diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/atm/horizon.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/atm/horizon.c')
-rw-r--r-- | drivers/atm/horizon.c | 2953 |
1 files changed, 2953 insertions, 0 deletions
diff --git a/drivers/atm/horizon.c b/drivers/atm/horizon.c new file mode 100644 index 000000000000..924a2c8988bd --- /dev/null +++ b/drivers/atm/horizon.c | |||
@@ -0,0 +1,2953 @@ | |||
1 | /* | ||
2 | Madge Horizon ATM Adapter driver. | ||
3 | Copyright (C) 1995-1999 Madge Networks Ltd. | ||
4 | |||
5 | This program is free software; you can redistribute it and/or modify | ||
6 | it under the terms of the GNU General Public License as published by | ||
7 | the Free Software Foundation; either version 2 of the License, or | ||
8 | (at your option) any later version. | ||
9 | |||
10 | This program is distributed in the hope that it will be useful, | ||
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
13 | GNU General Public License for more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License | ||
16 | along with this program; if not, write to the Free Software | ||
17 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
18 | |||
19 | The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian | ||
20 | system and in the file COPYING in the Linux kernel source. | ||
21 | */ | ||
22 | |||
23 | /* | ||
24 | IMPORTANT NOTE: Madge Networks no longer makes the adapters | ||
25 | supported by this driver and makes no commitment to maintain it. | ||
26 | */ | ||
27 | |||
28 | #include <linux/module.h> | ||
29 | #include <linux/kernel.h> | ||
30 | #include <linux/mm.h> | ||
31 | #include <linux/pci.h> | ||
32 | #include <linux/errno.h> | ||
33 | #include <linux/atm.h> | ||
34 | #include <linux/atmdev.h> | ||
35 | #include <linux/sonet.h> | ||
36 | #include <linux/skbuff.h> | ||
37 | #include <linux/time.h> | ||
38 | #include <linux/delay.h> | ||
39 | #include <linux/uio.h> | ||
40 | #include <linux/init.h> | ||
41 | #include <linux/ioport.h> | ||
42 | #include <linux/wait.h> | ||
43 | |||
44 | #include <asm/system.h> | ||
45 | #include <asm/io.h> | ||
46 | #include <asm/atomic.h> | ||
47 | #include <asm/uaccess.h> | ||
48 | #include <asm/string.h> | ||
49 | #include <asm/byteorder.h> | ||
50 | |||
51 | #include "horizon.h" | ||
52 | |||
53 | #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" | ||
54 | #define description_string "Madge ATM Horizon [Ultra] driver" | ||
55 | #define version_string "1.2.1" | ||
56 | |||
57 | static inline void __init show_version (void) { | ||
58 | printk ("%s version %s\n", description_string, version_string); | ||
59 | } | ||
60 | |||
61 | /* | ||
62 | |||
63 | CREDITS | ||
64 | |||
65 | Driver and documentation by: | ||
66 | |||
67 | Chris Aston Madge Networks | ||
68 | Giuliano Procida Madge Networks | ||
69 | Simon Benham Madge Networks | ||
70 | Simon Johnson Madge Networks | ||
71 | Various Others Madge Networks | ||
72 | |||
73 | Some inspiration taken from other drivers by: | ||
74 | |||
75 | Alexandru Cucos UTBv | ||
76 | Kari Mettinen University of Helsinki | ||
77 | Werner Almesberger EPFL LRC | ||
78 | |||
79 | Theory of Operation | ||
80 | |||
81 | I Hardware, detection, initialisation and shutdown. | ||
82 | |||
83 | 1. Supported Hardware | ||
84 | |||
85 | This driver should handle all variants of the PCI Madge ATM adapters | ||
86 | with the Horizon chipset. These are all PCI cards supporting PIO, BM | ||
87 | DMA and a form of MMIO (registers only, not internal RAM). | ||
88 | |||
89 | The driver is only known to work with SONET and UTP Horizon Ultra | ||
90 | cards at 155Mb/s. However, code is in place to deal with both the | ||
91 | original Horizon and 25Mb/s operation. | ||
92 | |||
93 | There are two revisions of the Horizon ASIC: the original and the | ||
94 | Ultra. Details of hardware bugs are in section III. | ||
95 | |||
96 | The ASIC version can be distinguished by chip markings but is NOT | ||
97 | indicated by the PCI revision (all adapters seem to have PCI rev 1). | ||
98 | |||
99 | I believe that: | ||
100 | |||
101 | Horizon => Collage 25 PCI Adapter (UTP and STP) | ||
102 | Horizon Ultra => Collage 155 PCI Client (UTP or SONET) | ||
103 | Ambassador x => Collage 155 PCI Server (completely different) | ||
104 | |||
105 | Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to | ||
106 | have a Madge B154 plus glue logic serializer. I have also found a | ||
107 | really ancient version of this with slightly different glue. It | ||
108 | comes with the revision 0 (140-025-01) ASIC. | ||
109 | |||
110 | Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink | ||
111 | output (UTP) or an HP HFBR 5205 output (SONET). It has either | ||
112 | Madge's SAMBA framer or a SUNI-lite device (early versions). It | ||
113 | comes with the revision 1 (140-027-01) ASIC. | ||
114 | |||
115 | 2. Detection | ||
116 | |||
117 | All Horizon-based cards present with the same PCI Vendor and Device | ||
118 | IDs. The standard Linux 2.2 PCI API is used to locate any cards and | ||
119 | to enable bus-mastering (with appropriate latency). | ||
120 | |||
121 | ATM_LAYER_STATUS in the control register distinguishes between the | ||
122 | two possible physical layers (25 and 155). It is not clear whether | ||
123 | the 155 cards can also operate at 25Mbps. We rely on the fact that a | ||
124 | card operates at 155 if and only if it has the newer Horizon Ultra | ||
125 | ASIC. | ||
126 | |||
127 | For 155 cards the two possible framers are probed for and then set | ||
128 | up for loop-timing. | ||
129 | |||
130 | 3. Initialisation | ||
131 | |||
132 | The card is reset and then put into a known state. The physical | ||
133 | layer is configured for normal operation at the appropriate speed; | ||
134 | in the case of the 155 cards, the framer is initialised with | ||
135 | line-based timing; the internal RAM is zeroed and the allocation of | ||
136 | buffers for RX and TX is made; the Burnt In Address is read and | ||
137 | copied to the ATM ESI; various policy settings for RX (VPI bits, | ||
138 | unknown VCs, oam cells) are made. Ideally all policy items should be | ||
139 | configurable at module load (if not actually on-demand), however, | ||
140 | only the vpi vs vci bit allocation can be specified at insmod. | ||
141 | |||
142 | 4. Shutdown | ||
143 | |||
144 | This is in response to module_cleaup. No VCs are in use and the card | ||
145 | should be idle; it is reset. | ||
146 | |||
147 | II Driver software (as it should be) | ||
148 | |||
149 | 0. Traffic Parameters | ||
150 | |||
151 | The traffic classes (not an enumeration) are currently: ATM_NONE (no | ||
152 | traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS | ||
153 | (compatible with everything). Together with (perhaps only some of) | ||
154 | the following items they make up the traffic specification. | ||
155 | |||
156 | struct atm_trafprm { | ||
157 | unsigned char traffic_class; traffic class (ATM_UBR, ...) | ||
158 | int max_pcr; maximum PCR in cells per second | ||
159 | int pcr; desired PCR in cells per second | ||
160 | int min_pcr; minimum PCR in cells per second | ||
161 | int max_cdv; maximum CDV in microseconds | ||
162 | int max_sdu; maximum SDU in bytes | ||
163 | }; | ||
164 | |||
165 | Note that these denote bandwidth available not bandwidth used; the | ||
166 | possibilities according to ATMF are: | ||
167 | |||
168 | Real Time (cdv and max CDT given) | ||
169 | |||
170 | CBR(pcr) pcr bandwidth always available | ||
171 | rtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too | ||
172 | |||
173 | Non Real Time | ||
174 | |||
175 | nrtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too | ||
176 | UBR() | ||
177 | ABR(mcr,pcr) mcr bandwidth always available, upto pcr (depending) too | ||
178 | |||
179 | mbs is max burst size (bucket) | ||
180 | pcr and scr have associated cdvt values | ||
181 | mcr is like scr but has no cdtv | ||
182 | cdtv may differ at each hop | ||
183 | |||
184 | Some of the above items are qos items (as opposed to traffic | ||
185 | parameters). We have nothing to do with qos. All except ABR can have | ||
186 | their traffic parameters converted to GCRA parameters. The GCRA may | ||
187 | be implemented as a (real-number) leaky bucket. The GCRA can be used | ||
188 | in complicated ways by switches and in simpler ways by end-stations. | ||
189 | It can be used both to filter incoming cells and shape out-going | ||
190 | cells. | ||
191 | |||
192 | ATM Linux actually supports: | ||
193 | |||
194 | ATM_NONE() (no traffic in this direction) | ||
195 | ATM_UBR(max_frame_size) | ||
196 | ATM_CBR(max/min_pcr, max_cdv, max_frame_size) | ||
197 | |||
198 | 0 or ATM_MAX_PCR are used to indicate maximum available PCR | ||
199 | |||
200 | A traffic specification consists of the AAL type and separate | ||
201 | traffic specifications for either direction. In ATM Linux it is: | ||
202 | |||
203 | struct atm_qos { | ||
204 | struct atm_trafprm txtp; | ||
205 | struct atm_trafprm rxtp; | ||
206 | unsigned char aal; | ||
207 | }; | ||
208 | |||
209 | AAL types are: | ||
210 | |||
211 | ATM_NO_AAL AAL not specified | ||
212 | ATM_AAL0 "raw" ATM cells | ||
213 | ATM_AAL1 AAL1 (CBR) | ||
214 | ATM_AAL2 AAL2 (VBR) | ||
215 | ATM_AAL34 AAL3/4 (data) | ||
216 | ATM_AAL5 AAL5 (data) | ||
217 | ATM_SAAL signaling AAL | ||
218 | |||
219 | The Horizon has support for AAL frame types: 0, 3/4 and 5. However, | ||
220 | it does not implement AAL 3/4 SAR and it has a different notion of | ||
221 | "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are | ||
222 | supported by this driver. | ||
223 | |||
224 | The Horizon has limited support for ABR (including UBR), VBR and | ||
225 | CBR. Each TX channel has a bucket (containing up to 31 cell units) | ||
226 | and two timers (PCR and SCR) associated with it that can be used to | ||
227 | govern cell emissions and host notification (in the case of ABR this | ||
228 | is presumably so that RM cells may be emitted at appropriate times). | ||
229 | The timers may either be disabled or may be set to any of 240 values | ||
230 | (determined by the clock crystal, a fixed (?) per-device divider, a | ||
231 | configurable divider and a configurable timer preload value). | ||
232 | |||
233 | At the moment only UBR and CBR are supported by the driver. VBR will | ||
234 | be supported as soon as ATM for Linux supports it. ABR support is | ||
235 | very unlikely as RM cell handling is completely up to the driver. | ||
236 | |||
237 | 1. TX (TX channel setup and TX transfer) | ||
238 | |||
239 | The TX half of the driver owns the TX Horizon registers. The TX | ||
240 | component in the IRQ handler is the BM completion handler. This can | ||
241 | only be entered when tx_busy is true (enforced by hardware). The | ||
242 | other TX component can only be entered when tx_busy is false | ||
243 | (enforced by driver). So TX is single-threaded. | ||
244 | |||
245 | Apart from a minor optimisation to not re-select the last channel, | ||
246 | the TX send component works as follows: | ||
247 | |||
248 | Atomic test and set tx_busy until we succeed; we should implement | ||
249 | some sort of timeout so that tx_busy will never be stuck at true. | ||
250 | |||
251 | If no TX channel is set up for this VC we wait for an idle one (if | ||
252 | necessary) and set it up. | ||
253 | |||
254 | At this point we have a TX channel ready for use. We wait for enough | ||
255 | buffers to become available then start a TX transmit (set the TX | ||
256 | descriptor, schedule transfer, exit). | ||
257 | |||
258 | The IRQ component handles TX completion (stats, free buffer, tx_busy | ||
259 | unset, exit). We also re-schedule further transfers for the same | ||
260 | frame if needed. | ||
261 | |||
262 | TX setup in more detail: | ||
263 | |||
264 | TX open is a nop, the relevant information is held in the hrz_vcc | ||
265 | (vcc->dev_data) structure and is "cached" on the card. | ||
266 | |||
267 | TX close gets the TX lock and clears the channel from the "cache". | ||
268 | |||
269 | 2. RX (Data Available and RX transfer) | ||
270 | |||
271 | The RX half of the driver owns the RX registers. There are two RX | ||
272 | components in the IRQ handler: the data available handler deals with | ||
273 | fresh data that has arrived on the card, the BM completion handler | ||
274 | is very similar to the TX completion handler. The data available | ||
275 | handler grabs the rx_lock and it is only released once the data has | ||
276 | been discarded or completely transferred to the host. The BM | ||
277 | completion handler only runs when the lock is held; the data | ||
278 | available handler is locked out over the same period. | ||
279 | |||
280 | Data available on the card triggers an interrupt. If the data is not | ||
281 | suitable for our existing RX channels or we cannot allocate a buffer | ||
282 | it is flushed. Otherwise an RX receive is scheduled. Multiple RX | ||
283 | transfers may be scheduled for the same frame. | ||
284 | |||
285 | RX setup in more detail: | ||
286 | |||
287 | RX open... | ||
288 | RX close... | ||
289 | |||
290 | III Hardware Bugs | ||
291 | |||
292 | 0. Byte vs Word addressing of adapter RAM. | ||
293 | |||
294 | A design feature; see the .h file (especially the memory map). | ||
295 | |||
296 | 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra) | ||
297 | |||
298 | The host must not start a transmit direction transfer at a | ||
299 | non-four-byte boundary in host memory. Instead the host should | ||
300 | perform a byte, or a two byte, or one byte followed by two byte | ||
301 | transfer in order to start the rest of the transfer on a four byte | ||
302 | boundary. RX is OK. | ||
303 | |||
304 | Simultaneous transmit and receive direction bus master transfers are | ||
305 | not allowed. | ||
306 | |||
307 | The simplest solution to these two is to always do PIO (never DMA) | ||
308 | in the TX direction on the original Horizon. More complicated | ||
309 | solutions are likely to hurt my brain. | ||
310 | |||
311 | 2. Loss of buffer on close VC | ||
312 | |||
313 | When a VC is being closed, the buffer associated with it is not | ||
314 | returned to the pool. The host must store the reference to this | ||
315 | buffer and when opening a new VC then give it to that new VC. | ||
316 | |||
317 | The host intervention currently consists of stacking such a buffer | ||
318 | pointer at VC close and checking the stack at VC open. | ||
319 | |||
320 | 3. Failure to close a VC | ||
321 | |||
322 | If a VC is currently receiving a frame then closing the VC may fail | ||
323 | and the frame continues to be received. | ||
324 | |||
325 | The solution is to make sure any received frames are flushed when | ||
326 | ready. This is currently done just before the solution to 2. | ||
327 | |||
328 | 4. PCI bus (original Horizon only, fixed in Ultra) | ||
329 | |||
330 | Reading from the data port prior to initialisation will hang the PCI | ||
331 | bus. Just don't do that then! We don't. | ||
332 | |||
333 | IV To Do List | ||
334 | |||
335 | . Timer code may be broken. | ||
336 | |||
337 | . Allow users to specify buffer allocation split for TX and RX. | ||
338 | |||
339 | . Deal once and for all with buggy VC close. | ||
340 | |||
341 | . Handle interrupted and/or non-blocking operations. | ||
342 | |||
343 | . Change some macros to functions and move from .h to .c. | ||
344 | |||
345 | . Try to limit the number of TX frames each VC may have queued, in | ||
346 | order to reduce the chances of TX buffer exhaustion. | ||
347 | |||
348 | . Implement VBR (bucket and timers not understood) and ABR (need to | ||
349 | do RM cells manually); also no Linux support for either. | ||
350 | |||
351 | . Implement QoS changes on open VCs (involves extracting parts of VC open | ||
352 | and close into separate functions and using them to make changes). | ||
353 | |||
354 | */ | ||
355 | |||
356 | /********** globals **********/ | ||
357 | |||
358 | static void do_housekeeping (unsigned long arg); | ||
359 | |||
360 | static unsigned short debug = 0; | ||
361 | static unsigned short vpi_bits = 0; | ||
362 | static int max_tx_size = 9000; | ||
363 | static int max_rx_size = 9000; | ||
364 | static unsigned char pci_lat = 0; | ||
365 | |||
366 | /********** access functions **********/ | ||
367 | |||
368 | /* Read / Write Horizon registers */ | ||
369 | static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) { | ||
370 | outl (cpu_to_le32 (data), dev->iobase + reg); | ||
371 | } | ||
372 | |||
373 | static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) { | ||
374 | return le32_to_cpu (inl (dev->iobase + reg)); | ||
375 | } | ||
376 | |||
377 | static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) { | ||
378 | outw (cpu_to_le16 (data), dev->iobase + reg); | ||
379 | } | ||
380 | |||
381 | static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) { | ||
382 | return le16_to_cpu (inw (dev->iobase + reg)); | ||
383 | } | ||
384 | |||
385 | static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | ||
386 | outsb (dev->iobase + reg, addr, len); | ||
387 | } | ||
388 | |||
389 | static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | ||
390 | insb (dev->iobase + reg, addr, len); | ||
391 | } | ||
392 | |||
393 | /* Read / Write to a given address in Horizon buffer memory. | ||
394 | Interrupts must be disabled between the address register and data | ||
395 | port accesses as these must form an atomic operation. */ | ||
396 | static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) { | ||
397 | // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr); | ||
398 | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | ||
399 | wr_regl (dev, MEMORY_PORT_OFF, data); | ||
400 | } | ||
401 | |||
402 | static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) { | ||
403 | // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr); | ||
404 | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | ||
405 | return rd_regl (dev, MEMORY_PORT_OFF); | ||
406 | } | ||
407 | |||
408 | static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) { | ||
409 | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000); | ||
410 | wr_regl (dev, MEMORY_PORT_OFF, data); | ||
411 | } | ||
412 | |||
413 | static inline u32 rd_framer (const hrz_dev * dev, u32 addr) { | ||
414 | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000); | ||
415 | return rd_regl (dev, MEMORY_PORT_OFF); | ||
416 | } | ||
417 | |||
418 | /********** specialised access functions **********/ | ||
419 | |||
420 | /* RX */ | ||
421 | |||
422 | static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) { | ||
423 | wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel); | ||
424 | return; | ||
425 | } | ||
426 | |||
427 | static inline void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) { | ||
428 | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL) | ||
429 | ; | ||
430 | return; | ||
431 | } | ||
432 | |||
433 | static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) { | ||
434 | wr_regw (dev, RX_CHANNEL_PORT_OFF, channel); | ||
435 | return; | ||
436 | } | ||
437 | |||
438 | static inline void WAIT_UPDATE_COMPLETE (hrz_dev * dev) { | ||
439 | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS) | ||
440 | ; | ||
441 | return; | ||
442 | } | ||
443 | |||
444 | /* TX */ | ||
445 | |||
446 | static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) { | ||
447 | wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel); | ||
448 | return; | ||
449 | } | ||
450 | |||
451 | /* Update or query one configuration parameter of a particular channel. */ | ||
452 | |||
453 | static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) { | ||
454 | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | ||
455 | chan * TX_CHANNEL_CONFIG_MULT | mode); | ||
456 | wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value); | ||
457 | return; | ||
458 | } | ||
459 | |||
460 | static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) { | ||
461 | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | ||
462 | chan * TX_CHANNEL_CONFIG_MULT | mode); | ||
463 | return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF); | ||
464 | } | ||
465 | |||
466 | /********** dump functions **********/ | ||
467 | |||
468 | static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { | ||
469 | #ifdef DEBUG_HORIZON | ||
470 | unsigned int i; | ||
471 | unsigned char * data = skb->data; | ||
472 | PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); | ||
473 | for (i=0; i<skb->len && i < 256;i++) | ||
474 | PRINTDM (DBG_DATA, "%02x ", data[i]); | ||
475 | PRINTDE (DBG_DATA,""); | ||
476 | #else | ||
477 | (void) prefix; | ||
478 | (void) vc; | ||
479 | (void) skb; | ||
480 | #endif | ||
481 | return; | ||
482 | } | ||
483 | |||
484 | static inline void dump_regs (hrz_dev * dev) { | ||
485 | #ifdef DEBUG_HORIZON | ||
486 | PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG)); | ||
487 | PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF)); | ||
488 | PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF)); | ||
489 | PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF)); | ||
490 | PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF)); | ||
491 | PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF)); | ||
492 | #else | ||
493 | (void) dev; | ||
494 | #endif | ||
495 | return; | ||
496 | } | ||
497 | |||
498 | static inline void dump_framer (hrz_dev * dev) { | ||
499 | #ifdef DEBUG_HORIZON | ||
500 | unsigned int i; | ||
501 | PRINTDB (DBG_REGS, "framer registers:"); | ||
502 | for (i = 0; i < 0x10; ++i) | ||
503 | PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i)); | ||
504 | PRINTDE (DBG_REGS,""); | ||
505 | #else | ||
506 | (void) dev; | ||
507 | #endif | ||
508 | return; | ||
509 | } | ||
510 | |||
511 | /********** VPI/VCI <-> (RX) channel conversions **********/ | ||
512 | |||
513 | /* RX channels are 10 bit integers, these fns are quite paranoid */ | ||
514 | |||
515 | static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) { | ||
516 | unsigned short vci_bits = 10 - vpi_bits; | ||
517 | if ((channel & RX_CHANNEL_MASK) == channel) { | ||
518 | *vci = channel & ((~0)<<vci_bits); | ||
519 | *vpi = channel >> vci_bits; | ||
520 | return channel ? 0 : -EINVAL; | ||
521 | } | ||
522 | return -EINVAL; | ||
523 | } | ||
524 | |||
525 | static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) { | ||
526 | unsigned short vci_bits = 10 - vpi_bits; | ||
527 | if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) { | ||
528 | *channel = vpi<<vci_bits | vci; | ||
529 | return *channel ? 0 : -EINVAL; | ||
530 | } | ||
531 | return -EINVAL; | ||
532 | } | ||
533 | |||
534 | /********** decode RX queue entries **********/ | ||
535 | |||
536 | static inline u16 rx_q_entry_to_length (u32 x) { | ||
537 | return x & RX_Q_ENTRY_LENGTH_MASK; | ||
538 | } | ||
539 | |||
540 | static inline u16 rx_q_entry_to_rx_channel (u32 x) { | ||
541 | return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK; | ||
542 | } | ||
543 | |||
544 | /* Cell Transmit Rate Values | ||
545 | * | ||
546 | * the cell transmit rate (cells per sec) can be set to a variety of | ||
547 | * different values by specifying two parameters: a timer preload from | ||
548 | * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of | ||
549 | * an exponent from 0 to 14; the special value 15 disables the timer). | ||
550 | * | ||
551 | * cellrate = baserate / (preload * 2^divider) | ||
552 | * | ||
553 | * The maximum cell rate that can be specified is therefore just the | ||
554 | * base rate. Halving the preload is equivalent to adding 1 to the | ||
555 | * divider and so values 1 to 8 of the preload are redundant except | ||
556 | * in the case of a maximal divider (14). | ||
557 | * | ||
558 | * Given a desired cell rate, an algorithm to determine the preload | ||
559 | * and divider is: | ||
560 | * | ||
561 | * a) x = baserate / cellrate, want p * 2^d = x (as far as possible) | ||
562 | * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done | ||
563 | * if x <= 16 then set p = x, d = 0 (high rates), done | ||
564 | * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to | ||
565 | * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until | ||
566 | * we find the range (n will be between 1 and 14), set d = n | ||
567 | * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n | ||
568 | * | ||
569 | * The algorithm used below is a minor variant of the above. | ||
570 | * | ||
571 | * The base rate is derived from the oscillator frequency (Hz) using a | ||
572 | * fixed divider: | ||
573 | * | ||
574 | * baserate = freq / 32 in the case of some Unknown Card | ||
575 | * baserate = freq / 8 in the case of the Horizon 25 | ||
576 | * baserate = freq / 8 in the case of the Horizon Ultra 155 | ||
577 | * | ||
578 | * The Horizon cards have oscillators and base rates as follows: | ||
579 | * | ||
580 | * Card Oscillator Base Rate | ||
581 | * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq) | ||
582 | * Horizon 25 32 MHz 4 MHz | ||
583 | * Horizon Ultra 155 40 MHz 5 MHz | ||
584 | * | ||
585 | * The following defines give the base rates in Hz. These were | ||
586 | * previously a factor of 100 larger, no doubt someone was using | ||
587 | * cps*100. | ||
588 | */ | ||
589 | |||
590 | #define BR_UKN 1031250l | ||
591 | #define BR_HRZ 4000000l | ||
592 | #define BR_ULT 5000000l | ||
593 | |||
594 | // d is an exponent | ||
595 | #define CR_MIND 0 | ||
596 | #define CR_MAXD 14 | ||
597 | |||
598 | // p ranges from 1 to a power of 2 | ||
599 | #define CR_MAXPEXP 4 | ||
600 | |||
601 | static int make_rate (const hrz_dev * dev, u32 c, rounding r, | ||
602 | u16 * bits, unsigned int * actual) | ||
603 | { | ||
604 | // note: rounding the rate down means rounding 'p' up | ||
605 | const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ; | ||
606 | |||
607 | u32 div = CR_MIND; | ||
608 | u32 pre; | ||
609 | |||
610 | // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in | ||
611 | // the tests below. We could think harder about exact possibilities | ||
612 | // of failure... | ||
613 | |||
614 | unsigned long br_man = br; | ||
615 | unsigned int br_exp = 0; | ||
616 | |||
617 | PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c, | ||
618 | r == round_up ? "up" : r == round_down ? "down" : "nearest"); | ||
619 | |||
620 | // avoid div by zero | ||
621 | if (!c) { | ||
622 | PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!"); | ||
623 | return -EINVAL; | ||
624 | } | ||
625 | |||
626 | while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) { | ||
627 | br_man = br_man >> 1; | ||
628 | ++br_exp; | ||
629 | } | ||
630 | // (br >>br_exp) <<br_exp == br and | ||
631 | // br_exp <= CR_MAXPEXP+CR_MIND | ||
632 | |||
633 | if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) { | ||
634 | // Equivalent to: B <= (c << (MAXPEXP+MIND)) | ||
635 | // take care of rounding | ||
636 | switch (r) { | ||
637 | case round_down: | ||
638 | pre = (br+(c<<div)-1)/(c<<div); | ||
639 | // but p must be non-zero | ||
640 | if (!pre) | ||
641 | pre = 1; | ||
642 | break; | ||
643 | case round_nearest: | ||
644 | pre = (br+(c<<div)/2)/(c<<div); | ||
645 | // but p must be non-zero | ||
646 | if (!pre) | ||
647 | pre = 1; | ||
648 | break; | ||
649 | default: /* round_up */ | ||
650 | pre = br/(c<<div); | ||
651 | // but p must be non-zero | ||
652 | if (!pre) | ||
653 | return -EINVAL; | ||
654 | } | ||
655 | PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div); | ||
656 | goto got_it; | ||
657 | } | ||
658 | |||
659 | // at this point we have | ||
660 | // d == MIND and (c << (MAXPEXP+MIND)) < B | ||
661 | while (div < CR_MAXD) { | ||
662 | div++; | ||
663 | if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) { | ||
664 | // Equivalent to: B <= (c << (MAXPEXP+d)) | ||
665 | // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d) | ||
666 | // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP | ||
667 | // MAXP/2 < B/c2^d <= MAXP | ||
668 | // take care of rounding | ||
669 | switch (r) { | ||
670 | case round_down: | ||
671 | pre = (br+(c<<div)-1)/(c<<div); | ||
672 | break; | ||
673 | case round_nearest: | ||
674 | pre = (br+(c<<div)/2)/(c<<div); | ||
675 | break; | ||
676 | default: /* round_up */ | ||
677 | pre = br/(c<<div); | ||
678 | } | ||
679 | PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div); | ||
680 | goto got_it; | ||
681 | } | ||
682 | } | ||
683 | // at this point we have | ||
684 | // d == MAXD and (c << (MAXPEXP+MAXD)) < B | ||
685 | // but we cannot go any higher | ||
686 | // take care of rounding | ||
687 | if (r == round_down) | ||
688 | return -EINVAL; | ||
689 | pre = 1 << CR_MAXPEXP; | ||
690 | PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div); | ||
691 | got_it: | ||
692 | // paranoia | ||
693 | if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) { | ||
694 | PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u", | ||
695 | div, pre); | ||
696 | return -EINVAL; | ||
697 | } else { | ||
698 | if (bits) | ||
699 | *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1); | ||
700 | if (actual) { | ||
701 | *actual = (br + (pre<<div) - 1) / (pre<<div); | ||
702 | PRINTD (DBG_QOS, "actual rate: %u", *actual); | ||
703 | } | ||
704 | return 0; | ||
705 | } | ||
706 | } | ||
707 | |||
708 | static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol, | ||
709 | u16 * bit_pattern, unsigned int * actual) { | ||
710 | unsigned int my_actual; | ||
711 | |||
712 | PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u", | ||
713 | c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol); | ||
714 | |||
715 | if (!actual) | ||
716 | // actual rate is not returned | ||
717 | actual = &my_actual; | ||
718 | |||
719 | if (make_rate (dev, c, round_nearest, bit_pattern, actual)) | ||
720 | // should never happen as round_nearest always succeeds | ||
721 | return -1; | ||
722 | |||
723 | if (c - tol <= *actual && *actual <= c + tol) | ||
724 | // within tolerance | ||
725 | return 0; | ||
726 | else | ||
727 | // intolerant, try rounding instead | ||
728 | return make_rate (dev, c, r, bit_pattern, actual); | ||
729 | } | ||
730 | |||
731 | /********** Listen on a VC **********/ | ||
732 | |||
733 | static int hrz_open_rx (hrz_dev * dev, u16 channel) { | ||
734 | // is there any guarantee that we don't get two simulataneous | ||
735 | // identical calls of this function from different processes? yes | ||
736 | // rate_lock | ||
737 | unsigned long flags; | ||
738 | u32 channel_type; // u16? | ||
739 | |||
740 | u16 buf_ptr = RX_CHANNEL_IDLE; | ||
741 | |||
742 | rx_ch_desc * rx_desc = &memmap->rx_descs[channel]; | ||
743 | |||
744 | PRINTD (DBG_FLOW, "hrz_open_rx %x", channel); | ||
745 | |||
746 | spin_lock_irqsave (&dev->mem_lock, flags); | ||
747 | channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | ||
748 | spin_unlock_irqrestore (&dev->mem_lock, flags); | ||
749 | |||
750 | // very serious error, should never occur | ||
751 | if (channel_type != RX_CHANNEL_DISABLED) { | ||
752 | PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open"); | ||
753 | return -EBUSY; // clean up? | ||
754 | } | ||
755 | |||
756 | // Give back spare buffer | ||
757 | if (dev->noof_spare_buffers) { | ||
758 | buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers]; | ||
759 | PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr); | ||
760 | // should never occur | ||
761 | if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) { | ||
762 | // but easy to recover from | ||
763 | PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE"); | ||
764 | buf_ptr = RX_CHANNEL_IDLE; | ||
765 | } | ||
766 | } else { | ||
767 | PRINTD (DBG_VCC, "using IDLE buffer pointer"); | ||
768 | } | ||
769 | |||
770 | // Channel is currently disabled so change its status to idle | ||
771 | |||
772 | // do we really need to save the flags again? | ||
773 | spin_lock_irqsave (&dev->mem_lock, flags); | ||
774 | |||
775 | wr_mem (dev, &rx_desc->wr_buf_type, | ||
776 | buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME); | ||
777 | if (buf_ptr != RX_CHANNEL_IDLE) | ||
778 | wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr); | ||
779 | |||
780 | spin_unlock_irqrestore (&dev->mem_lock, flags); | ||
781 | |||
782 | // rxer->rate = make_rate (qos->peak_cells); | ||
783 | |||
784 | PRINTD (DBG_FLOW, "hrz_open_rx ok"); | ||
785 | |||
786 | return 0; | ||
787 | } | ||
788 | |||
789 | #if 0 | ||
790 | /********** change vc rate for a given vc **********/ | ||
791 | |||
792 | static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) { | ||
793 | rxer->rate = make_rate (qos->peak_cells); | ||
794 | } | ||
795 | #endif | ||
796 | |||
797 | /********** free an skb (as per ATM device driver documentation) **********/ | ||
798 | |||
799 | static inline void hrz_kfree_skb (struct sk_buff * skb) { | ||
800 | if (ATM_SKB(skb)->vcc->pop) { | ||
801 | ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); | ||
802 | } else { | ||
803 | dev_kfree_skb_any (skb); | ||
804 | } | ||
805 | } | ||
806 | |||
807 | /********** cancel listen on a VC **********/ | ||
808 | |||
809 | static void hrz_close_rx (hrz_dev * dev, u16 vc) { | ||
810 | unsigned long flags; | ||
811 | |||
812 | u32 value; | ||
813 | |||
814 | u32 r1, r2; | ||
815 | |||
816 | rx_ch_desc * rx_desc = &memmap->rx_descs[vc]; | ||
817 | |||
818 | int was_idle = 0; | ||
819 | |||
820 | spin_lock_irqsave (&dev->mem_lock, flags); | ||
821 | value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | ||
822 | spin_unlock_irqrestore (&dev->mem_lock, flags); | ||
823 | |||
824 | if (value == RX_CHANNEL_DISABLED) { | ||
825 | // I suppose this could happen once we deal with _NONE traffic properly | ||
826 | PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc); | ||
827 | return; | ||
828 | } | ||
829 | if (value == RX_CHANNEL_IDLE) | ||
830 | was_idle = 1; | ||
831 | |||
832 | spin_lock_irqsave (&dev->mem_lock, flags); | ||
833 | |||
834 | for (;;) { | ||
835 | wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED); | ||
836 | |||
837 | if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED) | ||
838 | break; | ||
839 | |||
840 | was_idle = 0; | ||
841 | } | ||
842 | |||
843 | if (was_idle) { | ||
844 | spin_unlock_irqrestore (&dev->mem_lock, flags); | ||
845 | return; | ||
846 | } | ||
847 | |||
848 | WAIT_FLUSH_RX_COMPLETE(dev); | ||
849 | |||
850 | // XXX Is this all really necessary? We can rely on the rx_data_av | ||
851 | // handler to discard frames that remain queued for delivery. If the | ||
852 | // worry is that immediately reopening the channel (perhaps by a | ||
853 | // different process) may cause some data to be mis-delivered then | ||
854 | // there may still be a simpler solution (such as busy-waiting on | ||
855 | // rx_busy once the channel is disabled or before a new one is | ||
856 | // opened - does this leave any holes?). Arguably setting up and | ||
857 | // tearing down the TX and RX halves of each virtual circuit could | ||
858 | // most safely be done within ?x_busy protected regions. | ||
859 | |||
860 | // OK, current changes are that Simon's marker is disabled and we DO | ||
861 | // look for NULL rxer elsewhere. The code here seems flush frames | ||
862 | // and then remember the last dead cell belonging to the channel | ||
863 | // just disabled - the cell gets relinked at the next vc_open. | ||
864 | // However, when all VCs are closed or only a few opened there are a | ||
865 | // handful of buffers that are unusable. | ||
866 | |||
867 | // Does anyone feel like documenting spare_buffers properly? | ||
868 | // Does anyone feel like fixing this in a nicer way? | ||
869 | |||
870 | // Flush any data which is left in the channel | ||
871 | for (;;) { | ||
872 | // Change the rx channel port to something different to the RX | ||
873 | // channel we are trying to close to force Horizon to flush the rx | ||
874 | // channel read and write pointers. | ||
875 | |||
876 | u16 other = vc^(RX_CHANS/2); | ||
877 | |||
878 | SELECT_RX_CHANNEL (dev, other); | ||
879 | WAIT_UPDATE_COMPLETE (dev); | ||
880 | |||
881 | r1 = rd_mem (dev, &rx_desc->rd_buf_type); | ||
882 | |||
883 | // Select this RX channel. Flush doesn't seem to work unless we | ||
884 | // select an RX channel before hand | ||
885 | |||
886 | SELECT_RX_CHANNEL (dev, vc); | ||
887 | WAIT_UPDATE_COMPLETE (dev); | ||
888 | |||
889 | // Attempt to flush a frame on this RX channel | ||
890 | |||
891 | FLUSH_RX_CHANNEL (dev, vc); | ||
892 | WAIT_FLUSH_RX_COMPLETE (dev); | ||
893 | |||
894 | // Force Horizon to flush rx channel read and write pointers as before | ||
895 | |||
896 | SELECT_RX_CHANNEL (dev, other); | ||
897 | WAIT_UPDATE_COMPLETE (dev); | ||
898 | |||
899 | r2 = rd_mem (dev, &rx_desc->rd_buf_type); | ||
900 | |||
901 | PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2); | ||
902 | |||
903 | if (r1 == r2) { | ||
904 | dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1; | ||
905 | break; | ||
906 | } | ||
907 | } | ||
908 | |||
909 | #if 0 | ||
910 | { | ||
911 | rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)]; | ||
912 | rx_q_entry * rd_ptr = dev->rx_q_entry; | ||
913 | |||
914 | PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr); | ||
915 | |||
916 | while (rd_ptr != wr_ptr) { | ||
917 | u32 x = rd_mem (dev, (HDW *) rd_ptr); | ||
918 | |||
919 | if (vc == rx_q_entry_to_rx_channel (x)) { | ||
920 | x |= SIMONS_DODGEY_MARKER; | ||
921 | |||
922 | PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey"); | ||
923 | |||
924 | wr_mem (dev, (HDW *) rd_ptr, x); | ||
925 | } | ||
926 | |||
927 | if (rd_ptr == dev->rx_q_wrap) | ||
928 | rd_ptr = dev->rx_q_reset; | ||
929 | else | ||
930 | rd_ptr++; | ||
931 | } | ||
932 | } | ||
933 | #endif | ||
934 | |||
935 | spin_unlock_irqrestore (&dev->mem_lock, flags); | ||
936 | |||
937 | return; | ||
938 | } | ||
939 | |||
940 | /********** schedule RX transfers **********/ | ||
941 | |||
942 | // Note on tail recursion: a GCC developer said that it is not likely | ||
943 | // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you | ||
944 | // are sure it does as you may otherwise overflow the kernel stack. | ||
945 | |||
946 | // giving this fn a return value would help GCC, alledgedly | ||
947 | |||
948 | static void rx_schedule (hrz_dev * dev, int irq) { | ||
949 | unsigned int rx_bytes; | ||
950 | |||
951 | int pio_instead = 0; | ||
952 | #ifndef TAILRECURSIONWORKS | ||
953 | pio_instead = 1; | ||
954 | while (pio_instead) { | ||
955 | #endif | ||
956 | // bytes waiting for RX transfer | ||
957 | rx_bytes = dev->rx_bytes; | ||
958 | |||
959 | #if 0 | ||
960 | spin_count = 0; | ||
961 | while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) { | ||
962 | PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!"); | ||
963 | if (++spin_count > 10) { | ||
964 | PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion"); | ||
965 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | ||
966 | clear_bit (rx_busy, &dev->flags); | ||
967 | hrz_kfree_skb (dev->rx_skb); | ||
968 | return; | ||
969 | } | ||
970 | } | ||
971 | #endif | ||
972 | |||
973 | // this code follows the TX code but (at the moment) there is only | ||
974 | // one region - the skb itself. I don't know if this will change, | ||
975 | // but it doesn't hurt to have the code here, disabled. | ||
976 | |||
977 | if (rx_bytes) { | ||
978 | // start next transfer within same region | ||
979 | if (rx_bytes <= MAX_PIO_COUNT) { | ||
980 | PRINTD (DBG_RX|DBG_BUS, "(pio)"); | ||
981 | pio_instead = 1; | ||
982 | } | ||
983 | if (rx_bytes <= MAX_TRANSFER_COUNT) { | ||
984 | PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)"); | ||
985 | dev->rx_bytes = 0; | ||
986 | } else { | ||
987 | PRINTD (DBG_RX|DBG_BUS, "(continuing multi)"); | ||
988 | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | ||
989 | rx_bytes = MAX_TRANSFER_COUNT; | ||
990 | } | ||
991 | } else { | ||
992 | // rx_bytes == 0 -- we're between regions | ||
993 | // regions remaining to transfer | ||
994 | #if 0 | ||
995 | unsigned int rx_regions = dev->rx_regions; | ||
996 | #else | ||
997 | unsigned int rx_regions = 0; | ||
998 | #endif | ||
999 | |||
1000 | if (rx_regions) { | ||
1001 | #if 0 | ||
1002 | // start a new region | ||
1003 | dev->rx_addr = dev->rx_iovec->iov_base; | ||
1004 | rx_bytes = dev->rx_iovec->iov_len; | ||
1005 | ++dev->rx_iovec; | ||
1006 | dev->rx_regions = rx_regions - 1; | ||
1007 | |||
1008 | if (rx_bytes <= MAX_PIO_COUNT) { | ||
1009 | PRINTD (DBG_RX|DBG_BUS, "(pio)"); | ||
1010 | pio_instead = 1; | ||
1011 | } | ||
1012 | if (rx_bytes <= MAX_TRANSFER_COUNT) { | ||
1013 | PRINTD (DBG_RX|DBG_BUS, "(full region)"); | ||
1014 | dev->rx_bytes = 0; | ||
1015 | } else { | ||
1016 | PRINTD (DBG_RX|DBG_BUS, "(start multi region)"); | ||
1017 | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | ||
1018 | rx_bytes = MAX_TRANSFER_COUNT; | ||
1019 | } | ||
1020 | #endif | ||
1021 | } else { | ||
1022 | // rx_regions == 0 | ||
1023 | // that's all folks - end of frame | ||
1024 | struct sk_buff * skb = dev->rx_skb; | ||
1025 | // dev->rx_iovec = 0; | ||
1026 | |||
1027 | FLUSH_RX_CHANNEL (dev, dev->rx_channel); | ||
1028 | |||
1029 | dump_skb ("<<<", dev->rx_channel, skb); | ||
1030 | |||
1031 | PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len); | ||
1032 | |||
1033 | { | ||
1034 | struct atm_vcc * vcc = ATM_SKB(skb)->vcc; | ||
1035 | // VC layer stats | ||
1036 | atomic_inc(&vcc->stats->rx); | ||
1037 | do_gettimeofday(&skb->stamp); | ||
1038 | // end of our responsability | ||
1039 | vcc->push (vcc, skb); | ||
1040 | } | ||
1041 | } | ||
1042 | } | ||
1043 | |||
1044 | // note: writing RX_COUNT clears any interrupt condition | ||
1045 | if (rx_bytes) { | ||
1046 | if (pio_instead) { | ||
1047 | if (irq) | ||
1048 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | ||
1049 | rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes); | ||
1050 | } else { | ||
1051 | wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr)); | ||
1052 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes); | ||
1053 | } | ||
1054 | dev->rx_addr += rx_bytes; | ||
1055 | } else { | ||
1056 | if (irq) | ||
1057 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | ||
1058 | // allow another RX thread to start | ||
1059 | YELLOW_LED_ON(dev); | ||
1060 | clear_bit (rx_busy, &dev->flags); | ||
1061 | PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev); | ||
1062 | } | ||
1063 | |||
1064 | #ifdef TAILRECURSIONWORKS | ||
1065 | // and we all bless optimised tail calls | ||
1066 | if (pio_instead) | ||
1067 | return rx_schedule (dev, 0); | ||
1068 | return; | ||
1069 | #else | ||
1070 | // grrrrrrr! | ||
1071 | irq = 0; | ||
1072 | } | ||
1073 | return; | ||
1074 | #endif | ||
1075 | } | ||
1076 | |||
1077 | /********** handle RX bus master complete events **********/ | ||
1078 | |||
1079 | static inline void rx_bus_master_complete_handler (hrz_dev * dev) { | ||
1080 | if (test_bit (rx_busy, &dev->flags)) { | ||
1081 | rx_schedule (dev, 1); | ||
1082 | } else { | ||
1083 | PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion"); | ||
1084 | // clear interrupt condition on adapter | ||
1085 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | ||
1086 | } | ||
1087 | return; | ||
1088 | } | ||
1089 | |||
1090 | /********** (queue to) become the next TX thread **********/ | ||
1091 | |||
1092 | static inline int tx_hold (hrz_dev * dev) { | ||
1093 | PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags); | ||
1094 | wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags))); | ||
1095 | PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags); | ||
1096 | if (signal_pending (current)) | ||
1097 | return -1; | ||
1098 | PRINTD (DBG_TX, "set tx_busy for dev %p", dev); | ||
1099 | return 0; | ||
1100 | } | ||
1101 | |||
1102 | /********** allow another TX thread to start **********/ | ||
1103 | |||
1104 | static inline void tx_release (hrz_dev * dev) { | ||
1105 | clear_bit (tx_busy, &dev->flags); | ||
1106 | PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev); | ||
1107 | wake_up_interruptible (&dev->tx_queue); | ||
1108 | } | ||
1109 | |||
1110 | /********** schedule TX transfers **********/ | ||
1111 | |||
1112 | static void tx_schedule (hrz_dev * const dev, int irq) { | ||
1113 | unsigned int tx_bytes; | ||
1114 | |||
1115 | int append_desc = 0; | ||
1116 | |||
1117 | int pio_instead = 0; | ||
1118 | #ifndef TAILRECURSIONWORKS | ||
1119 | pio_instead = 1; | ||
1120 | while (pio_instead) { | ||
1121 | #endif | ||
1122 | // bytes in current region waiting for TX transfer | ||
1123 | tx_bytes = dev->tx_bytes; | ||
1124 | |||
1125 | #if 0 | ||
1126 | spin_count = 0; | ||
1127 | while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) { | ||
1128 | PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!"); | ||
1129 | if (++spin_count > 10) { | ||
1130 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion"); | ||
1131 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | ||
1132 | tx_release (dev); | ||
1133 | hrz_kfree_skb (dev->tx_skb); | ||
1134 | return; | ||
1135 | } | ||
1136 | } | ||
1137 | #endif | ||
1138 | |||
1139 | if (tx_bytes) { | ||
1140 | // start next transfer within same region | ||
1141 | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | ||
1142 | PRINTD (DBG_TX|DBG_BUS, "(pio)"); | ||
1143 | pio_instead = 1; | ||
1144 | } | ||
1145 | if (tx_bytes <= MAX_TRANSFER_COUNT) { | ||
1146 | PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)"); | ||
1147 | if (!dev->tx_iovec) { | ||
1148 | // end of last region | ||
1149 | append_desc = 1; | ||
1150 | } | ||
1151 | dev->tx_bytes = 0; | ||
1152 | } else { | ||
1153 | PRINTD (DBG_TX|DBG_BUS, "(continuing multi)"); | ||
1154 | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | ||
1155 | tx_bytes = MAX_TRANSFER_COUNT; | ||
1156 | } | ||
1157 | } else { | ||
1158 | // tx_bytes == 0 -- we're between regions | ||
1159 | // regions remaining to transfer | ||
1160 | unsigned int tx_regions = dev->tx_regions; | ||
1161 | |||
1162 | if (tx_regions) { | ||
1163 | // start a new region | ||
1164 | dev->tx_addr = dev->tx_iovec->iov_base; | ||
1165 | tx_bytes = dev->tx_iovec->iov_len; | ||
1166 | ++dev->tx_iovec; | ||
1167 | dev->tx_regions = tx_regions - 1; | ||
1168 | |||
1169 | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | ||
1170 | PRINTD (DBG_TX|DBG_BUS, "(pio)"); | ||
1171 | pio_instead = 1; | ||
1172 | } | ||
1173 | if (tx_bytes <= MAX_TRANSFER_COUNT) { | ||
1174 | PRINTD (DBG_TX|DBG_BUS, "(full region)"); | ||
1175 | dev->tx_bytes = 0; | ||
1176 | } else { | ||
1177 | PRINTD (DBG_TX|DBG_BUS, "(start multi region)"); | ||
1178 | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | ||
1179 | tx_bytes = MAX_TRANSFER_COUNT; | ||
1180 | } | ||
1181 | } else { | ||
1182 | // tx_regions == 0 | ||
1183 | // that's all folks - end of frame | ||
1184 | struct sk_buff * skb = dev->tx_skb; | ||
1185 | dev->tx_iovec = NULL; | ||
1186 | |||
1187 | // VC layer stats | ||
1188 | atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); | ||
1189 | |||
1190 | // free the skb | ||
1191 | hrz_kfree_skb (skb); | ||
1192 | } | ||
1193 | } | ||
1194 | |||
1195 | // note: writing TX_COUNT clears any interrupt condition | ||
1196 | if (tx_bytes) { | ||
1197 | if (pio_instead) { | ||
1198 | if (irq) | ||
1199 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | ||
1200 | wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes); | ||
1201 | if (append_desc) | ||
1202 | wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len)); | ||
1203 | } else { | ||
1204 | wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr)); | ||
1205 | if (append_desc) | ||
1206 | wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len)); | ||
1207 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, | ||
1208 | append_desc | ||
1209 | ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC | ||
1210 | : tx_bytes); | ||
1211 | } | ||
1212 | dev->tx_addr += tx_bytes; | ||
1213 | } else { | ||
1214 | if (irq) | ||
1215 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | ||
1216 | YELLOW_LED_ON(dev); | ||
1217 | tx_release (dev); | ||
1218 | } | ||
1219 | |||
1220 | #ifdef TAILRECURSIONWORKS | ||
1221 | // and we all bless optimised tail calls | ||
1222 | if (pio_instead) | ||
1223 | return tx_schedule (dev, 0); | ||
1224 | return; | ||
1225 | #else | ||
1226 | // grrrrrrr! | ||
1227 | irq = 0; | ||
1228 | } | ||
1229 | return; | ||
1230 | #endif | ||
1231 | } | ||
1232 | |||
1233 | /********** handle TX bus master complete events **********/ | ||
1234 | |||
1235 | static inline void tx_bus_master_complete_handler (hrz_dev * dev) { | ||
1236 | if (test_bit (tx_busy, &dev->flags)) { | ||
1237 | tx_schedule (dev, 1); | ||
1238 | } else { | ||
1239 | PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion"); | ||
1240 | // clear interrupt condition on adapter | ||
1241 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | ||
1242 | } | ||
1243 | return; | ||
1244 | } | ||
1245 | |||
1246 | /********** move RX Q pointer to next item in circular buffer **********/ | ||
1247 | |||
1248 | // called only from IRQ sub-handler | ||
1249 | static inline u32 rx_queue_entry_next (hrz_dev * dev) { | ||
1250 | u32 rx_queue_entry; | ||
1251 | spin_lock (&dev->mem_lock); | ||
1252 | rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry); | ||
1253 | if (dev->rx_q_entry == dev->rx_q_wrap) | ||
1254 | dev->rx_q_entry = dev->rx_q_reset; | ||
1255 | else | ||
1256 | dev->rx_q_entry++; | ||
1257 | wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset); | ||
1258 | spin_unlock (&dev->mem_lock); | ||
1259 | return rx_queue_entry; | ||
1260 | } | ||
1261 | |||
1262 | /********** handle RX disabled by device **********/ | ||
1263 | |||
1264 | static inline void rx_disabled_handler (hrz_dev * dev) { | ||
1265 | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | ||
1266 | // count me please | ||
1267 | PRINTK (KERN_WARNING, "RX was disabled!"); | ||
1268 | } | ||
1269 | |||
1270 | /********** handle RX data received by device **********/ | ||
1271 | |||
1272 | // called from IRQ handler | ||
1273 | static inline void rx_data_av_handler (hrz_dev * dev) { | ||
1274 | u32 rx_queue_entry; | ||
1275 | u32 rx_queue_entry_flags; | ||
1276 | u16 rx_len; | ||
1277 | u16 rx_channel; | ||
1278 | |||
1279 | PRINTD (DBG_FLOW, "hrz_data_av_handler"); | ||
1280 | |||
1281 | // try to grab rx lock (not possible during RX bus mastering) | ||
1282 | if (test_and_set_bit (rx_busy, &dev->flags)) { | ||
1283 | PRINTD (DBG_RX, "locked out of rx lock"); | ||
1284 | return; | ||
1285 | } | ||
1286 | PRINTD (DBG_RX, "set rx_busy for dev %p", dev); | ||
1287 | // lock is cleared if we fail now, o/w after bus master completion | ||
1288 | |||
1289 | YELLOW_LED_OFF(dev); | ||
1290 | |||
1291 | rx_queue_entry = rx_queue_entry_next (dev); | ||
1292 | |||
1293 | rx_len = rx_q_entry_to_length (rx_queue_entry); | ||
1294 | rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry); | ||
1295 | |||
1296 | WAIT_FLUSH_RX_COMPLETE (dev); | ||
1297 | |||
1298 | SELECT_RX_CHANNEL (dev, rx_channel); | ||
1299 | |||
1300 | PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry); | ||
1301 | rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER); | ||
1302 | |||
1303 | if (!rx_len) { | ||
1304 | // (at least) bus-mastering breaks if we try to handle a | ||
1305 | // zero-length frame, besides AAL5 does not support them | ||
1306 | PRINTK (KERN_ERR, "zero-length frame!"); | ||
1307 | rx_queue_entry_flags &= ~RX_COMPLETE_FRAME; | ||
1308 | } | ||
1309 | |||
1310 | if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) { | ||
1311 | PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!"); | ||
1312 | } | ||
1313 | if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) { | ||
1314 | struct atm_vcc * atm_vcc; | ||
1315 | |||
1316 | PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len); | ||
1317 | |||
1318 | atm_vcc = dev->rxer[rx_channel]; | ||
1319 | // if no vcc is assigned to this channel, we should drop the frame | ||
1320 | // (is this what SIMONS etc. was trying to achieve?) | ||
1321 | |||
1322 | if (atm_vcc) { | ||
1323 | |||
1324 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | ||
1325 | |||
1326 | if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { | ||
1327 | |||
1328 | struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC); | ||
1329 | if (skb) { | ||
1330 | // remember this so we can push it later | ||
1331 | dev->rx_skb = skb; | ||
1332 | // remember this so we can flush it later | ||
1333 | dev->rx_channel = rx_channel; | ||
1334 | |||
1335 | // prepare socket buffer | ||
1336 | skb_put (skb, rx_len); | ||
1337 | ATM_SKB(skb)->vcc = atm_vcc; | ||
1338 | |||
1339 | // simple transfer | ||
1340 | // dev->rx_regions = 0; | ||
1341 | // dev->rx_iovec = 0; | ||
1342 | dev->rx_bytes = rx_len; | ||
1343 | dev->rx_addr = skb->data; | ||
1344 | PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)", | ||
1345 | skb->data, rx_len); | ||
1346 | |||
1347 | // do the business | ||
1348 | rx_schedule (dev, 0); | ||
1349 | return; | ||
1350 | |||
1351 | } else { | ||
1352 | PRINTD (DBG_SKB|DBG_WARN, "failed to get skb"); | ||
1353 | } | ||
1354 | |||
1355 | } else { | ||
1356 | PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel); | ||
1357 | // do we count this? | ||
1358 | } | ||
1359 | |||
1360 | } else { | ||
1361 | PRINTK (KERN_WARNING, "dropped over-size frame"); | ||
1362 | // do we count this? | ||
1363 | } | ||
1364 | |||
1365 | } else { | ||
1366 | PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)"); | ||
1367 | // do we count this? | ||
1368 | } | ||
1369 | |||
1370 | } else { | ||
1371 | // Wait update complete ? SPONG | ||
1372 | } | ||
1373 | |||
1374 | // RX was aborted | ||
1375 | YELLOW_LED_ON(dev); | ||
1376 | |||
1377 | FLUSH_RX_CHANNEL (dev,rx_channel); | ||
1378 | clear_bit (rx_busy, &dev->flags); | ||
1379 | |||
1380 | return; | ||
1381 | } | ||
1382 | |||
1383 | /********** interrupt handler **********/ | ||
1384 | |||
1385 | static irqreturn_t interrupt_handler(int irq, void *dev_id, | ||
1386 | struct pt_regs *pt_regs) { | ||
1387 | hrz_dev * dev = (hrz_dev *) dev_id; | ||
1388 | u32 int_source; | ||
1389 | unsigned int irq_ok; | ||
1390 | (void) pt_regs; | ||
1391 | |||
1392 | PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id); | ||
1393 | |||
1394 | if (!dev_id) { | ||
1395 | PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq); | ||
1396 | return IRQ_NONE; | ||
1397 | } | ||
1398 | if (irq != dev->irq) { | ||
1399 | PRINTD (DBG_IRQ|DBG_ERR, "irq mismatch: %d", irq); | ||
1400 | return IRQ_NONE; | ||
1401 | } | ||
1402 | |||
1403 | // definitely for us | ||
1404 | irq_ok = 0; | ||
1405 | while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF) | ||
1406 | & INTERESTING_INTERRUPTS)) { | ||
1407 | // In the interests of fairness, the (inline) handlers below are | ||
1408 | // called in sequence and without immediate return to the head of | ||
1409 | // the while loop. This is only of issue for slow hosts (or when | ||
1410 | // debugging messages are on). Really slow hosts may find a fast | ||
1411 | // sender keeps them permanently in the IRQ handler. :( | ||
1412 | |||
1413 | // (only an issue for slow hosts) RX completion goes before | ||
1414 | // rx_data_av as the former implies rx_busy and so the latter | ||
1415 | // would just abort. If it reschedules another transfer | ||
1416 | // (continuing the same frame) then it will not clear rx_busy. | ||
1417 | |||
1418 | // (only an issue for slow hosts) TX completion goes before RX | ||
1419 | // data available as it is a much shorter routine - there is the | ||
1420 | // chance that any further transfers it schedules will be complete | ||
1421 | // by the time of the return to the head of the while loop | ||
1422 | |||
1423 | if (int_source & RX_BUS_MASTER_COMPLETE) { | ||
1424 | ++irq_ok; | ||
1425 | PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted"); | ||
1426 | rx_bus_master_complete_handler (dev); | ||
1427 | } | ||
1428 | if (int_source & TX_BUS_MASTER_COMPLETE) { | ||
1429 | ++irq_ok; | ||
1430 | PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted"); | ||
1431 | tx_bus_master_complete_handler (dev); | ||
1432 | } | ||
1433 | if (int_source & RX_DATA_AV) { | ||
1434 | ++irq_ok; | ||
1435 | PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted"); | ||
1436 | rx_data_av_handler (dev); | ||
1437 | } | ||
1438 | } | ||
1439 | if (irq_ok) { | ||
1440 | PRINTD (DBG_IRQ, "work done: %u", irq_ok); | ||
1441 | } else { | ||
1442 | PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source); | ||
1443 | } | ||
1444 | |||
1445 | PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); | ||
1446 | if (irq_ok) | ||
1447 | return IRQ_HANDLED; | ||
1448 | return IRQ_NONE; | ||
1449 | } | ||
1450 | |||
1451 | /********** housekeeping **********/ | ||
1452 | |||
1453 | static void do_housekeeping (unsigned long arg) { | ||
1454 | // just stats at the moment | ||
1455 | hrz_dev * dev = (hrz_dev *) arg; | ||
1456 | |||
1457 | // collect device-specific (not driver/atm-linux) stats here | ||
1458 | dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF); | ||
1459 | dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF); | ||
1460 | dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF); | ||
1461 | dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF); | ||
1462 | |||
1463 | mod_timer (&dev->housekeeping, jiffies + HZ/10); | ||
1464 | |||
1465 | return; | ||
1466 | } | ||
1467 | |||
1468 | /********** find an idle channel for TX and set it up **********/ | ||
1469 | |||
1470 | // called with tx_busy set | ||
1471 | static inline short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) { | ||
1472 | unsigned short idle_channels; | ||
1473 | short tx_channel = -1; | ||
1474 | unsigned int spin_count; | ||
1475 | PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev); | ||
1476 | |||
1477 | // better would be to fail immediately, the caller can then decide whether | ||
1478 | // to wait or drop (depending on whether this is UBR etc.) | ||
1479 | spin_count = 0; | ||
1480 | while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) { | ||
1481 | PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel"); | ||
1482 | // delay a bit here | ||
1483 | if (++spin_count > 100) { | ||
1484 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel"); | ||
1485 | return -EBUSY; | ||
1486 | } | ||
1487 | } | ||
1488 | |||
1489 | // got an idle channel | ||
1490 | { | ||
1491 | // tx_idle ensures we look for idle channels in RR order | ||
1492 | int chan = dev->tx_idle; | ||
1493 | |||
1494 | int keep_going = 1; | ||
1495 | while (keep_going) { | ||
1496 | if (idle_channels & (1<<chan)) { | ||
1497 | tx_channel = chan; | ||
1498 | keep_going = 0; | ||
1499 | } | ||
1500 | ++chan; | ||
1501 | if (chan == TX_CHANS) | ||
1502 | chan = 0; | ||
1503 | } | ||
1504 | |||
1505 | dev->tx_idle = chan; | ||
1506 | } | ||
1507 | |||
1508 | // set up the channel we found | ||
1509 | { | ||
1510 | // Initialise the cell header in the transmit channel descriptor | ||
1511 | // a.k.a. prepare the channel and remember that we have done so. | ||
1512 | |||
1513 | tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel]; | ||
1514 | u16 rd_ptr; | ||
1515 | u16 wr_ptr; | ||
1516 | u16 channel = vcc->channel; | ||
1517 | |||
1518 | unsigned long flags; | ||
1519 | spin_lock_irqsave (&dev->mem_lock, flags); | ||
1520 | |||
1521 | // Update the transmit channel record. | ||
1522 | dev->tx_channel_record[tx_channel] = channel; | ||
1523 | |||
1524 | // xBR channel | ||
1525 | update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS, | ||
1526 | vcc->tx_xbr_bits); | ||
1527 | |||
1528 | // Update the PCR counter preload value etc. | ||
1529 | update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS, | ||
1530 | vcc->tx_pcr_bits); | ||
1531 | |||
1532 | #if 0 | ||
1533 | if (vcc->tx_xbr_bits == VBR_RATE_TYPE) { | ||
1534 | // SCR timer | ||
1535 | update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS, | ||
1536 | vcc->tx_scr_bits); | ||
1537 | |||
1538 | // Bucket size... | ||
1539 | update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS, | ||
1540 | vcc->tx_bucket_bits); | ||
1541 | |||
1542 | // ... and fullness | ||
1543 | update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS, | ||
1544 | vcc->tx_bucket_bits); | ||
1545 | } | ||
1546 | #endif | ||
1547 | |||
1548 | // Initialise the read and write buffer pointers | ||
1549 | rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK; | ||
1550 | wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK; | ||
1551 | |||
1552 | // idle TX channels should have identical pointers | ||
1553 | if (rd_ptr != wr_ptr) { | ||
1554 | PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!"); | ||
1555 | // spin_unlock... return -E... | ||
1556 | // I wonder if gcc would get rid of one of the pointer aliases | ||
1557 | } | ||
1558 | PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.", | ||
1559 | rd_ptr, wr_ptr); | ||
1560 | |||
1561 | switch (vcc->aal) { | ||
1562 | case aal0: | ||
1563 | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0"); | ||
1564 | rd_ptr |= CHANNEL_TYPE_RAW_CELLS; | ||
1565 | wr_ptr |= CHANNEL_TYPE_RAW_CELLS; | ||
1566 | break; | ||
1567 | case aal34: | ||
1568 | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34"); | ||
1569 | rd_ptr |= CHANNEL_TYPE_AAL3_4; | ||
1570 | wr_ptr |= CHANNEL_TYPE_AAL3_4; | ||
1571 | break; | ||
1572 | case aal5: | ||
1573 | rd_ptr |= CHANNEL_TYPE_AAL5; | ||
1574 | wr_ptr |= CHANNEL_TYPE_AAL5; | ||
1575 | // Initialise the CRC | ||
1576 | wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC); | ||
1577 | break; | ||
1578 | } | ||
1579 | |||
1580 | wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr); | ||
1581 | wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr); | ||
1582 | |||
1583 | // Write the Cell Header | ||
1584 | // Payload Type, CLP and GFC would go here if non-zero | ||
1585 | wr_mem (dev, &tx_desc->cell_header, channel); | ||
1586 | |||
1587 | spin_unlock_irqrestore (&dev->mem_lock, flags); | ||
1588 | } | ||
1589 | |||
1590 | return tx_channel; | ||
1591 | } | ||
1592 | |||
1593 | /********** send a frame **********/ | ||
1594 | |||
1595 | static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { | ||
1596 | unsigned int spin_count; | ||
1597 | int free_buffers; | ||
1598 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | ||
1599 | hrz_vcc * vcc = HRZ_VCC(atm_vcc); | ||
1600 | u16 channel = vcc->channel; | ||
1601 | |||
1602 | u32 buffers_required; | ||
1603 | |||
1604 | /* signed for error return */ | ||
1605 | short tx_channel; | ||
1606 | |||
1607 | PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u", | ||
1608 | channel, skb->data, skb->len); | ||
1609 | |||
1610 | dump_skb (">>>", channel, skb); | ||
1611 | |||
1612 | if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) { | ||
1613 | PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel); | ||
1614 | hrz_kfree_skb (skb); | ||
1615 | return -EIO; | ||
1616 | } | ||
1617 | |||
1618 | // don't understand this | ||
1619 | ATM_SKB(skb)->vcc = atm_vcc; | ||
1620 | |||
1621 | if (skb->len > atm_vcc->qos.txtp.max_sdu) { | ||
1622 | PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); | ||
1623 | hrz_kfree_skb (skb); | ||
1624 | return -EIO; | ||
1625 | } | ||
1626 | |||
1627 | if (!channel) { | ||
1628 | PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel"); | ||
1629 | hrz_kfree_skb (skb); | ||
1630 | return -EIO; | ||
1631 | } | ||
1632 | |||
1633 | #if 0 | ||
1634 | { | ||
1635 | // where would be a better place for this? housekeeping? | ||
1636 | u16 status; | ||
1637 | pci_read_config_word (dev->pci_dev, PCI_STATUS, &status); | ||
1638 | if (status & PCI_STATUS_REC_MASTER_ABORT) { | ||
1639 | PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)"); | ||
1640 | status &= ~PCI_STATUS_REC_MASTER_ABORT; | ||
1641 | pci_write_config_word (dev->pci_dev, PCI_STATUS, status); | ||
1642 | if (test_bit (tx_busy, &dev->flags)) { | ||
1643 | hrz_kfree_skb (dev->tx_skb); | ||
1644 | tx_release (dev); | ||
1645 | } | ||
1646 | } | ||
1647 | } | ||
1648 | #endif | ||
1649 | |||
1650 | #ifdef DEBUG_HORIZON | ||
1651 | /* wey-hey! */ | ||
1652 | if (channel == 1023) { | ||
1653 | unsigned int i; | ||
1654 | unsigned short d = 0; | ||
1655 | char * s = skb->data; | ||
1656 | if (*s++ == 'D') { | ||
1657 | for (i = 0; i < 4; ++i) { | ||
1658 | d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10)); | ||
1659 | ++s; | ||
1660 | } | ||
1661 | PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d); | ||
1662 | } | ||
1663 | } | ||
1664 | #endif | ||
1665 | |||
1666 | // wait until TX is free and grab lock | ||
1667 | if (tx_hold (dev)) { | ||
1668 | hrz_kfree_skb (skb); | ||
1669 | return -ERESTARTSYS; | ||
1670 | } | ||
1671 | |||
1672 | // Wait for enough space to be available in transmit buffer memory. | ||
1673 | |||
1674 | // should be number of cells needed + 2 (according to hardware docs) | ||
1675 | // = ((framelen+8)+47) / 48 + 2 | ||
1676 | // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX | ||
1677 | buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3; | ||
1678 | |||
1679 | // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry) | ||
1680 | spin_count = 0; | ||
1681 | while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) { | ||
1682 | PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d", | ||
1683 | free_buffers, buffers_required); | ||
1684 | // what is the appropriate delay? implement a timeout? (depending on line speed?) | ||
1685 | // mdelay (1); | ||
1686 | // what happens if we kill (current_pid, SIGKILL) ? | ||
1687 | schedule(); | ||
1688 | if (++spin_count > 1000) { | ||
1689 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d", | ||
1690 | free_buffers, buffers_required); | ||
1691 | tx_release (dev); | ||
1692 | hrz_kfree_skb (skb); | ||
1693 | return -ERESTARTSYS; | ||
1694 | } | ||
1695 | } | ||
1696 | |||
1697 | // Select a channel to transmit the frame on. | ||
1698 | if (channel == dev->last_vc) { | ||
1699 | PRINTD (DBG_TX, "last vc hack: hit"); | ||
1700 | tx_channel = dev->tx_last; | ||
1701 | } else { | ||
1702 | PRINTD (DBG_TX, "last vc hack: miss"); | ||
1703 | // Are we currently transmitting this VC on one of the channels? | ||
1704 | for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel) | ||
1705 | if (dev->tx_channel_record[tx_channel] == channel) { | ||
1706 | PRINTD (DBG_TX, "vc already on channel: hit"); | ||
1707 | break; | ||
1708 | } | ||
1709 | if (tx_channel == TX_CHANS) { | ||
1710 | PRINTD (DBG_TX, "vc already on channel: miss"); | ||
1711 | // Find and set up an idle channel. | ||
1712 | tx_channel = setup_idle_tx_channel (dev, vcc); | ||
1713 | if (tx_channel < 0) { | ||
1714 | PRINTD (DBG_TX|DBG_ERR, "failed to get channel"); | ||
1715 | tx_release (dev); | ||
1716 | return tx_channel; | ||
1717 | } | ||
1718 | } | ||
1719 | |||
1720 | PRINTD (DBG_TX, "got channel"); | ||
1721 | SELECT_TX_CHANNEL(dev, tx_channel); | ||
1722 | |||
1723 | dev->last_vc = channel; | ||
1724 | dev->tx_last = tx_channel; | ||
1725 | } | ||
1726 | |||
1727 | PRINTD (DBG_TX, "using channel %u", tx_channel); | ||
1728 | |||
1729 | YELLOW_LED_OFF(dev); | ||
1730 | |||
1731 | // TX start transfer | ||
1732 | |||
1733 | { | ||
1734 | unsigned int tx_len = skb->len; | ||
1735 | unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags; | ||
1736 | // remember this so we can free it later | ||
1737 | dev->tx_skb = skb; | ||
1738 | |||
1739 | if (tx_iovcnt) { | ||
1740 | // scatter gather transfer | ||
1741 | dev->tx_regions = tx_iovcnt; | ||
1742 | dev->tx_iovec = NULL; /* @@@ needs rewritten */ | ||
1743 | dev->tx_bytes = 0; | ||
1744 | PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)", | ||
1745 | skb->data, tx_len); | ||
1746 | tx_release (dev); | ||
1747 | hrz_kfree_skb (skb); | ||
1748 | return -EIO; | ||
1749 | } else { | ||
1750 | // simple transfer | ||
1751 | dev->tx_regions = 0; | ||
1752 | dev->tx_iovec = NULL; | ||
1753 | dev->tx_bytes = tx_len; | ||
1754 | dev->tx_addr = skb->data; | ||
1755 | PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)", | ||
1756 | skb->data, tx_len); | ||
1757 | } | ||
1758 | |||
1759 | // and do the business | ||
1760 | tx_schedule (dev, 0); | ||
1761 | |||
1762 | } | ||
1763 | |||
1764 | return 0; | ||
1765 | } | ||
1766 | |||
1767 | /********** reset a card **********/ | ||
1768 | |||
1769 | static void hrz_reset (const hrz_dev * dev) { | ||
1770 | u32 control_0_reg = rd_regl (dev, CONTROL_0_REG); | ||
1771 | |||
1772 | // why not set RESET_HORIZON to one and wait for the card to | ||
1773 | // reassert that bit as zero? Like so: | ||
1774 | control_0_reg = control_0_reg & RESET_HORIZON; | ||
1775 | wr_regl (dev, CONTROL_0_REG, control_0_reg); | ||
1776 | while (control_0_reg & RESET_HORIZON) | ||
1777 | control_0_reg = rd_regl (dev, CONTROL_0_REG); | ||
1778 | |||
1779 | // old reset code retained: | ||
1780 | wr_regl (dev, CONTROL_0_REG, control_0_reg | | ||
1781 | RESET_ATM | RESET_RX | RESET_TX | RESET_HOST); | ||
1782 | // just guessing here | ||
1783 | udelay (1000); | ||
1784 | |||
1785 | wr_regl (dev, CONTROL_0_REG, control_0_reg); | ||
1786 | } | ||
1787 | |||
1788 | /********** read the burnt in address **********/ | ||
1789 | |||
1790 | static inline void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl) | ||
1791 | { | ||
1792 | wr_regl (dev, CONTROL_0_REG, ctrl); | ||
1793 | udelay (5); | ||
1794 | } | ||
1795 | |||
1796 | static inline void CLOCK_IT (const hrz_dev *dev, u32 ctrl) | ||
1797 | { | ||
1798 | // DI must be valid around rising SK edge | ||
1799 | WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK); | ||
1800 | WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK); | ||
1801 | } | ||
1802 | |||
1803 | static u16 __init read_bia (const hrz_dev * dev, u16 addr) | ||
1804 | { | ||
1805 | u32 ctrl = rd_regl (dev, CONTROL_0_REG); | ||
1806 | |||
1807 | const unsigned int addr_bits = 6; | ||
1808 | const unsigned int data_bits = 16; | ||
1809 | |||
1810 | unsigned int i; | ||
1811 | |||
1812 | u16 res; | ||
1813 | |||
1814 | ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI); | ||
1815 | WRITE_IT_WAIT(dev, ctrl); | ||
1816 | |||
1817 | // wake Serial EEPROM and send 110 (READ) command | ||
1818 | ctrl |= (SEEPROM_CS | SEEPROM_DI); | ||
1819 | CLOCK_IT(dev, ctrl); | ||
1820 | |||
1821 | ctrl |= SEEPROM_DI; | ||
1822 | CLOCK_IT(dev, ctrl); | ||
1823 | |||
1824 | ctrl &= ~SEEPROM_DI; | ||
1825 | CLOCK_IT(dev, ctrl); | ||
1826 | |||
1827 | for (i=0; i<addr_bits; i++) { | ||
1828 | if (addr & (1 << (addr_bits-1))) | ||
1829 | ctrl |= SEEPROM_DI; | ||
1830 | else | ||
1831 | ctrl &= ~SEEPROM_DI; | ||
1832 | |||
1833 | CLOCK_IT(dev, ctrl); | ||
1834 | |||
1835 | addr = addr << 1; | ||
1836 | } | ||
1837 | |||
1838 | // we could check that we have DO = 0 here | ||
1839 | ctrl &= ~SEEPROM_DI; | ||
1840 | |||
1841 | res = 0; | ||
1842 | for (i=0;i<data_bits;i++) { | ||
1843 | res = res >> 1; | ||
1844 | |||
1845 | CLOCK_IT(dev, ctrl); | ||
1846 | |||
1847 | if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO) | ||
1848 | res |= (1 << (data_bits-1)); | ||
1849 | } | ||
1850 | |||
1851 | ctrl &= ~(SEEPROM_SK | SEEPROM_CS); | ||
1852 | WRITE_IT_WAIT(dev, ctrl); | ||
1853 | |||
1854 | return res; | ||
1855 | } | ||
1856 | |||
1857 | /********** initialise a card **********/ | ||
1858 | |||
1859 | static int __init hrz_init (hrz_dev * dev) { | ||
1860 | int onefivefive; | ||
1861 | |||
1862 | u16 chan; | ||
1863 | |||
1864 | int buff_count; | ||
1865 | |||
1866 | HDW * mem; | ||
1867 | |||
1868 | cell_buf * tx_desc; | ||
1869 | cell_buf * rx_desc; | ||
1870 | |||
1871 | u32 ctrl; | ||
1872 | |||
1873 | ctrl = rd_regl (dev, CONTROL_0_REG); | ||
1874 | PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl); | ||
1875 | onefivefive = ctrl & ATM_LAYER_STATUS; | ||
1876 | |||
1877 | if (onefivefive) | ||
1878 | printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)"); | ||
1879 | else | ||
1880 | printk (DEV_LABEL ": Horizon (at 25 MBps)"); | ||
1881 | |||
1882 | printk (":"); | ||
1883 | // Reset the card to get everything in a known state | ||
1884 | |||
1885 | printk (" reset"); | ||
1886 | hrz_reset (dev); | ||
1887 | |||
1888 | // Clear all the buffer memory | ||
1889 | |||
1890 | printk (" clearing memory"); | ||
1891 | |||
1892 | for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem) | ||
1893 | wr_mem (dev, mem, 0); | ||
1894 | |||
1895 | printk (" tx channels"); | ||
1896 | |||
1897 | // All transmit eight channels are set up as AAL5 ABR channels with | ||
1898 | // a 16us cell spacing. Why? | ||
1899 | |||
1900 | // Channel 0 gets the free buffer at 100h, channel 1 gets the free | ||
1901 | // buffer at 110h etc. | ||
1902 | |||
1903 | for (chan = 0; chan < TX_CHANS; ++chan) { | ||
1904 | tx_ch_desc * tx_desc = &memmap->tx_descs[chan]; | ||
1905 | cell_buf * buf = &memmap->inittxbufs[chan]; | ||
1906 | |||
1907 | // initialise the read and write buffer pointers | ||
1908 | wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf)); | ||
1909 | wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf)); | ||
1910 | |||
1911 | // set the status of the initial buffers to empty | ||
1912 | wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY); | ||
1913 | } | ||
1914 | |||
1915 | // Use space bufn3 at the moment for tx buffers | ||
1916 | |||
1917 | printk (" tx buffers"); | ||
1918 | |||
1919 | tx_desc = memmap->bufn3; | ||
1920 | |||
1921 | wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY); | ||
1922 | |||
1923 | for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) { | ||
1924 | wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY); | ||
1925 | tx_desc++; | ||
1926 | } | ||
1927 | |||
1928 | wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY); | ||
1929 | |||
1930 | // Initialise the transmit free buffer count | ||
1931 | wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE); | ||
1932 | |||
1933 | printk (" rx channels"); | ||
1934 | |||
1935 | // Initialise all of the receive channels to be AAL5 disabled with | ||
1936 | // an interrupt threshold of 0 | ||
1937 | |||
1938 | for (chan = 0; chan < RX_CHANS; ++chan) { | ||
1939 | rx_ch_desc * rx_desc = &memmap->rx_descs[chan]; | ||
1940 | |||
1941 | wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED); | ||
1942 | } | ||
1943 | |||
1944 | printk (" rx buffers"); | ||
1945 | |||
1946 | // Use space bufn4 at the moment for rx buffers | ||
1947 | |||
1948 | rx_desc = memmap->bufn4; | ||
1949 | |||
1950 | wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY); | ||
1951 | |||
1952 | for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) { | ||
1953 | wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY); | ||
1954 | |||
1955 | rx_desc++; | ||
1956 | } | ||
1957 | |||
1958 | wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY); | ||
1959 | |||
1960 | // Initialise the receive free buffer count | ||
1961 | wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE); | ||
1962 | |||
1963 | // Initialize Horizons registers | ||
1964 | |||
1965 | // TX config | ||
1966 | wr_regw (dev, TX_CONFIG_OFF, | ||
1967 | ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE); | ||
1968 | |||
1969 | // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0. | ||
1970 | wr_regw (dev, RX_CONFIG_OFF, | ||
1971 | DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits); | ||
1972 | |||
1973 | // RX line config | ||
1974 | wr_regw (dev, RX_LINE_CONFIG_OFF, | ||
1975 | LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4); | ||
1976 | |||
1977 | // Set the max AAL5 cell count to be just enough to contain the | ||
1978 | // largest AAL5 frame that the user wants to receive | ||
1979 | wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF, | ||
1980 | (max_rx_size + ATM_AAL5_TRAILER + ATM_CELL_PAYLOAD - 1) / ATM_CELL_PAYLOAD); | ||
1981 | |||
1982 | // Enable receive | ||
1983 | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | ||
1984 | |||
1985 | printk (" control"); | ||
1986 | |||
1987 | // Drive the OE of the LEDs then turn the green LED on | ||
1988 | ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED; | ||
1989 | wr_regl (dev, CONTROL_0_REG, ctrl); | ||
1990 | |||
1991 | // Test for a 155-capable card | ||
1992 | |||
1993 | if (onefivefive) { | ||
1994 | // Select 155 mode... make this a choice (or: how do we detect | ||
1995 | // external line speed and switch?) | ||
1996 | ctrl |= ATM_LAYER_SELECT; | ||
1997 | wr_regl (dev, CONTROL_0_REG, ctrl); | ||
1998 | |||
1999 | // test SUNI-lite vs SAMBA | ||
2000 | |||
2001 | // Register 0x00 in the SUNI will have some of bits 3-7 set, and | ||
2002 | // they will always be zero for the SAMBA. Ha! Bloody hardware | ||
2003 | // engineers. It'll never work. | ||
2004 | |||
2005 | if (rd_framer (dev, 0) & 0x00f0) { | ||
2006 | // SUNI | ||
2007 | printk (" SUNI"); | ||
2008 | |||
2009 | // Reset, just in case | ||
2010 | wr_framer (dev, 0x00, 0x0080); | ||
2011 | wr_framer (dev, 0x00, 0x0000); | ||
2012 | |||
2013 | // Configure transmit FIFO | ||
2014 | wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002); | ||
2015 | |||
2016 | // Set line timed mode | ||
2017 | wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001); | ||
2018 | } else { | ||
2019 | // SAMBA | ||
2020 | printk (" SAMBA"); | ||
2021 | |||
2022 | // Reset, just in case | ||
2023 | wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001); | ||
2024 | wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001); | ||
2025 | |||
2026 | // Turn off diagnostic loopback and enable line-timed mode | ||
2027 | wr_framer (dev, 0, 0x0002); | ||
2028 | |||
2029 | // Turn on transmit outputs | ||
2030 | wr_framer (dev, 2, 0x0B80); | ||
2031 | } | ||
2032 | } else { | ||
2033 | // Select 25 mode | ||
2034 | ctrl &= ~ATM_LAYER_SELECT; | ||
2035 | |||
2036 | // Madge B154 setup | ||
2037 | // none required? | ||
2038 | } | ||
2039 | |||
2040 | printk (" LEDs"); | ||
2041 | |||
2042 | GREEN_LED_ON(dev); | ||
2043 | YELLOW_LED_ON(dev); | ||
2044 | |||
2045 | printk (" ESI="); | ||
2046 | |||
2047 | { | ||
2048 | u16 b = 0; | ||
2049 | int i; | ||
2050 | u8 * esi = dev->atm_dev->esi; | ||
2051 | |||
2052 | // in the card I have, EEPROM | ||
2053 | // addresses 0, 1, 2 contain 0 | ||
2054 | // addresess 5, 6 etc. contain ffff | ||
2055 | // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order) | ||
2056 | // the read_bia routine gets the BIA in Ethernet bit order | ||
2057 | |||
2058 | for (i=0; i < ESI_LEN; ++i) { | ||
2059 | if (i % 2 == 0) | ||
2060 | b = read_bia (dev, i/2 + 2); | ||
2061 | else | ||
2062 | b = b >> 8; | ||
2063 | esi[i] = b & 0xFF; | ||
2064 | printk ("%02x", esi[i]); | ||
2065 | } | ||
2066 | } | ||
2067 | |||
2068 | // Enable RX_Q and ?X_COMPLETE interrupts only | ||
2069 | wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS); | ||
2070 | printk (" IRQ on"); | ||
2071 | |||
2072 | printk (".\n"); | ||
2073 | |||
2074 | return onefivefive; | ||
2075 | } | ||
2076 | |||
2077 | /********** check max_sdu **********/ | ||
2078 | |||
2079 | static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) { | ||
2080 | PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu"); | ||
2081 | |||
2082 | switch (aal) { | ||
2083 | case aal0: | ||
2084 | if (!(tp->max_sdu)) { | ||
2085 | PRINTD (DBG_QOS, "defaulting max_sdu"); | ||
2086 | tp->max_sdu = ATM_AAL0_SDU; | ||
2087 | } else if (tp->max_sdu != ATM_AAL0_SDU) { | ||
2088 | PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu"); | ||
2089 | return -EINVAL; | ||
2090 | } | ||
2091 | break; | ||
2092 | case aal34: | ||
2093 | if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) { | ||
2094 | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | ||
2095 | tp->max_sdu = ATM_MAX_AAL34_PDU; | ||
2096 | } | ||
2097 | break; | ||
2098 | case aal5: | ||
2099 | if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) { | ||
2100 | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | ||
2101 | tp->max_sdu = max_frame_size; | ||
2102 | } | ||
2103 | break; | ||
2104 | } | ||
2105 | return 0; | ||
2106 | } | ||
2107 | |||
2108 | /********** check pcr **********/ | ||
2109 | |||
2110 | // something like this should be part of ATM Linux | ||
2111 | static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) { | ||
2112 | // we are assuming non-UBR, and non-special values of pcr | ||
2113 | if (tp->min_pcr == ATM_MAX_PCR) | ||
2114 | PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR"); | ||
2115 | else if (tp->min_pcr < 0) | ||
2116 | PRINTD (DBG_QOS, "luser gave negative min_pcr"); | ||
2117 | else if (tp->min_pcr && tp->min_pcr > pcr) | ||
2118 | PRINTD (DBG_QOS, "pcr less than min_pcr"); | ||
2119 | else | ||
2120 | // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1) | ||
2121 | // easier to #define ATM_MAX_PCR 0 and have all rates unsigned? | ||
2122 | // [this would get rid of next two conditionals] | ||
2123 | if ((0) && tp->max_pcr == ATM_MAX_PCR) | ||
2124 | PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR"); | ||
2125 | else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0) | ||
2126 | PRINTD (DBG_QOS, "luser gave negative max_pcr"); | ||
2127 | else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr) | ||
2128 | PRINTD (DBG_QOS, "pcr greater than max_pcr"); | ||
2129 | else { | ||
2130 | // each limit unspecified or not violated | ||
2131 | PRINTD (DBG_QOS, "xBR(pcr) OK"); | ||
2132 | return 0; | ||
2133 | } | ||
2134 | PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d", | ||
2135 | pcr, tp->min_pcr, tp->pcr, tp->max_pcr); | ||
2136 | return -EINVAL; | ||
2137 | } | ||
2138 | |||
2139 | /********** open VC **********/ | ||
2140 | |||
2141 | static int hrz_open (struct atm_vcc *atm_vcc) | ||
2142 | { | ||
2143 | int error; | ||
2144 | u16 channel; | ||
2145 | |||
2146 | struct atm_qos * qos; | ||
2147 | struct atm_trafprm * txtp; | ||
2148 | struct atm_trafprm * rxtp; | ||
2149 | |||
2150 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | ||
2151 | hrz_vcc vcc; | ||
2152 | hrz_vcc * vccp; // allocated late | ||
2153 | short vpi = atm_vcc->vpi; | ||
2154 | int vci = atm_vcc->vci; | ||
2155 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci); | ||
2156 | |||
2157 | #ifdef ATM_VPI_UNSPEC | ||
2158 | // UNSPEC is deprecated, remove this code eventually | ||
2159 | if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { | ||
2160 | PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); | ||
2161 | return -EINVAL; | ||
2162 | } | ||
2163 | #endif | ||
2164 | |||
2165 | error = vpivci_to_channel (&channel, vpi, vci); | ||
2166 | if (error) { | ||
2167 | PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); | ||
2168 | return error; | ||
2169 | } | ||
2170 | |||
2171 | vcc.channel = channel; | ||
2172 | // max speed for the moment | ||
2173 | vcc.tx_rate = 0x0; | ||
2174 | |||
2175 | qos = &atm_vcc->qos; | ||
2176 | |||
2177 | // check AAL and remember it | ||
2178 | switch (qos->aal) { | ||
2179 | case ATM_AAL0: | ||
2180 | // we would if it were 48 bytes and not 52! | ||
2181 | PRINTD (DBG_QOS|DBG_VCC, "AAL0"); | ||
2182 | vcc.aal = aal0; | ||
2183 | break; | ||
2184 | case ATM_AAL34: | ||
2185 | // we would if I knew how do the SAR! | ||
2186 | PRINTD (DBG_QOS|DBG_VCC, "AAL3/4"); | ||
2187 | vcc.aal = aal34; | ||
2188 | break; | ||
2189 | case ATM_AAL5: | ||
2190 | PRINTD (DBG_QOS|DBG_VCC, "AAL5"); | ||
2191 | vcc.aal = aal5; | ||
2192 | break; | ||
2193 | default: | ||
2194 | PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!"); | ||
2195 | return -EINVAL; | ||
2196 | break; | ||
2197 | } | ||
2198 | |||
2199 | // TX traffic parameters | ||
2200 | |||
2201 | // there are two, interrelated problems here: 1. the reservation of | ||
2202 | // PCR is not a binary choice, we are given bounds and/or a | ||
2203 | // desirable value; 2. the device is only capable of certain values, | ||
2204 | // most of which are not integers. It is almost certainly acceptable | ||
2205 | // to be off by a maximum of 1 to 10 cps. | ||
2206 | |||
2207 | // Pragmatic choice: always store an integral PCR as that which has | ||
2208 | // been allocated, even if we allocate a little (or a lot) less, | ||
2209 | // after rounding. The actual allocation depends on what we can | ||
2210 | // manage with our rate selection algorithm. The rate selection | ||
2211 | // algorithm is given an integral PCR and a tolerance and told | ||
2212 | // whether it should round the value up or down if the tolerance is | ||
2213 | // exceeded; it returns: a) the actual rate selected (rounded up to | ||
2214 | // the nearest integer), b) a bit pattern to feed to the timer | ||
2215 | // register, and c) a failure value if no applicable rate exists. | ||
2216 | |||
2217 | // Part of the job is done by atm_pcr_goal which gives us a PCR | ||
2218 | // specification which says: EITHER grab the maximum available PCR | ||
2219 | // (and perhaps a lower bound which we musn't pass), OR grab this | ||
2220 | // amount, rounding down if you have to (and perhaps a lower bound | ||
2221 | // which we musn't pass) OR grab this amount, rounding up if you | ||
2222 | // have to (and perhaps an upper bound which we musn't pass). If any | ||
2223 | // bounds ARE passed we fail. Note that rounding is only rounding to | ||
2224 | // match device limitations, we do not round down to satisfy | ||
2225 | // bandwidth availability even if this would not violate any given | ||
2226 | // lower bound. | ||
2227 | |||
2228 | // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s | ||
2229 | // (say) so this is not even a binary fixpoint cell rate (but this | ||
2230 | // device can do it). To avoid this sort of hassle we use a | ||
2231 | // tolerance parameter (currently fixed at 10 cps). | ||
2232 | |||
2233 | PRINTD (DBG_QOS, "TX:"); | ||
2234 | |||
2235 | txtp = &qos->txtp; | ||
2236 | |||
2237 | // set up defaults for no traffic | ||
2238 | vcc.tx_rate = 0; | ||
2239 | // who knows what would actually happen if you try and send on this? | ||
2240 | vcc.tx_xbr_bits = IDLE_RATE_TYPE; | ||
2241 | vcc.tx_pcr_bits = CLOCK_DISABLE; | ||
2242 | #if 0 | ||
2243 | vcc.tx_scr_bits = CLOCK_DISABLE; | ||
2244 | vcc.tx_bucket_bits = 0; | ||
2245 | #endif | ||
2246 | |||
2247 | if (txtp->traffic_class != ATM_NONE) { | ||
2248 | error = check_max_sdu (vcc.aal, txtp, max_tx_size); | ||
2249 | if (error) { | ||
2250 | PRINTD (DBG_QOS, "TX max_sdu check failed"); | ||
2251 | return error; | ||
2252 | } | ||
2253 | |||
2254 | switch (txtp->traffic_class) { | ||
2255 | case ATM_UBR: { | ||
2256 | // we take "the PCR" as a rate-cap | ||
2257 | // not reserved | ||
2258 | vcc.tx_rate = 0; | ||
2259 | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL); | ||
2260 | vcc.tx_xbr_bits = ABR_RATE_TYPE; | ||
2261 | break; | ||
2262 | } | ||
2263 | #if 0 | ||
2264 | case ATM_ABR: { | ||
2265 | // reserve min, allow up to max | ||
2266 | vcc.tx_rate = 0; // ? | ||
2267 | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0); | ||
2268 | vcc.tx_xbr_bits = ABR_RATE_TYPE; | ||
2269 | break; | ||
2270 | } | ||
2271 | #endif | ||
2272 | case ATM_CBR: { | ||
2273 | int pcr = atm_pcr_goal (txtp); | ||
2274 | rounding r; | ||
2275 | if (!pcr) { | ||
2276 | // down vs. up, remaining bandwidth vs. unlimited bandwidth!! | ||
2277 | // should really have: once someone gets unlimited bandwidth | ||
2278 | // that no more non-UBR channels can be opened until the | ||
2279 | // unlimited one closes?? For the moment, round_down means | ||
2280 | // greedy people actually get something and not nothing | ||
2281 | r = round_down; | ||
2282 | // slight race (no locking) here so we may get -EAGAIN | ||
2283 | // later; the greedy bastards would deserve it :) | ||
2284 | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | ||
2285 | pcr = dev->tx_avail; | ||
2286 | } else if (pcr < 0) { | ||
2287 | r = round_down; | ||
2288 | pcr = -pcr; | ||
2289 | } else { | ||
2290 | r = round_up; | ||
2291 | } | ||
2292 | error = make_rate_with_tolerance (dev, pcr, r, 10, | ||
2293 | &vcc.tx_pcr_bits, &vcc.tx_rate); | ||
2294 | if (error) { | ||
2295 | PRINTD (DBG_QOS, "could not make rate from TX PCR"); | ||
2296 | return error; | ||
2297 | } | ||
2298 | // not really clear what further checking is needed | ||
2299 | error = atm_pcr_check (txtp, vcc.tx_rate); | ||
2300 | if (error) { | ||
2301 | PRINTD (DBG_QOS, "TX PCR failed consistency check"); | ||
2302 | return error; | ||
2303 | } | ||
2304 | vcc.tx_xbr_bits = CBR_RATE_TYPE; | ||
2305 | break; | ||
2306 | } | ||
2307 | #if 0 | ||
2308 | case ATM_VBR: { | ||
2309 | int pcr = atm_pcr_goal (txtp); | ||
2310 | // int scr = atm_scr_goal (txtp); | ||
2311 | int scr = pcr/2; // just for fun | ||
2312 | unsigned int mbs = 60; // just for fun | ||
2313 | rounding pr; | ||
2314 | rounding sr; | ||
2315 | unsigned int bucket; | ||
2316 | if (!pcr) { | ||
2317 | pr = round_nearest; | ||
2318 | pcr = 1<<30; | ||
2319 | } else if (pcr < 0) { | ||
2320 | pr = round_down; | ||
2321 | pcr = -pcr; | ||
2322 | } else { | ||
2323 | pr = round_up; | ||
2324 | } | ||
2325 | error = make_rate_with_tolerance (dev, pcr, pr, 10, | ||
2326 | &vcc.tx_pcr_bits, 0); | ||
2327 | if (!scr) { | ||
2328 | // see comments for PCR with CBR above | ||
2329 | sr = round_down; | ||
2330 | // slight race (no locking) here so we may get -EAGAIN | ||
2331 | // later; the greedy bastards would deserve it :) | ||
2332 | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | ||
2333 | scr = dev->tx_avail; | ||
2334 | } else if (scr < 0) { | ||
2335 | sr = round_down; | ||
2336 | scr = -scr; | ||
2337 | } else { | ||
2338 | sr = round_up; | ||
2339 | } | ||
2340 | error = make_rate_with_tolerance (dev, scr, sr, 10, | ||
2341 | &vcc.tx_scr_bits, &vcc.tx_rate); | ||
2342 | if (error) { | ||
2343 | PRINTD (DBG_QOS, "could not make rate from TX SCR"); | ||
2344 | return error; | ||
2345 | } | ||
2346 | // not really clear what further checking is needed | ||
2347 | // error = atm_scr_check (txtp, vcc.tx_rate); | ||
2348 | if (error) { | ||
2349 | PRINTD (DBG_QOS, "TX SCR failed consistency check"); | ||
2350 | return error; | ||
2351 | } | ||
2352 | // bucket calculations (from a piece of paper...) cell bucket | ||
2353 | // capacity must be largest integer smaller than m(p-s)/p + 1 | ||
2354 | // where m = max burst size, p = pcr, s = scr | ||
2355 | bucket = mbs*(pcr-scr)/pcr; | ||
2356 | if (bucket*pcr != mbs*(pcr-scr)) | ||
2357 | bucket += 1; | ||
2358 | if (bucket > BUCKET_MAX_SIZE) { | ||
2359 | PRINTD (DBG_QOS, "shrinking bucket from %u to %u", | ||
2360 | bucket, BUCKET_MAX_SIZE); | ||
2361 | bucket = BUCKET_MAX_SIZE; | ||
2362 | } | ||
2363 | vcc.tx_xbr_bits = VBR_RATE_TYPE; | ||
2364 | vcc.tx_bucket_bits = bucket; | ||
2365 | break; | ||
2366 | } | ||
2367 | #endif | ||
2368 | default: { | ||
2369 | PRINTD (DBG_QOS, "unsupported TX traffic class"); | ||
2370 | return -EINVAL; | ||
2371 | break; | ||
2372 | } | ||
2373 | } | ||
2374 | } | ||
2375 | |||
2376 | // RX traffic parameters | ||
2377 | |||
2378 | PRINTD (DBG_QOS, "RX:"); | ||
2379 | |||
2380 | rxtp = &qos->rxtp; | ||
2381 | |||
2382 | // set up defaults for no traffic | ||
2383 | vcc.rx_rate = 0; | ||
2384 | |||
2385 | if (rxtp->traffic_class != ATM_NONE) { | ||
2386 | error = check_max_sdu (vcc.aal, rxtp, max_rx_size); | ||
2387 | if (error) { | ||
2388 | PRINTD (DBG_QOS, "RX max_sdu check failed"); | ||
2389 | return error; | ||
2390 | } | ||
2391 | switch (rxtp->traffic_class) { | ||
2392 | case ATM_UBR: { | ||
2393 | // not reserved | ||
2394 | break; | ||
2395 | } | ||
2396 | #if 0 | ||
2397 | case ATM_ABR: { | ||
2398 | // reserve min | ||
2399 | vcc.rx_rate = 0; // ? | ||
2400 | break; | ||
2401 | } | ||
2402 | #endif | ||
2403 | case ATM_CBR: { | ||
2404 | int pcr = atm_pcr_goal (rxtp); | ||
2405 | if (!pcr) { | ||
2406 | // slight race (no locking) here so we may get -EAGAIN | ||
2407 | // later; the greedy bastards would deserve it :) | ||
2408 | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | ||
2409 | pcr = dev->rx_avail; | ||
2410 | } else if (pcr < 0) { | ||
2411 | pcr = -pcr; | ||
2412 | } | ||
2413 | vcc.rx_rate = pcr; | ||
2414 | // not really clear what further checking is needed | ||
2415 | error = atm_pcr_check (rxtp, vcc.rx_rate); | ||
2416 | if (error) { | ||
2417 | PRINTD (DBG_QOS, "RX PCR failed consistency check"); | ||
2418 | return error; | ||
2419 | } | ||
2420 | break; | ||
2421 | } | ||
2422 | #if 0 | ||
2423 | case ATM_VBR: { | ||
2424 | // int scr = atm_scr_goal (rxtp); | ||
2425 | int scr = 1<<16; // just for fun | ||
2426 | if (!scr) { | ||
2427 | // slight race (no locking) here so we may get -EAGAIN | ||
2428 | // later; the greedy bastards would deserve it :) | ||
2429 | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | ||
2430 | scr = dev->rx_avail; | ||
2431 | } else if (scr < 0) { | ||
2432 | scr = -scr; | ||
2433 | } | ||
2434 | vcc.rx_rate = scr; | ||
2435 | // not really clear what further checking is needed | ||
2436 | // error = atm_scr_check (rxtp, vcc.rx_rate); | ||
2437 | if (error) { | ||
2438 | PRINTD (DBG_QOS, "RX SCR failed consistency check"); | ||
2439 | return error; | ||
2440 | } | ||
2441 | break; | ||
2442 | } | ||
2443 | #endif | ||
2444 | default: { | ||
2445 | PRINTD (DBG_QOS, "unsupported RX traffic class"); | ||
2446 | return -EINVAL; | ||
2447 | break; | ||
2448 | } | ||
2449 | } | ||
2450 | } | ||
2451 | |||
2452 | |||
2453 | // late abort useful for diagnostics | ||
2454 | if (vcc.aal != aal5) { | ||
2455 | PRINTD (DBG_QOS, "AAL not supported"); | ||
2456 | return -EINVAL; | ||
2457 | } | ||
2458 | |||
2459 | // get space for our vcc stuff and copy parameters into it | ||
2460 | vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL); | ||
2461 | if (!vccp) { | ||
2462 | PRINTK (KERN_ERR, "out of memory!"); | ||
2463 | return -ENOMEM; | ||
2464 | } | ||
2465 | *vccp = vcc; | ||
2466 | |||
2467 | // clear error and grab cell rate resource lock | ||
2468 | error = 0; | ||
2469 | spin_lock (&dev->rate_lock); | ||
2470 | |||
2471 | if (vcc.tx_rate > dev->tx_avail) { | ||
2472 | PRINTD (DBG_QOS, "not enough TX PCR left"); | ||
2473 | error = -EAGAIN; | ||
2474 | } | ||
2475 | |||
2476 | if (vcc.rx_rate > dev->rx_avail) { | ||
2477 | PRINTD (DBG_QOS, "not enough RX PCR left"); | ||
2478 | error = -EAGAIN; | ||
2479 | } | ||
2480 | |||
2481 | if (!error) { | ||
2482 | // really consume cell rates | ||
2483 | dev->tx_avail -= vcc.tx_rate; | ||
2484 | dev->rx_avail -= vcc.rx_rate; | ||
2485 | PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR", | ||
2486 | vcc.tx_rate, vcc.rx_rate); | ||
2487 | } | ||
2488 | |||
2489 | // release lock and exit on error | ||
2490 | spin_unlock (&dev->rate_lock); | ||
2491 | if (error) { | ||
2492 | PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources"); | ||
2493 | kfree (vccp); | ||
2494 | return error; | ||
2495 | } | ||
2496 | |||
2497 | // this is "immediately before allocating the connection identifier | ||
2498 | // in hardware" - so long as the next call does not fail :) | ||
2499 | set_bit(ATM_VF_ADDR,&atm_vcc->flags); | ||
2500 | |||
2501 | // any errors here are very serious and should never occur | ||
2502 | |||
2503 | if (rxtp->traffic_class != ATM_NONE) { | ||
2504 | if (dev->rxer[channel]) { | ||
2505 | PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX"); | ||
2506 | error = -EBUSY; | ||
2507 | } | ||
2508 | if (!error) | ||
2509 | error = hrz_open_rx (dev, channel); | ||
2510 | if (error) { | ||
2511 | kfree (vccp); | ||
2512 | return error; | ||
2513 | } | ||
2514 | // this link allows RX frames through | ||
2515 | dev->rxer[channel] = atm_vcc; | ||
2516 | } | ||
2517 | |||
2518 | // success, set elements of atm_vcc | ||
2519 | atm_vcc->dev_data = (void *) vccp; | ||
2520 | |||
2521 | // indicate readiness | ||
2522 | set_bit(ATM_VF_READY,&atm_vcc->flags); | ||
2523 | |||
2524 | return 0; | ||
2525 | } | ||
2526 | |||
2527 | /********** close VC **********/ | ||
2528 | |||
2529 | static void hrz_close (struct atm_vcc * atm_vcc) { | ||
2530 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | ||
2531 | hrz_vcc * vcc = HRZ_VCC(atm_vcc); | ||
2532 | u16 channel = vcc->channel; | ||
2533 | PRINTD (DBG_VCC|DBG_FLOW, "hrz_close"); | ||
2534 | |||
2535 | // indicate unreadiness | ||
2536 | clear_bit(ATM_VF_READY,&atm_vcc->flags); | ||
2537 | |||
2538 | if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { | ||
2539 | unsigned int i; | ||
2540 | |||
2541 | // let any TX on this channel that has started complete | ||
2542 | // no restart, just keep trying | ||
2543 | while (tx_hold (dev)) | ||
2544 | ; | ||
2545 | // remove record of any tx_channel having been setup for this channel | ||
2546 | for (i = 0; i < TX_CHANS; ++i) | ||
2547 | if (dev->tx_channel_record[i] == channel) { | ||
2548 | dev->tx_channel_record[i] = -1; | ||
2549 | break; | ||
2550 | } | ||
2551 | if (dev->last_vc == channel) | ||
2552 | dev->tx_last = -1; | ||
2553 | tx_release (dev); | ||
2554 | } | ||
2555 | |||
2556 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | ||
2557 | // disable RXing - it tries quite hard | ||
2558 | hrz_close_rx (dev, channel); | ||
2559 | // forget the vcc - no more skbs will be pushed | ||
2560 | if (atm_vcc != dev->rxer[channel]) | ||
2561 | PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p", | ||
2562 | "arghhh! we're going to die!", | ||
2563 | atm_vcc, dev->rxer[channel]); | ||
2564 | dev->rxer[channel] = NULL; | ||
2565 | } | ||
2566 | |||
2567 | // atomically release our rate reservation | ||
2568 | spin_lock (&dev->rate_lock); | ||
2569 | PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR", | ||
2570 | vcc->tx_rate, vcc->rx_rate); | ||
2571 | dev->tx_avail += vcc->tx_rate; | ||
2572 | dev->rx_avail += vcc->rx_rate; | ||
2573 | spin_unlock (&dev->rate_lock); | ||
2574 | |||
2575 | // free our structure | ||
2576 | kfree (vcc); | ||
2577 | // say the VPI/VCI is free again | ||
2578 | clear_bit(ATM_VF_ADDR,&atm_vcc->flags); | ||
2579 | } | ||
2580 | |||
2581 | #if 0 | ||
2582 | static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, | ||
2583 | void *optval, int optlen) { | ||
2584 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | ||
2585 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt"); | ||
2586 | switch (level) { | ||
2587 | case SOL_SOCKET: | ||
2588 | switch (optname) { | ||
2589 | // case SO_BCTXOPT: | ||
2590 | // break; | ||
2591 | // case SO_BCRXOPT: | ||
2592 | // break; | ||
2593 | default: | ||
2594 | return -ENOPROTOOPT; | ||
2595 | break; | ||
2596 | }; | ||
2597 | break; | ||
2598 | } | ||
2599 | return -EINVAL; | ||
2600 | } | ||
2601 | |||
2602 | static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, | ||
2603 | void *optval, int optlen) { | ||
2604 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | ||
2605 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt"); | ||
2606 | switch (level) { | ||
2607 | case SOL_SOCKET: | ||
2608 | switch (optname) { | ||
2609 | // case SO_BCTXOPT: | ||
2610 | // break; | ||
2611 | // case SO_BCRXOPT: | ||
2612 | // break; | ||
2613 | default: | ||
2614 | return -ENOPROTOOPT; | ||
2615 | break; | ||
2616 | }; | ||
2617 | break; | ||
2618 | } | ||
2619 | return -EINVAL; | ||
2620 | } | ||
2621 | #endif | ||
2622 | |||
2623 | #if 0 | ||
2624 | static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) { | ||
2625 | hrz_dev * dev = HRZ_DEV(atm_dev); | ||
2626 | PRINTD (DBG_FLOW, "hrz_ioctl"); | ||
2627 | return -1; | ||
2628 | } | ||
2629 | |||
2630 | unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) { | ||
2631 | hrz_dev * dev = HRZ_DEV(atm_dev); | ||
2632 | PRINTD (DBG_FLOW, "hrz_phy_get"); | ||
2633 | return 0; | ||
2634 | } | ||
2635 | |||
2636 | static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value, | ||
2637 | unsigned long addr) { | ||
2638 | hrz_dev * dev = HRZ_DEV(atm_dev); | ||
2639 | PRINTD (DBG_FLOW, "hrz_phy_put"); | ||
2640 | } | ||
2641 | |||
2642 | static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) { | ||
2643 | hrz_dev * dev = HRZ_DEV(vcc->dev); | ||
2644 | PRINTD (DBG_FLOW, "hrz_change_qos"); | ||
2645 | return -1; | ||
2646 | } | ||
2647 | #endif | ||
2648 | |||
2649 | /********** proc file contents **********/ | ||
2650 | |||
2651 | static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { | ||
2652 | hrz_dev * dev = HRZ_DEV(atm_dev); | ||
2653 | int left = *pos; | ||
2654 | PRINTD (DBG_FLOW, "hrz_proc_read"); | ||
2655 | |||
2656 | /* more diagnostics here? */ | ||
2657 | |||
2658 | #if 0 | ||
2659 | if (!left--) { | ||
2660 | unsigned int count = sprintf (page, "vbr buckets:"); | ||
2661 | unsigned int i; | ||
2662 | for (i = 0; i < TX_CHANS; ++i) | ||
2663 | count += sprintf (page, " %u/%u", | ||
2664 | query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS), | ||
2665 | query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS)); | ||
2666 | count += sprintf (page+count, ".\n"); | ||
2667 | return count; | ||
2668 | } | ||
2669 | #endif | ||
2670 | |||
2671 | if (!left--) | ||
2672 | return sprintf (page, | ||
2673 | "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n", | ||
2674 | dev->tx_cell_count, dev->rx_cell_count, | ||
2675 | dev->hec_error_count, dev->unassigned_cell_count); | ||
2676 | |||
2677 | if (!left--) | ||
2678 | return sprintf (page, | ||
2679 | "free cell buffers: TX %hu, RX %hu+%hu.\n", | ||
2680 | rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF), | ||
2681 | rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF), | ||
2682 | dev->noof_spare_buffers); | ||
2683 | |||
2684 | if (!left--) | ||
2685 | return sprintf (page, | ||
2686 | "cps remaining: TX %u, RX %u\n", | ||
2687 | dev->tx_avail, dev->rx_avail); | ||
2688 | |||
2689 | return 0; | ||
2690 | } | ||
2691 | |||
2692 | static const struct atmdev_ops hrz_ops = { | ||
2693 | .open = hrz_open, | ||
2694 | .close = hrz_close, | ||
2695 | .send = hrz_send, | ||
2696 | .proc_read = hrz_proc_read, | ||
2697 | .owner = THIS_MODULE, | ||
2698 | }; | ||
2699 | |||
2700 | static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) | ||
2701 | { | ||
2702 | hrz_dev * dev; | ||
2703 | int err = 0; | ||
2704 | |||
2705 | // adapter slot free, read resources from PCI configuration space | ||
2706 | u32 iobase = pci_resource_start (pci_dev, 0); | ||
2707 | u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1)); | ||
2708 | unsigned int irq; | ||
2709 | unsigned char lat; | ||
2710 | |||
2711 | PRINTD (DBG_FLOW, "hrz_probe"); | ||
2712 | |||
2713 | if (pci_enable_device(pci_dev)) | ||
2714 | return -EINVAL; | ||
2715 | |||
2716 | /* XXX DEV_LABEL is a guess */ | ||
2717 | if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) { | ||
2718 | return -EINVAL; | ||
2719 | goto out_disable; | ||
2720 | } | ||
2721 | |||
2722 | dev = kmalloc(sizeof(hrz_dev), GFP_KERNEL); | ||
2723 | if (!dev) { | ||
2724 | // perhaps we should be nice: deregister all adapters and abort? | ||
2725 | PRINTD(DBG_ERR, "out of memory"); | ||
2726 | err = -ENOMEM; | ||
2727 | goto out_release; | ||
2728 | } | ||
2729 | |||
2730 | memset(dev, 0, sizeof(hrz_dev)); | ||
2731 | |||
2732 | pci_set_drvdata(pci_dev, dev); | ||
2733 | |||
2734 | // grab IRQ and install handler - move this someplace more sensible | ||
2735 | irq = pci_dev->irq; | ||
2736 | if (request_irq(irq, | ||
2737 | interrupt_handler, | ||
2738 | SA_SHIRQ, /* irqflags guess */ | ||
2739 | DEV_LABEL, /* name guess */ | ||
2740 | dev)) { | ||
2741 | PRINTD(DBG_WARN, "request IRQ failed!"); | ||
2742 | err = -EINVAL; | ||
2743 | goto out_free; | ||
2744 | } | ||
2745 | |||
2746 | PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p", | ||
2747 | iobase, irq, membase); | ||
2748 | |||
2749 | dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL); | ||
2750 | if (!(dev->atm_dev)) { | ||
2751 | PRINTD(DBG_ERR, "failed to register Madge ATM adapter"); | ||
2752 | err = -EINVAL; | ||
2753 | goto out_free_irq; | ||
2754 | } | ||
2755 | |||
2756 | PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", | ||
2757 | dev->atm_dev->number, dev, dev->atm_dev); | ||
2758 | dev->atm_dev->dev_data = (void *) dev; | ||
2759 | dev->pci_dev = pci_dev; | ||
2760 | |||
2761 | // enable bus master accesses | ||
2762 | pci_set_master(pci_dev); | ||
2763 | |||
2764 | // frobnicate latency (upwards, usually) | ||
2765 | pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat); | ||
2766 | if (pci_lat) { | ||
2767 | PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu", | ||
2768 | "changing", lat, pci_lat); | ||
2769 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); | ||
2770 | } else if (lat < MIN_PCI_LATENCY) { | ||
2771 | PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu", | ||
2772 | "increasing", lat, MIN_PCI_LATENCY); | ||
2773 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY); | ||
2774 | } | ||
2775 | |||
2776 | dev->iobase = iobase; | ||
2777 | dev->irq = irq; | ||
2778 | dev->membase = membase; | ||
2779 | |||
2780 | dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0]; | ||
2781 | dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1]; | ||
2782 | |||
2783 | // these next three are performance hacks | ||
2784 | dev->last_vc = -1; | ||
2785 | dev->tx_last = -1; | ||
2786 | dev->tx_idle = 0; | ||
2787 | |||
2788 | dev->tx_regions = 0; | ||
2789 | dev->tx_bytes = 0; | ||
2790 | dev->tx_skb = NULL; | ||
2791 | dev->tx_iovec = NULL; | ||
2792 | |||
2793 | dev->tx_cell_count = 0; | ||
2794 | dev->rx_cell_count = 0; | ||
2795 | dev->hec_error_count = 0; | ||
2796 | dev->unassigned_cell_count = 0; | ||
2797 | |||
2798 | dev->noof_spare_buffers = 0; | ||
2799 | |||
2800 | { | ||
2801 | unsigned int i; | ||
2802 | for (i = 0; i < TX_CHANS; ++i) | ||
2803 | dev->tx_channel_record[i] = -1; | ||
2804 | } | ||
2805 | |||
2806 | dev->flags = 0; | ||
2807 | |||
2808 | // Allocate cell rates and remember ASIC version | ||
2809 | // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 | ||
2810 | // Copper: (WRONG) we want 6 into the above, close to 25Mb/s | ||
2811 | // Copper: (plagarise!) 25600000/8/270*260/53 - n/53 | ||
2812 | |||
2813 | if (hrz_init(dev)) { | ||
2814 | // to be really pedantic, this should be ATM_OC3c_PCR | ||
2815 | dev->tx_avail = ATM_OC3_PCR; | ||
2816 | dev->rx_avail = ATM_OC3_PCR; | ||
2817 | set_bit(ultra, &dev->flags); // NOT "|= ultra" ! | ||
2818 | } else { | ||
2819 | dev->tx_avail = ((25600000/8)*26)/(27*53); | ||
2820 | dev->rx_avail = ((25600000/8)*26)/(27*53); | ||
2821 | PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering."); | ||
2822 | } | ||
2823 | |||
2824 | // rate changes spinlock | ||
2825 | spin_lock_init(&dev->rate_lock); | ||
2826 | |||
2827 | // on-board memory access spinlock; we want atomic reads and | ||
2828 | // writes to adapter memory (handles IRQ and SMP) | ||
2829 | spin_lock_init(&dev->mem_lock); | ||
2830 | |||
2831 | init_waitqueue_head(&dev->tx_queue); | ||
2832 | |||
2833 | // vpi in 0..4, vci in 6..10 | ||
2834 | dev->atm_dev->ci_range.vpi_bits = vpi_bits; | ||
2835 | dev->atm_dev->ci_range.vci_bits = 10-vpi_bits; | ||
2836 | |||
2837 | init_timer(&dev->housekeeping); | ||
2838 | dev->housekeeping.function = do_housekeeping; | ||
2839 | dev->housekeeping.data = (unsigned long) dev; | ||
2840 | mod_timer(&dev->housekeeping, jiffies); | ||
2841 | |||
2842 | out: | ||
2843 | return err; | ||
2844 | |||
2845 | out_free_irq: | ||
2846 | free_irq(dev->irq, dev); | ||
2847 | out_free: | ||
2848 | kfree(dev); | ||
2849 | out_release: | ||
2850 | release_region(iobase, HRZ_IO_EXTENT); | ||
2851 | out_disable: | ||
2852 | pci_disable_device(pci_dev); | ||
2853 | goto out; | ||
2854 | } | ||
2855 | |||
2856 | static void __devexit hrz_remove_one(struct pci_dev *pci_dev) | ||
2857 | { | ||
2858 | hrz_dev *dev; | ||
2859 | |||
2860 | dev = pci_get_drvdata(pci_dev); | ||
2861 | |||
2862 | PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev); | ||
2863 | del_timer_sync(&dev->housekeeping); | ||
2864 | hrz_reset(dev); | ||
2865 | atm_dev_deregister(dev->atm_dev); | ||
2866 | free_irq(dev->irq, dev); | ||
2867 | release_region(dev->iobase, HRZ_IO_EXTENT); | ||
2868 | kfree(dev); | ||
2869 | |||
2870 | pci_disable_device(pci_dev); | ||
2871 | } | ||
2872 | |||
2873 | static void __init hrz_check_args (void) { | ||
2874 | #ifdef DEBUG_HORIZON | ||
2875 | PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); | ||
2876 | #else | ||
2877 | if (debug) | ||
2878 | PRINTK (KERN_NOTICE, "no debug support in this image"); | ||
2879 | #endif | ||
2880 | |||
2881 | if (vpi_bits > HRZ_MAX_VPI) | ||
2882 | PRINTK (KERN_ERR, "vpi_bits has been limited to %hu", | ||
2883 | vpi_bits = HRZ_MAX_VPI); | ||
2884 | |||
2885 | if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT) | ||
2886 | PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu", | ||
2887 | max_tx_size = TX_AAL5_LIMIT); | ||
2888 | |||
2889 | if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT) | ||
2890 | PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu", | ||
2891 | max_rx_size = RX_AAL5_LIMIT); | ||
2892 | |||
2893 | return; | ||
2894 | } | ||
2895 | |||
2896 | MODULE_AUTHOR(maintainer_string); | ||
2897 | MODULE_DESCRIPTION(description_string); | ||
2898 | MODULE_LICENSE("GPL"); | ||
2899 | module_param(debug, ushort, 0644); | ||
2900 | module_param(vpi_bits, ushort, 0); | ||
2901 | module_param(max_tx_size, int, 0); | ||
2902 | module_param(max_rx_size, int, 0); | ||
2903 | module_param(pci_lat, byte, 0); | ||
2904 | MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); | ||
2905 | MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs"); | ||
2906 | MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames"); | ||
2907 | MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames"); | ||
2908 | MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); | ||
2909 | |||
2910 | static struct pci_device_id hrz_pci_tbl[] = { | ||
2911 | { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID, | ||
2912 | 0, 0, 0 }, | ||
2913 | { 0, } | ||
2914 | }; | ||
2915 | |||
2916 | MODULE_DEVICE_TABLE(pci, hrz_pci_tbl); | ||
2917 | |||
2918 | static struct pci_driver hrz_driver = { | ||
2919 | .name = "horizon", | ||
2920 | .probe = hrz_probe, | ||
2921 | .remove = __devexit_p(hrz_remove_one), | ||
2922 | .id_table = hrz_pci_tbl, | ||
2923 | }; | ||
2924 | |||
2925 | /********** module entry **********/ | ||
2926 | |||
2927 | static int __init hrz_module_init (void) { | ||
2928 | // sanity check - cast is needed since printk does not support %Zu | ||
2929 | if (sizeof(struct MEMMAP) != 128*1024/4) { | ||
2930 | PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).", | ||
2931 | (unsigned long) sizeof(struct MEMMAP)); | ||
2932 | return -ENOMEM; | ||
2933 | } | ||
2934 | |||
2935 | show_version(); | ||
2936 | |||
2937 | // check arguments | ||
2938 | hrz_check_args(); | ||
2939 | |||
2940 | // get the juice | ||
2941 | return pci_register_driver(&hrz_driver); | ||
2942 | } | ||
2943 | |||
2944 | /********** module exit **********/ | ||
2945 | |||
2946 | static void __exit hrz_module_exit (void) { | ||
2947 | PRINTD (DBG_FLOW, "cleanup_module"); | ||
2948 | |||
2949 | return pci_unregister_driver(&hrz_driver); | ||
2950 | } | ||
2951 | |||
2952 | module_init(hrz_module_init); | ||
2953 | module_exit(hrz_module_exit); | ||