aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/char/ftape/lowlevel/ftape-ecc.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/char/ftape/lowlevel/ftape-ecc.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/char/ftape/lowlevel/ftape-ecc.c')
-rw-r--r--drivers/char/ftape/lowlevel/ftape-ecc.c853
1 files changed, 853 insertions, 0 deletions
diff --git a/drivers/char/ftape/lowlevel/ftape-ecc.c b/drivers/char/ftape/lowlevel/ftape-ecc.c
new file mode 100644
index 000000000000..e5632f674bc8
--- /dev/null
+++ b/drivers/char/ftape/lowlevel/ftape-ecc.c
@@ -0,0 +1,853 @@
1/*
2 *
3 * Copyright (c) 1993 Ning and David Mosberger.
4
5 This is based on code originally written by Bas Laarhoven (bas@vimec.nl)
6 and David L. Brown, Jr., and incorporates improvements suggested by
7 Kai Harrekilde-Petersen.
8
9 This program is free software; you can redistribute it and/or
10 modify it under the terms of the GNU General Public License as
11 published by the Free Software Foundation; either version 2, or (at
12 your option) any later version.
13
14 This program is distributed in the hope that it will be useful, but
15 WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
22 USA.
23
24 *
25 * $Source: /homes/cvs/ftape-stacked/ftape/lowlevel/ftape-ecc.c,v $
26 * $Revision: 1.3 $
27 * $Date: 1997/10/05 19:18:10 $
28 *
29 * This file contains the Reed-Solomon error correction code
30 * for the QIC-40/80 floppy-tape driver for Linux.
31 */
32
33#include <linux/ftape.h>
34
35#include "../lowlevel/ftape-tracing.h"
36#include "../lowlevel/ftape-ecc.h"
37
38/* Machines that are big-endian should define macro BIG_ENDIAN.
39 * Unfortunately, there doesn't appear to be a standard include file
40 * that works for all OSs.
41 */
42
43#if defined(__sparc__) || defined(__hppa)
44#define BIG_ENDIAN
45#endif /* __sparc__ || __hppa */
46
47#if defined(__mips__)
48#error Find a smart way to determine the Endianness of the MIPS CPU
49#endif
50
51/* Notice: to minimize the potential for confusion, we use r to
52 * denote the independent variable of the polynomials in the
53 * Galois Field GF(2^8). We reserve x for polynomials that
54 * that have coefficients in GF(2^8).
55 *
56 * The Galois Field in which coefficient arithmetic is performed are
57 * the polynomials over Z_2 (i.e., 0 and 1) modulo the irreducible
58 * polynomial f(r), where f(r)=r^8 + r^7 + r^2 + r + 1. A polynomial
59 * is represented as a byte with the MSB as the coefficient of r^7 and
60 * the LSB as the coefficient of r^0. For example, the binary
61 * representation of f(x) is 0x187 (of course, this doesn't fit into 8
62 * bits). In this field, the polynomial r is a primitive element.
63 * That is, r^i with i in 0,...,255 enumerates all elements in the
64 * field.
65 *
66 * The generator polynomial for the QIC-80 ECC is
67 *
68 * g(x) = x^3 + r^105*x^2 + r^105*x + 1
69 *
70 * which can be factored into:
71 *
72 * g(x) = (x-r^-1)(x-r^0)(x-r^1)
73 *
74 * the byte representation of the coefficients are:
75 *
76 * r^105 = 0xc0
77 * r^-1 = 0xc3
78 * r^0 = 0x01
79 * r^1 = 0x02
80 *
81 * Notice that r^-1 = r^254 as exponent arithmetic is performed
82 * modulo 2^8-1 = 255.
83 *
84 * For more information on Galois Fields and Reed-Solomon codes, refer
85 * to any good book. I found _An Introduction to Error Correcting
86 * Codes with Applications_ by S. A. Vanstone and P. C. van Oorschot
87 * to be a good introduction into the former. _CODING THEORY: The
88 * Essentials_ I found very useful for its concise description of
89 * Reed-Solomon encoding/decoding.
90 *
91 */
92
93typedef __u8 Matrix[3][3];
94
95/*
96 * gfpow[] is defined such that gfpow[i] returns r^i if
97 * i is in the range [0..255].
98 */
99static const __u8 gfpow[] =
100{
101 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
102 0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4,
103 0x6f, 0xde, 0x3b, 0x76, 0xec, 0x5f, 0xbe, 0xfb,
104 0x71, 0xe2, 0x43, 0x86, 0x8b, 0x91, 0xa5, 0xcd,
105 0x1d, 0x3a, 0x74, 0xe8, 0x57, 0xae, 0xdb, 0x31,
106 0x62, 0xc4, 0x0f, 0x1e, 0x3c, 0x78, 0xf0, 0x67,
107 0xce, 0x1b, 0x36, 0x6c, 0xd8, 0x37, 0x6e, 0xdc,
108 0x3f, 0x7e, 0xfc, 0x7f, 0xfe, 0x7b, 0xf6, 0x6b,
109 0xd6, 0x2b, 0x56, 0xac, 0xdf, 0x39, 0x72, 0xe4,
110 0x4f, 0x9e, 0xbb, 0xf1, 0x65, 0xca, 0x13, 0x26,
111 0x4c, 0x98, 0xb7, 0xe9, 0x55, 0xaa, 0xd3, 0x21,
112 0x42, 0x84, 0x8f, 0x99, 0xb5, 0xed, 0x5d, 0xba,
113 0xf3, 0x61, 0xc2, 0x03, 0x06, 0x0c, 0x18, 0x30,
114 0x60, 0xc0, 0x07, 0x0e, 0x1c, 0x38, 0x70, 0xe0,
115 0x47, 0x8e, 0x9b, 0xb1, 0xe5, 0x4d, 0x9a, 0xb3,
116 0xe1, 0x45, 0x8a, 0x93, 0xa1, 0xc5, 0x0d, 0x1a,
117 0x34, 0x68, 0xd0, 0x27, 0x4e, 0x9c, 0xbf, 0xf9,
118 0x75, 0xea, 0x53, 0xa6, 0xcb, 0x11, 0x22, 0x44,
119 0x88, 0x97, 0xa9, 0xd5, 0x2d, 0x5a, 0xb4, 0xef,
120 0x59, 0xb2, 0xe3, 0x41, 0x82, 0x83, 0x81, 0x85,
121 0x8d, 0x9d, 0xbd, 0xfd, 0x7d, 0xfa, 0x73, 0xe6,
122 0x4b, 0x96, 0xab, 0xd1, 0x25, 0x4a, 0x94, 0xaf,
123 0xd9, 0x35, 0x6a, 0xd4, 0x2f, 0x5e, 0xbc, 0xff,
124 0x79, 0xf2, 0x63, 0xc6, 0x0b, 0x16, 0x2c, 0x58,
125 0xb0, 0xe7, 0x49, 0x92, 0xa3, 0xc1, 0x05, 0x0a,
126 0x14, 0x28, 0x50, 0xa0, 0xc7, 0x09, 0x12, 0x24,
127 0x48, 0x90, 0xa7, 0xc9, 0x15, 0x2a, 0x54, 0xa8,
128 0xd7, 0x29, 0x52, 0xa4, 0xcf, 0x19, 0x32, 0x64,
129 0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2,
130 0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda,
131 0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77,
132 0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x01
133};
134
135/*
136 * This is a log table. That is, gflog[r^i] returns i (modulo f(r)).
137 * gflog[0] is undefined and the first element is therefore not valid.
138 */
139static const __u8 gflog[256] =
140{
141 0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a,
142 0x03, 0xcd, 0xc7, 0xbc, 0x65, 0x7e, 0x6b, 0x2a,
143 0x04, 0x8d, 0xce, 0x4e, 0xc8, 0xd4, 0xbd, 0xe1,
144 0x66, 0xdd, 0x7f, 0x31, 0x6c, 0x20, 0x2b, 0xf3,
145 0x05, 0x57, 0x8e, 0xe8, 0xcf, 0xac, 0x4f, 0x83,
146 0xc9, 0xd9, 0xd5, 0x41, 0xbe, 0x94, 0xe2, 0xb4,
147 0x67, 0x27, 0xde, 0xf0, 0x80, 0xb1, 0x32, 0x35,
148 0x6d, 0x45, 0x21, 0x12, 0x2c, 0x0d, 0xf4, 0x38,
149 0x06, 0x9b, 0x58, 0x1a, 0x8f, 0x79, 0xe9, 0x70,
150 0xd0, 0xc2, 0xad, 0xa8, 0x50, 0x75, 0x84, 0x48,
151 0xca, 0xfc, 0xda, 0x8a, 0xd6, 0x54, 0x42, 0x24,
152 0xbf, 0x98, 0x95, 0xf9, 0xe3, 0x5e, 0xb5, 0x15,
153 0x68, 0x61, 0x28, 0xba, 0xdf, 0x4c, 0xf1, 0x2f,
154 0x81, 0xe6, 0xb2, 0x3f, 0x33, 0xee, 0x36, 0x10,
155 0x6e, 0x18, 0x46, 0xa6, 0x22, 0x88, 0x13, 0xf7,
156 0x2d, 0xb8, 0x0e, 0x3d, 0xf5, 0xa4, 0x39, 0x3b,
157 0x07, 0x9e, 0x9c, 0x9d, 0x59, 0x9f, 0x1b, 0x08,
158 0x90, 0x09, 0x7a, 0x1c, 0xea, 0xa0, 0x71, 0x5a,
159 0xd1, 0x1d, 0xc3, 0x7b, 0xae, 0x0a, 0xa9, 0x91,
160 0x51, 0x5b, 0x76, 0x72, 0x85, 0xa1, 0x49, 0xeb,
161 0xcb, 0x7c, 0xfd, 0xc4, 0xdb, 0x1e, 0x8b, 0xd2,
162 0xd7, 0x92, 0x55, 0xaa, 0x43, 0x0b, 0x25, 0xaf,
163 0xc0, 0x73, 0x99, 0x77, 0x96, 0x5c, 0xfa, 0x52,
164 0xe4, 0xec, 0x5f, 0x4a, 0xb6, 0xa2, 0x16, 0x86,
165 0x69, 0xc5, 0x62, 0xfe, 0x29, 0x7d, 0xbb, 0xcc,
166 0xe0, 0xd3, 0x4d, 0x8c, 0xf2, 0x1f, 0x30, 0xdc,
167 0x82, 0xab, 0xe7, 0x56, 0xb3, 0x93, 0x40, 0xd8,
168 0x34, 0xb0, 0xef, 0x26, 0x37, 0x0c, 0x11, 0x44,
169 0x6f, 0x78, 0x19, 0x9a, 0x47, 0x74, 0xa7, 0xc1,
170 0x23, 0x53, 0x89, 0xfb, 0x14, 0x5d, 0xf8, 0x97,
171 0x2e, 0x4b, 0xb9, 0x60, 0x0f, 0xed, 0x3e, 0xe5,
172 0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7
173};
174
175/* This is a multiplication table for the factor 0xc0 (i.e., r^105 (mod f(r)).
176 * gfmul_c0[f] returns r^105 * f(r) (modulo f(r)).
177 */
178static const __u8 gfmul_c0[256] =
179{
180 0x00, 0xc0, 0x07, 0xc7, 0x0e, 0xce, 0x09, 0xc9,
181 0x1c, 0xdc, 0x1b, 0xdb, 0x12, 0xd2, 0x15, 0xd5,
182 0x38, 0xf8, 0x3f, 0xff, 0x36, 0xf6, 0x31, 0xf1,
183 0x24, 0xe4, 0x23, 0xe3, 0x2a, 0xea, 0x2d, 0xed,
184 0x70, 0xb0, 0x77, 0xb7, 0x7e, 0xbe, 0x79, 0xb9,
185 0x6c, 0xac, 0x6b, 0xab, 0x62, 0xa2, 0x65, 0xa5,
186 0x48, 0x88, 0x4f, 0x8f, 0x46, 0x86, 0x41, 0x81,
187 0x54, 0x94, 0x53, 0x93, 0x5a, 0x9a, 0x5d, 0x9d,
188 0xe0, 0x20, 0xe7, 0x27, 0xee, 0x2e, 0xe9, 0x29,
189 0xfc, 0x3c, 0xfb, 0x3b, 0xf2, 0x32, 0xf5, 0x35,
190 0xd8, 0x18, 0xdf, 0x1f, 0xd6, 0x16, 0xd1, 0x11,
191 0xc4, 0x04, 0xc3, 0x03, 0xca, 0x0a, 0xcd, 0x0d,
192 0x90, 0x50, 0x97, 0x57, 0x9e, 0x5e, 0x99, 0x59,
193 0x8c, 0x4c, 0x8b, 0x4b, 0x82, 0x42, 0x85, 0x45,
194 0xa8, 0x68, 0xaf, 0x6f, 0xa6, 0x66, 0xa1, 0x61,
195 0xb4, 0x74, 0xb3, 0x73, 0xba, 0x7a, 0xbd, 0x7d,
196 0x47, 0x87, 0x40, 0x80, 0x49, 0x89, 0x4e, 0x8e,
197 0x5b, 0x9b, 0x5c, 0x9c, 0x55, 0x95, 0x52, 0x92,
198 0x7f, 0xbf, 0x78, 0xb8, 0x71, 0xb1, 0x76, 0xb6,
199 0x63, 0xa3, 0x64, 0xa4, 0x6d, 0xad, 0x6a, 0xaa,
200 0x37, 0xf7, 0x30, 0xf0, 0x39, 0xf9, 0x3e, 0xfe,
201 0x2b, 0xeb, 0x2c, 0xec, 0x25, 0xe5, 0x22, 0xe2,
202 0x0f, 0xcf, 0x08, 0xc8, 0x01, 0xc1, 0x06, 0xc6,
203 0x13, 0xd3, 0x14, 0xd4, 0x1d, 0xdd, 0x1a, 0xda,
204 0xa7, 0x67, 0xa0, 0x60, 0xa9, 0x69, 0xae, 0x6e,
205 0xbb, 0x7b, 0xbc, 0x7c, 0xb5, 0x75, 0xb2, 0x72,
206 0x9f, 0x5f, 0x98, 0x58, 0x91, 0x51, 0x96, 0x56,
207 0x83, 0x43, 0x84, 0x44, 0x8d, 0x4d, 0x8a, 0x4a,
208 0xd7, 0x17, 0xd0, 0x10, 0xd9, 0x19, 0xde, 0x1e,
209 0xcb, 0x0b, 0xcc, 0x0c, 0xc5, 0x05, 0xc2, 0x02,
210 0xef, 0x2f, 0xe8, 0x28, 0xe1, 0x21, 0xe6, 0x26,
211 0xf3, 0x33, 0xf4, 0x34, 0xfd, 0x3d, 0xfa, 0x3a
212};
213
214
215/* Returns V modulo 255 provided V is in the range -255,-254,...,509.
216 */
217static inline __u8 mod255(int v)
218{
219 if (v > 0) {
220 if (v < 255) {
221 return v;
222 } else {
223 return v - 255;
224 }
225 } else {
226 return v + 255;
227 }
228}
229
230
231/* Add two numbers in the field. Addition in this field is equivalent
232 * to a bit-wise exclusive OR operation---subtraction is therefore
233 * identical to addition.
234 */
235static inline __u8 gfadd(__u8 a, __u8 b)
236{
237 return a ^ b;
238}
239
240
241/* Add two vectors of numbers in the field. Each byte in A and B gets
242 * added individually.
243 */
244static inline unsigned long gfadd_long(unsigned long a, unsigned long b)
245{
246 return a ^ b;
247}
248
249
250/* Multiply two numbers in the field:
251 */
252static inline __u8 gfmul(__u8 a, __u8 b)
253{
254 if (a && b) {
255 return gfpow[mod255(gflog[a] + gflog[b])];
256 } else {
257 return 0;
258 }
259}
260
261
262/* Just like gfmul, except we have already looked up the log of the
263 * second number.
264 */
265static inline __u8 gfmul_exp(__u8 a, int b)
266{
267 if (a) {
268 return gfpow[mod255(gflog[a] + b)];
269 } else {
270 return 0;
271 }
272}
273
274
275/* Just like gfmul_exp, except that A is a vector of numbers. That
276 * is, each byte in A gets multiplied by gfpow[mod255(B)].
277 */
278static inline unsigned long gfmul_exp_long(unsigned long a, int b)
279{
280 __u8 t;
281
282 if (sizeof(long) == 4) {
283 return (
284 ((t = (__u32)a >> 24 & 0xff) ?
285 (((__u32) gfpow[mod255(gflog[t] + b)]) << 24) : 0) |
286 ((t = (__u32)a >> 16 & 0xff) ?
287 (((__u32) gfpow[mod255(gflog[t] + b)]) << 16) : 0) |
288 ((t = (__u32)a >> 8 & 0xff) ?
289 (((__u32) gfpow[mod255(gflog[t] + b)]) << 8) : 0) |
290 ((t = (__u32)a >> 0 & 0xff) ?
291 (((__u32) gfpow[mod255(gflog[t] + b)]) << 0) : 0));
292 } else if (sizeof(long) == 8) {
293 return (
294 ((t = (__u64)a >> 56 & 0xff) ?
295 (((__u64) gfpow[mod255(gflog[t] + b)]) << 56) : 0) |
296 ((t = (__u64)a >> 48 & 0xff) ?
297 (((__u64) gfpow[mod255(gflog[t] + b)]) << 48) : 0) |
298 ((t = (__u64)a >> 40 & 0xff) ?
299 (((__u64) gfpow[mod255(gflog[t] + b)]) << 40) : 0) |
300 ((t = (__u64)a >> 32 & 0xff) ?
301 (((__u64) gfpow[mod255(gflog[t] + b)]) << 32) : 0) |
302 ((t = (__u64)a >> 24 & 0xff) ?
303 (((__u64) gfpow[mod255(gflog[t] + b)]) << 24) : 0) |
304 ((t = (__u64)a >> 16 & 0xff) ?
305 (((__u64) gfpow[mod255(gflog[t] + b)]) << 16) : 0) |
306 ((t = (__u64)a >> 8 & 0xff) ?
307 (((__u64) gfpow[mod255(gflog[t] + b)]) << 8) : 0) |
308 ((t = (__u64)a >> 0 & 0xff) ?
309 (((__u64) gfpow[mod255(gflog[t] + b)]) << 0) : 0));
310 } else {
311 TRACE_FUN(ft_t_any);
312 TRACE_ABORT(-1, ft_t_err, "Error: size of long is %d bytes",
313 (int)sizeof(long));
314 }
315}
316
317
318/* Divide two numbers in the field. Returns a/b (modulo f(x)).
319 */
320static inline __u8 gfdiv(__u8 a, __u8 b)
321{
322 if (!b) {
323 TRACE_FUN(ft_t_any);
324 TRACE_ABORT(0xff, ft_t_bug, "Error: division by zero");
325 } else if (a == 0) {
326 return 0;
327 } else {
328 return gfpow[mod255(gflog[a] - gflog[b])];
329 }
330}
331
332
333/* The following functions return the inverse of the matrix of the
334 * linear system that needs to be solved to determine the error
335 * magnitudes. The first deals with matrices of rank 3, while the
336 * second deals with matrices of rank 2. The error indices are passed
337 * in arguments L0,..,L2 (0=first sector, 31=last sector). The error
338 * indices must be sorted in ascending order, i.e., L0<L1<L2.
339 *
340 * The linear system that needs to be solved for the error magnitudes
341 * is A * b = s, where s is the known vector of syndromes, b is the
342 * vector of error magnitudes and A in the ORDER=3 case:
343 *
344 * A_3 = {{1/r^L[0], 1/r^L[1], 1/r^L[2]},
345 * { 1, 1, 1},
346 * { r^L[0], r^L[1], r^L[2]}}
347 */
348static inline int gfinv3(__u8 l0,
349 __u8 l1,
350 __u8 l2,
351 Matrix Ainv)
352{
353 __u8 det;
354 __u8 t20, t10, t21, t12, t01, t02;
355 int log_det;
356
357 /* compute some intermediate results: */
358 t20 = gfpow[l2 - l0]; /* t20 = r^l2/r^l0 */
359 t10 = gfpow[l1 - l0]; /* t10 = r^l1/r^l0 */
360 t21 = gfpow[l2 - l1]; /* t21 = r^l2/r^l1 */
361 t12 = gfpow[l1 - l2 + 255]; /* t12 = r^l1/r^l2 */
362 t01 = gfpow[l0 - l1 + 255]; /* t01 = r^l0/r^l1 */
363 t02 = gfpow[l0 - l2 + 255]; /* t02 = r^l0/r^l2 */
364 /* Calculate the determinant of matrix A_3^-1 (sometimes
365 * called the Vandermonde determinant):
366 */
367 det = gfadd(t20, gfadd(t10, gfadd(t21, gfadd(t12, gfadd(t01, t02)))));
368 if (!det) {
369 TRACE_FUN(ft_t_any);
370 TRACE_ABORT(0, ft_t_err,
371 "Inversion failed (3 CRC errors, >0 CRC failures)");
372 }
373 log_det = 255 - gflog[det];
374
375 /* Now, calculate all of the coefficients:
376 */
377 Ainv[0][0]= gfmul_exp(gfadd(gfpow[l1], gfpow[l2]), log_det);
378 Ainv[0][1]= gfmul_exp(gfadd(t21, t12), log_det);
379 Ainv[0][2]= gfmul_exp(gfadd(gfpow[255 - l1], gfpow[255 - l2]),log_det);
380
381 Ainv[1][0]= gfmul_exp(gfadd(gfpow[l0], gfpow[l2]), log_det);
382 Ainv[1][1]= gfmul_exp(gfadd(t20, t02), log_det);
383 Ainv[1][2]= gfmul_exp(gfadd(gfpow[255 - l0], gfpow[255 - l2]),log_det);
384
385 Ainv[2][0]= gfmul_exp(gfadd(gfpow[l0], gfpow[l1]), log_det);
386 Ainv[2][1]= gfmul_exp(gfadd(t10, t01), log_det);
387 Ainv[2][2]= gfmul_exp(gfadd(gfpow[255 - l0], gfpow[255 - l1]),log_det);
388
389 return 1;
390}
391
392
393static inline int gfinv2(__u8 l0, __u8 l1, Matrix Ainv)
394{
395 __u8 det;
396 __u8 t1, t2;
397 int log_det;
398
399 t1 = gfpow[255 - l0];
400 t2 = gfpow[255 - l1];
401 det = gfadd(t1, t2);
402 if (!det) {
403 TRACE_FUN(ft_t_any);
404 TRACE_ABORT(0, ft_t_err,
405 "Inversion failed (2 CRC errors, >0 CRC failures)");
406 }
407 log_det = 255 - gflog[det];
408
409 /* Now, calculate all of the coefficients:
410 */
411 Ainv[0][0] = Ainv[1][0] = gfpow[log_det];
412
413 Ainv[0][1] = gfmul_exp(t2, log_det);
414 Ainv[1][1] = gfmul_exp(t1, log_det);
415
416 return 1;
417}
418
419
420/* Multiply matrix A by vector S and return result in vector B. M is
421 * assumed to be of order NxN, S and B of order Nx1.
422 */
423static inline void gfmat_mul(int n, Matrix A,
424 __u8 *s, __u8 *b)
425{
426 int i, j;
427 __u8 dot_prod;
428
429 for (i = 0; i < n; ++i) {
430 dot_prod = 0;
431 for (j = 0; j < n; ++j) {
432 dot_prod = gfadd(dot_prod, gfmul(A[i][j], s[j]));
433 }
434 b[i] = dot_prod;
435 }
436}
437
438
439
440/* The Reed Solomon ECC codes are computed over the N-th byte of each
441 * block, where N=SECTOR_SIZE. There are up to 29 blocks of data, and
442 * 3 blocks of ECC. The blocks are stored contiguously in memory. A
443 * segment, consequently, is assumed to have at least 4 blocks: one or
444 * more data blocks plus three ECC blocks.
445 *
446 * Notice: In QIC-80 speak, a CRC error is a sector with an incorrect
447 * CRC. A CRC failure is a sector with incorrect data, but
448 * a valid CRC. In the error control literature, the former
449 * is usually called "erasure", the latter "error."
450 */
451/* Compute the parity bytes for C columns of data, where C is the
452 * number of bytes that fit into a long integer. We use a linear
453 * feed-back register to do this. The parity bytes P[0], P[STRIDE],
454 * P[2*STRIDE] are computed such that:
455 *
456 * x^k * p(x) + m(x) = 0 (modulo g(x))
457 *
458 * where k = NBLOCKS,
459 * p(x) = P[0] + P[STRIDE]*x + P[2*STRIDE]*x^2, and
460 * m(x) = sum_{i=0}^k m_i*x^i.
461 * m_i = DATA[i*SECTOR_SIZE]
462 */
463static inline void set_parity(unsigned long *data,
464 int nblocks,
465 unsigned long *p,
466 int stride)
467{
468 unsigned long p0, p1, p2, t1, t2, *end;
469
470 end = data + nblocks * (FT_SECTOR_SIZE / sizeof(long));
471 p0 = p1 = p2 = 0;
472 while (data < end) {
473 /* The new parity bytes p0_i, p1_i, p2_i are computed
474 * from the old values p0_{i-1}, p1_{i-1}, p2_{i-1}
475 * recursively as:
476 *
477 * p0_i = p1_{i-1} + r^105 * (m_{i-1} - p0_{i-1})
478 * p1_i = p2_{i-1} + r^105 * (m_{i-1} - p0_{i-1})
479 * p2_i = (m_{i-1} - p0_{i-1})
480 *
481 * With the initial condition: p0_0 = p1_0 = p2_0 = 0.
482 */
483 t1 = gfadd_long(*data, p0);
484 /*
485 * Multiply each byte in t1 by 0xc0:
486 */
487 if (sizeof(long) == 4) {
488 t2= (((__u32) gfmul_c0[(__u32)t1 >> 24 & 0xff]) << 24 |
489 ((__u32) gfmul_c0[(__u32)t1 >> 16 & 0xff]) << 16 |
490 ((__u32) gfmul_c0[(__u32)t1 >> 8 & 0xff]) << 8 |
491 ((__u32) gfmul_c0[(__u32)t1 >> 0 & 0xff]) << 0);
492 } else if (sizeof(long) == 8) {
493 t2= (((__u64) gfmul_c0[(__u64)t1 >> 56 & 0xff]) << 56 |
494 ((__u64) gfmul_c0[(__u64)t1 >> 48 & 0xff]) << 48 |
495 ((__u64) gfmul_c0[(__u64)t1 >> 40 & 0xff]) << 40 |
496 ((__u64) gfmul_c0[(__u64)t1 >> 32 & 0xff]) << 32 |
497 ((__u64) gfmul_c0[(__u64)t1 >> 24 & 0xff]) << 24 |
498 ((__u64) gfmul_c0[(__u64)t1 >> 16 & 0xff]) << 16 |
499 ((__u64) gfmul_c0[(__u64)t1 >> 8 & 0xff]) << 8 |
500 ((__u64) gfmul_c0[(__u64)t1 >> 0 & 0xff]) << 0);
501 } else {
502 TRACE_FUN(ft_t_any);
503 TRACE(ft_t_err, "Error: long is of size %d",
504 (int) sizeof(long));
505 TRACE_EXIT;
506 }
507 p0 = gfadd_long(t2, p1);
508 p1 = gfadd_long(t2, p2);
509 p2 = t1;
510 data += FT_SECTOR_SIZE / sizeof(long);
511 }
512 *p = p0;
513 p += stride;
514 *p = p1;
515 p += stride;
516 *p = p2;
517 return;
518}
519
520
521/* Compute the 3 syndrome values. DATA should point to the first byte
522 * of the column for which the syndromes are desired. The syndromes
523 * are computed over the first NBLOCKS of rows. The three bytes will
524 * be placed in S[0], S[1], and S[2].
525 *
526 * S[i] is the value of the "message" polynomial m(x) evaluated at the
527 * i-th root of the generator polynomial g(x).
528 *
529 * As g(x)=(x-r^-1)(x-1)(x-r^1) we evaluate the message polynomial at
530 * x=r^-1 to get S[0], at x=r^0=1 to get S[1], and at x=r to get S[2].
531 * This could be done directly and efficiently via the Horner scheme.
532 * However, it would require multiplication tables for the factors
533 * r^-1 (0xc3) and r (0x02). The following scheme does not require
534 * any multiplication tables beyond what's needed for set_parity()
535 * anyway and is slightly faster if there are no errors and slightly
536 * slower if there are errors. The latter is hopefully the infrequent
537 * case.
538 *
539 * To understand the alternative algorithm, notice that set_parity(m,
540 * k, p) computes parity bytes such that:
541 *
542 * x^k * p(x) = m(x) (modulo g(x)).
543 *
544 * That is, to evaluate m(r^m), where r^m is a root of g(x), we can
545 * simply evaluate (r^m)^k*p(r^m). Also, notice that p is 0 if and
546 * only if s is zero. That is, if all parity bytes are 0, we know
547 * there is no error in the data and consequently there is no need to
548 * compute s(x) at all! In all other cases, we compute s(x) from p(x)
549 * by evaluating (r^m)^k*p(r^m) for m=-1, m=0, and m=1. The p(x)
550 * polynomial is evaluated via the Horner scheme.
551 */
552static int compute_syndromes(unsigned long *data, int nblocks, unsigned long *s)
553{
554 unsigned long p[3];
555
556 set_parity(data, nblocks, p, 1);
557 if (p[0] | p[1] | p[2]) {
558 /* Some of the checked columns do not have a zero
559 * syndrome. For simplicity, we compute the syndromes
560 * for all columns that we have computed the
561 * remainders for.
562 */
563 s[0] = gfmul_exp_long(
564 gfadd_long(p[0],
565 gfmul_exp_long(
566 gfadd_long(p[1],
567 gfmul_exp_long(p[2], -1)),
568 -1)),
569 -nblocks);
570 s[1] = gfadd_long(gfadd_long(p[2], p[1]), p[0]);
571 s[2] = gfmul_exp_long(
572 gfadd_long(p[0],
573 gfmul_exp_long(
574 gfadd_long(p[1],
575 gfmul_exp_long(p[2], 1)),
576 1)),
577 nblocks);
578 return 0;
579 } else {
580 return 1;
581 }
582}
583
584
585/* Correct the block in the column pointed to by DATA. There are NBAD
586 * CRC errors and their indices are in BAD_LOC[0], up to
587 * BAD_LOC[NBAD-1]. If NBAD>1, Ainv holds the inverse of the matrix
588 * of the linear system that needs to be solved to determine the error
589 * magnitudes. S[0], S[1], and S[2] are the syndrome values. If row
590 * j gets corrected, then bit j will be set in CORRECTION_MAP.
591 */
592static inline int correct_block(__u8 *data, int nblocks,
593 int nbad, int *bad_loc, Matrix Ainv,
594 __u8 *s,
595 SectorMap * correction_map)
596{
597 int ncorrected = 0;
598 int i;
599 __u8 t1, t2;
600 __u8 c0, c1, c2; /* check bytes */
601 __u8 error_mag[3], log_error_mag;
602 __u8 *dp, l, e;
603 TRACE_FUN(ft_t_any);
604
605 switch (nbad) {
606 case 0:
607 /* might have a CRC failure: */
608 if (s[0] == 0) {
609 /* more than one error */
610 TRACE_ABORT(-1, ft_t_err,
611 "ECC failed (0 CRC errors, >1 CRC failures)");
612 }
613 t1 = gfdiv(s[1], s[0]);
614 if ((bad_loc[nbad++] = gflog[t1]) >= nblocks) {
615 TRACE(ft_t_err,
616 "ECC failed (0 CRC errors, >1 CRC failures)");
617 TRACE_ABORT(-1, ft_t_err,
618 "attempt to correct data at %d", bad_loc[0]);
619 }
620 error_mag[0] = s[1];
621 break;
622 case 1:
623 t1 = gfadd(gfmul_exp(s[1], bad_loc[0]), s[2]);
624 t2 = gfadd(gfmul_exp(s[0], bad_loc[0]), s[1]);
625 if (t1 == 0 && t2 == 0) {
626 /* one erasure, no error: */
627 Ainv[0][0] = gfpow[bad_loc[0]];
628 } else if (t1 == 0 || t2 == 0) {
629 /* one erasure and more than one error: */
630 TRACE_ABORT(-1, ft_t_err,
631 "ECC failed (1 erasure, >1 error)");
632 } else {
633 /* one erasure, one error: */
634 if ((bad_loc[nbad++] = gflog[gfdiv(t1, t2)])
635 >= nblocks) {
636 TRACE(ft_t_err, "ECC failed "
637 "(1 CRC errors, >1 CRC failures)");
638 TRACE_ABORT(-1, ft_t_err,
639 "attempt to correct data at %d",
640 bad_loc[1]);
641 }
642 if (!gfinv2(bad_loc[0], bad_loc[1], Ainv)) {
643 /* inversion failed---must have more
644 * than one error
645 */
646 TRACE_EXIT -1;
647 }
648 }
649 /* FALL THROUGH TO ERROR MAGNITUDE COMPUTATION:
650 */
651 case 2:
652 case 3:
653 /* compute error magnitudes: */
654 gfmat_mul(nbad, Ainv, s, error_mag);
655 break;
656
657 default:
658 TRACE_ABORT(-1, ft_t_err,
659 "Internal Error: number of CRC errors > 3");
660 }
661
662 /* Perform correction by adding ERROR_MAG[i] to the byte at
663 * offset BAD_LOC[i]. Also add the value of the computed
664 * error polynomial to the syndrome values. If the correction
665 * was successful, the resulting check bytes should be zero
666 * (i.e., the corrected data is a valid code word).
667 */
668 c0 = s[0];
669 c1 = s[1];
670 c2 = s[2];
671 for (i = 0; i < nbad; ++i) {
672 e = error_mag[i];
673 if (e) {
674 /* correct the byte at offset L by magnitude E: */
675 l = bad_loc[i];
676 dp = &data[l * FT_SECTOR_SIZE];
677 *dp = gfadd(*dp, e);
678 *correction_map |= 1 << l;
679 ++ncorrected;
680
681 log_error_mag = gflog[e];
682 c0 = gfadd(c0, gfpow[mod255(log_error_mag - l)]);
683 c1 = gfadd(c1, e);
684 c2 = gfadd(c2, gfpow[mod255(log_error_mag + l)]);
685 }
686 }
687 if (c0 || c1 || c2) {
688 TRACE_ABORT(-1, ft_t_err,
689 "ECC self-check failed, too many errors");
690 }
691 TRACE_EXIT ncorrected;
692}
693
694
695#if defined(ECC_SANITY_CHECK) || defined(ECC_PARANOID)
696
697/* Perform a sanity check on the computed parity bytes:
698 */
699static int sanity_check(unsigned long *data, int nblocks)
700{
701 TRACE_FUN(ft_t_any);
702 unsigned long s[3];
703
704 if (!compute_syndromes(data, nblocks, s)) {
705 TRACE_ABORT(0, ft_bug,
706 "Internal Error: syndrome self-check failed");
707 }
708 TRACE_EXIT 1;
709}
710
711#endif /* defined(ECC_SANITY_CHECK) || defined(ECC_PARANOID) */
712
713/* Compute the parity for an entire segment of data.
714 */
715int ftape_ecc_set_segment_parity(struct memory_segment *mseg)
716{
717 int i;
718 __u8 *parity_bytes;
719
720 parity_bytes = &mseg->data[(mseg->blocks - 3) * FT_SECTOR_SIZE];
721 for (i = 0; i < FT_SECTOR_SIZE; i += sizeof(long)) {
722 set_parity((unsigned long *) &mseg->data[i], mseg->blocks - 3,
723 (unsigned long *) &parity_bytes[i],
724 FT_SECTOR_SIZE / sizeof(long));
725#ifdef ECC_PARANOID
726 if (!sanity_check((unsigned long *) &mseg->data[i],
727 mseg->blocks)) {
728 return -1;
729 }
730#endif /* ECC_PARANOID */
731 }
732 return 0;
733}
734
735
736/* Checks and corrects (if possible) the segment MSEG. Returns one of
737 * ECC_OK, ECC_CORRECTED, and ECC_FAILED.
738 */
739int ftape_ecc_correct_data(struct memory_segment *mseg)
740{
741 int col, i, result;
742 int ncorrected = 0;
743 int nerasures = 0; /* # of erasures (CRC errors) */
744 int erasure_loc[3]; /* erasure locations */
745 unsigned long ss[3];
746 __u8 s[3];
747 Matrix Ainv;
748 TRACE_FUN(ft_t_flow);
749
750 mseg->corrected = 0;
751
752 /* find first column that has non-zero syndromes: */
753 for (col = 0; col < FT_SECTOR_SIZE; col += sizeof(long)) {
754 if (!compute_syndromes((unsigned long *) &mseg->data[col],
755 mseg->blocks, ss)) {
756 /* something is wrong---have to fix things */
757 break;
758 }
759 }
760 if (col >= FT_SECTOR_SIZE) {
761 /* all syndromes are ok, therefore nothing to correct */
762 TRACE_EXIT ECC_OK;
763 }
764 /* count the number of CRC errors if there were any: */
765 if (mseg->read_bad) {
766 for (i = 0; i < mseg->blocks; i++) {
767 if (BAD_CHECK(mseg->read_bad, i)) {
768 if (nerasures >= 3) {
769 /* this is too much for ECC */
770 TRACE_ABORT(ECC_FAILED, ft_t_err,
771 "ECC failed (>3 CRC errors)");
772 } /* if */
773 erasure_loc[nerasures++] = i;
774 }
775 }
776 }
777 /*
778 * If there are at least 2 CRC errors, determine inverse of matrix
779 * of linear system to be solved:
780 */
781 switch (nerasures) {
782 case 2:
783 if (!gfinv2(erasure_loc[0], erasure_loc[1], Ainv)) {
784 TRACE_EXIT ECC_FAILED;
785 }
786 break;
787 case 3:
788 if (!gfinv3(erasure_loc[0], erasure_loc[1],
789 erasure_loc[2], Ainv)) {
790 TRACE_EXIT ECC_FAILED;
791 }
792 break;
793 default:
794 /* this is not an error condition... */
795 break;
796 }
797
798 do {
799 for (i = 0; i < sizeof(long); ++i) {
800 s[0] = ss[0];
801 s[1] = ss[1];
802 s[2] = ss[2];
803 if (s[0] | s[1] | s[2]) {
804#ifdef BIG_ENDIAN
805 result = correct_block(
806 &mseg->data[col + sizeof(long) - 1 - i],
807 mseg->blocks,
808 nerasures,
809 erasure_loc,
810 Ainv,
811 s,
812 &mseg->corrected);
813#else
814 result = correct_block(&mseg->data[col + i],
815 mseg->blocks,
816 nerasures,
817 erasure_loc,
818 Ainv,
819 s,
820 &mseg->corrected);
821#endif
822 if (result < 0) {
823 TRACE_EXIT ECC_FAILED;
824 }
825 ncorrected += result;
826 }
827 ss[0] >>= 8;
828 ss[1] >>= 8;
829 ss[2] >>= 8;
830 }
831
832#ifdef ECC_SANITY_CHECK
833 if (!sanity_check((unsigned long *) &mseg->data[col],
834 mseg->blocks)) {
835 TRACE_EXIT ECC_FAILED;
836 }
837#endif /* ECC_SANITY_CHECK */
838
839 /* find next column with non-zero syndromes: */
840 while ((col += sizeof(long)) < FT_SECTOR_SIZE) {
841 if (!compute_syndromes((unsigned long *)
842 &mseg->data[col], mseg->blocks, ss)) {
843 /* something is wrong---have to fix things */
844 break;
845 }
846 }
847 } while (col < FT_SECTOR_SIZE);
848 if (ncorrected && nerasures == 0) {
849 TRACE(ft_t_warn, "block contained error not caught by CRC");
850 }
851 TRACE((ncorrected > 0) ? ft_t_noise : ft_t_any, "number of corrections: %d", ncorrected);
852 TRACE_EXIT ncorrected ? ECC_CORRECTED : ECC_OK;
853}