diff options
author | Jeff Garzik <jgarzik@pobox.com> | 2005-11-09 01:07:12 -0500 |
---|---|---|
committer | Jeff Garzik <jgarzik@pobox.com> | 2005-11-09 01:07:12 -0500 |
commit | a892acacd3a8546ac161526522f13b5174f2c471 (patch) | |
tree | ee6d36f27f1388989ebfcabf90253fb7194112ac /drivers/block/as-iosched.c | |
parent | 193515d51ccb363165d6b09e9ba5c21089e34bad (diff) | |
parent | 330d57fb98a916fa8e1363846540dd420e99499a (diff) |
Merge branch 'master'
Diffstat (limited to 'drivers/block/as-iosched.c')
-rw-r--r-- | drivers/block/as-iosched.c | 1985 |
1 files changed, 0 insertions, 1985 deletions
diff --git a/drivers/block/as-iosched.c b/drivers/block/as-iosched.c deleted file mode 100644 index c6744ff38294..000000000000 --- a/drivers/block/as-iosched.c +++ /dev/null | |||
@@ -1,1985 +0,0 @@ | |||
1 | /* | ||
2 | * linux/drivers/block/as-iosched.c | ||
3 | * | ||
4 | * Anticipatory & deadline i/o scheduler. | ||
5 | * | ||
6 | * Copyright (C) 2002 Jens Axboe <axboe@suse.de> | ||
7 | * Nick Piggin <piggin@cyberone.com.au> | ||
8 | * | ||
9 | */ | ||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/fs.h> | ||
12 | #include <linux/blkdev.h> | ||
13 | #include <linux/elevator.h> | ||
14 | #include <linux/bio.h> | ||
15 | #include <linux/config.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/slab.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/compiler.h> | ||
20 | #include <linux/hash.h> | ||
21 | #include <linux/rbtree.h> | ||
22 | #include <linux/interrupt.h> | ||
23 | |||
24 | #define REQ_SYNC 1 | ||
25 | #define REQ_ASYNC 0 | ||
26 | |||
27 | /* | ||
28 | * See Documentation/block/as-iosched.txt | ||
29 | */ | ||
30 | |||
31 | /* | ||
32 | * max time before a read is submitted. | ||
33 | */ | ||
34 | #define default_read_expire (HZ / 8) | ||
35 | |||
36 | /* | ||
37 | * ditto for writes, these limits are not hard, even | ||
38 | * if the disk is capable of satisfying them. | ||
39 | */ | ||
40 | #define default_write_expire (HZ / 4) | ||
41 | |||
42 | /* | ||
43 | * read_batch_expire describes how long we will allow a stream of reads to | ||
44 | * persist before looking to see whether it is time to switch over to writes. | ||
45 | */ | ||
46 | #define default_read_batch_expire (HZ / 2) | ||
47 | |||
48 | /* | ||
49 | * write_batch_expire describes how long we want a stream of writes to run for. | ||
50 | * This is not a hard limit, but a target we set for the auto-tuning thingy. | ||
51 | * See, the problem is: we can send a lot of writes to disk cache / TCQ in | ||
52 | * a short amount of time... | ||
53 | */ | ||
54 | #define default_write_batch_expire (HZ / 8) | ||
55 | |||
56 | /* | ||
57 | * max time we may wait to anticipate a read (default around 6ms) | ||
58 | */ | ||
59 | #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) | ||
60 | |||
61 | /* | ||
62 | * Keep track of up to 20ms thinktimes. We can go as big as we like here, | ||
63 | * however huge values tend to interfere and not decay fast enough. A program | ||
64 | * might be in a non-io phase of operation. Waiting on user input for example, | ||
65 | * or doing a lengthy computation. A small penalty can be justified there, and | ||
66 | * will still catch out those processes that constantly have large thinktimes. | ||
67 | */ | ||
68 | #define MAX_THINKTIME (HZ/50UL) | ||
69 | |||
70 | /* Bits in as_io_context.state */ | ||
71 | enum as_io_states { | ||
72 | AS_TASK_RUNNING=0, /* Process has not exitted */ | ||
73 | AS_TASK_IOSTARTED, /* Process has started some IO */ | ||
74 | AS_TASK_IORUNNING, /* Process has completed some IO */ | ||
75 | }; | ||
76 | |||
77 | enum anticipation_status { | ||
78 | ANTIC_OFF=0, /* Not anticipating (normal operation) */ | ||
79 | ANTIC_WAIT_REQ, /* The last read has not yet completed */ | ||
80 | ANTIC_WAIT_NEXT, /* Currently anticipating a request vs | ||
81 | last read (which has completed) */ | ||
82 | ANTIC_FINISHED, /* Anticipating but have found a candidate | ||
83 | * or timed out */ | ||
84 | }; | ||
85 | |||
86 | struct as_data { | ||
87 | /* | ||
88 | * run time data | ||
89 | */ | ||
90 | |||
91 | struct request_queue *q; /* the "owner" queue */ | ||
92 | |||
93 | /* | ||
94 | * requests (as_rq s) are present on both sort_list and fifo_list | ||
95 | */ | ||
96 | struct rb_root sort_list[2]; | ||
97 | struct list_head fifo_list[2]; | ||
98 | |||
99 | struct as_rq *next_arq[2]; /* next in sort order */ | ||
100 | sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */ | ||
101 | struct list_head *hash; /* request hash */ | ||
102 | |||
103 | unsigned long exit_prob; /* probability a task will exit while | ||
104 | being waited on */ | ||
105 | unsigned long new_ttime_total; /* mean thinktime on new proc */ | ||
106 | unsigned long new_ttime_mean; | ||
107 | u64 new_seek_total; /* mean seek on new proc */ | ||
108 | sector_t new_seek_mean; | ||
109 | |||
110 | unsigned long current_batch_expires; | ||
111 | unsigned long last_check_fifo[2]; | ||
112 | int changed_batch; /* 1: waiting for old batch to end */ | ||
113 | int new_batch; /* 1: waiting on first read complete */ | ||
114 | int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */ | ||
115 | int write_batch_count; /* max # of reqs in a write batch */ | ||
116 | int current_write_count; /* how many requests left this batch */ | ||
117 | int write_batch_idled; /* has the write batch gone idle? */ | ||
118 | mempool_t *arq_pool; | ||
119 | |||
120 | enum anticipation_status antic_status; | ||
121 | unsigned long antic_start; /* jiffies: when it started */ | ||
122 | struct timer_list antic_timer; /* anticipatory scheduling timer */ | ||
123 | struct work_struct antic_work; /* Deferred unplugging */ | ||
124 | struct io_context *io_context; /* Identify the expected process */ | ||
125 | int ioc_finished; /* IO associated with io_context is finished */ | ||
126 | int nr_dispatched; | ||
127 | |||
128 | /* | ||
129 | * settings that change how the i/o scheduler behaves | ||
130 | */ | ||
131 | unsigned long fifo_expire[2]; | ||
132 | unsigned long batch_expire[2]; | ||
133 | unsigned long antic_expire; | ||
134 | }; | ||
135 | |||
136 | #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo) | ||
137 | |||
138 | /* | ||
139 | * per-request data. | ||
140 | */ | ||
141 | enum arq_state { | ||
142 | AS_RQ_NEW=0, /* New - not referenced and not on any lists */ | ||
143 | AS_RQ_QUEUED, /* In the request queue. It belongs to the | ||
144 | scheduler */ | ||
145 | AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the | ||
146 | driver now */ | ||
147 | AS_RQ_PRESCHED, /* Debug poisoning for requests being used */ | ||
148 | AS_RQ_REMOVED, | ||
149 | AS_RQ_MERGED, | ||
150 | AS_RQ_POSTSCHED, /* when they shouldn't be */ | ||
151 | }; | ||
152 | |||
153 | struct as_rq { | ||
154 | /* | ||
155 | * rbtree index, key is the starting offset | ||
156 | */ | ||
157 | struct rb_node rb_node; | ||
158 | sector_t rb_key; | ||
159 | |||
160 | struct request *request; | ||
161 | |||
162 | struct io_context *io_context; /* The submitting task */ | ||
163 | |||
164 | /* | ||
165 | * request hash, key is the ending offset (for back merge lookup) | ||
166 | */ | ||
167 | struct list_head hash; | ||
168 | unsigned int on_hash; | ||
169 | |||
170 | /* | ||
171 | * expire fifo | ||
172 | */ | ||
173 | struct list_head fifo; | ||
174 | unsigned long expires; | ||
175 | |||
176 | unsigned int is_sync; | ||
177 | enum arq_state state; | ||
178 | }; | ||
179 | |||
180 | #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private) | ||
181 | |||
182 | static kmem_cache_t *arq_pool; | ||
183 | |||
184 | /* | ||
185 | * IO Context helper functions | ||
186 | */ | ||
187 | |||
188 | /* Called to deallocate the as_io_context */ | ||
189 | static void free_as_io_context(struct as_io_context *aic) | ||
190 | { | ||
191 | kfree(aic); | ||
192 | } | ||
193 | |||
194 | /* Called when the task exits */ | ||
195 | static void exit_as_io_context(struct as_io_context *aic) | ||
196 | { | ||
197 | WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); | ||
198 | clear_bit(AS_TASK_RUNNING, &aic->state); | ||
199 | } | ||
200 | |||
201 | static struct as_io_context *alloc_as_io_context(void) | ||
202 | { | ||
203 | struct as_io_context *ret; | ||
204 | |||
205 | ret = kmalloc(sizeof(*ret), GFP_ATOMIC); | ||
206 | if (ret) { | ||
207 | ret->dtor = free_as_io_context; | ||
208 | ret->exit = exit_as_io_context; | ||
209 | ret->state = 1 << AS_TASK_RUNNING; | ||
210 | atomic_set(&ret->nr_queued, 0); | ||
211 | atomic_set(&ret->nr_dispatched, 0); | ||
212 | spin_lock_init(&ret->lock); | ||
213 | ret->ttime_total = 0; | ||
214 | ret->ttime_samples = 0; | ||
215 | ret->ttime_mean = 0; | ||
216 | ret->seek_total = 0; | ||
217 | ret->seek_samples = 0; | ||
218 | ret->seek_mean = 0; | ||
219 | } | ||
220 | |||
221 | return ret; | ||
222 | } | ||
223 | |||
224 | /* | ||
225 | * If the current task has no AS IO context then create one and initialise it. | ||
226 | * Then take a ref on the task's io context and return it. | ||
227 | */ | ||
228 | static struct io_context *as_get_io_context(void) | ||
229 | { | ||
230 | struct io_context *ioc = get_io_context(GFP_ATOMIC); | ||
231 | if (ioc && !ioc->aic) { | ||
232 | ioc->aic = alloc_as_io_context(); | ||
233 | if (!ioc->aic) { | ||
234 | put_io_context(ioc); | ||
235 | ioc = NULL; | ||
236 | } | ||
237 | } | ||
238 | return ioc; | ||
239 | } | ||
240 | |||
241 | static void as_put_io_context(struct as_rq *arq) | ||
242 | { | ||
243 | struct as_io_context *aic; | ||
244 | |||
245 | if (unlikely(!arq->io_context)) | ||
246 | return; | ||
247 | |||
248 | aic = arq->io_context->aic; | ||
249 | |||
250 | if (arq->is_sync == REQ_SYNC && aic) { | ||
251 | spin_lock(&aic->lock); | ||
252 | set_bit(AS_TASK_IORUNNING, &aic->state); | ||
253 | aic->last_end_request = jiffies; | ||
254 | spin_unlock(&aic->lock); | ||
255 | } | ||
256 | |||
257 | put_io_context(arq->io_context); | ||
258 | } | ||
259 | |||
260 | /* | ||
261 | * the back merge hash support functions | ||
262 | */ | ||
263 | static const int as_hash_shift = 6; | ||
264 | #define AS_HASH_BLOCK(sec) ((sec) >> 3) | ||
265 | #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift)) | ||
266 | #define AS_HASH_ENTRIES (1 << as_hash_shift) | ||
267 | #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) | ||
268 | #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash) | ||
269 | |||
270 | static inline void __as_del_arq_hash(struct as_rq *arq) | ||
271 | { | ||
272 | arq->on_hash = 0; | ||
273 | list_del_init(&arq->hash); | ||
274 | } | ||
275 | |||
276 | static inline void as_del_arq_hash(struct as_rq *arq) | ||
277 | { | ||
278 | if (arq->on_hash) | ||
279 | __as_del_arq_hash(arq); | ||
280 | } | ||
281 | |||
282 | static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq) | ||
283 | { | ||
284 | struct request *rq = arq->request; | ||
285 | |||
286 | BUG_ON(arq->on_hash); | ||
287 | |||
288 | arq->on_hash = 1; | ||
289 | list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]); | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * move hot entry to front of chain | ||
294 | */ | ||
295 | static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq) | ||
296 | { | ||
297 | struct request *rq = arq->request; | ||
298 | struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))]; | ||
299 | |||
300 | if (!arq->on_hash) { | ||
301 | WARN_ON(1); | ||
302 | return; | ||
303 | } | ||
304 | |||
305 | if (arq->hash.prev != head) { | ||
306 | list_del(&arq->hash); | ||
307 | list_add(&arq->hash, head); | ||
308 | } | ||
309 | } | ||
310 | |||
311 | static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset) | ||
312 | { | ||
313 | struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)]; | ||
314 | struct list_head *entry, *next = hash_list->next; | ||
315 | |||
316 | while ((entry = next) != hash_list) { | ||
317 | struct as_rq *arq = list_entry_hash(entry); | ||
318 | struct request *__rq = arq->request; | ||
319 | |||
320 | next = entry->next; | ||
321 | |||
322 | BUG_ON(!arq->on_hash); | ||
323 | |||
324 | if (!rq_mergeable(__rq)) { | ||
325 | as_del_arq_hash(arq); | ||
326 | continue; | ||
327 | } | ||
328 | |||
329 | if (rq_hash_key(__rq) == offset) | ||
330 | return __rq; | ||
331 | } | ||
332 | |||
333 | return NULL; | ||
334 | } | ||
335 | |||
336 | /* | ||
337 | * rb tree support functions | ||
338 | */ | ||
339 | #define RB_NONE (2) | ||
340 | #define RB_EMPTY(root) ((root)->rb_node == NULL) | ||
341 | #define ON_RB(node) ((node)->rb_color != RB_NONE) | ||
342 | #define RB_CLEAR(node) ((node)->rb_color = RB_NONE) | ||
343 | #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node) | ||
344 | #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync]) | ||
345 | #define rq_rb_key(rq) (rq)->sector | ||
346 | |||
347 | /* | ||
348 | * as_find_first_arq finds the first (lowest sector numbered) request | ||
349 | * for the specified data_dir. Used to sweep back to the start of the disk | ||
350 | * (1-way elevator) after we process the last (highest sector) request. | ||
351 | */ | ||
352 | static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir) | ||
353 | { | ||
354 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | ||
355 | |||
356 | if (n == NULL) | ||
357 | return NULL; | ||
358 | |||
359 | for (;;) { | ||
360 | if (n->rb_left == NULL) | ||
361 | return rb_entry_arq(n); | ||
362 | |||
363 | n = n->rb_left; | ||
364 | } | ||
365 | } | ||
366 | |||
367 | /* | ||
368 | * Add the request to the rb tree if it is unique. If there is an alias (an | ||
369 | * existing request against the same sector), which can happen when using | ||
370 | * direct IO, then return the alias. | ||
371 | */ | ||
372 | static struct as_rq *as_add_arq_rb(struct as_data *ad, struct as_rq *arq) | ||
373 | { | ||
374 | struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node; | ||
375 | struct rb_node *parent = NULL; | ||
376 | struct as_rq *__arq; | ||
377 | struct request *rq = arq->request; | ||
378 | |||
379 | arq->rb_key = rq_rb_key(rq); | ||
380 | |||
381 | while (*p) { | ||
382 | parent = *p; | ||
383 | __arq = rb_entry_arq(parent); | ||
384 | |||
385 | if (arq->rb_key < __arq->rb_key) | ||
386 | p = &(*p)->rb_left; | ||
387 | else if (arq->rb_key > __arq->rb_key) | ||
388 | p = &(*p)->rb_right; | ||
389 | else | ||
390 | return __arq; | ||
391 | } | ||
392 | |||
393 | rb_link_node(&arq->rb_node, parent, p); | ||
394 | rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | ||
395 | |||
396 | return NULL; | ||
397 | } | ||
398 | |||
399 | static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq) | ||
400 | { | ||
401 | if (!ON_RB(&arq->rb_node)) { | ||
402 | WARN_ON(1); | ||
403 | return; | ||
404 | } | ||
405 | |||
406 | rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | ||
407 | RB_CLEAR(&arq->rb_node); | ||
408 | } | ||
409 | |||
410 | static struct request * | ||
411 | as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir) | ||
412 | { | ||
413 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | ||
414 | struct as_rq *arq; | ||
415 | |||
416 | while (n) { | ||
417 | arq = rb_entry_arq(n); | ||
418 | |||
419 | if (sector < arq->rb_key) | ||
420 | n = n->rb_left; | ||
421 | else if (sector > arq->rb_key) | ||
422 | n = n->rb_right; | ||
423 | else | ||
424 | return arq->request; | ||
425 | } | ||
426 | |||
427 | return NULL; | ||
428 | } | ||
429 | |||
430 | /* | ||
431 | * IO Scheduler proper | ||
432 | */ | ||
433 | |||
434 | #define MAXBACK (1024 * 1024) /* | ||
435 | * Maximum distance the disk will go backward | ||
436 | * for a request. | ||
437 | */ | ||
438 | |||
439 | #define BACK_PENALTY 2 | ||
440 | |||
441 | /* | ||
442 | * as_choose_req selects the preferred one of two requests of the same data_dir | ||
443 | * ignoring time - eg. timeouts, which is the job of as_dispatch_request | ||
444 | */ | ||
445 | static struct as_rq * | ||
446 | as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2) | ||
447 | { | ||
448 | int data_dir; | ||
449 | sector_t last, s1, s2, d1, d2; | ||
450 | int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */ | ||
451 | const sector_t maxback = MAXBACK; | ||
452 | |||
453 | if (arq1 == NULL || arq1 == arq2) | ||
454 | return arq2; | ||
455 | if (arq2 == NULL) | ||
456 | return arq1; | ||
457 | |||
458 | data_dir = arq1->is_sync; | ||
459 | |||
460 | last = ad->last_sector[data_dir]; | ||
461 | s1 = arq1->request->sector; | ||
462 | s2 = arq2->request->sector; | ||
463 | |||
464 | BUG_ON(data_dir != arq2->is_sync); | ||
465 | |||
466 | /* | ||
467 | * Strict one way elevator _except_ in the case where we allow | ||
468 | * short backward seeks which are biased as twice the cost of a | ||
469 | * similar forward seek. | ||
470 | */ | ||
471 | if (s1 >= last) | ||
472 | d1 = s1 - last; | ||
473 | else if (s1+maxback >= last) | ||
474 | d1 = (last - s1)*BACK_PENALTY; | ||
475 | else { | ||
476 | r1_wrap = 1; | ||
477 | d1 = 0; /* shut up, gcc */ | ||
478 | } | ||
479 | |||
480 | if (s2 >= last) | ||
481 | d2 = s2 - last; | ||
482 | else if (s2+maxback >= last) | ||
483 | d2 = (last - s2)*BACK_PENALTY; | ||
484 | else { | ||
485 | r2_wrap = 1; | ||
486 | d2 = 0; | ||
487 | } | ||
488 | |||
489 | /* Found required data */ | ||
490 | if (!r1_wrap && r2_wrap) | ||
491 | return arq1; | ||
492 | else if (!r2_wrap && r1_wrap) | ||
493 | return arq2; | ||
494 | else if (r1_wrap && r2_wrap) { | ||
495 | /* both behind the head */ | ||
496 | if (s1 <= s2) | ||
497 | return arq1; | ||
498 | else | ||
499 | return arq2; | ||
500 | } | ||
501 | |||
502 | /* Both requests in front of the head */ | ||
503 | if (d1 < d2) | ||
504 | return arq1; | ||
505 | else if (d2 < d1) | ||
506 | return arq2; | ||
507 | else { | ||
508 | if (s1 >= s2) | ||
509 | return arq1; | ||
510 | else | ||
511 | return arq2; | ||
512 | } | ||
513 | } | ||
514 | |||
515 | /* | ||
516 | * as_find_next_arq finds the next request after @prev in elevator order. | ||
517 | * this with as_choose_req form the basis for how the scheduler chooses | ||
518 | * what request to process next. Anticipation works on top of this. | ||
519 | */ | ||
520 | static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last) | ||
521 | { | ||
522 | const int data_dir = last->is_sync; | ||
523 | struct as_rq *ret; | ||
524 | struct rb_node *rbnext = rb_next(&last->rb_node); | ||
525 | struct rb_node *rbprev = rb_prev(&last->rb_node); | ||
526 | struct as_rq *arq_next, *arq_prev; | ||
527 | |||
528 | BUG_ON(!ON_RB(&last->rb_node)); | ||
529 | |||
530 | if (rbprev) | ||
531 | arq_prev = rb_entry_arq(rbprev); | ||
532 | else | ||
533 | arq_prev = NULL; | ||
534 | |||
535 | if (rbnext) | ||
536 | arq_next = rb_entry_arq(rbnext); | ||
537 | else { | ||
538 | arq_next = as_find_first_arq(ad, data_dir); | ||
539 | if (arq_next == last) | ||
540 | arq_next = NULL; | ||
541 | } | ||
542 | |||
543 | ret = as_choose_req(ad, arq_next, arq_prev); | ||
544 | |||
545 | return ret; | ||
546 | } | ||
547 | |||
548 | /* | ||
549 | * anticipatory scheduling functions follow | ||
550 | */ | ||
551 | |||
552 | /* | ||
553 | * as_antic_expired tells us when we have anticipated too long. | ||
554 | * The funny "absolute difference" math on the elapsed time is to handle | ||
555 | * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. | ||
556 | */ | ||
557 | static int as_antic_expired(struct as_data *ad) | ||
558 | { | ||
559 | long delta_jif; | ||
560 | |||
561 | delta_jif = jiffies - ad->antic_start; | ||
562 | if (unlikely(delta_jif < 0)) | ||
563 | delta_jif = -delta_jif; | ||
564 | if (delta_jif < ad->antic_expire) | ||
565 | return 0; | ||
566 | |||
567 | return 1; | ||
568 | } | ||
569 | |||
570 | /* | ||
571 | * as_antic_waitnext starts anticipating that a nice request will soon be | ||
572 | * submitted. See also as_antic_waitreq | ||
573 | */ | ||
574 | static void as_antic_waitnext(struct as_data *ad) | ||
575 | { | ||
576 | unsigned long timeout; | ||
577 | |||
578 | BUG_ON(ad->antic_status != ANTIC_OFF | ||
579 | && ad->antic_status != ANTIC_WAIT_REQ); | ||
580 | |||
581 | timeout = ad->antic_start + ad->antic_expire; | ||
582 | |||
583 | mod_timer(&ad->antic_timer, timeout); | ||
584 | |||
585 | ad->antic_status = ANTIC_WAIT_NEXT; | ||
586 | } | ||
587 | |||
588 | /* | ||
589 | * as_antic_waitreq starts anticipating. We don't start timing the anticipation | ||
590 | * until the request that we're anticipating on has finished. This means we | ||
591 | * are timing from when the candidate process wakes up hopefully. | ||
592 | */ | ||
593 | static void as_antic_waitreq(struct as_data *ad) | ||
594 | { | ||
595 | BUG_ON(ad->antic_status == ANTIC_FINISHED); | ||
596 | if (ad->antic_status == ANTIC_OFF) { | ||
597 | if (!ad->io_context || ad->ioc_finished) | ||
598 | as_antic_waitnext(ad); | ||
599 | else | ||
600 | ad->antic_status = ANTIC_WAIT_REQ; | ||
601 | } | ||
602 | } | ||
603 | |||
604 | /* | ||
605 | * This is called directly by the functions in this file to stop anticipation. | ||
606 | * We kill the timer and schedule a call to the request_fn asap. | ||
607 | */ | ||
608 | static void as_antic_stop(struct as_data *ad) | ||
609 | { | ||
610 | int status = ad->antic_status; | ||
611 | |||
612 | if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { | ||
613 | if (status == ANTIC_WAIT_NEXT) | ||
614 | del_timer(&ad->antic_timer); | ||
615 | ad->antic_status = ANTIC_FINISHED; | ||
616 | /* see as_work_handler */ | ||
617 | kblockd_schedule_work(&ad->antic_work); | ||
618 | } | ||
619 | } | ||
620 | |||
621 | /* | ||
622 | * as_antic_timeout is the timer function set by as_antic_waitnext. | ||
623 | */ | ||
624 | static void as_antic_timeout(unsigned long data) | ||
625 | { | ||
626 | struct request_queue *q = (struct request_queue *)data; | ||
627 | struct as_data *ad = q->elevator->elevator_data; | ||
628 | unsigned long flags; | ||
629 | |||
630 | spin_lock_irqsave(q->queue_lock, flags); | ||
631 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
632 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
633 | struct as_io_context *aic = ad->io_context->aic; | ||
634 | |||
635 | ad->antic_status = ANTIC_FINISHED; | ||
636 | kblockd_schedule_work(&ad->antic_work); | ||
637 | |||
638 | if (aic->ttime_samples == 0) { | ||
639 | /* process anticipated on has exitted or timed out*/ | ||
640 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
641 | } | ||
642 | } | ||
643 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
644 | } | ||
645 | |||
646 | /* | ||
647 | * as_close_req decides if one request is considered "close" to the | ||
648 | * previous one issued. | ||
649 | */ | ||
650 | static int as_close_req(struct as_data *ad, struct as_rq *arq) | ||
651 | { | ||
652 | unsigned long delay; /* milliseconds */ | ||
653 | sector_t last = ad->last_sector[ad->batch_data_dir]; | ||
654 | sector_t next = arq->request->sector; | ||
655 | sector_t delta; /* acceptable close offset (in sectors) */ | ||
656 | |||
657 | if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) | ||
658 | delay = 0; | ||
659 | else | ||
660 | delay = ((jiffies - ad->antic_start) * 1000) / HZ; | ||
661 | |||
662 | if (delay <= 1) | ||
663 | delta = 64; | ||
664 | else if (delay <= 20 && delay <= ad->antic_expire) | ||
665 | delta = 64 << (delay-1); | ||
666 | else | ||
667 | return 1; | ||
668 | |||
669 | return (last - (delta>>1) <= next) && (next <= last + delta); | ||
670 | } | ||
671 | |||
672 | /* | ||
673 | * as_can_break_anticipation returns true if we have been anticipating this | ||
674 | * request. | ||
675 | * | ||
676 | * It also returns true if the process against which we are anticipating | ||
677 | * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to | ||
678 | * dispatch it ASAP, because we know that application will not be submitting | ||
679 | * any new reads. | ||
680 | * | ||
681 | * If the task which has submitted the request has exitted, break anticipation. | ||
682 | * | ||
683 | * If this task has queued some other IO, do not enter enticipation. | ||
684 | */ | ||
685 | static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq) | ||
686 | { | ||
687 | struct io_context *ioc; | ||
688 | struct as_io_context *aic; | ||
689 | sector_t s; | ||
690 | |||
691 | ioc = ad->io_context; | ||
692 | BUG_ON(!ioc); | ||
693 | |||
694 | if (arq && ioc == arq->io_context) { | ||
695 | /* request from same process */ | ||
696 | return 1; | ||
697 | } | ||
698 | |||
699 | if (ad->ioc_finished && as_antic_expired(ad)) { | ||
700 | /* | ||
701 | * In this situation status should really be FINISHED, | ||
702 | * however the timer hasn't had the chance to run yet. | ||
703 | */ | ||
704 | return 1; | ||
705 | } | ||
706 | |||
707 | aic = ioc->aic; | ||
708 | if (!aic) | ||
709 | return 0; | ||
710 | |||
711 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | ||
712 | /* process anticipated on has exitted */ | ||
713 | if (aic->ttime_samples == 0) | ||
714 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
715 | return 1; | ||
716 | } | ||
717 | |||
718 | if (atomic_read(&aic->nr_queued) > 0) { | ||
719 | /* process has more requests queued */ | ||
720 | return 1; | ||
721 | } | ||
722 | |||
723 | if (atomic_read(&aic->nr_dispatched) > 0) { | ||
724 | /* process has more requests dispatched */ | ||
725 | return 1; | ||
726 | } | ||
727 | |||
728 | if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, arq)) { | ||
729 | /* | ||
730 | * Found a close request that is not one of ours. | ||
731 | * | ||
732 | * This makes close requests from another process reset | ||
733 | * our thinktime delay. Is generally useful when there are | ||
734 | * two or more cooperating processes working in the same | ||
735 | * area. | ||
736 | */ | ||
737 | spin_lock(&aic->lock); | ||
738 | aic->last_end_request = jiffies; | ||
739 | spin_unlock(&aic->lock); | ||
740 | return 1; | ||
741 | } | ||
742 | |||
743 | |||
744 | if (aic->ttime_samples == 0) { | ||
745 | if (ad->new_ttime_mean > ad->antic_expire) | ||
746 | return 1; | ||
747 | if (ad->exit_prob > 128) | ||
748 | return 1; | ||
749 | } else if (aic->ttime_mean > ad->antic_expire) { | ||
750 | /* the process thinks too much between requests */ | ||
751 | return 1; | ||
752 | } | ||
753 | |||
754 | if (!arq) | ||
755 | return 0; | ||
756 | |||
757 | if (ad->last_sector[REQ_SYNC] < arq->request->sector) | ||
758 | s = arq->request->sector - ad->last_sector[REQ_SYNC]; | ||
759 | else | ||
760 | s = ad->last_sector[REQ_SYNC] - arq->request->sector; | ||
761 | |||
762 | if (aic->seek_samples == 0) { | ||
763 | /* | ||
764 | * Process has just started IO. Use past statistics to | ||
765 | * guage success possibility | ||
766 | */ | ||
767 | if (ad->new_seek_mean > s) { | ||
768 | /* this request is better than what we're expecting */ | ||
769 | return 1; | ||
770 | } | ||
771 | |||
772 | } else { | ||
773 | if (aic->seek_mean > s) { | ||
774 | /* this request is better than what we're expecting */ | ||
775 | return 1; | ||
776 | } | ||
777 | } | ||
778 | |||
779 | return 0; | ||
780 | } | ||
781 | |||
782 | /* | ||
783 | * as_can_anticipate indicates weather we should either run arq | ||
784 | * or keep anticipating a better request. | ||
785 | */ | ||
786 | static int as_can_anticipate(struct as_data *ad, struct as_rq *arq) | ||
787 | { | ||
788 | if (!ad->io_context) | ||
789 | /* | ||
790 | * Last request submitted was a write | ||
791 | */ | ||
792 | return 0; | ||
793 | |||
794 | if (ad->antic_status == ANTIC_FINISHED) | ||
795 | /* | ||
796 | * Don't restart if we have just finished. Run the next request | ||
797 | */ | ||
798 | return 0; | ||
799 | |||
800 | if (as_can_break_anticipation(ad, arq)) | ||
801 | /* | ||
802 | * This request is a good candidate. Don't keep anticipating, | ||
803 | * run it. | ||
804 | */ | ||
805 | return 0; | ||
806 | |||
807 | /* | ||
808 | * OK from here, we haven't finished, and don't have a decent request! | ||
809 | * Status is either ANTIC_OFF so start waiting, | ||
810 | * ANTIC_WAIT_REQ so continue waiting for request to finish | ||
811 | * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. | ||
812 | * | ||
813 | */ | ||
814 | |||
815 | return 1; | ||
816 | } | ||
817 | |||
818 | static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, unsigned long ttime) | ||
819 | { | ||
820 | /* fixed point: 1.0 == 1<<8 */ | ||
821 | if (aic->ttime_samples == 0) { | ||
822 | ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; | ||
823 | ad->new_ttime_mean = ad->new_ttime_total / 256; | ||
824 | |||
825 | ad->exit_prob = (7*ad->exit_prob)/8; | ||
826 | } | ||
827 | aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; | ||
828 | aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; | ||
829 | aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; | ||
830 | } | ||
831 | |||
832 | static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, sector_t sdist) | ||
833 | { | ||
834 | u64 total; | ||
835 | |||
836 | if (aic->seek_samples == 0) { | ||
837 | ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; | ||
838 | ad->new_seek_mean = ad->new_seek_total / 256; | ||
839 | } | ||
840 | |||
841 | /* | ||
842 | * Don't allow the seek distance to get too large from the | ||
843 | * odd fragment, pagein, etc | ||
844 | */ | ||
845 | if (aic->seek_samples <= 60) /* second&third seek */ | ||
846 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); | ||
847 | else | ||
848 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64); | ||
849 | |||
850 | aic->seek_samples = (7*aic->seek_samples + 256) / 8; | ||
851 | aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; | ||
852 | total = aic->seek_total + (aic->seek_samples/2); | ||
853 | do_div(total, aic->seek_samples); | ||
854 | aic->seek_mean = (sector_t)total; | ||
855 | } | ||
856 | |||
857 | /* | ||
858 | * as_update_iohist keeps a decaying histogram of IO thinktimes, and | ||
859 | * updates @aic->ttime_mean based on that. It is called when a new | ||
860 | * request is queued. | ||
861 | */ | ||
862 | static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, struct request *rq) | ||
863 | { | ||
864 | struct as_rq *arq = RQ_DATA(rq); | ||
865 | int data_dir = arq->is_sync; | ||
866 | unsigned long thinktime; | ||
867 | sector_t seek_dist; | ||
868 | |||
869 | if (aic == NULL) | ||
870 | return; | ||
871 | |||
872 | if (data_dir == REQ_SYNC) { | ||
873 | unsigned long in_flight = atomic_read(&aic->nr_queued) | ||
874 | + atomic_read(&aic->nr_dispatched); | ||
875 | spin_lock(&aic->lock); | ||
876 | if (test_bit(AS_TASK_IORUNNING, &aic->state) || | ||
877 | test_bit(AS_TASK_IOSTARTED, &aic->state)) { | ||
878 | /* Calculate read -> read thinktime */ | ||
879 | if (test_bit(AS_TASK_IORUNNING, &aic->state) | ||
880 | && in_flight == 0) { | ||
881 | thinktime = jiffies - aic->last_end_request; | ||
882 | thinktime = min(thinktime, MAX_THINKTIME-1); | ||
883 | } else | ||
884 | thinktime = 0; | ||
885 | as_update_thinktime(ad, aic, thinktime); | ||
886 | |||
887 | /* Calculate read -> read seek distance */ | ||
888 | if (aic->last_request_pos < rq->sector) | ||
889 | seek_dist = rq->sector - aic->last_request_pos; | ||
890 | else | ||
891 | seek_dist = aic->last_request_pos - rq->sector; | ||
892 | as_update_seekdist(ad, aic, seek_dist); | ||
893 | } | ||
894 | aic->last_request_pos = rq->sector + rq->nr_sectors; | ||
895 | set_bit(AS_TASK_IOSTARTED, &aic->state); | ||
896 | spin_unlock(&aic->lock); | ||
897 | } | ||
898 | } | ||
899 | |||
900 | /* | ||
901 | * as_update_arq must be called whenever a request (arq) is added to | ||
902 | * the sort_list. This function keeps caches up to date, and checks if the | ||
903 | * request might be one we are "anticipating" | ||
904 | */ | ||
905 | static void as_update_arq(struct as_data *ad, struct as_rq *arq) | ||
906 | { | ||
907 | const int data_dir = arq->is_sync; | ||
908 | |||
909 | /* keep the next_arq cache up to date */ | ||
910 | ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]); | ||
911 | |||
912 | /* | ||
913 | * have we been anticipating this request? | ||
914 | * or does it come from the same process as the one we are anticipating | ||
915 | * for? | ||
916 | */ | ||
917 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
918 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
919 | if (as_can_break_anticipation(ad, arq)) | ||
920 | as_antic_stop(ad); | ||
921 | } | ||
922 | } | ||
923 | |||
924 | /* | ||
925 | * Gathers timings and resizes the write batch automatically | ||
926 | */ | ||
927 | static void update_write_batch(struct as_data *ad) | ||
928 | { | ||
929 | unsigned long batch = ad->batch_expire[REQ_ASYNC]; | ||
930 | long write_time; | ||
931 | |||
932 | write_time = (jiffies - ad->current_batch_expires) + batch; | ||
933 | if (write_time < 0) | ||
934 | write_time = 0; | ||
935 | |||
936 | if (write_time > batch && !ad->write_batch_idled) { | ||
937 | if (write_time > batch * 3) | ||
938 | ad->write_batch_count /= 2; | ||
939 | else | ||
940 | ad->write_batch_count--; | ||
941 | } else if (write_time < batch && ad->current_write_count == 0) { | ||
942 | if (batch > write_time * 3) | ||
943 | ad->write_batch_count *= 2; | ||
944 | else | ||
945 | ad->write_batch_count++; | ||
946 | } | ||
947 | |||
948 | if (ad->write_batch_count < 1) | ||
949 | ad->write_batch_count = 1; | ||
950 | } | ||
951 | |||
952 | /* | ||
953 | * as_completed_request is to be called when a request has completed and | ||
954 | * returned something to the requesting process, be it an error or data. | ||
955 | */ | ||
956 | static void as_completed_request(request_queue_t *q, struct request *rq) | ||
957 | { | ||
958 | struct as_data *ad = q->elevator->elevator_data; | ||
959 | struct as_rq *arq = RQ_DATA(rq); | ||
960 | |||
961 | WARN_ON(!list_empty(&rq->queuelist)); | ||
962 | |||
963 | if (arq->state != AS_RQ_REMOVED) { | ||
964 | printk("arq->state %d\n", arq->state); | ||
965 | WARN_ON(1); | ||
966 | goto out; | ||
967 | } | ||
968 | |||
969 | if (ad->changed_batch && ad->nr_dispatched == 1) { | ||
970 | kblockd_schedule_work(&ad->antic_work); | ||
971 | ad->changed_batch = 0; | ||
972 | |||
973 | if (ad->batch_data_dir == REQ_SYNC) | ||
974 | ad->new_batch = 1; | ||
975 | } | ||
976 | WARN_ON(ad->nr_dispatched == 0); | ||
977 | ad->nr_dispatched--; | ||
978 | |||
979 | /* | ||
980 | * Start counting the batch from when a request of that direction is | ||
981 | * actually serviced. This should help devices with big TCQ windows | ||
982 | * and writeback caches | ||
983 | */ | ||
984 | if (ad->new_batch && ad->batch_data_dir == arq->is_sync) { | ||
985 | update_write_batch(ad); | ||
986 | ad->current_batch_expires = jiffies + | ||
987 | ad->batch_expire[REQ_SYNC]; | ||
988 | ad->new_batch = 0; | ||
989 | } | ||
990 | |||
991 | if (ad->io_context == arq->io_context && ad->io_context) { | ||
992 | ad->antic_start = jiffies; | ||
993 | ad->ioc_finished = 1; | ||
994 | if (ad->antic_status == ANTIC_WAIT_REQ) { | ||
995 | /* | ||
996 | * We were waiting on this request, now anticipate | ||
997 | * the next one | ||
998 | */ | ||
999 | as_antic_waitnext(ad); | ||
1000 | } | ||
1001 | } | ||
1002 | |||
1003 | as_put_io_context(arq); | ||
1004 | out: | ||
1005 | arq->state = AS_RQ_POSTSCHED; | ||
1006 | } | ||
1007 | |||
1008 | /* | ||
1009 | * as_remove_queued_request removes a request from the pre dispatch queue | ||
1010 | * without updating refcounts. It is expected the caller will drop the | ||
1011 | * reference unless it replaces the request at somepart of the elevator | ||
1012 | * (ie. the dispatch queue) | ||
1013 | */ | ||
1014 | static void as_remove_queued_request(request_queue_t *q, struct request *rq) | ||
1015 | { | ||
1016 | struct as_rq *arq = RQ_DATA(rq); | ||
1017 | const int data_dir = arq->is_sync; | ||
1018 | struct as_data *ad = q->elevator->elevator_data; | ||
1019 | |||
1020 | WARN_ON(arq->state != AS_RQ_QUEUED); | ||
1021 | |||
1022 | if (arq->io_context && arq->io_context->aic) { | ||
1023 | BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued)); | ||
1024 | atomic_dec(&arq->io_context->aic->nr_queued); | ||
1025 | } | ||
1026 | |||
1027 | /* | ||
1028 | * Update the "next_arq" cache if we are about to remove its | ||
1029 | * entry | ||
1030 | */ | ||
1031 | if (ad->next_arq[data_dir] == arq) | ||
1032 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | ||
1033 | |||
1034 | list_del_init(&arq->fifo); | ||
1035 | as_del_arq_hash(arq); | ||
1036 | as_del_arq_rb(ad, arq); | ||
1037 | } | ||
1038 | |||
1039 | /* | ||
1040 | * as_fifo_expired returns 0 if there are no expired reads on the fifo, | ||
1041 | * 1 otherwise. It is ratelimited so that we only perform the check once per | ||
1042 | * `fifo_expire' interval. Otherwise a large number of expired requests | ||
1043 | * would create a hopeless seekstorm. | ||
1044 | * | ||
1045 | * See as_antic_expired comment. | ||
1046 | */ | ||
1047 | static int as_fifo_expired(struct as_data *ad, int adir) | ||
1048 | { | ||
1049 | struct as_rq *arq; | ||
1050 | long delta_jif; | ||
1051 | |||
1052 | delta_jif = jiffies - ad->last_check_fifo[adir]; | ||
1053 | if (unlikely(delta_jif < 0)) | ||
1054 | delta_jif = -delta_jif; | ||
1055 | if (delta_jif < ad->fifo_expire[adir]) | ||
1056 | return 0; | ||
1057 | |||
1058 | ad->last_check_fifo[adir] = jiffies; | ||
1059 | |||
1060 | if (list_empty(&ad->fifo_list[adir])) | ||
1061 | return 0; | ||
1062 | |||
1063 | arq = list_entry_fifo(ad->fifo_list[adir].next); | ||
1064 | |||
1065 | return time_after(jiffies, arq->expires); | ||
1066 | } | ||
1067 | |||
1068 | /* | ||
1069 | * as_batch_expired returns true if the current batch has expired. A batch | ||
1070 | * is a set of reads or a set of writes. | ||
1071 | */ | ||
1072 | static inline int as_batch_expired(struct as_data *ad) | ||
1073 | { | ||
1074 | if (ad->changed_batch || ad->new_batch) | ||
1075 | return 0; | ||
1076 | |||
1077 | if (ad->batch_data_dir == REQ_SYNC) | ||
1078 | /* TODO! add a check so a complete fifo gets written? */ | ||
1079 | return time_after(jiffies, ad->current_batch_expires); | ||
1080 | |||
1081 | return time_after(jiffies, ad->current_batch_expires) | ||
1082 | || ad->current_write_count == 0; | ||
1083 | } | ||
1084 | |||
1085 | /* | ||
1086 | * move an entry to dispatch queue | ||
1087 | */ | ||
1088 | static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq) | ||
1089 | { | ||
1090 | struct request *rq = arq->request; | ||
1091 | const int data_dir = arq->is_sync; | ||
1092 | |||
1093 | BUG_ON(!ON_RB(&arq->rb_node)); | ||
1094 | |||
1095 | as_antic_stop(ad); | ||
1096 | ad->antic_status = ANTIC_OFF; | ||
1097 | |||
1098 | /* | ||
1099 | * This has to be set in order to be correctly updated by | ||
1100 | * as_find_next_arq | ||
1101 | */ | ||
1102 | ad->last_sector[data_dir] = rq->sector + rq->nr_sectors; | ||
1103 | |||
1104 | if (data_dir == REQ_SYNC) { | ||
1105 | /* In case we have to anticipate after this */ | ||
1106 | copy_io_context(&ad->io_context, &arq->io_context); | ||
1107 | } else { | ||
1108 | if (ad->io_context) { | ||
1109 | put_io_context(ad->io_context); | ||
1110 | ad->io_context = NULL; | ||
1111 | } | ||
1112 | |||
1113 | if (ad->current_write_count != 0) | ||
1114 | ad->current_write_count--; | ||
1115 | } | ||
1116 | ad->ioc_finished = 0; | ||
1117 | |||
1118 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | ||
1119 | |||
1120 | /* | ||
1121 | * take it off the sort and fifo list, add to dispatch queue | ||
1122 | */ | ||
1123 | while (!list_empty(&rq->queuelist)) { | ||
1124 | struct request *__rq = list_entry_rq(rq->queuelist.next); | ||
1125 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1126 | |||
1127 | list_del(&__rq->queuelist); | ||
1128 | |||
1129 | elv_dispatch_add_tail(ad->q, __rq); | ||
1130 | |||
1131 | if (__arq->io_context && __arq->io_context->aic) | ||
1132 | atomic_inc(&__arq->io_context->aic->nr_dispatched); | ||
1133 | |||
1134 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1135 | __arq->state = AS_RQ_DISPATCHED; | ||
1136 | |||
1137 | ad->nr_dispatched++; | ||
1138 | } | ||
1139 | |||
1140 | as_remove_queued_request(ad->q, rq); | ||
1141 | WARN_ON(arq->state != AS_RQ_QUEUED); | ||
1142 | |||
1143 | elv_dispatch_sort(ad->q, rq); | ||
1144 | |||
1145 | arq->state = AS_RQ_DISPATCHED; | ||
1146 | if (arq->io_context && arq->io_context->aic) | ||
1147 | atomic_inc(&arq->io_context->aic->nr_dispatched); | ||
1148 | ad->nr_dispatched++; | ||
1149 | } | ||
1150 | |||
1151 | /* | ||
1152 | * as_dispatch_request selects the best request according to | ||
1153 | * read/write expire, batch expire, etc, and moves it to the dispatch | ||
1154 | * queue. Returns 1 if a request was found, 0 otherwise. | ||
1155 | */ | ||
1156 | static int as_dispatch_request(request_queue_t *q, int force) | ||
1157 | { | ||
1158 | struct as_data *ad = q->elevator->elevator_data; | ||
1159 | struct as_rq *arq; | ||
1160 | const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]); | ||
1161 | const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]); | ||
1162 | |||
1163 | if (unlikely(force)) { | ||
1164 | /* | ||
1165 | * Forced dispatch, accounting is useless. Reset | ||
1166 | * accounting states and dump fifo_lists. Note that | ||
1167 | * batch_data_dir is reset to REQ_SYNC to avoid | ||
1168 | * screwing write batch accounting as write batch | ||
1169 | * accounting occurs on W->R transition. | ||
1170 | */ | ||
1171 | int dispatched = 0; | ||
1172 | |||
1173 | ad->batch_data_dir = REQ_SYNC; | ||
1174 | ad->changed_batch = 0; | ||
1175 | ad->new_batch = 0; | ||
1176 | |||
1177 | while (ad->next_arq[REQ_SYNC]) { | ||
1178 | as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]); | ||
1179 | dispatched++; | ||
1180 | } | ||
1181 | ad->last_check_fifo[REQ_SYNC] = jiffies; | ||
1182 | |||
1183 | while (ad->next_arq[REQ_ASYNC]) { | ||
1184 | as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]); | ||
1185 | dispatched++; | ||
1186 | } | ||
1187 | ad->last_check_fifo[REQ_ASYNC] = jiffies; | ||
1188 | |||
1189 | return dispatched; | ||
1190 | } | ||
1191 | |||
1192 | /* Signal that the write batch was uncontended, so we can't time it */ | ||
1193 | if (ad->batch_data_dir == REQ_ASYNC && !reads) { | ||
1194 | if (ad->current_write_count == 0 || !writes) | ||
1195 | ad->write_batch_idled = 1; | ||
1196 | } | ||
1197 | |||
1198 | if (!(reads || writes) | ||
1199 | || ad->antic_status == ANTIC_WAIT_REQ | ||
1200 | || ad->antic_status == ANTIC_WAIT_NEXT | ||
1201 | || ad->changed_batch) | ||
1202 | return 0; | ||
1203 | |||
1204 | if (!(reads && writes && as_batch_expired(ad)) ) { | ||
1205 | /* | ||
1206 | * batch is still running or no reads or no writes | ||
1207 | */ | ||
1208 | arq = ad->next_arq[ad->batch_data_dir]; | ||
1209 | |||
1210 | if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) { | ||
1211 | if (as_fifo_expired(ad, REQ_SYNC)) | ||
1212 | goto fifo_expired; | ||
1213 | |||
1214 | if (as_can_anticipate(ad, arq)) { | ||
1215 | as_antic_waitreq(ad); | ||
1216 | return 0; | ||
1217 | } | ||
1218 | } | ||
1219 | |||
1220 | if (arq) { | ||
1221 | /* we have a "next request" */ | ||
1222 | if (reads && !writes) | ||
1223 | ad->current_batch_expires = | ||
1224 | jiffies + ad->batch_expire[REQ_SYNC]; | ||
1225 | goto dispatch_request; | ||
1226 | } | ||
1227 | } | ||
1228 | |||
1229 | /* | ||
1230 | * at this point we are not running a batch. select the appropriate | ||
1231 | * data direction (read / write) | ||
1232 | */ | ||
1233 | |||
1234 | if (reads) { | ||
1235 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC])); | ||
1236 | |||
1237 | if (writes && ad->batch_data_dir == REQ_SYNC) | ||
1238 | /* | ||
1239 | * Last batch was a read, switch to writes | ||
1240 | */ | ||
1241 | goto dispatch_writes; | ||
1242 | |||
1243 | if (ad->batch_data_dir == REQ_ASYNC) { | ||
1244 | WARN_ON(ad->new_batch); | ||
1245 | ad->changed_batch = 1; | ||
1246 | } | ||
1247 | ad->batch_data_dir = REQ_SYNC; | ||
1248 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | ||
1249 | ad->last_check_fifo[ad->batch_data_dir] = jiffies; | ||
1250 | goto dispatch_request; | ||
1251 | } | ||
1252 | |||
1253 | /* | ||
1254 | * the last batch was a read | ||
1255 | */ | ||
1256 | |||
1257 | if (writes) { | ||
1258 | dispatch_writes: | ||
1259 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC])); | ||
1260 | |||
1261 | if (ad->batch_data_dir == REQ_SYNC) { | ||
1262 | ad->changed_batch = 1; | ||
1263 | |||
1264 | /* | ||
1265 | * new_batch might be 1 when the queue runs out of | ||
1266 | * reads. A subsequent submission of a write might | ||
1267 | * cause a change of batch before the read is finished. | ||
1268 | */ | ||
1269 | ad->new_batch = 0; | ||
1270 | } | ||
1271 | ad->batch_data_dir = REQ_ASYNC; | ||
1272 | ad->current_write_count = ad->write_batch_count; | ||
1273 | ad->write_batch_idled = 0; | ||
1274 | arq = ad->next_arq[ad->batch_data_dir]; | ||
1275 | goto dispatch_request; | ||
1276 | } | ||
1277 | |||
1278 | BUG(); | ||
1279 | return 0; | ||
1280 | |||
1281 | dispatch_request: | ||
1282 | /* | ||
1283 | * If a request has expired, service it. | ||
1284 | */ | ||
1285 | |||
1286 | if (as_fifo_expired(ad, ad->batch_data_dir)) { | ||
1287 | fifo_expired: | ||
1288 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | ||
1289 | BUG_ON(arq == NULL); | ||
1290 | } | ||
1291 | |||
1292 | if (ad->changed_batch) { | ||
1293 | WARN_ON(ad->new_batch); | ||
1294 | |||
1295 | if (ad->nr_dispatched) | ||
1296 | return 0; | ||
1297 | |||
1298 | if (ad->batch_data_dir == REQ_ASYNC) | ||
1299 | ad->current_batch_expires = jiffies + | ||
1300 | ad->batch_expire[REQ_ASYNC]; | ||
1301 | else | ||
1302 | ad->new_batch = 1; | ||
1303 | |||
1304 | ad->changed_batch = 0; | ||
1305 | } | ||
1306 | |||
1307 | /* | ||
1308 | * arq is the selected appropriate request. | ||
1309 | */ | ||
1310 | as_move_to_dispatch(ad, arq); | ||
1311 | |||
1312 | return 1; | ||
1313 | } | ||
1314 | |||
1315 | /* | ||
1316 | * Add arq to a list behind alias | ||
1317 | */ | ||
1318 | static inline void | ||
1319 | as_add_aliased_request(struct as_data *ad, struct as_rq *arq, struct as_rq *alias) | ||
1320 | { | ||
1321 | struct request *req = arq->request; | ||
1322 | struct list_head *insert = alias->request->queuelist.prev; | ||
1323 | |||
1324 | /* | ||
1325 | * Transfer list of aliases | ||
1326 | */ | ||
1327 | while (!list_empty(&req->queuelist)) { | ||
1328 | struct request *__rq = list_entry_rq(req->queuelist.next); | ||
1329 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1330 | |||
1331 | list_move_tail(&__rq->queuelist, &alias->request->queuelist); | ||
1332 | |||
1333 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1334 | } | ||
1335 | |||
1336 | /* | ||
1337 | * Another request with the same start sector on the rbtree. | ||
1338 | * Link this request to that sector. They are untangled in | ||
1339 | * as_move_to_dispatch | ||
1340 | */ | ||
1341 | list_add(&arq->request->queuelist, insert); | ||
1342 | |||
1343 | /* | ||
1344 | * Don't want to have to handle merges. | ||
1345 | */ | ||
1346 | as_del_arq_hash(arq); | ||
1347 | arq->request->flags |= REQ_NOMERGE; | ||
1348 | } | ||
1349 | |||
1350 | /* | ||
1351 | * add arq to rbtree and fifo | ||
1352 | */ | ||
1353 | static void as_add_request(request_queue_t *q, struct request *rq) | ||
1354 | { | ||
1355 | struct as_data *ad = q->elevator->elevator_data; | ||
1356 | struct as_rq *arq = RQ_DATA(rq); | ||
1357 | struct as_rq *alias; | ||
1358 | int data_dir; | ||
1359 | |||
1360 | if (arq->state != AS_RQ_PRESCHED) { | ||
1361 | printk("arq->state: %d\n", arq->state); | ||
1362 | WARN_ON(1); | ||
1363 | } | ||
1364 | arq->state = AS_RQ_NEW; | ||
1365 | |||
1366 | if (rq_data_dir(arq->request) == READ | ||
1367 | || current->flags&PF_SYNCWRITE) | ||
1368 | arq->is_sync = 1; | ||
1369 | else | ||
1370 | arq->is_sync = 0; | ||
1371 | data_dir = arq->is_sync; | ||
1372 | |||
1373 | arq->io_context = as_get_io_context(); | ||
1374 | |||
1375 | if (arq->io_context) { | ||
1376 | as_update_iohist(ad, arq->io_context->aic, arq->request); | ||
1377 | atomic_inc(&arq->io_context->aic->nr_queued); | ||
1378 | } | ||
1379 | |||
1380 | alias = as_add_arq_rb(ad, arq); | ||
1381 | if (!alias) { | ||
1382 | /* | ||
1383 | * set expire time (only used for reads) and add to fifo list | ||
1384 | */ | ||
1385 | arq->expires = jiffies + ad->fifo_expire[data_dir]; | ||
1386 | list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]); | ||
1387 | |||
1388 | if (rq_mergeable(arq->request)) | ||
1389 | as_add_arq_hash(ad, arq); | ||
1390 | as_update_arq(ad, arq); /* keep state machine up to date */ | ||
1391 | |||
1392 | } else { | ||
1393 | as_add_aliased_request(ad, arq, alias); | ||
1394 | |||
1395 | /* | ||
1396 | * have we been anticipating this request? | ||
1397 | * or does it come from the same process as the one we are | ||
1398 | * anticipating for? | ||
1399 | */ | ||
1400 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
1401 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
1402 | if (as_can_break_anticipation(ad, arq)) | ||
1403 | as_antic_stop(ad); | ||
1404 | } | ||
1405 | } | ||
1406 | |||
1407 | arq->state = AS_RQ_QUEUED; | ||
1408 | } | ||
1409 | |||
1410 | static void as_activate_request(request_queue_t *q, struct request *rq) | ||
1411 | { | ||
1412 | struct as_rq *arq = RQ_DATA(rq); | ||
1413 | |||
1414 | WARN_ON(arq->state != AS_RQ_DISPATCHED); | ||
1415 | arq->state = AS_RQ_REMOVED; | ||
1416 | if (arq->io_context && arq->io_context->aic) | ||
1417 | atomic_dec(&arq->io_context->aic->nr_dispatched); | ||
1418 | } | ||
1419 | |||
1420 | static void as_deactivate_request(request_queue_t *q, struct request *rq) | ||
1421 | { | ||
1422 | struct as_rq *arq = RQ_DATA(rq); | ||
1423 | |||
1424 | WARN_ON(arq->state != AS_RQ_REMOVED); | ||
1425 | arq->state = AS_RQ_DISPATCHED; | ||
1426 | if (arq->io_context && arq->io_context->aic) | ||
1427 | atomic_inc(&arq->io_context->aic->nr_dispatched); | ||
1428 | } | ||
1429 | |||
1430 | /* | ||
1431 | * as_queue_empty tells us if there are requests left in the device. It may | ||
1432 | * not be the case that a driver can get the next request even if the queue | ||
1433 | * is not empty - it is used in the block layer to check for plugging and | ||
1434 | * merging opportunities | ||
1435 | */ | ||
1436 | static int as_queue_empty(request_queue_t *q) | ||
1437 | { | ||
1438 | struct as_data *ad = q->elevator->elevator_data; | ||
1439 | |||
1440 | return list_empty(&ad->fifo_list[REQ_ASYNC]) | ||
1441 | && list_empty(&ad->fifo_list[REQ_SYNC]); | ||
1442 | } | ||
1443 | |||
1444 | static struct request * | ||
1445 | as_former_request(request_queue_t *q, struct request *rq) | ||
1446 | { | ||
1447 | struct as_rq *arq = RQ_DATA(rq); | ||
1448 | struct rb_node *rbprev = rb_prev(&arq->rb_node); | ||
1449 | struct request *ret = NULL; | ||
1450 | |||
1451 | if (rbprev) | ||
1452 | ret = rb_entry_arq(rbprev)->request; | ||
1453 | |||
1454 | return ret; | ||
1455 | } | ||
1456 | |||
1457 | static struct request * | ||
1458 | as_latter_request(request_queue_t *q, struct request *rq) | ||
1459 | { | ||
1460 | struct as_rq *arq = RQ_DATA(rq); | ||
1461 | struct rb_node *rbnext = rb_next(&arq->rb_node); | ||
1462 | struct request *ret = NULL; | ||
1463 | |||
1464 | if (rbnext) | ||
1465 | ret = rb_entry_arq(rbnext)->request; | ||
1466 | |||
1467 | return ret; | ||
1468 | } | ||
1469 | |||
1470 | static int | ||
1471 | as_merge(request_queue_t *q, struct request **req, struct bio *bio) | ||
1472 | { | ||
1473 | struct as_data *ad = q->elevator->elevator_data; | ||
1474 | sector_t rb_key = bio->bi_sector + bio_sectors(bio); | ||
1475 | struct request *__rq; | ||
1476 | int ret; | ||
1477 | |||
1478 | /* | ||
1479 | * see if the merge hash can satisfy a back merge | ||
1480 | */ | ||
1481 | __rq = as_find_arq_hash(ad, bio->bi_sector); | ||
1482 | if (__rq) { | ||
1483 | BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); | ||
1484 | |||
1485 | if (elv_rq_merge_ok(__rq, bio)) { | ||
1486 | ret = ELEVATOR_BACK_MERGE; | ||
1487 | goto out; | ||
1488 | } | ||
1489 | } | ||
1490 | |||
1491 | /* | ||
1492 | * check for front merge | ||
1493 | */ | ||
1494 | __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio)); | ||
1495 | if (__rq) { | ||
1496 | BUG_ON(rb_key != rq_rb_key(__rq)); | ||
1497 | |||
1498 | if (elv_rq_merge_ok(__rq, bio)) { | ||
1499 | ret = ELEVATOR_FRONT_MERGE; | ||
1500 | goto out; | ||
1501 | } | ||
1502 | } | ||
1503 | |||
1504 | return ELEVATOR_NO_MERGE; | ||
1505 | out: | ||
1506 | if (ret) { | ||
1507 | if (rq_mergeable(__rq)) | ||
1508 | as_hot_arq_hash(ad, RQ_DATA(__rq)); | ||
1509 | } | ||
1510 | *req = __rq; | ||
1511 | return ret; | ||
1512 | } | ||
1513 | |||
1514 | static void as_merged_request(request_queue_t *q, struct request *req) | ||
1515 | { | ||
1516 | struct as_data *ad = q->elevator->elevator_data; | ||
1517 | struct as_rq *arq = RQ_DATA(req); | ||
1518 | |||
1519 | /* | ||
1520 | * hash always needs to be repositioned, key is end sector | ||
1521 | */ | ||
1522 | as_del_arq_hash(arq); | ||
1523 | as_add_arq_hash(ad, arq); | ||
1524 | |||
1525 | /* | ||
1526 | * if the merge was a front merge, we need to reposition request | ||
1527 | */ | ||
1528 | if (rq_rb_key(req) != arq->rb_key) { | ||
1529 | struct as_rq *alias, *next_arq = NULL; | ||
1530 | |||
1531 | if (ad->next_arq[arq->is_sync] == arq) | ||
1532 | next_arq = as_find_next_arq(ad, arq); | ||
1533 | |||
1534 | /* | ||
1535 | * Note! We should really be moving any old aliased requests | ||
1536 | * off this request and try to insert them into the rbtree. We | ||
1537 | * currently don't bother. Ditto the next function. | ||
1538 | */ | ||
1539 | as_del_arq_rb(ad, arq); | ||
1540 | if ((alias = as_add_arq_rb(ad, arq)) ) { | ||
1541 | list_del_init(&arq->fifo); | ||
1542 | as_add_aliased_request(ad, arq, alias); | ||
1543 | if (next_arq) | ||
1544 | ad->next_arq[arq->is_sync] = next_arq; | ||
1545 | } | ||
1546 | /* | ||
1547 | * Note! At this stage of this and the next function, our next | ||
1548 | * request may not be optimal - eg the request may have "grown" | ||
1549 | * behind the disk head. We currently don't bother adjusting. | ||
1550 | */ | ||
1551 | } | ||
1552 | } | ||
1553 | |||
1554 | static void | ||
1555 | as_merged_requests(request_queue_t *q, struct request *req, | ||
1556 | struct request *next) | ||
1557 | { | ||
1558 | struct as_data *ad = q->elevator->elevator_data; | ||
1559 | struct as_rq *arq = RQ_DATA(req); | ||
1560 | struct as_rq *anext = RQ_DATA(next); | ||
1561 | |||
1562 | BUG_ON(!arq); | ||
1563 | BUG_ON(!anext); | ||
1564 | |||
1565 | /* | ||
1566 | * reposition arq (this is the merged request) in hash, and in rbtree | ||
1567 | * in case of a front merge | ||
1568 | */ | ||
1569 | as_del_arq_hash(arq); | ||
1570 | as_add_arq_hash(ad, arq); | ||
1571 | |||
1572 | if (rq_rb_key(req) != arq->rb_key) { | ||
1573 | struct as_rq *alias, *next_arq = NULL; | ||
1574 | |||
1575 | if (ad->next_arq[arq->is_sync] == arq) | ||
1576 | next_arq = as_find_next_arq(ad, arq); | ||
1577 | |||
1578 | as_del_arq_rb(ad, arq); | ||
1579 | if ((alias = as_add_arq_rb(ad, arq)) ) { | ||
1580 | list_del_init(&arq->fifo); | ||
1581 | as_add_aliased_request(ad, arq, alias); | ||
1582 | if (next_arq) | ||
1583 | ad->next_arq[arq->is_sync] = next_arq; | ||
1584 | } | ||
1585 | } | ||
1586 | |||
1587 | /* | ||
1588 | * if anext expires before arq, assign its expire time to arq | ||
1589 | * and move into anext position (anext will be deleted) in fifo | ||
1590 | */ | ||
1591 | if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) { | ||
1592 | if (time_before(anext->expires, arq->expires)) { | ||
1593 | list_move(&arq->fifo, &anext->fifo); | ||
1594 | arq->expires = anext->expires; | ||
1595 | /* | ||
1596 | * Don't copy here but swap, because when anext is | ||
1597 | * removed below, it must contain the unused context | ||
1598 | */ | ||
1599 | swap_io_context(&arq->io_context, &anext->io_context); | ||
1600 | } | ||
1601 | } | ||
1602 | |||
1603 | /* | ||
1604 | * Transfer list of aliases | ||
1605 | */ | ||
1606 | while (!list_empty(&next->queuelist)) { | ||
1607 | struct request *__rq = list_entry_rq(next->queuelist.next); | ||
1608 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1609 | |||
1610 | list_move_tail(&__rq->queuelist, &req->queuelist); | ||
1611 | |||
1612 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1613 | } | ||
1614 | |||
1615 | /* | ||
1616 | * kill knowledge of next, this one is a goner | ||
1617 | */ | ||
1618 | as_remove_queued_request(q, next); | ||
1619 | as_put_io_context(anext); | ||
1620 | |||
1621 | anext->state = AS_RQ_MERGED; | ||
1622 | } | ||
1623 | |||
1624 | /* | ||
1625 | * This is executed in a "deferred" process context, by kblockd. It calls the | ||
1626 | * driver's request_fn so the driver can submit that request. | ||
1627 | * | ||
1628 | * IMPORTANT! This guy will reenter the elevator, so set up all queue global | ||
1629 | * state before calling, and don't rely on any state over calls. | ||
1630 | * | ||
1631 | * FIXME! dispatch queue is not a queue at all! | ||
1632 | */ | ||
1633 | static void as_work_handler(void *data) | ||
1634 | { | ||
1635 | struct request_queue *q = data; | ||
1636 | unsigned long flags; | ||
1637 | |||
1638 | spin_lock_irqsave(q->queue_lock, flags); | ||
1639 | if (!as_queue_empty(q)) | ||
1640 | q->request_fn(q); | ||
1641 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
1642 | } | ||
1643 | |||
1644 | static void as_put_request(request_queue_t *q, struct request *rq) | ||
1645 | { | ||
1646 | struct as_data *ad = q->elevator->elevator_data; | ||
1647 | struct as_rq *arq = RQ_DATA(rq); | ||
1648 | |||
1649 | if (!arq) { | ||
1650 | WARN_ON(1); | ||
1651 | return; | ||
1652 | } | ||
1653 | |||
1654 | if (unlikely(arq->state != AS_RQ_POSTSCHED && | ||
1655 | arq->state != AS_RQ_PRESCHED && | ||
1656 | arq->state != AS_RQ_MERGED)) { | ||
1657 | printk("arq->state %d\n", arq->state); | ||
1658 | WARN_ON(1); | ||
1659 | } | ||
1660 | |||
1661 | mempool_free(arq, ad->arq_pool); | ||
1662 | rq->elevator_private = NULL; | ||
1663 | } | ||
1664 | |||
1665 | static int as_set_request(request_queue_t *q, struct request *rq, | ||
1666 | struct bio *bio, gfp_t gfp_mask) | ||
1667 | { | ||
1668 | struct as_data *ad = q->elevator->elevator_data; | ||
1669 | struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask); | ||
1670 | |||
1671 | if (arq) { | ||
1672 | memset(arq, 0, sizeof(*arq)); | ||
1673 | RB_CLEAR(&arq->rb_node); | ||
1674 | arq->request = rq; | ||
1675 | arq->state = AS_RQ_PRESCHED; | ||
1676 | arq->io_context = NULL; | ||
1677 | INIT_LIST_HEAD(&arq->hash); | ||
1678 | arq->on_hash = 0; | ||
1679 | INIT_LIST_HEAD(&arq->fifo); | ||
1680 | rq->elevator_private = arq; | ||
1681 | return 0; | ||
1682 | } | ||
1683 | |||
1684 | return 1; | ||
1685 | } | ||
1686 | |||
1687 | static int as_may_queue(request_queue_t *q, int rw, struct bio *bio) | ||
1688 | { | ||
1689 | int ret = ELV_MQUEUE_MAY; | ||
1690 | struct as_data *ad = q->elevator->elevator_data; | ||
1691 | struct io_context *ioc; | ||
1692 | if (ad->antic_status == ANTIC_WAIT_REQ || | ||
1693 | ad->antic_status == ANTIC_WAIT_NEXT) { | ||
1694 | ioc = as_get_io_context(); | ||
1695 | if (ad->io_context == ioc) | ||
1696 | ret = ELV_MQUEUE_MUST; | ||
1697 | put_io_context(ioc); | ||
1698 | } | ||
1699 | |||
1700 | return ret; | ||
1701 | } | ||
1702 | |||
1703 | static void as_exit_queue(elevator_t *e) | ||
1704 | { | ||
1705 | struct as_data *ad = e->elevator_data; | ||
1706 | |||
1707 | del_timer_sync(&ad->antic_timer); | ||
1708 | kblockd_flush(); | ||
1709 | |||
1710 | BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC])); | ||
1711 | BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC])); | ||
1712 | |||
1713 | mempool_destroy(ad->arq_pool); | ||
1714 | put_io_context(ad->io_context); | ||
1715 | kfree(ad->hash); | ||
1716 | kfree(ad); | ||
1717 | } | ||
1718 | |||
1719 | /* | ||
1720 | * initialize elevator private data (as_data), and alloc a arq for | ||
1721 | * each request on the free lists | ||
1722 | */ | ||
1723 | static int as_init_queue(request_queue_t *q, elevator_t *e) | ||
1724 | { | ||
1725 | struct as_data *ad; | ||
1726 | int i; | ||
1727 | |||
1728 | if (!arq_pool) | ||
1729 | return -ENOMEM; | ||
1730 | |||
1731 | ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node); | ||
1732 | if (!ad) | ||
1733 | return -ENOMEM; | ||
1734 | memset(ad, 0, sizeof(*ad)); | ||
1735 | |||
1736 | ad->q = q; /* Identify what queue the data belongs to */ | ||
1737 | |||
1738 | ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES, | ||
1739 | GFP_KERNEL, q->node); | ||
1740 | if (!ad->hash) { | ||
1741 | kfree(ad); | ||
1742 | return -ENOMEM; | ||
1743 | } | ||
1744 | |||
1745 | ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, | ||
1746 | mempool_free_slab, arq_pool, q->node); | ||
1747 | if (!ad->arq_pool) { | ||
1748 | kfree(ad->hash); | ||
1749 | kfree(ad); | ||
1750 | return -ENOMEM; | ||
1751 | } | ||
1752 | |||
1753 | /* anticipatory scheduling helpers */ | ||
1754 | ad->antic_timer.function = as_antic_timeout; | ||
1755 | ad->antic_timer.data = (unsigned long)q; | ||
1756 | init_timer(&ad->antic_timer); | ||
1757 | INIT_WORK(&ad->antic_work, as_work_handler, q); | ||
1758 | |||
1759 | for (i = 0; i < AS_HASH_ENTRIES; i++) | ||
1760 | INIT_LIST_HEAD(&ad->hash[i]); | ||
1761 | |||
1762 | INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]); | ||
1763 | INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]); | ||
1764 | ad->sort_list[REQ_SYNC] = RB_ROOT; | ||
1765 | ad->sort_list[REQ_ASYNC] = RB_ROOT; | ||
1766 | ad->fifo_expire[REQ_SYNC] = default_read_expire; | ||
1767 | ad->fifo_expire[REQ_ASYNC] = default_write_expire; | ||
1768 | ad->antic_expire = default_antic_expire; | ||
1769 | ad->batch_expire[REQ_SYNC] = default_read_batch_expire; | ||
1770 | ad->batch_expire[REQ_ASYNC] = default_write_batch_expire; | ||
1771 | e->elevator_data = ad; | ||
1772 | |||
1773 | ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; | ||
1774 | ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10; | ||
1775 | if (ad->write_batch_count < 2) | ||
1776 | ad->write_batch_count = 2; | ||
1777 | |||
1778 | return 0; | ||
1779 | } | ||
1780 | |||
1781 | /* | ||
1782 | * sysfs parts below | ||
1783 | */ | ||
1784 | struct as_fs_entry { | ||
1785 | struct attribute attr; | ||
1786 | ssize_t (*show)(struct as_data *, char *); | ||
1787 | ssize_t (*store)(struct as_data *, const char *, size_t); | ||
1788 | }; | ||
1789 | |||
1790 | static ssize_t | ||
1791 | as_var_show(unsigned int var, char *page) | ||
1792 | { | ||
1793 | return sprintf(page, "%d\n", var); | ||
1794 | } | ||
1795 | |||
1796 | static ssize_t | ||
1797 | as_var_store(unsigned long *var, const char *page, size_t count) | ||
1798 | { | ||
1799 | char *p = (char *) page; | ||
1800 | |||
1801 | *var = simple_strtoul(p, &p, 10); | ||
1802 | return count; | ||
1803 | } | ||
1804 | |||
1805 | static ssize_t as_est_show(struct as_data *ad, char *page) | ||
1806 | { | ||
1807 | int pos = 0; | ||
1808 | |||
1809 | pos += sprintf(page+pos, "%lu %% exit probability\n", 100*ad->exit_prob/256); | ||
1810 | pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); | ||
1811 | pos += sprintf(page+pos, "%llu sectors new seek distance\n", (unsigned long long)ad->new_seek_mean); | ||
1812 | |||
1813 | return pos; | ||
1814 | } | ||
1815 | |||
1816 | #define SHOW_FUNCTION(__FUNC, __VAR) \ | ||
1817 | static ssize_t __FUNC(struct as_data *ad, char *page) \ | ||
1818 | { \ | ||
1819 | return as_var_show(jiffies_to_msecs((__VAR)), (page)); \ | ||
1820 | } | ||
1821 | SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[REQ_SYNC]); | ||
1822 | SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[REQ_ASYNC]); | ||
1823 | SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire); | ||
1824 | SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[REQ_SYNC]); | ||
1825 | SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[REQ_ASYNC]); | ||
1826 | #undef SHOW_FUNCTION | ||
1827 | |||
1828 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ | ||
1829 | static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \ | ||
1830 | { \ | ||
1831 | int ret = as_var_store(__PTR, (page), count); \ | ||
1832 | if (*(__PTR) < (MIN)) \ | ||
1833 | *(__PTR) = (MIN); \ | ||
1834 | else if (*(__PTR) > (MAX)) \ | ||
1835 | *(__PTR) = (MAX); \ | ||
1836 | *(__PTR) = msecs_to_jiffies(*(__PTR)); \ | ||
1837 | return ret; \ | ||
1838 | } | ||
1839 | STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX); | ||
1840 | STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX); | ||
1841 | STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX); | ||
1842 | STORE_FUNCTION(as_read_batchexpire_store, | ||
1843 | &ad->batch_expire[REQ_SYNC], 0, INT_MAX); | ||
1844 | STORE_FUNCTION(as_write_batchexpire_store, | ||
1845 | &ad->batch_expire[REQ_ASYNC], 0, INT_MAX); | ||
1846 | #undef STORE_FUNCTION | ||
1847 | |||
1848 | static struct as_fs_entry as_est_entry = { | ||
1849 | .attr = {.name = "est_time", .mode = S_IRUGO }, | ||
1850 | .show = as_est_show, | ||
1851 | }; | ||
1852 | static struct as_fs_entry as_readexpire_entry = { | ||
1853 | .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1854 | .show = as_readexpire_show, | ||
1855 | .store = as_readexpire_store, | ||
1856 | }; | ||
1857 | static struct as_fs_entry as_writeexpire_entry = { | ||
1858 | .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1859 | .show = as_writeexpire_show, | ||
1860 | .store = as_writeexpire_store, | ||
1861 | }; | ||
1862 | static struct as_fs_entry as_anticexpire_entry = { | ||
1863 | .attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1864 | .show = as_anticexpire_show, | ||
1865 | .store = as_anticexpire_store, | ||
1866 | }; | ||
1867 | static struct as_fs_entry as_read_batchexpire_entry = { | ||
1868 | .attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1869 | .show = as_read_batchexpire_show, | ||
1870 | .store = as_read_batchexpire_store, | ||
1871 | }; | ||
1872 | static struct as_fs_entry as_write_batchexpire_entry = { | ||
1873 | .attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1874 | .show = as_write_batchexpire_show, | ||
1875 | .store = as_write_batchexpire_store, | ||
1876 | }; | ||
1877 | |||
1878 | static struct attribute *default_attrs[] = { | ||
1879 | &as_est_entry.attr, | ||
1880 | &as_readexpire_entry.attr, | ||
1881 | &as_writeexpire_entry.attr, | ||
1882 | &as_anticexpire_entry.attr, | ||
1883 | &as_read_batchexpire_entry.attr, | ||
1884 | &as_write_batchexpire_entry.attr, | ||
1885 | NULL, | ||
1886 | }; | ||
1887 | |||
1888 | #define to_as(atr) container_of((atr), struct as_fs_entry, attr) | ||
1889 | |||
1890 | static ssize_t | ||
1891 | as_attr_show(struct kobject *kobj, struct attribute *attr, char *page) | ||
1892 | { | ||
1893 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
1894 | struct as_fs_entry *entry = to_as(attr); | ||
1895 | |||
1896 | if (!entry->show) | ||
1897 | return -EIO; | ||
1898 | |||
1899 | return entry->show(e->elevator_data, page); | ||
1900 | } | ||
1901 | |||
1902 | static ssize_t | ||
1903 | as_attr_store(struct kobject *kobj, struct attribute *attr, | ||
1904 | const char *page, size_t length) | ||
1905 | { | ||
1906 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
1907 | struct as_fs_entry *entry = to_as(attr); | ||
1908 | |||
1909 | if (!entry->store) | ||
1910 | return -EIO; | ||
1911 | |||
1912 | return entry->store(e->elevator_data, page, length); | ||
1913 | } | ||
1914 | |||
1915 | static struct sysfs_ops as_sysfs_ops = { | ||
1916 | .show = as_attr_show, | ||
1917 | .store = as_attr_store, | ||
1918 | }; | ||
1919 | |||
1920 | static struct kobj_type as_ktype = { | ||
1921 | .sysfs_ops = &as_sysfs_ops, | ||
1922 | .default_attrs = default_attrs, | ||
1923 | }; | ||
1924 | |||
1925 | static struct elevator_type iosched_as = { | ||
1926 | .ops = { | ||
1927 | .elevator_merge_fn = as_merge, | ||
1928 | .elevator_merged_fn = as_merged_request, | ||
1929 | .elevator_merge_req_fn = as_merged_requests, | ||
1930 | .elevator_dispatch_fn = as_dispatch_request, | ||
1931 | .elevator_add_req_fn = as_add_request, | ||
1932 | .elevator_activate_req_fn = as_activate_request, | ||
1933 | .elevator_deactivate_req_fn = as_deactivate_request, | ||
1934 | .elevator_queue_empty_fn = as_queue_empty, | ||
1935 | .elevator_completed_req_fn = as_completed_request, | ||
1936 | .elevator_former_req_fn = as_former_request, | ||
1937 | .elevator_latter_req_fn = as_latter_request, | ||
1938 | .elevator_set_req_fn = as_set_request, | ||
1939 | .elevator_put_req_fn = as_put_request, | ||
1940 | .elevator_may_queue_fn = as_may_queue, | ||
1941 | .elevator_init_fn = as_init_queue, | ||
1942 | .elevator_exit_fn = as_exit_queue, | ||
1943 | }, | ||
1944 | |||
1945 | .elevator_ktype = &as_ktype, | ||
1946 | .elevator_name = "anticipatory", | ||
1947 | .elevator_owner = THIS_MODULE, | ||
1948 | }; | ||
1949 | |||
1950 | static int __init as_init(void) | ||
1951 | { | ||
1952 | int ret; | ||
1953 | |||
1954 | arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq), | ||
1955 | 0, 0, NULL, NULL); | ||
1956 | if (!arq_pool) | ||
1957 | return -ENOMEM; | ||
1958 | |||
1959 | ret = elv_register(&iosched_as); | ||
1960 | if (!ret) { | ||
1961 | /* | ||
1962 | * don't allow AS to get unregistered, since we would have | ||
1963 | * to browse all tasks in the system and release their | ||
1964 | * as_io_context first | ||
1965 | */ | ||
1966 | __module_get(THIS_MODULE); | ||
1967 | return 0; | ||
1968 | } | ||
1969 | |||
1970 | kmem_cache_destroy(arq_pool); | ||
1971 | return ret; | ||
1972 | } | ||
1973 | |||
1974 | static void __exit as_exit(void) | ||
1975 | { | ||
1976 | elv_unregister(&iosched_as); | ||
1977 | kmem_cache_destroy(arq_pool); | ||
1978 | } | ||
1979 | |||
1980 | module_init(as_init); | ||
1981 | module_exit(as_exit); | ||
1982 | |||
1983 | MODULE_AUTHOR("Nick Piggin"); | ||
1984 | MODULE_LICENSE("GPL"); | ||
1985 | MODULE_DESCRIPTION("anticipatory IO scheduler"); | ||