diff options
author | Herbert Xu <herbert@gondor.apana.org.au> | 2005-10-30 05:25:15 -0500 |
---|---|---|
committer | David S. Miller <davem@sunset.davemloft.net> | 2006-01-09 17:15:34 -0500 |
commit | 06ace7a9bafeb9047352707eb79e8eaa0dfdf5f2 (patch) | |
tree | fa22bbc2e8ea5bee00b6aec353783144b6f8735a /crypto/tea.c | |
parent | 2df15fffc612b53b2c8e4ff3c981a82441bc00ae (diff) |
[CRYPTO] Use standard byte order macros wherever possible
A lot of crypto code needs to read/write a 32-bit/64-bit words in a
specific gender. Many of them open code them by reading/writing one
byte at a time. This patch converts all the applicable usages over
to use the standard byte order macros.
This is based on a previous patch by Denis Vlasenko.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'crypto/tea.c')
-rw-r--r-- | crypto/tea.c | 95 |
1 files changed, 48 insertions, 47 deletions
diff --git a/crypto/tea.c b/crypto/tea.c index 5924efdd3a16..e0077c72ec2a 100644 --- a/crypto/tea.c +++ b/crypto/tea.c | |||
@@ -22,8 +22,10 @@ | |||
22 | #include <linux/init.h> | 22 | #include <linux/init.h> |
23 | #include <linux/module.h> | 23 | #include <linux/module.h> |
24 | #include <linux/mm.h> | 24 | #include <linux/mm.h> |
25 | #include <asm/byteorder.h> | ||
25 | #include <asm/scatterlist.h> | 26 | #include <asm/scatterlist.h> |
26 | #include <linux/crypto.h> | 27 | #include <linux/crypto.h> |
28 | #include <linux/types.h> | ||
27 | 29 | ||
28 | #define TEA_KEY_SIZE 16 | 30 | #define TEA_KEY_SIZE 16 |
29 | #define TEA_BLOCK_SIZE 8 | 31 | #define TEA_BLOCK_SIZE 8 |
@@ -35,9 +37,6 @@ | |||
35 | #define XTEA_ROUNDS 32 | 37 | #define XTEA_ROUNDS 32 |
36 | #define XTEA_DELTA 0x9e3779b9 | 38 | #define XTEA_DELTA 0x9e3779b9 |
37 | 39 | ||
38 | #define u32_in(x) le32_to_cpu(*(const __le32 *)(x)) | ||
39 | #define u32_out(to, from) (*(__le32 *)(to) = cpu_to_le32(from)) | ||
40 | |||
41 | struct tea_ctx { | 40 | struct tea_ctx { |
42 | u32 KEY[4]; | 41 | u32 KEY[4]; |
43 | }; | 42 | }; |
@@ -49,8 +48,8 @@ struct xtea_ctx { | |||
49 | static int tea_setkey(void *ctx_arg, const u8 *in_key, | 48 | static int tea_setkey(void *ctx_arg, const u8 *in_key, |
50 | unsigned int key_len, u32 *flags) | 49 | unsigned int key_len, u32 *flags) |
51 | { | 50 | { |
52 | |||
53 | struct tea_ctx *ctx = ctx_arg; | 51 | struct tea_ctx *ctx = ctx_arg; |
52 | const __le32 *key = (const __le32 *)in_key; | ||
54 | 53 | ||
55 | if (key_len != 16) | 54 | if (key_len != 16) |
56 | { | 55 | { |
@@ -58,10 +57,10 @@ static int tea_setkey(void *ctx_arg, const u8 *in_key, | |||
58 | return -EINVAL; | 57 | return -EINVAL; |
59 | } | 58 | } |
60 | 59 | ||
61 | ctx->KEY[0] = u32_in (in_key); | 60 | ctx->KEY[0] = le32_to_cpu(key[0]); |
62 | ctx->KEY[1] = u32_in (in_key + 4); | 61 | ctx->KEY[1] = le32_to_cpu(key[1]); |
63 | ctx->KEY[2] = u32_in (in_key + 8); | 62 | ctx->KEY[2] = le32_to_cpu(key[2]); |
64 | ctx->KEY[3] = u32_in (in_key + 12); | 63 | ctx->KEY[3] = le32_to_cpu(key[3]); |
65 | 64 | ||
66 | return 0; | 65 | return 0; |
67 | 66 | ||
@@ -73,9 +72,11 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src) | |||
73 | u32 k0, k1, k2, k3; | 72 | u32 k0, k1, k2, k3; |
74 | 73 | ||
75 | struct tea_ctx *ctx = ctx_arg; | 74 | struct tea_ctx *ctx = ctx_arg; |
75 | const __le32 *in = (const __le32 *)src; | ||
76 | __le32 *out = (__le32 *)dst; | ||
76 | 77 | ||
77 | y = u32_in (src); | 78 | y = le32_to_cpu(in[0]); |
78 | z = u32_in (src + 4); | 79 | z = le32_to_cpu(in[1]); |
79 | 80 | ||
80 | k0 = ctx->KEY[0]; | 81 | k0 = ctx->KEY[0]; |
81 | k1 = ctx->KEY[1]; | 82 | k1 = ctx->KEY[1]; |
@@ -90,19 +91,20 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src) | |||
90 | z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3); | 91 | z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3); |
91 | } | 92 | } |
92 | 93 | ||
93 | u32_out (dst, y); | 94 | out[0] = cpu_to_le32(y); |
94 | u32_out (dst + 4, z); | 95 | out[1] = cpu_to_le32(z); |
95 | } | 96 | } |
96 | 97 | ||
97 | static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src) | 98 | static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src) |
98 | { | 99 | { |
99 | u32 y, z, n, sum; | 100 | u32 y, z, n, sum; |
100 | u32 k0, k1, k2, k3; | 101 | u32 k0, k1, k2, k3; |
101 | |||
102 | struct tea_ctx *ctx = ctx_arg; | 102 | struct tea_ctx *ctx = ctx_arg; |
103 | const __le32 *in = (const __le32 *)src; | ||
104 | __le32 *out = (__le32 *)dst; | ||
103 | 105 | ||
104 | y = u32_in (src); | 106 | y = le32_to_cpu(in[0]); |
105 | z = u32_in (src + 4); | 107 | z = le32_to_cpu(in[1]); |
106 | 108 | ||
107 | k0 = ctx->KEY[0]; | 109 | k0 = ctx->KEY[0]; |
108 | k1 = ctx->KEY[1]; | 110 | k1 = ctx->KEY[1]; |
@@ -119,16 +121,15 @@ static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src) | |||
119 | sum -= TEA_DELTA; | 121 | sum -= TEA_DELTA; |
120 | } | 122 | } |
121 | 123 | ||
122 | u32_out (dst, y); | 124 | out[0] = cpu_to_le32(y); |
123 | u32_out (dst + 4, z); | 125 | out[1] = cpu_to_le32(z); |
124 | |||
125 | } | 126 | } |
126 | 127 | ||
127 | static int xtea_setkey(void *ctx_arg, const u8 *in_key, | 128 | static int xtea_setkey(void *ctx_arg, const u8 *in_key, |
128 | unsigned int key_len, u32 *flags) | 129 | unsigned int key_len, u32 *flags) |
129 | { | 130 | { |
130 | |||
131 | struct xtea_ctx *ctx = ctx_arg; | 131 | struct xtea_ctx *ctx = ctx_arg; |
132 | const __le32 *key = (const __le32 *)in_key; | ||
132 | 133 | ||
133 | if (key_len != 16) | 134 | if (key_len != 16) |
134 | { | 135 | { |
@@ -136,10 +137,10 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key, | |||
136 | return -EINVAL; | 137 | return -EINVAL; |
137 | } | 138 | } |
138 | 139 | ||
139 | ctx->KEY[0] = u32_in (in_key); | 140 | ctx->KEY[0] = le32_to_cpu(key[0]); |
140 | ctx->KEY[1] = u32_in (in_key + 4); | 141 | ctx->KEY[1] = le32_to_cpu(key[1]); |
141 | ctx->KEY[2] = u32_in (in_key + 8); | 142 | ctx->KEY[2] = le32_to_cpu(key[2]); |
142 | ctx->KEY[3] = u32_in (in_key + 12); | 143 | ctx->KEY[3] = le32_to_cpu(key[3]); |
143 | 144 | ||
144 | return 0; | 145 | return 0; |
145 | 146 | ||
@@ -147,14 +148,15 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key, | |||
147 | 148 | ||
148 | static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src) | 149 | static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src) |
149 | { | 150 | { |
150 | |||
151 | u32 y, z, sum = 0; | 151 | u32 y, z, sum = 0; |
152 | u32 limit = XTEA_DELTA * XTEA_ROUNDS; | 152 | u32 limit = XTEA_DELTA * XTEA_ROUNDS; |
153 | 153 | ||
154 | struct xtea_ctx *ctx = ctx_arg; | 154 | struct xtea_ctx *ctx = ctx_arg; |
155 | const __le32 *in = (const __le32 *)src; | ||
156 | __le32 *out = (__le32 *)dst; | ||
155 | 157 | ||
156 | y = u32_in (src); | 158 | y = le32_to_cpu(in[0]); |
157 | z = u32_in (src + 4); | 159 | z = le32_to_cpu(in[1]); |
158 | 160 | ||
159 | while (sum != limit) { | 161 | while (sum != limit) { |
160 | y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); | 162 | y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); |
@@ -162,19 +164,19 @@ static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src) | |||
162 | z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); | 164 | z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); |
163 | } | 165 | } |
164 | 166 | ||
165 | u32_out (dst, y); | 167 | out[0] = cpu_to_le32(y); |
166 | u32_out (dst + 4, z); | 168 | out[1] = cpu_to_le32(z); |
167 | |||
168 | } | 169 | } |
169 | 170 | ||
170 | static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src) | 171 | static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src) |
171 | { | 172 | { |
172 | |||
173 | u32 y, z, sum; | 173 | u32 y, z, sum; |
174 | struct tea_ctx *ctx = ctx_arg; | 174 | struct tea_ctx *ctx = ctx_arg; |
175 | const __le32 *in = (const __le32 *)src; | ||
176 | __le32 *out = (__le32 *)dst; | ||
175 | 177 | ||
176 | y = u32_in (src); | 178 | y = le32_to_cpu(in[0]); |
177 | z = u32_in (src + 4); | 179 | z = le32_to_cpu(in[1]); |
178 | 180 | ||
179 | sum = XTEA_DELTA * XTEA_ROUNDS; | 181 | sum = XTEA_DELTA * XTEA_ROUNDS; |
180 | 182 | ||
@@ -184,22 +186,22 @@ static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src) | |||
184 | y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]); | 186 | y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]); |
185 | } | 187 | } |
186 | 188 | ||
187 | u32_out (dst, y); | 189 | out[0] = cpu_to_le32(y); |
188 | u32_out (dst + 4, z); | 190 | out[1] = cpu_to_le32(z); |
189 | |||
190 | } | 191 | } |
191 | 192 | ||
192 | 193 | ||
193 | static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src) | 194 | static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src) |
194 | { | 195 | { |
195 | |||
196 | u32 y, z, sum = 0; | 196 | u32 y, z, sum = 0; |
197 | u32 limit = XTEA_DELTA * XTEA_ROUNDS; | 197 | u32 limit = XTEA_DELTA * XTEA_ROUNDS; |
198 | 198 | ||
199 | struct xtea_ctx *ctx = ctx_arg; | 199 | struct xtea_ctx *ctx = ctx_arg; |
200 | const __le32 *in = (const __le32 *)src; | ||
201 | __le32 *out = (__le32 *)dst; | ||
200 | 202 | ||
201 | y = u32_in (src); | 203 | y = le32_to_cpu(in[0]); |
202 | z = u32_in (src + 4); | 204 | z = le32_to_cpu(in[1]); |
203 | 205 | ||
204 | while (sum != limit) { | 206 | while (sum != limit) { |
205 | y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3]; | 207 | y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3]; |
@@ -207,19 +209,19 @@ static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src) | |||
207 | z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3]; | 209 | z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3]; |
208 | } | 210 | } |
209 | 211 | ||
210 | u32_out (dst, y); | 212 | out[0] = cpu_to_le32(y); |
211 | u32_out (dst + 4, z); | 213 | out[1] = cpu_to_le32(z); |
212 | |||
213 | } | 214 | } |
214 | 215 | ||
215 | static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src) | 216 | static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src) |
216 | { | 217 | { |
217 | |||
218 | u32 y, z, sum; | 218 | u32 y, z, sum; |
219 | struct tea_ctx *ctx = ctx_arg; | 219 | struct tea_ctx *ctx = ctx_arg; |
220 | const __le32 *in = (const __le32 *)src; | ||
221 | __le32 *out = (__le32 *)dst; | ||
220 | 222 | ||
221 | y = u32_in (src); | 223 | y = le32_to_cpu(in[0]); |
222 | z = u32_in (src + 4); | 224 | z = le32_to_cpu(in[1]); |
223 | 225 | ||
224 | sum = XTEA_DELTA * XTEA_ROUNDS; | 226 | sum = XTEA_DELTA * XTEA_ROUNDS; |
225 | 227 | ||
@@ -229,9 +231,8 @@ static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src) | |||
229 | y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3]; | 231 | y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3]; |
230 | } | 232 | } |
231 | 233 | ||
232 | u32_out (dst, y); | 234 | out[0] = cpu_to_le32(y); |
233 | u32_out (dst + 4, z); | 235 | out[1] = cpu_to_le32(z); |
234 | |||
235 | } | 236 | } |
236 | 237 | ||
237 | static struct crypto_alg tea_alg = { | 238 | static struct crypto_alg tea_alg = { |