | ||
1317 | unsigned char val; | ||
1318 | |||
1319 | spin_lock_irq(&rtc_lock); | ||
1320 | if (hpet_mask_rtc_irq_bit(bit)) { | ||
1321 | spin_unlock_irq(&rtc_lock); | ||
1322 | return; | ||
1323 | } | ||
1324 | val = CMOS_READ(RTC_CONTROL); | ||
1325 | val &= ~bit; | ||
1326 | CMOS_WRITE(val, RTC_CONTROL); | ||
1327 | CMOS_READ(RTC_INTR_FLAGS); | ||
1328 | |||
1329 | rtc_irq_data = 0; | ||
1330 | spin_unlock_irq(&rtc_lock); | ||
1331 | } | ||
1332 | |||
1333 | static void set_rtc_irq_bit(unsigned char bit) | ||
1334 | { | ||
1335 | unsigned char val; | ||
1336 | |||
1337 | spin_lock_irq(&rtc_lock); | ||
1338 | if (hpet_set_rtc_irq_bit(bit)) { | ||
1339 | spin_unlock_irq(&rtc_lock); | ||
1340 | return; | ||
1341 | } | ||
1342 | val = CMOS_READ(RTC_CONTROL); | ||
1343 | val |= bit; | ||
1344 | CMOS_WRITE(val, RTC_CONTROL); | ||
1345 | CMOS_READ(RTC_INTR_FLAGS); | ||
1346 | |||
1347 | rtc_irq_data = 0; | ||
1348 | spin_unlock_irq(&rtc_lock); | ||
1349 | } | ||
1350 | #endif | ||
1351 | |||
1352 | MODULE_AUTHOR("Paul Gortmaker"); | ||
1353 | MODULE_LICENSE("GPL"); | ||
1354 | MODULE_ALIAS_MISCDEV(RTC_MINOR); | ||