aboutsummaryrefslogtreecommitdiffstats
path: root/crypto/tea.c
diff options
context:
space:
mode:
authorHerbert Xu <herbert@gondor.apana.org.au>2005-10-30 05:25:15 -0500
committerDavid S. Miller <davem@sunset.davemloft.net>2006-01-09 17:15:34 -0500
commit06ace7a9bafeb9047352707eb79e8eaa0dfdf5f2 (patch)
treefa22bbc2e8ea5bee00b6aec353783144b6f8735a /crypto/tea.c
parent2df15fffc612b53b2c8e4ff3c981a82441bc00ae (diff)
[CRYPTO] Use standard byte order macros wherever possible
A lot of crypto code needs to read/write a 32-bit/64-bit words in a specific gender. Many of them open code them by reading/writing one byte at a time. This patch converts all the applicable usages over to use the standard byte order macros. This is based on a previous patch by Denis Vlasenko. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'crypto/tea.c')
-rw-r--r--crypto/tea.c95
1 files changed, 48 insertions, 47 deletions
diff --git a/crypto/tea.c b/crypto/tea.c
index 5924efdd3a16..e0077c72ec2a 100644
--- a/crypto/tea.c
+++ b/crypto/tea.c
@@ -22,8 +22,10 @@
22#include <linux/init.h> 22#include <linux/init.h>
23#include <linux/module.h> 23#include <linux/module.h>
24#include <linux/mm.h> 24#include <linux/mm.h>
25#include <asm/byteorder.h>
25#include <asm/scatterlist.h> 26#include <asm/scatterlist.h>
26#include <linux/crypto.h> 27#include <linux/crypto.h>
28#include <linux/types.h>
27 29
28#define TEA_KEY_SIZE 16 30#define TEA_KEY_SIZE 16
29#define TEA_BLOCK_SIZE 8 31#define TEA_BLOCK_SIZE 8
@@ -35,9 +37,6 @@
35#define XTEA_ROUNDS 32 37#define XTEA_ROUNDS 32
36#define XTEA_DELTA 0x9e3779b9 38#define XTEA_DELTA 0x9e3779b9
37 39
38#define u32_in(x) le32_to_cpu(*(const __le32 *)(x))
39#define u32_out(to, from) (*(__le32 *)(to) = cpu_to_le32(from))
40
41struct tea_ctx { 40struct tea_ctx {
42 u32 KEY[4]; 41 u32 KEY[4];
43}; 42};
@@ -49,8 +48,8 @@ struct xtea_ctx {
49static int tea_setkey(void *ctx_arg, const u8 *in_key, 48static int tea_setkey(void *ctx_arg, const u8 *in_key,
50 unsigned int key_len, u32 *flags) 49 unsigned int key_len, u32 *flags)
51{ 50{
52
53 struct tea_ctx *ctx = ctx_arg; 51 struct tea_ctx *ctx = ctx_arg;
52 const __le32 *key = (const __le32 *)in_key;
54 53
55 if (key_len != 16) 54 if (key_len != 16)
56 { 55 {
@@ -58,10 +57,10 @@ static int tea_setkey(void *ctx_arg, const u8 *in_key,
58 return -EINVAL; 57 return -EINVAL;
59 } 58 }
60 59
61 ctx->KEY[0] = u32_in (in_key); 60 ctx->KEY[0] = le32_to_cpu(key[0]);
62 ctx->KEY[1] = u32_in (in_key + 4); 61 ctx->KEY[1] = le32_to_cpu(key[1]);
63 ctx->KEY[2] = u32_in (in_key + 8); 62 ctx->KEY[2] = le32_to_cpu(key[2]);
64 ctx->KEY[3] = u32_in (in_key + 12); 63 ctx->KEY[3] = le32_to_cpu(key[3]);
65 64
66 return 0; 65 return 0;
67 66
@@ -73,9 +72,11 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
73 u32 k0, k1, k2, k3; 72 u32 k0, k1, k2, k3;
74 73
75 struct tea_ctx *ctx = ctx_arg; 74 struct tea_ctx *ctx = ctx_arg;
75 const __le32 *in = (const __le32 *)src;
76 __le32 *out = (__le32 *)dst;
76 77
77 y = u32_in (src); 78 y = le32_to_cpu(in[0]);
78 z = u32_in (src + 4); 79 z = le32_to_cpu(in[1]);
79 80
80 k0 = ctx->KEY[0]; 81 k0 = ctx->KEY[0];
81 k1 = ctx->KEY[1]; 82 k1 = ctx->KEY[1];
@@ -90,19 +91,20 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
90 z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3); 91 z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
91 } 92 }
92 93
93 u32_out (dst, y); 94 out[0] = cpu_to_le32(y);
94 u32_out (dst + 4, z); 95 out[1] = cpu_to_le32(z);
95} 96}
96 97
97static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src) 98static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
98{ 99{
99 u32 y, z, n, sum; 100 u32 y, z, n, sum;
100 u32 k0, k1, k2, k3; 101 u32 k0, k1, k2, k3;
101
102 struct tea_ctx *ctx = ctx_arg; 102 struct tea_ctx *ctx = ctx_arg;
103 const __le32 *in = (const __le32 *)src;
104 __le32 *out = (__le32 *)dst;
103 105
104 y = u32_in (src); 106 y = le32_to_cpu(in[0]);
105 z = u32_in (src + 4); 107 z = le32_to_cpu(in[1]);
106 108
107 k0 = ctx->KEY[0]; 109 k0 = ctx->KEY[0];
108 k1 = ctx->KEY[1]; 110 k1 = ctx->KEY[1];
@@ -119,16 +121,15 @@ static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
119 sum -= TEA_DELTA; 121 sum -= TEA_DELTA;
120 } 122 }
121 123
122 u32_out (dst, y); 124 out[0] = cpu_to_le32(y);
123 u32_out (dst + 4, z); 125 out[1] = cpu_to_le32(z);
124
125} 126}
126 127
127static int xtea_setkey(void *ctx_arg, const u8 *in_key, 128static int xtea_setkey(void *ctx_arg, const u8 *in_key,
128 unsigned int key_len, u32 *flags) 129 unsigned int key_len, u32 *flags)
129{ 130{
130
131 struct xtea_ctx *ctx = ctx_arg; 131 struct xtea_ctx *ctx = ctx_arg;
132 const __le32 *key = (const __le32 *)in_key;
132 133
133 if (key_len != 16) 134 if (key_len != 16)
134 { 135 {
@@ -136,10 +137,10 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
136 return -EINVAL; 137 return -EINVAL;
137 } 138 }
138 139
139 ctx->KEY[0] = u32_in (in_key); 140 ctx->KEY[0] = le32_to_cpu(key[0]);
140 ctx->KEY[1] = u32_in (in_key + 4); 141 ctx->KEY[1] = le32_to_cpu(key[1]);
141 ctx->KEY[2] = u32_in (in_key + 8); 142 ctx->KEY[2] = le32_to_cpu(key[2]);
142 ctx->KEY[3] = u32_in (in_key + 12); 143 ctx->KEY[3] = le32_to_cpu(key[3]);
143 144
144 return 0; 145 return 0;
145 146
@@ -147,14 +148,15 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
147 148
148static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src) 149static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
149{ 150{
150
151 u32 y, z, sum = 0; 151 u32 y, z, sum = 0;
152 u32 limit = XTEA_DELTA * XTEA_ROUNDS; 152 u32 limit = XTEA_DELTA * XTEA_ROUNDS;
153 153
154 struct xtea_ctx *ctx = ctx_arg; 154 struct xtea_ctx *ctx = ctx_arg;
155 const __le32 *in = (const __le32 *)src;
156 __le32 *out = (__le32 *)dst;
155 157
156 y = u32_in (src); 158 y = le32_to_cpu(in[0]);
157 z = u32_in (src + 4); 159 z = le32_to_cpu(in[1]);
158 160
159 while (sum != limit) { 161 while (sum != limit) {
160 y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); 162 y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]);
@@ -162,19 +164,19 @@ static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
162 z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); 164 z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]);
163 } 165 }
164 166
165 u32_out (dst, y); 167 out[0] = cpu_to_le32(y);
166 u32_out (dst + 4, z); 168 out[1] = cpu_to_le32(z);
167
168} 169}
169 170
170static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src) 171static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
171{ 172{
172
173 u32 y, z, sum; 173 u32 y, z, sum;
174 struct tea_ctx *ctx = ctx_arg; 174 struct tea_ctx *ctx = ctx_arg;
175 const __le32 *in = (const __le32 *)src;
176 __le32 *out = (__le32 *)dst;
175 177
176 y = u32_in (src); 178 y = le32_to_cpu(in[0]);
177 z = u32_in (src + 4); 179 z = le32_to_cpu(in[1]);
178 180
179 sum = XTEA_DELTA * XTEA_ROUNDS; 181 sum = XTEA_DELTA * XTEA_ROUNDS;
180 182
@@ -184,22 +186,22 @@ static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
184 y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]); 186 y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
185 } 187 }
186 188
187 u32_out (dst, y); 189 out[0] = cpu_to_le32(y);
188 u32_out (dst + 4, z); 190 out[1] = cpu_to_le32(z);
189
190} 191}
191 192
192 193
193static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src) 194static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
194{ 195{
195
196 u32 y, z, sum = 0; 196 u32 y, z, sum = 0;
197 u32 limit = XTEA_DELTA * XTEA_ROUNDS; 197 u32 limit = XTEA_DELTA * XTEA_ROUNDS;
198 198
199 struct xtea_ctx *ctx = ctx_arg; 199 struct xtea_ctx *ctx = ctx_arg;
200 const __le32 *in = (const __le32 *)src;
201 __le32 *out = (__le32 *)dst;
200 202
201 y = u32_in (src); 203 y = le32_to_cpu(in[0]);
202 z = u32_in (src + 4); 204 z = le32_to_cpu(in[1]);
203 205
204 while (sum != limit) { 206 while (sum != limit) {
205 y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3]; 207 y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
@@ -207,19 +209,19 @@ static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
207 z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3]; 209 z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
208 } 210 }
209 211
210 u32_out (dst, y); 212 out[0] = cpu_to_le32(y);
211 u32_out (dst + 4, z); 213 out[1] = cpu_to_le32(z);
212
213} 214}
214 215
215static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src) 216static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
216{ 217{
217
218 u32 y, z, sum; 218 u32 y, z, sum;
219 struct tea_ctx *ctx = ctx_arg; 219 struct tea_ctx *ctx = ctx_arg;
220 const __le32 *in = (const __le32 *)src;
221 __le32 *out = (__le32 *)dst;
220 222
221 y = u32_in (src); 223 y = le32_to_cpu(in[0]);
222 z = u32_in (src + 4); 224 z = le32_to_cpu(in[1]);
223 225
224 sum = XTEA_DELTA * XTEA_ROUNDS; 226 sum = XTEA_DELTA * XTEA_ROUNDS;
225 227
@@ -229,9 +231,8 @@ static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
229 y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3]; 231 y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
230 } 232 }
231 233
232 u32_out (dst, y); 234 out[0] = cpu_to_le32(y);
233 u32_out (dst + 4, z); 235 out[1] = cpu_to_le32(z);
234
235} 236}
236 237
237static struct crypto_alg tea_alg = { 238static struct crypto_alg tea_alg = {