diff options
| author | Jens Axboe <axboe@fb.com> | 2014-05-28 11:50:26 -0400 |
|---|---|---|
| committer | Jens Axboe <axboe@fb.com> | 2014-05-28 11:50:26 -0400 |
| commit | 6178976500ae61fa7b12ebb2d3de816dc9396388 (patch) | |
| tree | 143df1479f56458801b676d038e6a7157a472981 /block | |
| parent | 6314a108ec19aefa5160535b2bfe1ca9c38efe37 (diff) | |
| parent | d852564f8c88b0604490234fdeeb6fb47e4bcc7a (diff) | |
Merge branch 'for-3.16/core' into for-3.16/drivers
mtip32xx uses blk_mq_alloc_reserved_request(), so pull in the
core changes so we have a properly merged end result.
Signed-off-by: Jens Axboe <axboe@fb.com>
Diffstat (limited to 'block')
| -rw-r--r-- | block/Makefile | 7 | ||||
| -rw-r--r-- | block/bio-integrity.c | 657 | ||||
| -rw-r--r-- | block/bio.c | 2038 | ||||
| -rw-r--r-- | block/blk-core.c | 65 | ||||
| -rw-r--r-- | block/blk-flush.c | 16 | ||||
| -rw-r--r-- | block/blk-iopoll.c | 4 | ||||
| -rw-r--r-- | block/blk-lib.c | 4 | ||||
| -rw-r--r-- | block/blk-mq-cpu.c | 12 | ||||
| -rw-r--r-- | block/blk-mq-cpumap.c | 16 | ||||
| -rw-r--r-- | block/blk-mq-sysfs.c | 50 | ||||
| -rw-r--r-- | block/blk-mq-tag.c | 541 | ||||
| -rw-r--r-- | block/blk-mq-tag.h | 62 | ||||
| -rw-r--r-- | block/blk-mq.c | 993 | ||||
| -rw-r--r-- | block/blk-mq.h | 18 | ||||
| -rw-r--r-- | block/blk-sysfs.c | 47 | ||||
| -rw-r--r-- | block/blk-throttle.c | 10 | ||||
| -rw-r--r-- | block/blk-timeout.c | 47 | ||||
| -rw-r--r-- | block/blk.h | 9 | ||||
| -rw-r--r-- | block/bounce.c | 287 | ||||
| -rw-r--r-- | block/cfq-iosched.c | 2 | ||||
| -rw-r--r-- | block/ioprio.c | 241 |
21 files changed, 4631 insertions, 495 deletions
diff --git a/block/Makefile b/block/Makefile index 20645e88fb57..a2ce6ac935ec 100644 --- a/block/Makefile +++ b/block/Makefile | |||
| @@ -2,13 +2,15 @@ | |||
| 2 | # Makefile for the kernel block layer | 2 | # Makefile for the kernel block layer |
| 3 | # | 3 | # |
| 4 | 4 | ||
| 5 | obj-$(CONFIG_BLOCK) := elevator.o blk-core.o blk-tag.o blk-sysfs.o \ | 5 | obj-$(CONFIG_BLOCK) := bio.o elevator.o blk-core.o blk-tag.o blk-sysfs.o \ |
| 6 | blk-flush.o blk-settings.o blk-ioc.o blk-map.o \ | 6 | blk-flush.o blk-settings.o blk-ioc.o blk-map.o \ |
| 7 | blk-exec.o blk-merge.o blk-softirq.o blk-timeout.o \ | 7 | blk-exec.o blk-merge.o blk-softirq.o blk-timeout.o \ |
| 8 | blk-iopoll.o blk-lib.o blk-mq.o blk-mq-tag.o \ | 8 | blk-iopoll.o blk-lib.o blk-mq.o blk-mq-tag.o \ |
| 9 | blk-mq-sysfs.o blk-mq-cpu.o blk-mq-cpumap.o ioctl.o \ | 9 | blk-mq-sysfs.o blk-mq-cpu.o blk-mq-cpumap.o ioctl.o \ |
| 10 | genhd.o scsi_ioctl.o partition-generic.o partitions/ | 10 | genhd.o scsi_ioctl.o partition-generic.o ioprio.o \ |
| 11 | partitions/ | ||
| 11 | 12 | ||
| 13 | obj-$(CONFIG_BOUNCE) += bounce.o | ||
| 12 | obj-$(CONFIG_BLK_DEV_BSG) += bsg.o | 14 | obj-$(CONFIG_BLK_DEV_BSG) += bsg.o |
| 13 | obj-$(CONFIG_BLK_DEV_BSGLIB) += bsg-lib.o | 15 | obj-$(CONFIG_BLK_DEV_BSGLIB) += bsg-lib.o |
| 14 | obj-$(CONFIG_BLK_CGROUP) += blk-cgroup.o | 16 | obj-$(CONFIG_BLK_CGROUP) += blk-cgroup.o |
| @@ -20,3 +22,4 @@ obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o | |||
| 20 | obj-$(CONFIG_BLOCK_COMPAT) += compat_ioctl.o | 22 | obj-$(CONFIG_BLOCK_COMPAT) += compat_ioctl.o |
| 21 | obj-$(CONFIG_BLK_DEV_INTEGRITY) += blk-integrity.o | 23 | obj-$(CONFIG_BLK_DEV_INTEGRITY) += blk-integrity.o |
| 22 | obj-$(CONFIG_BLK_CMDLINE_PARSER) += cmdline-parser.o | 24 | obj-$(CONFIG_BLK_CMDLINE_PARSER) += cmdline-parser.o |
| 25 | obj-$(CONFIG_BLK_DEV_INTEGRITY) += bio-integrity.o | ||
diff --git a/block/bio-integrity.c b/block/bio-integrity.c new file mode 100644 index 000000000000..9e241063a616 --- /dev/null +++ b/block/bio-integrity.c | |||
| @@ -0,0 +1,657 @@ | |||
| 1 | /* | ||
| 2 | * bio-integrity.c - bio data integrity extensions | ||
| 3 | * | ||
| 4 | * Copyright (C) 2007, 2008, 2009 Oracle Corporation | ||
| 5 | * Written by: Martin K. Petersen <martin.petersen@oracle.com> | ||
| 6 | * | ||
| 7 | * This program is free software; you can redistribute it and/or | ||
| 8 | * modify it under the terms of the GNU General Public License version | ||
| 9 | * 2 as published by the Free Software Foundation. | ||
| 10 | * | ||
| 11 | * This program is distributed in the hope that it will be useful, but | ||
| 12 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
| 14 | * General Public License for more details. | ||
| 15 | * | ||
| 16 | * You should have received a copy of the GNU General Public License | ||
| 17 | * along with this program; see the file COPYING. If not, write to | ||
| 18 | * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, | ||
| 19 | * USA. | ||
| 20 | * | ||
| 21 | */ | ||
| 22 | |||
| 23 | #include <linux/blkdev.h> | ||
| 24 | #include <linux/mempool.h> | ||
| 25 | #include <linux/export.h> | ||
| 26 | #include <linux/bio.h> | ||
| 27 | #include <linux/workqueue.h> | ||
| 28 | #include <linux/slab.h> | ||
| 29 | |||
| 30 | #define BIP_INLINE_VECS 4 | ||
| 31 | |||
| 32 | static struct kmem_cache *bip_slab; | ||
| 33 | static struct workqueue_struct *kintegrityd_wq; | ||
| 34 | |||
| 35 | /** | ||
| 36 | * bio_integrity_alloc - Allocate integrity payload and attach it to bio | ||
| 37 | * @bio: bio to attach integrity metadata to | ||
| 38 | * @gfp_mask: Memory allocation mask | ||
| 39 | * @nr_vecs: Number of integrity metadata scatter-gather elements | ||
| 40 | * | ||
| 41 | * Description: This function prepares a bio for attaching integrity | ||
| 42 | * metadata. nr_vecs specifies the maximum number of pages containing | ||
| 43 | * integrity metadata that can be attached. | ||
| 44 | */ | ||
| 45 | struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, | ||
| 46 | gfp_t gfp_mask, | ||
| 47 | unsigned int nr_vecs) | ||
| 48 | { | ||
| 49 | struct bio_integrity_payload *bip; | ||
| 50 | struct bio_set *bs = bio->bi_pool; | ||
| 51 | unsigned long idx = BIO_POOL_NONE; | ||
| 52 | unsigned inline_vecs; | ||
| 53 | |||
| 54 | if (!bs) { | ||
| 55 | bip = kmalloc(sizeof(struct bio_integrity_payload) + | ||
| 56 | sizeof(struct bio_vec) * nr_vecs, gfp_mask); | ||
| 57 | inline_vecs = nr_vecs; | ||
| 58 | } else { | ||
| 59 | bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask); | ||
| 60 | inline_vecs = BIP_INLINE_VECS; | ||
| 61 | } | ||
| 62 | |||
| 63 | if (unlikely(!bip)) | ||
| 64 | return NULL; | ||
| 65 | |||
| 66 | memset(bip, 0, sizeof(*bip)); | ||
| 67 | |||
| 68 | if (nr_vecs > inline_vecs) { | ||
| 69 | bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx, | ||
| 70 | bs->bvec_integrity_pool); | ||
| 71 | if (!bip->bip_vec) | ||
| 72 | goto err; | ||
| 73 | } else { | ||
| 74 | bip->bip_vec = bip->bip_inline_vecs; | ||
| 75 | } | ||
| 76 | |||
| 77 | bip->bip_slab = idx; | ||
| 78 | bip->bip_bio = bio; | ||
| 79 | bio->bi_integrity = bip; | ||
| 80 | |||
| 81 | return bip; | ||
| 82 | err: | ||
| 83 | mempool_free(bip, bs->bio_integrity_pool); | ||
| 84 | return NULL; | ||
| 85 | } | ||
| 86 | EXPORT_SYMBOL(bio_integrity_alloc); | ||
| 87 | |||
| 88 | /** | ||
| 89 | * bio_integrity_free - Free bio integrity payload | ||
| 90 | * @bio: bio containing bip to be freed | ||
| 91 | * | ||
| 92 | * Description: Used to free the integrity portion of a bio. Usually | ||
| 93 | * called from bio_free(). | ||
| 94 | */ | ||
| 95 | void bio_integrity_free(struct bio *bio) | ||
| 96 | { | ||
| 97 | struct bio_integrity_payload *bip = bio->bi_integrity; | ||
| 98 | struct bio_set *bs = bio->bi_pool; | ||
| 99 | |||
| 100 | if (bip->bip_owns_buf) | ||
| 101 | kfree(bip->bip_buf); | ||
| 102 | |||
| 103 | if (bs) { | ||
| 104 | if (bip->bip_slab != BIO_POOL_NONE) | ||
| 105 | bvec_free(bs->bvec_integrity_pool, bip->bip_vec, | ||
| 106 | bip->bip_slab); | ||
| 107 | |||
| 108 | mempool_free(bip, bs->bio_integrity_pool); | ||
| 109 | } else { | ||
| 110 | kfree(bip); | ||
| 111 | } | ||
| 112 | |||
| 113 | bio->bi_integrity = NULL; | ||
| 114 | } | ||
| 115 | EXPORT_SYMBOL(bio_integrity_free); | ||
| 116 | |||
| 117 | static inline unsigned int bip_integrity_vecs(struct bio_integrity_payload *bip) | ||
| 118 | { | ||
| 119 | if (bip->bip_slab == BIO_POOL_NONE) | ||
| 120 | return BIP_INLINE_VECS; | ||
| 121 | |||
| 122 | return bvec_nr_vecs(bip->bip_slab); | ||
| 123 | } | ||
| 124 | |||
| 125 | /** | ||
| 126 | * bio_integrity_add_page - Attach integrity metadata | ||
| 127 | * @bio: bio to update | ||
| 128 | * @page: page containing integrity metadata | ||
| 129 | * @len: number of bytes of integrity metadata in page | ||
| 130 | * @offset: start offset within page | ||
| 131 | * | ||
| 132 | * Description: Attach a page containing integrity metadata to bio. | ||
| 133 | */ | ||
| 134 | int bio_integrity_add_page(struct bio *bio, struct page *page, | ||
| 135 | unsigned int len, unsigned int offset) | ||
| 136 | { | ||
| 137 | struct bio_integrity_payload *bip = bio->bi_integrity; | ||
| 138 | struct bio_vec *iv; | ||
| 139 | |||
| 140 | if (bip->bip_vcnt >= bip_integrity_vecs(bip)) { | ||
| 141 | printk(KERN_ERR "%s: bip_vec full\n", __func__); | ||
| 142 | return 0; | ||
| 143 | } | ||
| 144 | |||
| 145 | iv = bip->bip_vec + bip->bip_vcnt; | ||
| 146 | |||
| 147 | iv->bv_page = page; | ||
| 148 | iv->bv_len = len; | ||
| 149 | iv->bv_offset = offset; | ||
| 150 | bip->bip_vcnt++; | ||
| 151 | |||
| 152 | return len; | ||
| 153 | } | ||
| 154 | EXPORT_SYMBOL(bio_integrity_add_page); | ||
| 155 | |||
| 156 | static int bdev_integrity_enabled(struct block_device *bdev, int rw) | ||
| 157 | { | ||
| 158 | struct blk_integrity *bi = bdev_get_integrity(bdev); | ||
| 159 | |||
| 160 | if (bi == NULL) | ||
| 161 | return 0; | ||
| 162 | |||
| 163 | if (rw == READ && bi->verify_fn != NULL && | ||
| 164 | (bi->flags & INTEGRITY_FLAG_READ)) | ||
| 165 | return 1; | ||
| 166 | |||
| 167 | if (rw == WRITE && bi->generate_fn != NULL && | ||
| 168 | (bi->flags & INTEGRITY_FLAG_WRITE)) | ||
| 169 | return 1; | ||
| 170 | |||
| 171 | return 0; | ||
| 172 | } | ||
| 173 | |||
| 174 | /** | ||
| 175 | * bio_integrity_enabled - Check whether integrity can be passed | ||
| 176 | * @bio: bio to check | ||
| 177 | * | ||
| 178 | * Description: Determines whether bio_integrity_prep() can be called | ||
| 179 | * on this bio or not. bio data direction and target device must be | ||
| 180 | * set prior to calling. The functions honors the write_generate and | ||
| 181 | * read_verify flags in sysfs. | ||
| 182 | */ | ||
| 183 | int bio_integrity_enabled(struct bio *bio) | ||
| 184 | { | ||
| 185 | if (!bio_is_rw(bio)) | ||
| 186 | return 0; | ||
| 187 | |||
| 188 | /* Already protected? */ | ||
| 189 | if (bio_integrity(bio)) | ||
| 190 | return 0; | ||
| 191 | |||
| 192 | return bdev_integrity_enabled(bio->bi_bdev, bio_data_dir(bio)); | ||
| 193 | } | ||
| 194 | EXPORT_SYMBOL(bio_integrity_enabled); | ||
| 195 | |||
| 196 | /** | ||
| 197 | * bio_integrity_hw_sectors - Convert 512b sectors to hardware ditto | ||
| 198 | * @bi: blk_integrity profile for device | ||
| 199 | * @sectors: Number of 512 sectors to convert | ||
| 200 | * | ||
| 201 | * Description: The block layer calculates everything in 512 byte | ||
| 202 | * sectors but integrity metadata is done in terms of the hardware | ||
| 203 | * sector size of the storage device. Convert the block layer sectors | ||
| 204 | * to physical sectors. | ||
| 205 | */ | ||
| 206 | static inline unsigned int bio_integrity_hw_sectors(struct blk_integrity *bi, | ||
| 207 | unsigned int sectors) | ||
| 208 | { | ||
| 209 | /* At this point there are only 512b or 4096b DIF/EPP devices */ | ||
| 210 | if (bi->sector_size == 4096) | ||
| 211 | return sectors >>= 3; | ||
| 212 | |||
| 213 | return sectors; | ||
| 214 | } | ||
| 215 | |||
| 216 | static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, | ||
| 217 | unsigned int sectors) | ||
| 218 | { | ||
| 219 | return bio_integrity_hw_sectors(bi, sectors) * bi->tuple_size; | ||
| 220 | } | ||
| 221 | |||
| 222 | /** | ||
| 223 | * bio_integrity_tag_size - Retrieve integrity tag space | ||
| 224 | * @bio: bio to inspect | ||
| 225 | * | ||
| 226 | * Description: Returns the maximum number of tag bytes that can be | ||
| 227 | * attached to this bio. Filesystems can use this to determine how | ||
| 228 | * much metadata to attach to an I/O. | ||
| 229 | */ | ||
| 230 | unsigned int bio_integrity_tag_size(struct bio *bio) | ||
| 231 | { | ||
| 232 | struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); | ||
| 233 | |||
| 234 | BUG_ON(bio->bi_iter.bi_size == 0); | ||
| 235 | |||
| 236 | return bi->tag_size * (bio->bi_iter.bi_size / bi->sector_size); | ||
| 237 | } | ||
| 238 | EXPORT_SYMBOL(bio_integrity_tag_size); | ||
| 239 | |||
| 240 | static int bio_integrity_tag(struct bio *bio, void *tag_buf, unsigned int len, | ||
| 241 | int set) | ||
| 242 | { | ||
| 243 | struct bio_integrity_payload *bip = bio->bi_integrity; | ||
| 244 | struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); | ||
| 245 | unsigned int nr_sectors; | ||
| 246 | |||
| 247 | BUG_ON(bip->bip_buf == NULL); | ||
| 248 | |||
| 249 | if (bi->tag_size == 0) | ||
| 250 | return -1; | ||
| 251 | |||
| 252 | nr_sectors = bio_integrity_hw_sectors(bi, | ||
| 253 | DIV_ROUND_UP(len, bi->tag_size)); | ||
| 254 | |||
| 255 | if (nr_sectors * bi->tuple_size > bip->bip_iter.bi_size) { | ||
| 256 | printk(KERN_ERR "%s: tag too big for bio: %u > %u\n", __func__, | ||
| 257 | nr_sectors * bi->tuple_size, bip->bip_iter.bi_size); | ||
| 258 | return -1; | ||
| 259 | } | ||
| 260 | |||
| 261 | if (set) | ||
| 262 | bi->set_tag_fn(bip->bip_buf, tag_buf, nr_sectors); | ||
| 263 | else | ||
| 264 | bi->get_tag_fn(bip->bip_buf, tag_buf, nr_sectors); | ||
| 265 | |||
| 266 | return 0; | ||
| 267 | } | ||
| 268 | |||
| 269 | /** | ||
| 270 | * bio_integrity_set_tag - Attach a tag buffer to a bio | ||
| 271 | * @bio: bio to attach buffer to | ||
| 272 | * @tag_buf: Pointer to a buffer containing tag data | ||
| 273 | * @len: Length of the included buffer | ||
| 274 | * | ||
| 275 | * Description: Use this function to tag a bio by leveraging the extra | ||
| 276 | * space provided by devices formatted with integrity protection. The | ||
| 277 | * size of the integrity buffer must be <= to the size reported by | ||
| 278 | * bio_integrity_tag_size(). | ||
| 279 | */ | ||
| 280 | int bio_integrity_set_tag(struct bio *bio, void *tag_buf, unsigned int len) | ||
| 281 | { | ||
| 282 | BUG_ON(bio_data_dir(bio) != WRITE); | ||
| 283 | |||
| 284 | return bio_integrity_tag(bio, tag_buf, len, 1); | ||
| 285 | } | ||
| 286 | EXPORT_SYMBOL(bio_integrity_set_tag); | ||
| 287 | |||
| 288 | /** | ||
| 289 | * bio_integrity_get_tag - Retrieve a tag buffer from a bio | ||
| 290 | * @bio: bio to retrieve buffer from | ||
| 291 | * @tag_buf: Pointer to a buffer for the tag data | ||
| 292 | * @len: Length of the target buffer | ||
| 293 | * | ||
| 294 | * Description: Use this function to retrieve the tag buffer from a | ||
| 295 | * completed I/O. The size of the integrity buffer must be <= to the | ||
| 296 | * size reported by bio_integrity_tag_size(). | ||
| 297 | */ | ||
| 298 | int bio_integrity_get_tag(struct bio *bio, void *tag_buf, unsigned int len) | ||
| 299 | { | ||
| 300 | BUG_ON(bio_data_dir(bio) != READ); | ||
| 301 | |||
| 302 | return bio_integrity_tag(bio, tag_buf, len, 0); | ||
| 303 | } | ||
| 304 | EXPORT_SYMBOL(bio_integrity_get_tag); | ||
| 305 | |||
| 306 | /** | ||
| 307 | * bio_integrity_generate_verify - Generate/verify integrity metadata for a bio | ||
| 308 | * @bio: bio to generate/verify integrity metadata for | ||
| 309 | * @operate: operate number, 1 for generate, 0 for verify | ||
| 310 | */ | ||
| 311 | static int bio_integrity_generate_verify(struct bio *bio, int operate) | ||
| 312 | { | ||
| 313 | struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); | ||
| 314 | struct blk_integrity_exchg bix; | ||
| 315 | struct bio_vec *bv; | ||
| 316 | sector_t sector; | ||
| 317 | unsigned int sectors, ret = 0, i; | ||
| 318 | void *prot_buf = bio->bi_integrity->bip_buf; | ||
| 319 | |||
| 320 | if (operate) | ||
| 321 | sector = bio->bi_iter.bi_sector; | ||
| 322 | else | ||
| 323 | sector = bio->bi_integrity->bip_iter.bi_sector; | ||
| 324 | |||
| 325 | bix.disk_name = bio->bi_bdev->bd_disk->disk_name; | ||
| 326 | bix.sector_size = bi->sector_size; | ||
| 327 | |||
| 328 | bio_for_each_segment_all(bv, bio, i) { | ||
| 329 | void *kaddr = kmap_atomic(bv->bv_page); | ||
| 330 | bix.data_buf = kaddr + bv->bv_offset; | ||
| 331 | bix.data_size = bv->bv_len; | ||
| 332 | bix.prot_buf = prot_buf; | ||
| 333 | bix.sector = sector; | ||
| 334 | |||
| 335 | if (operate) | ||
| 336 | bi->generate_fn(&bix); | ||
| 337 | else { | ||
| 338 | ret = bi->verify_fn(&bix); | ||
| 339 | if (ret) { | ||
| 340 | kunmap_atomic(kaddr); | ||
| 341 | return ret; | ||
| 342 | } | ||
| 343 | } | ||
| 344 | |||
| 345 | sectors = bv->bv_len / bi->sector_size; | ||
| 346 | sector += sectors; | ||
| 347 | prot_buf += sectors * bi->tuple_size; | ||
| 348 | |||
| 349 | kunmap_atomic(kaddr); | ||
| 350 | } | ||
| 351 | return ret; | ||
| 352 | } | ||
| 353 | |||
| 354 | /** | ||
| 355 | * bio_integrity_generate - Generate integrity metadata for a bio | ||
| 356 | * @bio: bio to generate integrity metadata for | ||
| 357 | * | ||
| 358 | * Description: Generates integrity metadata for a bio by calling the | ||
| 359 | * block device's generation callback function. The bio must have a | ||
| 360 | * bip attached with enough room to accommodate the generated | ||
| 361 | * integrity metadata. | ||
| 362 | */ | ||
| 363 | static void bio_integrity_generate(struct bio *bio) | ||
| 364 | { | ||
| 365 | bio_integrity_generate_verify(bio, 1); | ||
| 366 | } | ||
| 367 | |||
| 368 | static inline unsigned short blk_integrity_tuple_size(struct blk_integrity *bi) | ||
| 369 | { | ||
| 370 | if (bi) | ||
| 371 | return bi->tuple_size; | ||
| 372 | |||
| 373 | return 0; | ||
| 374 | } | ||
| 375 | |||
| 376 | /** | ||
| 377 | * bio_integrity_prep - Prepare bio for integrity I/O | ||
| 378 | * @bio: bio to prepare | ||
| 379 | * | ||
| 380 | * Description: Allocates a buffer for integrity metadata, maps the | ||
| 381 | * pages and attaches them to a bio. The bio must have data | ||
| 382 | * direction, target device and start sector set priot to calling. In | ||
| 383 | * the WRITE case, integrity metadata will be generated using the | ||
| 384 | * block device's integrity function. In the READ case, the buffer | ||
| 385 | * will be prepared for DMA and a suitable end_io handler set up. | ||
| 386 | */ | ||
| 387 | int bio_integrity_prep(struct bio *bio) | ||
| 388 | { | ||
| 389 | struct bio_integrity_payload *bip; | ||
| 390 | struct blk_integrity *bi; | ||
| 391 | struct request_queue *q; | ||
| 392 | void *buf; | ||
| 393 | unsigned long start, end; | ||
| 394 | unsigned int len, nr_pages; | ||
| 395 | unsigned int bytes, offset, i; | ||
| 396 | unsigned int sectors; | ||
| 397 | |||
| 398 | bi = bdev_get_integrity(bio->bi_bdev); | ||
| 399 | q = bdev_get_queue(bio->bi_bdev); | ||
| 400 | BUG_ON(bi == NULL); | ||
| 401 | BUG_ON(bio_integrity(bio)); | ||
| 402 | |||
| 403 | sectors = bio_integrity_hw_sectors(bi, bio_sectors(bio)); | ||
| 404 | |||
| 405 | /* Allocate kernel buffer for protection data */ | ||
| 406 | len = sectors * blk_integrity_tuple_size(bi); | ||
| 407 | buf = kmalloc(len, GFP_NOIO | q->bounce_gfp); | ||
| 408 | if (unlikely(buf == NULL)) { | ||
| 409 | printk(KERN_ERR "could not allocate integrity buffer\n"); | ||
| 410 | return -ENOMEM; | ||
| 411 | } | ||
| 412 | |||
| 413 | end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
| 414 | start = ((unsigned long) buf) >> PAGE_SHIFT; | ||
| 415 | nr_pages = end - start; | ||
| 416 | |||
| 417 | /* Allocate bio integrity payload and integrity vectors */ | ||
| 418 | bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages); | ||
| 419 | if (unlikely(bip == NULL)) { | ||
| 420 | printk(KERN_ERR "could not allocate data integrity bioset\n"); | ||
| 421 | kfree(buf); | ||
| 422 | return -EIO; | ||
| 423 | } | ||
| 424 | |||
| 425 | bip->bip_owns_buf = 1; | ||
| 426 | bip->bip_buf = buf; | ||
| 427 | bip->bip_iter.bi_size = len; | ||
| 428 | bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; | ||
| 429 | |||
| 430 | /* Map it */ | ||
| 431 | offset = offset_in_page(buf); | ||
| 432 | for (i = 0 ; i < nr_pages ; i++) { | ||
| 433 | int ret; | ||
| 434 | bytes = PAGE_SIZE - offset; | ||
| 435 | |||
| 436 | if (len <= 0) | ||
| 437 | break; | ||
| 438 | |||
| 439 | if (bytes > len) | ||
| 440 | bytes = len; | ||
| 441 | |||
| 442 | ret = bio_integrity_add_page(bio, virt_to_page(buf), | ||
| 443 | bytes, offset); | ||
| 444 | |||
| 445 | if (ret == 0) | ||
| 446 | return 0; | ||
| 447 | |||
| 448 | if (ret < bytes) | ||
| 449 | break; | ||
| 450 | |||
| 451 | buf += bytes; | ||
| 452 | len -= bytes; | ||
| 453 | offset = 0; | ||
| 454 | } | ||
| 455 | |||
| 456 | /* Install custom I/O completion handler if read verify is enabled */ | ||
| 457 | if (bio_data_dir(bio) == READ) { | ||
| 458 | bip->bip_end_io = bio->bi_end_io; | ||
| 459 | bio->bi_end_io = bio_integrity_endio; | ||
| 460 | } | ||
| 461 | |||
| 462 | /* Auto-generate integrity metadata if this is a write */ | ||
| 463 | if (bio_data_dir(bio) == WRITE) | ||
| 464 | bio_integrity_generate(bio); | ||
| 465 | |||
| 466 | return 0; | ||
| 467 | } | ||
| 468 | EXPORT_SYMBOL(bio_integrity_prep); | ||
| 469 | |||
| 470 | /** | ||
| 471 | * bio_integrity_verify - Verify integrity metadata for a bio | ||
| 472 | * @bio: bio to verify | ||
| 473 | * | ||
| 474 | * Description: This function is called to verify the integrity of a | ||
| 475 | * bio. The data in the bio io_vec is compared to the integrity | ||
| 476 | * metadata returned by the HBA. | ||
| 477 | */ | ||
| 478 | static int bio_integrity_verify(struct bio *bio) | ||
| 479 | { | ||
| 480 | return bio_integrity_generate_verify(bio, 0); | ||
| 481 | } | ||
| 482 | |||
| 483 | /** | ||
| 484 | * bio_integrity_verify_fn - Integrity I/O completion worker | ||
| 485 | * @work: Work struct stored in bio to be verified | ||
| 486 | * | ||
| 487 | * Description: This workqueue function is called to complete a READ | ||
| 488 | * request. The function verifies the transferred integrity metadata | ||
| 489 | * and then calls the original bio end_io function. | ||
| 490 | */ | ||
| 491 | static void bio_integrity_verify_fn(struct work_struct *work) | ||
| 492 | { | ||
| 493 | struct bio_integrity_payload *bip = | ||
| 494 | container_of(work, struct bio_integrity_payload, bip_work); | ||
| 495 | struct bio *bio = bip->bip_bio; | ||
| 496 | int error; | ||
| 497 | |||
| 498 | error = bio_integrity_verify(bio); | ||
| 499 | |||
| 500 | /* Restore original bio completion handler */ | ||
| 501 | bio->bi_end_io = bip->bip_end_io; | ||
| 502 | bio_endio_nodec(bio, error); | ||
| 503 | } | ||
| 504 | |||
| 505 | /** | ||
| 506 | * bio_integrity_endio - Integrity I/O completion function | ||
| 507 | * @bio: Protected bio | ||
| 508 | * @error: Pointer to errno | ||
| 509 | * | ||
| 510 | * Description: Completion for integrity I/O | ||
| 511 | * | ||
| 512 | * Normally I/O completion is done in interrupt context. However, | ||
| 513 | * verifying I/O integrity is a time-consuming task which must be run | ||
| 514 | * in process context. This function postpones completion | ||
| 515 | * accordingly. | ||
| 516 | */ | ||
| 517 | void bio_integrity_endio(struct bio *bio, int error) | ||
| 518 | { | ||
| 519 | struct bio_integrity_payload *bip = bio->bi_integrity; | ||
| 520 | |||
| 521 | BUG_ON(bip->bip_bio != bio); | ||
| 522 | |||
| 523 | /* In case of an I/O error there is no point in verifying the | ||
| 524 | * integrity metadata. Restore original bio end_io handler | ||
| 525 | * and run it. | ||
| 526 | */ | ||
| 527 | if (error) { | ||
| 528 | bio->bi_end_io = bip->bip_end_io; | ||
| 529 | bio_endio(bio, error); | ||
| 530 | |||
| 531 | return; | ||
| 532 | } | ||
| 533 | |||
| 534 | INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); | ||
| 535 | queue_work(kintegrityd_wq, &bip->bip_work); | ||
| 536 | } | ||
| 537 | EXPORT_SYMBOL(bio_integrity_endio); | ||
| 538 | |||
| 539 | /** | ||
| 540 | * bio_integrity_advance - Advance integrity vector | ||
| 541 | * @bio: bio whose integrity vector to update | ||
| 542 | * @bytes_done: number of data bytes that have been completed | ||
| 543 | * | ||
| 544 | * Description: This function calculates how many integrity bytes the | ||
| 545 | * number of completed data bytes correspond to and advances the | ||
| 546 | * integrity vector accordingly. | ||
| 547 | */ | ||
| 548 | void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) | ||
| 549 | { | ||
| 550 | struct bio_integrity_payload *bip = bio->bi_integrity; | ||
| 551 | struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); | ||
| 552 | unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); | ||
| 553 | |||
| 554 | bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); | ||
| 555 | } | ||
| 556 | EXPORT_SYMBOL(bio_integrity_advance); | ||
| 557 | |||
| 558 | /** | ||
| 559 | * bio_integrity_trim - Trim integrity vector | ||
| 560 | * @bio: bio whose integrity vector to update | ||
| 561 | * @offset: offset to first data sector | ||
| 562 | * @sectors: number of data sectors | ||
| 563 | * | ||
| 564 | * Description: Used to trim the integrity vector in a cloned bio. | ||
| 565 | * The ivec will be advanced corresponding to 'offset' data sectors | ||
| 566 | * and the length will be truncated corresponding to 'len' data | ||
| 567 | * sectors. | ||
| 568 | */ | ||
| 569 | void bio_integrity_trim(struct bio *bio, unsigned int offset, | ||
| 570 | unsigned int sectors) | ||
| 571 | { | ||
| 572 | struct bio_integrity_payload *bip = bio->bi_integrity; | ||
| 573 | struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev); | ||
| 574 | |||
| 575 | bio_integrity_advance(bio, offset << 9); | ||
| 576 | bip->bip_iter.bi_size = bio_integrity_bytes(bi, sectors); | ||
| 577 | } | ||
| 578 | EXPORT_SYMBOL(bio_integrity_trim); | ||
| 579 | |||
| 580 | /** | ||
| 581 | * bio_integrity_clone - Callback for cloning bios with integrity metadata | ||
| 582 | * @bio: New bio | ||
| 583 | * @bio_src: Original bio | ||
| 584 | * @gfp_mask: Memory allocation mask | ||
| 585 | * | ||
| 586 | * Description: Called to allocate a bip when cloning a bio | ||
| 587 | */ | ||
| 588 | int bio_integrity_clone(struct bio *bio, struct bio *bio_src, | ||
| 589 | gfp_t gfp_mask) | ||
| 590 | { | ||
| 591 | struct bio_integrity_payload *bip_src = bio_src->bi_integrity; | ||
| 592 | struct bio_integrity_payload *bip; | ||
| 593 | |||
| 594 | BUG_ON(bip_src == NULL); | ||
| 595 | |||
| 596 | bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt); | ||
| 597 | |||
| 598 | if (bip == NULL) | ||
| 599 | return -EIO; | ||
| 600 | |||
| 601 | memcpy(bip->bip_vec, bip_src->bip_vec, | ||
| 602 | bip_src->bip_vcnt * sizeof(struct bio_vec)); | ||
| 603 | |||
| 604 | bip->bip_vcnt = bip_src->bip_vcnt; | ||
| 605 | bip->bip_iter = bip_src->bip_iter; | ||
| 606 | |||
| 607 | return 0; | ||
| 608 | } | ||
| 609 | EXPORT_SYMBOL(bio_integrity_clone); | ||
| 610 | |||
| 611 | int bioset_integrity_create(struct bio_set *bs, int pool_size) | ||
| 612 | { | ||
| 613 | if (bs->bio_integrity_pool) | ||
| 614 | return 0; | ||
| 615 | |||
| 616 | bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab); | ||
| 617 | if (!bs->bio_integrity_pool) | ||
| 618 | return -1; | ||
| 619 | |||
| 620 | bs->bvec_integrity_pool = biovec_create_pool(pool_size); | ||
| 621 | if (!bs->bvec_integrity_pool) { | ||
| 622 | mempool_destroy(bs->bio_integrity_pool); | ||
| 623 | return -1; | ||
| 624 | } | ||
| 625 | |||
| 626 | return 0; | ||
| 627 | } | ||
| 628 | EXPORT_SYMBOL(bioset_integrity_create); | ||
| 629 | |||
| 630 | void bioset_integrity_free(struct bio_set *bs) | ||
| 631 | { | ||
| 632 | if (bs->bio_integrity_pool) | ||
| 633 | mempool_destroy(bs->bio_integrity_pool); | ||
| 634 | |||
| 635 | if (bs->bvec_integrity_pool) | ||
| 636 | mempool_destroy(bs->bvec_integrity_pool); | ||
| 637 | } | ||
| 638 | EXPORT_SYMBOL(bioset_integrity_free); | ||
| 639 | |||
| 640 | void __init bio_integrity_init(void) | ||
| 641 | { | ||
| 642 | /* | ||
| 643 | * kintegrityd won't block much but may burn a lot of CPU cycles. | ||
| 644 | * Make it highpri CPU intensive wq with max concurrency of 1. | ||
| 645 | */ | ||
| 646 | kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | | ||
| 647 | WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); | ||
| 648 | if (!kintegrityd_wq) | ||
| 649 | panic("Failed to create kintegrityd\n"); | ||
| 650 | |||
| 651 | bip_slab = kmem_cache_create("bio_integrity_payload", | ||
| 652 | sizeof(struct bio_integrity_payload) + | ||
| 653 | sizeof(struct bio_vec) * BIP_INLINE_VECS, | ||
| 654 | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | ||
| 655 | if (!bip_slab) | ||
| 656 | panic("Failed to create slab\n"); | ||
| 657 | } | ||
diff --git a/block/bio.c b/block/bio.c new file mode 100644 index 000000000000..96d28eee8a1e --- /dev/null +++ b/block/bio.c | |||
| @@ -0,0 +1,2038 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> | ||
| 3 | * | ||
| 4 | * This program is free software; you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License version 2 as | ||
| 6 | * published by the Free Software Foundation. | ||
| 7 | * | ||
| 8 | * This program is distributed in the hope that it will be useful, | ||
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 11 | * GNU General Public License for more details. | ||
| 12 | * | ||
| 13 | * You should have received a copy of the GNU General Public Licens | ||
| 14 | * along with this program; if not, write to the Free Software | ||
| 15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | ||
| 16 | * | ||
| 17 | */ | ||
| 18 | #include <linux/mm.h> | ||
| 19 | #include <linux/swap.h> | ||
| 20 | #include <linux/bio.h> | ||
| 21 | #include <linux/blkdev.h> | ||
| 22 | #include <linux/uio.h> | ||
| 23 | #include <linux/iocontext.h> | ||
| 24 | #include <linux/slab.h> | ||
| 25 | #include <linux/init.h> | ||
| 26 | #include <linux/kernel.h> | ||
| 27 | #include <linux/export.h> | ||
| 28 | #include <linux/mempool.h> | ||
| 29 | #include <linux/workqueue.h> | ||
| 30 | #include <linux/cgroup.h> | ||
| 31 | #include <scsi/sg.h> /* for struct sg_iovec */ | ||
| 32 | |||
| 33 | #include <trace/events/block.h> | ||
| 34 | |||
| 35 | /* | ||
| 36 | * Test patch to inline a certain number of bi_io_vec's inside the bio | ||
| 37 | * itself, to shrink a bio data allocation from two mempool calls to one | ||
| 38 | */ | ||
| 39 | #define BIO_INLINE_VECS 4 | ||
| 40 | |||
| 41 | /* | ||
| 42 | * if you change this list, also change bvec_alloc or things will | ||
| 43 | * break badly! cannot be bigger than what you can fit into an | ||
| 44 | * unsigned short | ||
| 45 | */ | ||
| 46 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } | ||
| 47 | static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { | ||
| 48 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), | ||
| 49 | }; | ||
| 50 | #undef BV | ||
| 51 | |||
| 52 | /* | ||
| 53 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | ||
| 54 | * IO code that does not need private memory pools. | ||
| 55 | */ | ||
| 56 | struct bio_set *fs_bio_set; | ||
| 57 | EXPORT_SYMBOL(fs_bio_set); | ||
| 58 | |||
| 59 | /* | ||
| 60 | * Our slab pool management | ||
| 61 | */ | ||
| 62 | struct bio_slab { | ||
| 63 | struct kmem_cache *slab; | ||
| 64 | unsigned int slab_ref; | ||
| 65 | unsigned int slab_size; | ||
| 66 | char name[8]; | ||
| 67 | }; | ||
| 68 | static DEFINE_MUTEX(bio_slab_lock); | ||
| 69 | static struct bio_slab *bio_slabs; | ||
| 70 | static unsigned int bio_slab_nr, bio_slab_max; | ||
| 71 | |||
| 72 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | ||
| 73 | { | ||
| 74 | unsigned int sz = sizeof(struct bio) + extra_size; | ||
| 75 | struct kmem_cache *slab = NULL; | ||
| 76 | struct bio_slab *bslab, *new_bio_slabs; | ||
| 77 | unsigned int new_bio_slab_max; | ||
| 78 | unsigned int i, entry = -1; | ||
| 79 | |||
| 80 | mutex_lock(&bio_slab_lock); | ||
| 81 | |||
| 82 | i = 0; | ||
| 83 | while (i < bio_slab_nr) { | ||
| 84 | bslab = &bio_slabs[i]; | ||
| 85 | |||
| 86 | if (!bslab->slab && entry == -1) | ||
| 87 | entry = i; | ||
| 88 | else if (bslab->slab_size == sz) { | ||
| 89 | slab = bslab->slab; | ||
| 90 | bslab->slab_ref++; | ||
| 91 | break; | ||
| 92 | } | ||
| 93 | i++; | ||
| 94 | } | ||
| 95 | |||
| 96 | if (slab) | ||
| 97 | goto out_unlock; | ||
| 98 | |||
| 99 | if (bio_slab_nr == bio_slab_max && entry == -1) { | ||
| 100 | new_bio_slab_max = bio_slab_max << 1; | ||
| 101 | new_bio_slabs = krealloc(bio_slabs, | ||
| 102 | new_bio_slab_max * sizeof(struct bio_slab), | ||
| 103 | GFP_KERNEL); | ||
| 104 | if (!new_bio_slabs) | ||
| 105 | goto out_unlock; | ||
| 106 | bio_slab_max = new_bio_slab_max; | ||
| 107 | bio_slabs = new_bio_slabs; | ||
| 108 | } | ||
| 109 | if (entry == -1) | ||
| 110 | entry = bio_slab_nr++; | ||
| 111 | |||
| 112 | bslab = &bio_slabs[entry]; | ||
| 113 | |||
| 114 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | ||
| 115 | slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); | ||
| 116 | if (!slab) | ||
| 117 | goto out_unlock; | ||
| 118 | |||
| 119 | bslab->slab = slab; | ||
| 120 | bslab->slab_ref = 1; | ||
| 121 | bslab->slab_size = sz; | ||
| 122 | out_unlock: | ||
| 123 | mutex_unlock(&bio_slab_lock); | ||
| 124 | return slab; | ||
| 125 | } | ||
| 126 | |||
| 127 | static void bio_put_slab(struct bio_set *bs) | ||
| 128 | { | ||
| 129 | struct bio_slab *bslab = NULL; | ||
| 130 | unsigned int i; | ||
| 131 | |||
| 132 | mutex_lock(&bio_slab_lock); | ||
| 133 | |||
| 134 | for (i = 0; i < bio_slab_nr; i++) { | ||
| 135 | if (bs->bio_slab == bio_slabs[i].slab) { | ||
| 136 | bslab = &bio_slabs[i]; | ||
| 137 | break; | ||
| 138 | } | ||
| 139 | } | ||
| 140 | |||
| 141 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | ||
| 142 | goto out; | ||
| 143 | |||
| 144 | WARN_ON(!bslab->slab_ref); | ||
| 145 | |||
| 146 | if (--bslab->slab_ref) | ||
| 147 | goto out; | ||
| 148 | |||
| 149 | kmem_cache_destroy(bslab->slab); | ||
| 150 | bslab->slab = NULL; | ||
| 151 | |||
| 152 | out: | ||
| 153 | mutex_unlock(&bio_slab_lock); | ||
| 154 | } | ||
| 155 | |||
| 156 | unsigned int bvec_nr_vecs(unsigned short idx) | ||
| 157 | { | ||
| 158 | return bvec_slabs[idx].nr_vecs; | ||
| 159 | } | ||
| 160 | |||
| 161 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) | ||
| 162 | { | ||
| 163 | BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); | ||
| 164 | |||
| 165 | if (idx == BIOVEC_MAX_IDX) | ||
| 166 | mempool_free(bv, pool); | ||
| 167 | else { | ||
| 168 | struct biovec_slab *bvs = bvec_slabs + idx; | ||
| 169 | |||
| 170 | kmem_cache_free(bvs->slab, bv); | ||
| 171 | } | ||
| 172 | } | ||
| 173 | |||
| 174 | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, | ||
| 175 | mempool_t *pool) | ||
| 176 | { | ||
| 177 | struct bio_vec *bvl; | ||
| 178 | |||
| 179 | /* | ||
| 180 | * see comment near bvec_array define! | ||
| 181 | */ | ||
| 182 | switch (nr) { | ||
| 183 | case 1: | ||
| 184 | *idx = 0; | ||
| 185 | break; | ||
| 186 | case 2 ... 4: | ||
| 187 | *idx = 1; | ||
| 188 | break; | ||
| 189 | case 5 ... 16: | ||
| 190 | *idx = 2; | ||
| 191 | break; | ||
| 192 | case 17 ... 64: | ||
| 193 | *idx = 3; | ||
| 194 | break; | ||
| 195 | case 65 ... 128: | ||
| 196 | *idx = 4; | ||
| 197 | break; | ||
| 198 | case 129 ... BIO_MAX_PAGES: | ||
| 199 | *idx = 5; | ||
| 200 | break; | ||
| 201 | default: | ||
| 202 | return NULL; | ||
| 203 | } | ||
| 204 | |||
| 205 | /* | ||
| 206 | * idx now points to the pool we want to allocate from. only the | ||
| 207 | * 1-vec entry pool is mempool backed. | ||
| 208 | */ | ||
| 209 | if (*idx == BIOVEC_MAX_IDX) { | ||
| 210 | fallback: | ||
| 211 | bvl = mempool_alloc(pool, gfp_mask); | ||
| 212 | } else { | ||
| 213 | struct biovec_slab *bvs = bvec_slabs + *idx; | ||
| 214 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); | ||
| 215 | |||
| 216 | /* | ||
| 217 | * Make this allocation restricted and don't dump info on | ||
| 218 | * allocation failures, since we'll fallback to the mempool | ||
| 219 | * in case of failure. | ||
| 220 | */ | ||
| 221 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; | ||
| 222 | |||
| 223 | /* | ||
| 224 | * Try a slab allocation. If this fails and __GFP_WAIT | ||
| 225 | * is set, retry with the 1-entry mempool | ||
| 226 | */ | ||
| 227 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); | ||
| 228 | if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { | ||
| 229 | *idx = BIOVEC_MAX_IDX; | ||
| 230 | goto fallback; | ||
| 231 | } | ||
| 232 | } | ||
| 233 | |||
| 234 | return bvl; | ||
| 235 | } | ||
| 236 | |||
| 237 | static void __bio_free(struct bio *bio) | ||
| 238 | { | ||
| 239 | bio_disassociate_task(bio); | ||
| 240 | |||
| 241 | if (bio_integrity(bio)) | ||
| 242 | bio_integrity_free(bio); | ||
| 243 | } | ||
| 244 | |||
| 245 | static void bio_free(struct bio *bio) | ||
| 246 | { | ||
| 247 | struct bio_set *bs = bio->bi_pool; | ||
| 248 | void *p; | ||
| 249 | |||
| 250 | __bio_free(bio); | ||
| 251 | |||
| 252 | if (bs) { | ||
| 253 | if (bio_flagged(bio, BIO_OWNS_VEC)) | ||
| 254 | bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); | ||
| 255 | |||
| 256 | /* | ||
| 257 | * If we have front padding, adjust the bio pointer before freeing | ||
| 258 | */ | ||
| 259 | p = bio; | ||
| 260 | p -= bs->front_pad; | ||
| 261 | |||
| 262 | mempool_free(p, bs->bio_pool); | ||
| 263 | } else { | ||
| 264 | /* Bio was allocated by bio_kmalloc() */ | ||
| 265 | kfree(bio); | ||
| 266 | } | ||
| 267 | } | ||
| 268 | |||
| 269 | void bio_init(struct bio *bio) | ||
| 270 | { | ||
| 271 | memset(bio, 0, sizeof(*bio)); | ||
| 272 | bio->bi_flags = 1 << BIO_UPTODATE; | ||
| 273 | atomic_set(&bio->bi_remaining, 1); | ||
| 274 | atomic_set(&bio->bi_cnt, 1); | ||
| 275 | } | ||
| 276 | EXPORT_SYMBOL(bio_init); | ||
| 277 | |||
| 278 | /** | ||
| 279 | * bio_reset - reinitialize a bio | ||
| 280 | * @bio: bio to reset | ||
| 281 | * | ||
| 282 | * Description: | ||
| 283 | * After calling bio_reset(), @bio will be in the same state as a freshly | ||
| 284 | * allocated bio returned bio bio_alloc_bioset() - the only fields that are | ||
| 285 | * preserved are the ones that are initialized by bio_alloc_bioset(). See | ||
| 286 | * comment in struct bio. | ||
| 287 | */ | ||
| 288 | void bio_reset(struct bio *bio) | ||
| 289 | { | ||
| 290 | unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); | ||
| 291 | |||
| 292 | __bio_free(bio); | ||
| 293 | |||
| 294 | memset(bio, 0, BIO_RESET_BYTES); | ||
| 295 | bio->bi_flags = flags|(1 << BIO_UPTODATE); | ||
| 296 | atomic_set(&bio->bi_remaining, 1); | ||
| 297 | } | ||
| 298 | EXPORT_SYMBOL(bio_reset); | ||
| 299 | |||
| 300 | static void bio_chain_endio(struct bio *bio, int error) | ||
| 301 | { | ||
| 302 | bio_endio(bio->bi_private, error); | ||
| 303 | bio_put(bio); | ||
| 304 | } | ||
| 305 | |||
| 306 | /** | ||
| 307 | * bio_chain - chain bio completions | ||
| 308 | * @bio: the target bio | ||
| 309 | * @parent: the @bio's parent bio | ||
| 310 | * | ||
| 311 | * The caller won't have a bi_end_io called when @bio completes - instead, | ||
| 312 | * @parent's bi_end_io won't be called until both @parent and @bio have | ||
| 313 | * completed; the chained bio will also be freed when it completes. | ||
| 314 | * | ||
| 315 | * The caller must not set bi_private or bi_end_io in @bio. | ||
| 316 | */ | ||
| 317 | void bio_chain(struct bio *bio, struct bio *parent) | ||
| 318 | { | ||
| 319 | BUG_ON(bio->bi_private || bio->bi_end_io); | ||
| 320 | |||
| 321 | bio->bi_private = parent; | ||
| 322 | bio->bi_end_io = bio_chain_endio; | ||
| 323 | atomic_inc(&parent->bi_remaining); | ||
| 324 | } | ||
| 325 | EXPORT_SYMBOL(bio_chain); | ||
| 326 | |||
| 327 | static void bio_alloc_rescue(struct work_struct *work) | ||
| 328 | { | ||
| 329 | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | ||
| 330 | struct bio *bio; | ||
| 331 | |||
| 332 | while (1) { | ||
| 333 | spin_lock(&bs->rescue_lock); | ||
| 334 | bio = bio_list_pop(&bs->rescue_list); | ||
| 335 | spin_unlock(&bs->rescue_lock); | ||
| 336 | |||
| 337 | if (!bio) | ||
| 338 | break; | ||
| 339 | |||
| 340 | generic_make_request(bio); | ||
| 341 | } | ||
| 342 | } | ||
| 343 | |||
| 344 | static void punt_bios_to_rescuer(struct bio_set *bs) | ||
| 345 | { | ||
| 346 | struct bio_list punt, nopunt; | ||
| 347 | struct bio *bio; | ||
| 348 | |||
| 349 | /* | ||
| 350 | * In order to guarantee forward progress we must punt only bios that | ||
| 351 | * were allocated from this bio_set; otherwise, if there was a bio on | ||
| 352 | * there for a stacking driver higher up in the stack, processing it | ||
| 353 | * could require allocating bios from this bio_set, and doing that from | ||
| 354 | * our own rescuer would be bad. | ||
| 355 | * | ||
| 356 | * Since bio lists are singly linked, pop them all instead of trying to | ||
| 357 | * remove from the middle of the list: | ||
| 358 | */ | ||
| 359 | |||
| 360 | bio_list_init(&punt); | ||
| 361 | bio_list_init(&nopunt); | ||
| 362 | |||
| 363 | while ((bio = bio_list_pop(current->bio_list))) | ||
| 364 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | ||
| 365 | |||
| 366 | *current->bio_list = nopunt; | ||
| 367 | |||
| 368 | spin_lock(&bs->rescue_lock); | ||
| 369 | bio_list_merge(&bs->rescue_list, &punt); | ||
| 370 | spin_unlock(&bs->rescue_lock); | ||
| 371 | |||
| 372 | queue_work(bs->rescue_workqueue, &bs->rescue_work); | ||
| 373 | } | ||
| 374 | |||
| 375 | /** | ||
| 376 | * bio_alloc_bioset - allocate a bio for I/O | ||
| 377 | * @gfp_mask: the GFP_ mask given to the slab allocator | ||
| 378 | * @nr_iovecs: number of iovecs to pre-allocate | ||
| 379 | * @bs: the bio_set to allocate from. | ||
| 380 | * | ||
| 381 | * Description: | ||
| 382 | * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is | ||
| 383 | * backed by the @bs's mempool. | ||
| 384 | * | ||
| 385 | * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be | ||
| 386 | * able to allocate a bio. This is due to the mempool guarantees. To make this | ||
| 387 | * work, callers must never allocate more than 1 bio at a time from this pool. | ||
| 388 | * Callers that need to allocate more than 1 bio must always submit the | ||
| 389 | * previously allocated bio for IO before attempting to allocate a new one. | ||
| 390 | * Failure to do so can cause deadlocks under memory pressure. | ||
| 391 | * | ||
| 392 | * Note that when running under generic_make_request() (i.e. any block | ||
| 393 | * driver), bios are not submitted until after you return - see the code in | ||
| 394 | * generic_make_request() that converts recursion into iteration, to prevent | ||
| 395 | * stack overflows. | ||
| 396 | * | ||
| 397 | * This would normally mean allocating multiple bios under | ||
| 398 | * generic_make_request() would be susceptible to deadlocks, but we have | ||
| 399 | * deadlock avoidance code that resubmits any blocked bios from a rescuer | ||
| 400 | * thread. | ||
| 401 | * | ||
| 402 | * However, we do not guarantee forward progress for allocations from other | ||
| 403 | * mempools. Doing multiple allocations from the same mempool under | ||
| 404 | * generic_make_request() should be avoided - instead, use bio_set's front_pad | ||
| 405 | * for per bio allocations. | ||
| 406 | * | ||
| 407 | * RETURNS: | ||
| 408 | * Pointer to new bio on success, NULL on failure. | ||
| 409 | */ | ||
| 410 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) | ||
| 411 | { | ||
| 412 | gfp_t saved_gfp = gfp_mask; | ||
| 413 | unsigned front_pad; | ||
| 414 | unsigned inline_vecs; | ||
| 415 | unsigned long idx = BIO_POOL_NONE; | ||
| 416 | struct bio_vec *bvl = NULL; | ||
| 417 | struct bio *bio; | ||
| 418 | void *p; | ||
| 419 | |||
| 420 | if (!bs) { | ||
| 421 | if (nr_iovecs > UIO_MAXIOV) | ||
| 422 | return NULL; | ||
| 423 | |||
| 424 | p = kmalloc(sizeof(struct bio) + | ||
| 425 | nr_iovecs * sizeof(struct bio_vec), | ||
| 426 | gfp_mask); | ||
| 427 | front_pad = 0; | ||
| 428 | inline_vecs = nr_iovecs; | ||
| 429 | } else { | ||
| 430 | /* | ||
| 431 | * generic_make_request() converts recursion to iteration; this | ||
| 432 | * means if we're running beneath it, any bios we allocate and | ||
| 433 | * submit will not be submitted (and thus freed) until after we | ||
| 434 | * return. | ||
| 435 | * | ||
| 436 | * This exposes us to a potential deadlock if we allocate | ||
| 437 | * multiple bios from the same bio_set() while running | ||
| 438 | * underneath generic_make_request(). If we were to allocate | ||
| 439 | * multiple bios (say a stacking block driver that was splitting | ||
| 440 | * bios), we would deadlock if we exhausted the mempool's | ||
| 441 | * reserve. | ||
| 442 | * | ||
| 443 | * We solve this, and guarantee forward progress, with a rescuer | ||
| 444 | * workqueue per bio_set. If we go to allocate and there are | ||
| 445 | * bios on current->bio_list, we first try the allocation | ||
| 446 | * without __GFP_WAIT; if that fails, we punt those bios we | ||
| 447 | * would be blocking to the rescuer workqueue before we retry | ||
| 448 | * with the original gfp_flags. | ||
| 449 | */ | ||
| 450 | |||
| 451 | if (current->bio_list && !bio_list_empty(current->bio_list)) | ||
| 452 | gfp_mask &= ~__GFP_WAIT; | ||
| 453 | |||
| 454 | p = mempool_alloc(bs->bio_pool, gfp_mask); | ||
| 455 | if (!p && gfp_mask != saved_gfp) { | ||
| 456 | punt_bios_to_rescuer(bs); | ||
| 457 | gfp_mask = saved_gfp; | ||
| 458 | p = mempool_alloc(bs->bio_pool, gfp_mask); | ||
| 459 | } | ||
| 460 | |||
| 461 | front_pad = bs->front_pad; | ||
| 462 | inline_vecs = BIO_INLINE_VECS; | ||
| 463 | } | ||
| 464 | |||
| 465 | if (unlikely(!p)) | ||
| 466 | return NULL; | ||
| 467 | |||
| 468 | bio = p + front_pad; | ||
| 469 | bio_init(bio); | ||
| 470 | |||
| 471 | if (nr_iovecs > inline_vecs) { | ||
| 472 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); | ||
| 473 | if (!bvl && gfp_mask != saved_gfp) { | ||
| 474 | punt_bios_to_rescuer(bs); | ||
| 475 | gfp_mask = saved_gfp; | ||
| 476 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); | ||
| 477 | } | ||
| 478 | |||
| 479 | if (unlikely(!bvl)) | ||
| 480 | goto err_free; | ||
| 481 | |||
| 482 | bio->bi_flags |= 1 << BIO_OWNS_VEC; | ||
| 483 | } else if (nr_iovecs) { | ||
| 484 | bvl = bio->bi_inline_vecs; | ||
| 485 | } | ||
| 486 | |||
| 487 | bio->bi_pool = bs; | ||
| 488 | bio->bi_flags |= idx << BIO_POOL_OFFSET; | ||
| 489 | bio->bi_max_vecs = nr_iovecs; | ||
| 490 | bio->bi_io_vec = bvl; | ||
| 491 | return bio; | ||
| 492 | |||
| 493 | err_free: | ||
| 494 | mempool_free(p, bs->bio_pool); | ||
| 495 | return NULL; | ||
| 496 | } | ||
| 497 | EXPORT_SYMBOL(bio_alloc_bioset); | ||
| 498 | |||
| 499 | void zero_fill_bio(struct bio *bio) | ||
| 500 | { | ||
| 501 | unsigned long flags; | ||
| 502 | struct bio_vec bv; | ||
| 503 | struct bvec_iter iter; | ||
| 504 | |||
| 505 | bio_for_each_segment(bv, bio, iter) { | ||
| 506 | char *data = bvec_kmap_irq(&bv, &flags); | ||
| 507 | memset(data, 0, bv.bv_len); | ||
| 508 | flush_dcache_page(bv.bv_page); | ||
| 509 | bvec_kunmap_irq(data, &flags); | ||
| 510 | } | ||
| 511 | } | ||
| 512 | EXPORT_SYMBOL(zero_fill_bio); | ||
| 513 | |||
| 514 | /** | ||
| 515 | * bio_put - release a reference to a bio | ||
| 516 | * @bio: bio to release reference to | ||
| 517 | * | ||
| 518 | * Description: | ||
| 519 | * Put a reference to a &struct bio, either one you have gotten with | ||
| 520 | * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. | ||
| 521 | **/ | ||
| 522 | void bio_put(struct bio *bio) | ||
| 523 | { | ||
| 524 | BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); | ||
| 525 | |||
| 526 | /* | ||
| 527 | * last put frees it | ||
| 528 | */ | ||
| 529 | if (atomic_dec_and_test(&bio->bi_cnt)) | ||
| 530 | bio_free(bio); | ||
| 531 | } | ||
| 532 | EXPORT_SYMBOL(bio_put); | ||
| 533 | |||
| 534 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) | ||
| 535 | { | ||
| 536 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | ||
| 537 | blk_recount_segments(q, bio); | ||
| 538 | |||
| 539 | return bio->bi_phys_segments; | ||
| 540 | } | ||
| 541 | EXPORT_SYMBOL(bio_phys_segments); | ||
| 542 | |||
| 543 | /** | ||
| 544 | * __bio_clone_fast - clone a bio that shares the original bio's biovec | ||
| 545 | * @bio: destination bio | ||
| 546 | * @bio_src: bio to clone | ||
| 547 | * | ||
| 548 | * Clone a &bio. Caller will own the returned bio, but not | ||
| 549 | * the actual data it points to. Reference count of returned | ||
| 550 | * bio will be one. | ||
| 551 | * | ||
| 552 | * Caller must ensure that @bio_src is not freed before @bio. | ||
| 553 | */ | ||
| 554 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | ||
| 555 | { | ||
| 556 | BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); | ||
| 557 | |||
| 558 | /* | ||
| 559 | * most users will be overriding ->bi_bdev with a new target, | ||
| 560 | * so we don't set nor calculate new physical/hw segment counts here | ||
| 561 | */ | ||
| 562 | bio->bi_bdev = bio_src->bi_bdev; | ||
| 563 | bio->bi_flags |= 1 << BIO_CLONED; | ||
| 564 | bio->bi_rw = bio_src->bi_rw; | ||
| 565 | bio->bi_iter = bio_src->bi_iter; | ||
| 566 | bio->bi_io_vec = bio_src->bi_io_vec; | ||
| 567 | } | ||
| 568 | EXPORT_SYMBOL(__bio_clone_fast); | ||
| 569 | |||
| 570 | /** | ||
| 571 | * bio_clone_fast - clone a bio that shares the original bio's biovec | ||
| 572 | * @bio: bio to clone | ||
| 573 | * @gfp_mask: allocation priority | ||
| 574 | * @bs: bio_set to allocate from | ||
| 575 | * | ||
| 576 | * Like __bio_clone_fast, only also allocates the returned bio | ||
| 577 | */ | ||
| 578 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | ||
| 579 | { | ||
| 580 | struct bio *b; | ||
| 581 | |||
| 582 | b = bio_alloc_bioset(gfp_mask, 0, bs); | ||
| 583 | if (!b) | ||
| 584 | return NULL; | ||
| 585 | |||
| 586 | __bio_clone_fast(b, bio); | ||
| 587 | |||
| 588 | if (bio_integrity(bio)) { | ||
| 589 | int ret; | ||
| 590 | |||
| 591 | ret = bio_integrity_clone(b, bio, gfp_mask); | ||
| 592 | |||
| 593 | if (ret < 0) { | ||
| 594 | bio_put(b); | ||
| 595 | return NULL; | ||
| 596 | } | ||
| 597 | } | ||
| 598 | |||
| 599 | return b; | ||
| 600 | } | ||
| 601 | EXPORT_SYMBOL(bio_clone_fast); | ||
| 602 | |||
| 603 | /** | ||
| 604 | * bio_clone_bioset - clone a bio | ||
| 605 | * @bio_src: bio to clone | ||
| 606 | * @gfp_mask: allocation priority | ||
| 607 | * @bs: bio_set to allocate from | ||
| 608 | * | ||
| 609 | * Clone bio. Caller will own the returned bio, but not the actual data it | ||
| 610 | * points to. Reference count of returned bio will be one. | ||
| 611 | */ | ||
| 612 | struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, | ||
| 613 | struct bio_set *bs) | ||
| 614 | { | ||
| 615 | struct bvec_iter iter; | ||
| 616 | struct bio_vec bv; | ||
| 617 | struct bio *bio; | ||
| 618 | |||
| 619 | /* | ||
| 620 | * Pre immutable biovecs, __bio_clone() used to just do a memcpy from | ||
| 621 | * bio_src->bi_io_vec to bio->bi_io_vec. | ||
| 622 | * | ||
| 623 | * We can't do that anymore, because: | ||
| 624 | * | ||
| 625 | * - The point of cloning the biovec is to produce a bio with a biovec | ||
| 626 | * the caller can modify: bi_idx and bi_bvec_done should be 0. | ||
| 627 | * | ||
| 628 | * - The original bio could've had more than BIO_MAX_PAGES biovecs; if | ||
| 629 | * we tried to clone the whole thing bio_alloc_bioset() would fail. | ||
| 630 | * But the clone should succeed as long as the number of biovecs we | ||
| 631 | * actually need to allocate is fewer than BIO_MAX_PAGES. | ||
| 632 | * | ||
| 633 | * - Lastly, bi_vcnt should not be looked at or relied upon by code | ||
| 634 | * that does not own the bio - reason being drivers don't use it for | ||
| 635 | * iterating over the biovec anymore, so expecting it to be kept up | ||
| 636 | * to date (i.e. for clones that share the parent biovec) is just | ||
| 637 | * asking for trouble and would force extra work on | ||
| 638 | * __bio_clone_fast() anyways. | ||
| 639 | */ | ||
| 640 | |||
| 641 | bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); | ||
| 642 | if (!bio) | ||
| 643 | return NULL; | ||
| 644 | |||
| 645 | bio->bi_bdev = bio_src->bi_bdev; | ||
| 646 | bio->bi_rw = bio_src->bi_rw; | ||
| 647 | bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; | ||
| 648 | bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; | ||
| 649 | |||
| 650 | if (bio->bi_rw & REQ_DISCARD) | ||
| 651 | goto integrity_clone; | ||
| 652 | |||
| 653 | if (bio->bi_rw & REQ_WRITE_SAME) { | ||
| 654 | bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; | ||
| 655 | goto integrity_clone; | ||
| 656 | } | ||
| 657 | |||
| 658 | bio_for_each_segment(bv, bio_src, iter) | ||
| 659 | bio->bi_io_vec[bio->bi_vcnt++] = bv; | ||
| 660 | |||
| 661 | integrity_clone: | ||
| 662 | if (bio_integrity(bio_src)) { | ||
| 663 | int ret; | ||
| 664 | |||
| 665 | ret = bio_integrity_clone(bio, bio_src, gfp_mask); | ||
| 666 | if (ret < 0) { | ||
| 667 | bio_put(bio); | ||
| 668 | return NULL; | ||
| 669 | } | ||
| 670 | } | ||
| 671 | |||
| 672 | return bio; | ||
| 673 | } | ||
| 674 | EXPORT_SYMBOL(bio_clone_bioset); | ||
| 675 | |||
| 676 | /** | ||
| 677 | * bio_get_nr_vecs - return approx number of vecs | ||
| 678 | * @bdev: I/O target | ||
| 679 | * | ||
| 680 | * Return the approximate number of pages we can send to this target. | ||
| 681 | * There's no guarantee that you will be able to fit this number of pages | ||
| 682 | * into a bio, it does not account for dynamic restrictions that vary | ||
| 683 | * on offset. | ||
| 684 | */ | ||
| 685 | int bio_get_nr_vecs(struct block_device *bdev) | ||
| 686 | { | ||
| 687 | struct request_queue *q = bdev_get_queue(bdev); | ||
| 688 | int nr_pages; | ||
| 689 | |||
| 690 | nr_pages = min_t(unsigned, | ||
| 691 | queue_max_segments(q), | ||
| 692 | queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); | ||
| 693 | |||
| 694 | return min_t(unsigned, nr_pages, BIO_MAX_PAGES); | ||
| 695 | |||
| 696 | } | ||
| 697 | EXPORT_SYMBOL(bio_get_nr_vecs); | ||
| 698 | |||
| 699 | static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page | ||
| 700 | *page, unsigned int len, unsigned int offset, | ||
| 701 | unsigned int max_sectors) | ||
| 702 | { | ||
| 703 | int retried_segments = 0; | ||
| 704 | struct bio_vec *bvec; | ||
| 705 | |||
| 706 | /* | ||
| 707 | * cloned bio must not modify vec list | ||
| 708 | */ | ||
| 709 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | ||
| 710 | return 0; | ||
| 711 | |||
| 712 | if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) | ||
| 713 | return 0; | ||
| 714 | |||
| 715 | /* | ||
| 716 | * For filesystems with a blocksize smaller than the pagesize | ||
| 717 | * we will often be called with the same page as last time and | ||
| 718 | * a consecutive offset. Optimize this special case. | ||
| 719 | */ | ||
| 720 | if (bio->bi_vcnt > 0) { | ||
| 721 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | ||
| 722 | |||
| 723 | if (page == prev->bv_page && | ||
| 724 | offset == prev->bv_offset + prev->bv_len) { | ||
| 725 | unsigned int prev_bv_len = prev->bv_len; | ||
| 726 | prev->bv_len += len; | ||
| 727 | |||
| 728 | if (q->merge_bvec_fn) { | ||
| 729 | struct bvec_merge_data bvm = { | ||
| 730 | /* prev_bvec is already charged in | ||
| 731 | bi_size, discharge it in order to | ||
| 732 | simulate merging updated prev_bvec | ||
| 733 | as new bvec. */ | ||
| 734 | .bi_bdev = bio->bi_bdev, | ||
| 735 | .bi_sector = bio->bi_iter.bi_sector, | ||
| 736 | .bi_size = bio->bi_iter.bi_size - | ||
| 737 | prev_bv_len, | ||
| 738 | .bi_rw = bio->bi_rw, | ||
| 739 | }; | ||
| 740 | |||
| 741 | if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { | ||
| 742 | prev->bv_len -= len; | ||
| 743 | return 0; | ||
| 744 | } | ||
| 745 | } | ||
| 746 | |||
| 747 | goto done; | ||
| 748 | } | ||
| 749 | } | ||
| 750 | |||
| 751 | if (bio->bi_vcnt >= bio->bi_max_vecs) | ||
| 752 | return 0; | ||
| 753 | |||
| 754 | /* | ||
| 755 | * we might lose a segment or two here, but rather that than | ||
| 756 | * make this too complex. | ||
| 757 | */ | ||
| 758 | |||
| 759 | while (bio->bi_phys_segments >= queue_max_segments(q)) { | ||
| 760 | |||
| 761 | if (retried_segments) | ||
| 762 | return 0; | ||
| 763 | |||
| 764 | retried_segments = 1; | ||
| 765 | blk_recount_segments(q, bio); | ||
| 766 | } | ||
| 767 | |||
| 768 | /* | ||
| 769 | * setup the new entry, we might clear it again later if we | ||
| 770 | * cannot add the page | ||
| 771 | */ | ||
| 772 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | ||
| 773 | bvec->bv_page = page; | ||
| 774 | bvec->bv_len = len; | ||
| 775 | bvec->bv_offset = offset; | ||
| 776 | |||
| 777 | /* | ||
| 778 | * if queue has other restrictions (eg varying max sector size | ||
| 779 | * depending on offset), it can specify a merge_bvec_fn in the | ||
| 780 | * queue to get further control | ||
| 781 | */ | ||
| 782 | if (q->merge_bvec_fn) { | ||
| 783 | struct bvec_merge_data bvm = { | ||
| 784 | .bi_bdev = bio->bi_bdev, | ||
| 785 | .bi_sector = bio->bi_iter.bi_sector, | ||
| 786 | .bi_size = bio->bi_iter.bi_size, | ||
| 787 | .bi_rw = bio->bi_rw, | ||
| 788 | }; | ||
| 789 | |||
| 790 | /* | ||
| 791 | * merge_bvec_fn() returns number of bytes it can accept | ||
| 792 | * at this offset | ||
| 793 | */ | ||
| 794 | if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) { | ||
| 795 | bvec->bv_page = NULL; | ||
| 796 | bvec->bv_len = 0; | ||
| 797 | bvec->bv_offset = 0; | ||
| 798 | return 0; | ||
| 799 | } | ||
| 800 | } | ||
| 801 | |||
| 802 | /* If we may be able to merge these biovecs, force a recount */ | ||
| 803 | if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) | ||
| 804 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); | ||
| 805 | |||
| 806 | bio->bi_vcnt++; | ||
| 807 | bio->bi_phys_segments++; | ||
| 808 | done: | ||
| 809 | bio->bi_iter.bi_size += len; | ||
| 810 | return len; | ||
| 811 | } | ||
| 812 | |||
| 813 | /** | ||
| 814 | * bio_add_pc_page - attempt to add page to bio | ||
| 815 | * @q: the target queue | ||
| 816 | * @bio: destination bio | ||
| 817 | * @page: page to add | ||
| 818 | * @len: vec entry length | ||
| 819 | * @offset: vec entry offset | ||
| 820 | * | ||
| 821 | * Attempt to add a page to the bio_vec maplist. This can fail for a | ||
| 822 | * number of reasons, such as the bio being full or target block device | ||
| 823 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | ||
| 824 | * so it is always possible to add a single page to an empty bio. | ||
| 825 | * | ||
| 826 | * This should only be used by REQ_PC bios. | ||
| 827 | */ | ||
| 828 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, | ||
| 829 | unsigned int len, unsigned int offset) | ||
| 830 | { | ||
| 831 | return __bio_add_page(q, bio, page, len, offset, | ||
| 832 | queue_max_hw_sectors(q)); | ||
| 833 | } | ||
| 834 | EXPORT_SYMBOL(bio_add_pc_page); | ||
| 835 | |||
| 836 | /** | ||
| 837 | * bio_add_page - attempt to add page to bio | ||
| 838 | * @bio: destination bio | ||
| 839 | * @page: page to add | ||
| 840 | * @len: vec entry length | ||
| 841 | * @offset: vec entry offset | ||
| 842 | * | ||
| 843 | * Attempt to add a page to the bio_vec maplist. This can fail for a | ||
| 844 | * number of reasons, such as the bio being full or target block device | ||
| 845 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | ||
| 846 | * so it is always possible to add a single page to an empty bio. | ||
| 847 | */ | ||
| 848 | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, | ||
| 849 | unsigned int offset) | ||
| 850 | { | ||
| 851 | struct request_queue *q = bdev_get_queue(bio->bi_bdev); | ||
| 852 | return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q)); | ||
| 853 | } | ||
| 854 | EXPORT_SYMBOL(bio_add_page); | ||
| 855 | |||
| 856 | struct submit_bio_ret { | ||
| 857 | struct completion event; | ||
| 858 | int error; | ||
| 859 | }; | ||
| 860 | |||
| 861 | static void submit_bio_wait_endio(struct bio *bio, int error) | ||
| 862 | { | ||
| 863 | struct submit_bio_ret *ret = bio->bi_private; | ||
| 864 | |||
| 865 | ret->error = error; | ||
| 866 | complete(&ret->event); | ||
| 867 | } | ||
| 868 | |||
| 869 | /** | ||
| 870 | * submit_bio_wait - submit a bio, and wait until it completes | ||
| 871 | * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) | ||
| 872 | * @bio: The &struct bio which describes the I/O | ||
| 873 | * | ||
| 874 | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | ||
| 875 | * bio_endio() on failure. | ||
| 876 | */ | ||
| 877 | int submit_bio_wait(int rw, struct bio *bio) | ||
| 878 | { | ||
| 879 | struct submit_bio_ret ret; | ||
| 880 | |||
| 881 | rw |= REQ_SYNC; | ||
| 882 | init_completion(&ret.event); | ||
| 883 | bio->bi_private = &ret; | ||
| 884 | bio->bi_end_io = submit_bio_wait_endio; | ||
| 885 | submit_bio(rw, bio); | ||
| 886 | wait_for_completion(&ret.event); | ||
| 887 | |||
| 888 | return ret.error; | ||
| 889 | } | ||
| 890 | EXPORT_SYMBOL(submit_bio_wait); | ||
| 891 | |||
| 892 | /** | ||
| 893 | * bio_advance - increment/complete a bio by some number of bytes | ||
| 894 | * @bio: bio to advance | ||
| 895 | * @bytes: number of bytes to complete | ||
| 896 | * | ||
| 897 | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | ||
| 898 | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | ||
| 899 | * be updated on the last bvec as well. | ||
| 900 | * | ||
| 901 | * @bio will then represent the remaining, uncompleted portion of the io. | ||
| 902 | */ | ||
| 903 | void bio_advance(struct bio *bio, unsigned bytes) | ||
| 904 | { | ||
| 905 | if (bio_integrity(bio)) | ||
| 906 | bio_integrity_advance(bio, bytes); | ||
| 907 | |||
| 908 | bio_advance_iter(bio, &bio->bi_iter, bytes); | ||
| 909 | } | ||
| 910 | EXPORT_SYMBOL(bio_advance); | ||
| 911 | |||
| 912 | /** | ||
| 913 | * bio_alloc_pages - allocates a single page for each bvec in a bio | ||
| 914 | * @bio: bio to allocate pages for | ||
| 915 | * @gfp_mask: flags for allocation | ||
| 916 | * | ||
| 917 | * Allocates pages up to @bio->bi_vcnt. | ||
| 918 | * | ||
| 919 | * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are | ||
| 920 | * freed. | ||
| 921 | */ | ||
| 922 | int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) | ||
| 923 | { | ||
| 924 | int i; | ||
| 925 | struct bio_vec *bv; | ||
| 926 | |||
| 927 | bio_for_each_segment_all(bv, bio, i) { | ||
| 928 | bv->bv_page = alloc_page(gfp_mask); | ||
| 929 | if (!bv->bv_page) { | ||
| 930 | while (--bv >= bio->bi_io_vec) | ||
| 931 | __free_page(bv->bv_page); | ||
| 932 | return -ENOMEM; | ||
| 933 | } | ||
| 934 | } | ||
| 935 | |||
| 936 | return 0; | ||
| 937 | } | ||
| 938 | EXPORT_SYMBOL(bio_alloc_pages); | ||
| 939 | |||
| 940 | /** | ||
| 941 | * bio_copy_data - copy contents of data buffers from one chain of bios to | ||
| 942 | * another | ||
| 943 | * @src: source bio list | ||
| 944 | * @dst: destination bio list | ||
| 945 | * | ||
| 946 | * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats | ||
| 947 | * @src and @dst as linked lists of bios. | ||
| 948 | * | ||
| 949 | * Stops when it reaches the end of either @src or @dst - that is, copies | ||
| 950 | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | ||
| 951 | */ | ||
| 952 | void bio_copy_data(struct bio *dst, struct bio *src) | ||
| 953 | { | ||
| 954 | struct bvec_iter src_iter, dst_iter; | ||
| 955 | struct bio_vec src_bv, dst_bv; | ||
| 956 | void *src_p, *dst_p; | ||
| 957 | unsigned bytes; | ||
| 958 | |||
| 959 | src_iter = src->bi_iter; | ||
| 960 | dst_iter = dst->bi_iter; | ||
| 961 | |||
| 962 | while (1) { | ||
| 963 | if (!src_iter.bi_size) { | ||
| 964 | src = src->bi_next; | ||
| 965 | if (!src) | ||
| 966 | break; | ||
| 967 | |||
| 968 | src_iter = src->bi_iter; | ||
| 969 | } | ||
| 970 | |||
| 971 | if (!dst_iter.bi_size) { | ||
| 972 | dst = dst->bi_next; | ||
| 973 | if (!dst) | ||
| 974 | break; | ||
| 975 | |||
| 976 | dst_iter = dst->bi_iter; | ||
| 977 | } | ||
| 978 | |||
| 979 | src_bv = bio_iter_iovec(src, src_iter); | ||
| 980 | dst_bv = bio_iter_iovec(dst, dst_iter); | ||
| 981 | |||
| 982 | bytes = min(src_bv.bv_len, dst_bv.bv_len); | ||
| 983 | |||
| 984 | src_p = kmap_atomic(src_bv.bv_page); | ||
| 985 | dst_p = kmap_atomic(dst_bv.bv_page); | ||
| 986 | |||
| 987 | memcpy(dst_p + dst_bv.bv_offset, | ||
| 988 | src_p + src_bv.bv_offset, | ||
| 989 | bytes); | ||
| 990 | |||
| 991 | kunmap_atomic(dst_p); | ||
| 992 | kunmap_atomic(src_p); | ||
| 993 | |||
| 994 | bio_advance_iter(src, &src_iter, bytes); | ||
| 995 | bio_advance_iter(dst, &dst_iter, bytes); | ||
| 996 | } | ||
| 997 | } | ||
| 998 | EXPORT_SYMBOL(bio_copy_data); | ||
| 999 | |||
| 1000 | struct bio_map_data { | ||
| 1001 | int nr_sgvecs; | ||
| 1002 | int is_our_pages; | ||
| 1003 | struct sg_iovec sgvecs[]; | ||
| 1004 | }; | ||
| 1005 | |||
| 1006 | static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, | ||
| 1007 | const struct sg_iovec *iov, int iov_count, | ||
| 1008 | int is_our_pages) | ||
| 1009 | { | ||
| 1010 | memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); | ||
| 1011 | bmd->nr_sgvecs = iov_count; | ||
| 1012 | bmd->is_our_pages = is_our_pages; | ||
| 1013 | bio->bi_private = bmd; | ||
| 1014 | } | ||
| 1015 | |||
| 1016 | static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, | ||
| 1017 | gfp_t gfp_mask) | ||
| 1018 | { | ||
| 1019 | if (iov_count > UIO_MAXIOV) | ||
| 1020 | return NULL; | ||
| 1021 | |||
| 1022 | return kmalloc(sizeof(struct bio_map_data) + | ||
| 1023 | sizeof(struct sg_iovec) * iov_count, gfp_mask); | ||
| 1024 | } | ||
| 1025 | |||
| 1026 | static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count, | ||
| 1027 | int to_user, int from_user, int do_free_page) | ||
| 1028 | { | ||
| 1029 | int ret = 0, i; | ||
| 1030 | struct bio_vec *bvec; | ||
| 1031 | int iov_idx = 0; | ||
| 1032 | unsigned int iov_off = 0; | ||
| 1033 | |||
| 1034 | bio_for_each_segment_all(bvec, bio, i) { | ||
| 1035 | char *bv_addr = page_address(bvec->bv_page); | ||
| 1036 | unsigned int bv_len = bvec->bv_len; | ||
| 1037 | |||
| 1038 | while (bv_len && iov_idx < iov_count) { | ||
| 1039 | unsigned int bytes; | ||
| 1040 | char __user *iov_addr; | ||
| 1041 | |||
| 1042 | bytes = min_t(unsigned int, | ||
| 1043 | iov[iov_idx].iov_len - iov_off, bv_len); | ||
| 1044 | iov_addr = iov[iov_idx].iov_base + iov_off; | ||
| 1045 | |||
| 1046 | if (!ret) { | ||
| 1047 | if (to_user) | ||
| 1048 | ret = copy_to_user(iov_addr, bv_addr, | ||
| 1049 | bytes); | ||
| 1050 | |||
| 1051 | if (from_user) | ||
| 1052 | ret = copy_from_user(bv_addr, iov_addr, | ||
| 1053 | bytes); | ||
| 1054 | |||
| 1055 | if (ret) | ||
| 1056 | ret = -EFAULT; | ||
| 1057 | } | ||
| 1058 | |||
| 1059 | bv_len -= bytes; | ||
| 1060 | bv_addr += bytes; | ||
| 1061 | iov_addr += bytes; | ||
| 1062 | iov_off += bytes; | ||
| 1063 | |||
| 1064 | if (iov[iov_idx].iov_len == iov_off) { | ||
| 1065 | iov_idx++; | ||
| 1066 | iov_off = 0; | ||
| 1067 | } | ||
| 1068 | } | ||
| 1069 | |||
| 1070 | if (do_free_page) | ||
| 1071 | __free_page(bvec->bv_page); | ||
| 1072 | } | ||
| 1073 | |||
| 1074 | return ret; | ||
| 1075 | } | ||
| 1076 | |||
| 1077 | /** | ||
| 1078 | * bio_uncopy_user - finish previously mapped bio | ||
| 1079 | * @bio: bio being terminated | ||
| 1080 | * | ||
| 1081 | * Free pages allocated from bio_copy_user() and write back data | ||
| 1082 | * to user space in case of a read. | ||
| 1083 | */ | ||
| 1084 | int bio_uncopy_user(struct bio *bio) | ||
| 1085 | { | ||
| 1086 | struct bio_map_data *bmd = bio->bi_private; | ||
| 1087 | struct bio_vec *bvec; | ||
| 1088 | int ret = 0, i; | ||
| 1089 | |||
| 1090 | if (!bio_flagged(bio, BIO_NULL_MAPPED)) { | ||
| 1091 | /* | ||
| 1092 | * if we're in a workqueue, the request is orphaned, so | ||
| 1093 | * don't copy into a random user address space, just free. | ||
| 1094 | */ | ||
| 1095 | if (current->mm) | ||
| 1096 | ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs, | ||
| 1097 | bio_data_dir(bio) == READ, | ||
| 1098 | 0, bmd->is_our_pages); | ||
| 1099 | else if (bmd->is_our_pages) | ||
| 1100 | bio_for_each_segment_all(bvec, bio, i) | ||
| 1101 | __free_page(bvec->bv_page); | ||
| 1102 | } | ||
| 1103 | kfree(bmd); | ||
| 1104 | bio_put(bio); | ||
| 1105 | return ret; | ||
| 1106 | } | ||
| 1107 | EXPORT_SYMBOL(bio_uncopy_user); | ||
| 1108 | |||
| 1109 | /** | ||
| 1110 | * bio_copy_user_iov - copy user data to bio | ||
| 1111 | * @q: destination block queue | ||
| 1112 | * @map_data: pointer to the rq_map_data holding pages (if necessary) | ||
| 1113 | * @iov: the iovec. | ||
| 1114 | * @iov_count: number of elements in the iovec | ||
| 1115 | * @write_to_vm: bool indicating writing to pages or not | ||
| 1116 | * @gfp_mask: memory allocation flags | ||
| 1117 | * | ||
| 1118 | * Prepares and returns a bio for indirect user io, bouncing data | ||
| 1119 | * to/from kernel pages as necessary. Must be paired with | ||
| 1120 | * call bio_uncopy_user() on io completion. | ||
| 1121 | */ | ||
| 1122 | struct bio *bio_copy_user_iov(struct request_queue *q, | ||
| 1123 | struct rq_map_data *map_data, | ||
| 1124 | const struct sg_iovec *iov, int iov_count, | ||
| 1125 | int write_to_vm, gfp_t gfp_mask) | ||
| 1126 | { | ||
| 1127 | struct bio_map_data *bmd; | ||
| 1128 | struct bio_vec *bvec; | ||
| 1129 | struct page *page; | ||
| 1130 | struct bio *bio; | ||
| 1131 | int i, ret; | ||
| 1132 | int nr_pages = 0; | ||
| 1133 | unsigned int len = 0; | ||
| 1134 | unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; | ||
| 1135 | |||
| 1136 | for (i = 0; i < iov_count; i++) { | ||
| 1137 | unsigned long uaddr; | ||
| 1138 | unsigned long end; | ||
| 1139 | unsigned long start; | ||
| 1140 | |||
| 1141 | uaddr = (unsigned long)iov[i].iov_base; | ||
| 1142 | end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
| 1143 | start = uaddr >> PAGE_SHIFT; | ||
| 1144 | |||
| 1145 | /* | ||
| 1146 | * Overflow, abort | ||
| 1147 | */ | ||
| 1148 | if (end < start) | ||
| 1149 | return ERR_PTR(-EINVAL); | ||
| 1150 | |||
| 1151 | nr_pages += end - start; | ||
| 1152 | len += iov[i].iov_len; | ||
| 1153 | } | ||
| 1154 | |||
| 1155 | if (offset) | ||
| 1156 | nr_pages++; | ||
| 1157 | |||
| 1158 | bmd = bio_alloc_map_data(iov_count, gfp_mask); | ||
| 1159 | if (!bmd) | ||
| 1160 | return ERR_PTR(-ENOMEM); | ||
| 1161 | |||
| 1162 | ret = -ENOMEM; | ||
| 1163 | bio = bio_kmalloc(gfp_mask, nr_pages); | ||
| 1164 | if (!bio) | ||
| 1165 | goto out_bmd; | ||
| 1166 | |||
| 1167 | if (!write_to_vm) | ||
| 1168 | bio->bi_rw |= REQ_WRITE; | ||
| 1169 | |||
| 1170 | ret = 0; | ||
| 1171 | |||
| 1172 | if (map_data) { | ||
| 1173 | nr_pages = 1 << map_data->page_order; | ||
| 1174 | i = map_data->offset / PAGE_SIZE; | ||
| 1175 | } | ||
| 1176 | while (len) { | ||
| 1177 | unsigned int bytes = PAGE_SIZE; | ||
| 1178 | |||
| 1179 | bytes -= offset; | ||
| 1180 | |||
| 1181 | if (bytes > len) | ||
| 1182 | bytes = len; | ||
| 1183 | |||
| 1184 | if (map_data) { | ||
| 1185 | if (i == map_data->nr_entries * nr_pages) { | ||
| 1186 | ret = -ENOMEM; | ||
| 1187 | break; | ||
| 1188 | } | ||
| 1189 | |||
| 1190 | page = map_data->pages[i / nr_pages]; | ||
| 1191 | page += (i % nr_pages); | ||
| 1192 | |||
| 1193 | i++; | ||
| 1194 | } else { | ||
| 1195 | page = alloc_page(q->bounce_gfp | gfp_mask); | ||
| 1196 | if (!page) { | ||
| 1197 | ret = -ENOMEM; | ||
| 1198 | break; | ||
| 1199 | } | ||
| 1200 | } | ||
| 1201 | |||
| 1202 | if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) | ||
| 1203 | break; | ||
| 1204 | |||
| 1205 | len -= bytes; | ||
| 1206 | offset = 0; | ||
| 1207 | } | ||
| 1208 | |||
| 1209 | if (ret) | ||
| 1210 | goto cleanup; | ||
| 1211 | |||
| 1212 | /* | ||
| 1213 | * success | ||
| 1214 | */ | ||
| 1215 | if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || | ||
| 1216 | (map_data && map_data->from_user)) { | ||
| 1217 | ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0); | ||
| 1218 | if (ret) | ||
| 1219 | goto cleanup; | ||
| 1220 | } | ||
| 1221 | |||
| 1222 | bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); | ||
| 1223 | return bio; | ||
| 1224 | cleanup: | ||
| 1225 | if (!map_data) | ||
| 1226 | bio_for_each_segment_all(bvec, bio, i) | ||
| 1227 | __free_page(bvec->bv_page); | ||
| 1228 | |||
| 1229 | bio_put(bio); | ||
| 1230 | out_bmd: | ||
| 1231 | kfree(bmd); | ||
| 1232 | return ERR_PTR(ret); | ||
| 1233 | } | ||
| 1234 | |||
| 1235 | /** | ||
| 1236 | * bio_copy_user - copy user data to bio | ||
| 1237 | * @q: destination block queue | ||
| 1238 | * @map_data: pointer to the rq_map_data holding pages (if necessary) | ||
| 1239 | * @uaddr: start of user address | ||
| 1240 | * @len: length in bytes | ||
| 1241 | * @write_to_vm: bool indicating writing to pages or not | ||
| 1242 | * @gfp_mask: memory allocation flags | ||
| 1243 | * | ||
| 1244 | * Prepares and returns a bio for indirect user io, bouncing data | ||
| 1245 | * to/from kernel pages as necessary. Must be paired with | ||
| 1246 | * call bio_uncopy_user() on io completion. | ||
| 1247 | */ | ||
| 1248 | struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, | ||
| 1249 | unsigned long uaddr, unsigned int len, | ||
| 1250 | int write_to_vm, gfp_t gfp_mask) | ||
| 1251 | { | ||
| 1252 | struct sg_iovec iov; | ||
| 1253 | |||
| 1254 | iov.iov_base = (void __user *)uaddr; | ||
| 1255 | iov.iov_len = len; | ||
| 1256 | |||
| 1257 | return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); | ||
| 1258 | } | ||
| 1259 | EXPORT_SYMBOL(bio_copy_user); | ||
| 1260 | |||
| 1261 | static struct bio *__bio_map_user_iov(struct request_queue *q, | ||
| 1262 | struct block_device *bdev, | ||
| 1263 | const struct sg_iovec *iov, int iov_count, | ||
| 1264 | int write_to_vm, gfp_t gfp_mask) | ||
| 1265 | { | ||
| 1266 | int i, j; | ||
| 1267 | int nr_pages = 0; | ||
| 1268 | struct page **pages; | ||
| 1269 | struct bio *bio; | ||
| 1270 | int cur_page = 0; | ||
| 1271 | int ret, offset; | ||
| 1272 | |||
| 1273 | for (i = 0; i < iov_count; i++) { | ||
| 1274 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | ||
| 1275 | unsigned long len = iov[i].iov_len; | ||
| 1276 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
| 1277 | unsigned long start = uaddr >> PAGE_SHIFT; | ||
| 1278 | |||
| 1279 | /* | ||
| 1280 | * Overflow, abort | ||
| 1281 | */ | ||
| 1282 | if (end < start) | ||
| 1283 | return ERR_PTR(-EINVAL); | ||
| 1284 | |||
| 1285 | nr_pages += end - start; | ||
| 1286 | /* | ||
| 1287 | * buffer must be aligned to at least hardsector size for now | ||
| 1288 | */ | ||
| 1289 | if (uaddr & queue_dma_alignment(q)) | ||
| 1290 | return ERR_PTR(-EINVAL); | ||
| 1291 | } | ||
| 1292 | |||
| 1293 | if (!nr_pages) | ||
| 1294 | return ERR_PTR(-EINVAL); | ||
| 1295 | |||
| 1296 | bio = bio_kmalloc(gfp_mask, nr_pages); | ||
| 1297 | if (!bio) | ||
| 1298 | return ERR_PTR(-ENOMEM); | ||
| 1299 | |||
| 1300 | ret = -ENOMEM; | ||
| 1301 | pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); | ||
| 1302 | if (!pages) | ||
| 1303 | goto out; | ||
| 1304 | |||
| 1305 | for (i = 0; i < iov_count; i++) { | ||
| 1306 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | ||
| 1307 | unsigned long len = iov[i].iov_len; | ||
| 1308 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
| 1309 | unsigned long start = uaddr >> PAGE_SHIFT; | ||
| 1310 | const int local_nr_pages = end - start; | ||
| 1311 | const int page_limit = cur_page + local_nr_pages; | ||
| 1312 | |||
| 1313 | ret = get_user_pages_fast(uaddr, local_nr_pages, | ||
| 1314 | write_to_vm, &pages[cur_page]); | ||
| 1315 | if (ret < local_nr_pages) { | ||
| 1316 | ret = -EFAULT; | ||
| 1317 | goto out_unmap; | ||
| 1318 | } | ||
| 1319 | |||
| 1320 | offset = uaddr & ~PAGE_MASK; | ||
| 1321 | for (j = cur_page; j < page_limit; j++) { | ||
| 1322 | unsigned int bytes = PAGE_SIZE - offset; | ||
| 1323 | |||
| 1324 | if (len <= 0) | ||
| 1325 | break; | ||
| 1326 | |||
| 1327 | if (bytes > len) | ||
| 1328 | bytes = len; | ||
| 1329 | |||
| 1330 | /* | ||
| 1331 | * sorry... | ||
| 1332 | */ | ||
| 1333 | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < | ||
| 1334 | bytes) | ||
| 1335 | break; | ||
| 1336 | |||
| 1337 | len -= bytes; | ||
| 1338 | offset = 0; | ||
| 1339 | } | ||
| 1340 | |||
| 1341 | cur_page = j; | ||
| 1342 | /* | ||
| 1343 | * release the pages we didn't map into the bio, if any | ||
| 1344 | */ | ||
| 1345 | while (j < page_limit) | ||
| 1346 | page_cache_release(pages[j++]); | ||
| 1347 | } | ||
| 1348 | |||
| 1349 | kfree(pages); | ||
| 1350 | |||
| 1351 | /* | ||
| 1352 | * set data direction, and check if mapped pages need bouncing | ||
| 1353 | */ | ||
| 1354 | if (!write_to_vm) | ||
| 1355 | bio->bi_rw |= REQ_WRITE; | ||
| 1356 | |||
| 1357 | bio->bi_bdev = bdev; | ||
| 1358 | bio->bi_flags |= (1 << BIO_USER_MAPPED); | ||
| 1359 | return bio; | ||
| 1360 | |||
| 1361 | out_unmap: | ||
| 1362 | for (i = 0; i < nr_pages; i++) { | ||
| 1363 | if(!pages[i]) | ||
| 1364 | break; | ||
| 1365 | page_cache_release(pages[i]); | ||
| 1366 | } | ||
| 1367 | out: | ||
| 1368 | kfree(pages); | ||
| 1369 | bio_put(bio); | ||
| 1370 | return ERR_PTR(ret); | ||
| 1371 | } | ||
| 1372 | |||
| 1373 | /** | ||
| 1374 | * bio_map_user - map user address into bio | ||
| 1375 | * @q: the struct request_queue for the bio | ||
| 1376 | * @bdev: destination block device | ||
| 1377 | * @uaddr: start of user address | ||
| 1378 | * @len: length in bytes | ||
| 1379 | * @write_to_vm: bool indicating writing to pages or not | ||
| 1380 | * @gfp_mask: memory allocation flags | ||
| 1381 | * | ||
| 1382 | * Map the user space address into a bio suitable for io to a block | ||
| 1383 | * device. Returns an error pointer in case of error. | ||
| 1384 | */ | ||
| 1385 | struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, | ||
| 1386 | unsigned long uaddr, unsigned int len, int write_to_vm, | ||
| 1387 | gfp_t gfp_mask) | ||
| 1388 | { | ||
| 1389 | struct sg_iovec iov; | ||
| 1390 | |||
| 1391 | iov.iov_base = (void __user *)uaddr; | ||
| 1392 | iov.iov_len = len; | ||
| 1393 | |||
| 1394 | return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); | ||
| 1395 | } | ||
| 1396 | EXPORT_SYMBOL(bio_map_user); | ||
| 1397 | |||
| 1398 | /** | ||
| 1399 | * bio_map_user_iov - map user sg_iovec table into bio | ||
| 1400 | * @q: the struct request_queue for the bio | ||
| 1401 | * @bdev: destination block device | ||
| 1402 | * @iov: the iovec. | ||
| 1403 | * @iov_count: number of elements in the iovec | ||
| 1404 | * @write_to_vm: bool indicating writing to pages or not | ||
| 1405 | * @gfp_mask: memory allocation flags | ||
| 1406 | * | ||
| 1407 | * Map the user space address into a bio suitable for io to a block | ||
| 1408 | * device. Returns an error pointer in case of error. | ||
| 1409 | */ | ||
| 1410 | struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, | ||
| 1411 | const struct sg_iovec *iov, int iov_count, | ||
| 1412 | int write_to_vm, gfp_t gfp_mask) | ||
| 1413 | { | ||
| 1414 | struct bio *bio; | ||
| 1415 | |||
| 1416 | bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, | ||
| 1417 | gfp_mask); | ||
| 1418 | if (IS_ERR(bio)) | ||
| 1419 | return bio; | ||
| 1420 | |||
| 1421 | /* | ||
| 1422 | * subtle -- if __bio_map_user() ended up bouncing a bio, | ||
| 1423 | * it would normally disappear when its bi_end_io is run. | ||
| 1424 | * however, we need it for the unmap, so grab an extra | ||
| 1425 | * reference to it | ||
| 1426 | */ | ||
| 1427 | bio_get(bio); | ||
| 1428 | |||
| 1429 | return bio; | ||
| 1430 | } | ||
| 1431 | |||
| 1432 | static void __bio_unmap_user(struct bio *bio) | ||
| 1433 | { | ||
| 1434 | struct bio_vec *bvec; | ||
| 1435 | int i; | ||
| 1436 | |||
| 1437 | /* | ||
| 1438 | * make sure we dirty pages we wrote to | ||
| 1439 | */ | ||
| 1440 | bio_for_each_segment_all(bvec, bio, i) { | ||
| 1441 | if (bio_data_dir(bio) == READ) | ||
| 1442 | set_page_dirty_lock(bvec->bv_page); | ||
| 1443 | |||
| 1444 | page_cache_release(bvec->bv_page); | ||
| 1445 | } | ||
| 1446 | |||
| 1447 | bio_put(bio); | ||
| 1448 | } | ||
| 1449 | |||
| 1450 | /** | ||
| 1451 | * bio_unmap_user - unmap a bio | ||
| 1452 | * @bio: the bio being unmapped | ||
| 1453 | * | ||
| 1454 | * Unmap a bio previously mapped by bio_map_user(). Must be called with | ||
| 1455 | * a process context. | ||
| 1456 | * | ||
| 1457 | * bio_unmap_user() may sleep. | ||
| 1458 | */ | ||
| 1459 | void bio_unmap_user(struct bio *bio) | ||
| 1460 | { | ||
| 1461 | __bio_unmap_user(bio); | ||
| 1462 | bio_put(bio); | ||
| 1463 | } | ||
| 1464 | EXPORT_SYMBOL(bio_unmap_user); | ||
| 1465 | |||
| 1466 | static void bio_map_kern_endio(struct bio *bio, int err) | ||
| 1467 | { | ||
| 1468 | bio_put(bio); | ||
| 1469 | } | ||
| 1470 | |||
| 1471 | static struct bio *__bio_map_kern(struct request_queue *q, void *data, | ||
| 1472 | unsigned int len, gfp_t gfp_mask) | ||
| 1473 | { | ||
| 1474 | unsigned long kaddr = (unsigned long)data; | ||
| 1475 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
| 1476 | unsigned long start = kaddr >> PAGE_SHIFT; | ||
| 1477 | const int nr_pages = end - start; | ||
| 1478 | int offset, i; | ||
| 1479 | struct bio *bio; | ||
| 1480 | |||
| 1481 | bio = bio_kmalloc(gfp_mask, nr_pages); | ||
| 1482 | if (!bio) | ||
| 1483 | return ERR_PTR(-ENOMEM); | ||
| 1484 | |||
| 1485 | offset = offset_in_page(kaddr); | ||
| 1486 | for (i = 0; i < nr_pages; i++) { | ||
| 1487 | unsigned int bytes = PAGE_SIZE - offset; | ||
| 1488 | |||
| 1489 | if (len <= 0) | ||
| 1490 | break; | ||
| 1491 | |||
| 1492 | if (bytes > len) | ||
| 1493 | bytes = len; | ||
| 1494 | |||
| 1495 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, | ||
| 1496 | offset) < bytes) | ||
| 1497 | break; | ||
| 1498 | |||
| 1499 | data += bytes; | ||
| 1500 | len -= bytes; | ||
| 1501 | offset = 0; | ||
| 1502 | } | ||
| 1503 | |||
| 1504 | bio->bi_end_io = bio_map_kern_endio; | ||
| 1505 | return bio; | ||
| 1506 | } | ||
| 1507 | |||
| 1508 | /** | ||
| 1509 | * bio_map_kern - map kernel address into bio | ||
| 1510 | * @q: the struct request_queue for the bio | ||
| 1511 | * @data: pointer to buffer to map | ||
| 1512 | * @len: length in bytes | ||
| 1513 | * @gfp_mask: allocation flags for bio allocation | ||
| 1514 | * | ||
| 1515 | * Map the kernel address into a bio suitable for io to a block | ||
| 1516 | * device. Returns an error pointer in case of error. | ||
| 1517 | */ | ||
| 1518 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, | ||
| 1519 | gfp_t gfp_mask) | ||
| 1520 | { | ||
| 1521 | struct bio *bio; | ||
| 1522 | |||
| 1523 | bio = __bio_map_kern(q, data, len, gfp_mask); | ||
| 1524 | if (IS_ERR(bio)) | ||
| 1525 | return bio; | ||
| 1526 | |||
| 1527 | if (bio->bi_iter.bi_size == len) | ||
| 1528 | return bio; | ||
| 1529 | |||
| 1530 | /* | ||
| 1531 | * Don't support partial mappings. | ||
| 1532 | */ | ||
| 1533 | bio_put(bio); | ||
| 1534 | return ERR_PTR(-EINVAL); | ||
| 1535 | } | ||
| 1536 | EXPORT_SYMBOL(bio_map_kern); | ||
| 1537 | |||
| 1538 | static void bio_copy_kern_endio(struct bio *bio, int err) | ||
| 1539 | { | ||
| 1540 | struct bio_vec *bvec; | ||
| 1541 | const int read = bio_data_dir(bio) == READ; | ||
| 1542 | struct bio_map_data *bmd = bio->bi_private; | ||
| 1543 | int i; | ||
| 1544 | char *p = bmd->sgvecs[0].iov_base; | ||
| 1545 | |||
| 1546 | bio_for_each_segment_all(bvec, bio, i) { | ||
| 1547 | char *addr = page_address(bvec->bv_page); | ||
| 1548 | |||
| 1549 | if (read) | ||
| 1550 | memcpy(p, addr, bvec->bv_len); | ||
| 1551 | |||
| 1552 | __free_page(bvec->bv_page); | ||
| 1553 | p += bvec->bv_len; | ||
| 1554 | } | ||
| 1555 | |||
| 1556 | kfree(bmd); | ||
| 1557 | bio_put(bio); | ||
| 1558 | } | ||
| 1559 | |||
| 1560 | /** | ||
| 1561 | * bio_copy_kern - copy kernel address into bio | ||
| 1562 | * @q: the struct request_queue for the bio | ||
| 1563 | * @data: pointer to buffer to copy | ||
| 1564 | * @len: length in bytes | ||
| 1565 | * @gfp_mask: allocation flags for bio and page allocation | ||
| 1566 | * @reading: data direction is READ | ||
| 1567 | * | ||
| 1568 | * copy the kernel address into a bio suitable for io to a block | ||
| 1569 | * device. Returns an error pointer in case of error. | ||
| 1570 | */ | ||
| 1571 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | ||
| 1572 | gfp_t gfp_mask, int reading) | ||
| 1573 | { | ||
| 1574 | struct bio *bio; | ||
| 1575 | struct bio_vec *bvec; | ||
| 1576 | int i; | ||
| 1577 | |||
| 1578 | bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); | ||
| 1579 | if (IS_ERR(bio)) | ||
| 1580 | return bio; | ||
| 1581 | |||
| 1582 | if (!reading) { | ||
| 1583 | void *p = data; | ||
| 1584 | |||
| 1585 | bio_for_each_segment_all(bvec, bio, i) { | ||
| 1586 | char *addr = page_address(bvec->bv_page); | ||
| 1587 | |||
| 1588 | memcpy(addr, p, bvec->bv_len); | ||
| 1589 | p += bvec->bv_len; | ||
| 1590 | } | ||
| 1591 | } | ||
| 1592 | |||
| 1593 | bio->bi_end_io = bio_copy_kern_endio; | ||
| 1594 | |||
| 1595 | return bio; | ||
| 1596 | } | ||
| 1597 | EXPORT_SYMBOL(bio_copy_kern); | ||
| 1598 | |||
| 1599 | /* | ||
| 1600 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | ||
| 1601 | * for performing direct-IO in BIOs. | ||
| 1602 | * | ||
| 1603 | * The problem is that we cannot run set_page_dirty() from interrupt context | ||
| 1604 | * because the required locks are not interrupt-safe. So what we can do is to | ||
| 1605 | * mark the pages dirty _before_ performing IO. And in interrupt context, | ||
| 1606 | * check that the pages are still dirty. If so, fine. If not, redirty them | ||
| 1607 | * in process context. | ||
| 1608 | * | ||
| 1609 | * We special-case compound pages here: normally this means reads into hugetlb | ||
| 1610 | * pages. The logic in here doesn't really work right for compound pages | ||
| 1611 | * because the VM does not uniformly chase down the head page in all cases. | ||
| 1612 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | ||
| 1613 | * handle them at all. So we skip compound pages here at an early stage. | ||
| 1614 | * | ||
| 1615 | * Note that this code is very hard to test under normal circumstances because | ||
| 1616 | * direct-io pins the pages with get_user_pages(). This makes | ||
| 1617 | * is_page_cache_freeable return false, and the VM will not clean the pages. | ||
| 1618 | * But other code (eg, flusher threads) could clean the pages if they are mapped | ||
| 1619 | * pagecache. | ||
| 1620 | * | ||
| 1621 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | ||
| 1622 | * deferred bio dirtying paths. | ||
| 1623 | */ | ||
| 1624 | |||
| 1625 | /* | ||
| 1626 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | ||
| 1627 | */ | ||
| 1628 | void bio_set_pages_dirty(struct bio *bio) | ||
| 1629 | { | ||
| 1630 | struct bio_vec *bvec; | ||
| 1631 | int i; | ||
| 1632 | |||
| 1633 | bio_for_each_segment_all(bvec, bio, i) { | ||
| 1634 | struct page *page = bvec->bv_page; | ||
| 1635 | |||
| 1636 | if (page && !PageCompound(page)) | ||
| 1637 | set_page_dirty_lock(page); | ||
| 1638 | } | ||
| 1639 | } | ||
| 1640 | |||
| 1641 | static void bio_release_pages(struct bio *bio) | ||
| 1642 | { | ||
| 1643 | struct bio_vec *bvec; | ||
| 1644 | int i; | ||
| 1645 | |||
| 1646 | bio_for_each_segment_all(bvec, bio, i) { | ||
| 1647 | struct page *page = bvec->bv_page; | ||
| 1648 | |||
| 1649 | if (page) | ||
| 1650 | put_page(page); | ||
| 1651 | } | ||
| 1652 | } | ||
| 1653 | |||
| 1654 | /* | ||
| 1655 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | ||
| 1656 | * If they are, then fine. If, however, some pages are clean then they must | ||
| 1657 | * have been written out during the direct-IO read. So we take another ref on | ||
| 1658 | * the BIO and the offending pages and re-dirty the pages in process context. | ||
| 1659 | * | ||
| 1660 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | ||
| 1661 | * here on. It will run one page_cache_release() against each page and will | ||
| 1662 | * run one bio_put() against the BIO. | ||
| 1663 | */ | ||
| 1664 | |||
| 1665 | static void bio_dirty_fn(struct work_struct *work); | ||
| 1666 | |||
| 1667 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); | ||
| 1668 | static DEFINE_SPINLOCK(bio_dirty_lock); | ||
| 1669 | static struct bio *bio_dirty_list; | ||
| 1670 | |||
| 1671 | /* | ||
| 1672 | * This runs in process context | ||
| 1673 | */ | ||
| 1674 | static void bio_dirty_fn(struct work_struct *work) | ||
| 1675 | { | ||
| 1676 | unsigned long flags; | ||
| 1677 | struct bio *bio; | ||
| 1678 | |||
| 1679 | spin_lock_irqsave(&bio_dirty_lock, flags); | ||
| 1680 | bio = bio_dirty_list; | ||
| 1681 | bio_dirty_list = NULL; | ||
| 1682 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | ||
| 1683 | |||
| 1684 | while (bio) { | ||
| 1685 | struct bio *next = bio->bi_private; | ||
| 1686 | |||
| 1687 | bio_set_pages_dirty(bio); | ||
| 1688 | bio_release_pages(bio); | ||
| 1689 | bio_put(bio); | ||
| 1690 | bio = next; | ||
| 1691 | } | ||
| 1692 | } | ||
| 1693 | |||
| 1694 | void bio_check_pages_dirty(struct bio *bio) | ||
| 1695 | { | ||
| 1696 | struct bio_vec *bvec; | ||
| 1697 | int nr_clean_pages = 0; | ||
| 1698 | int i; | ||
| 1699 | |||
| 1700 | bio_for_each_segment_all(bvec, bio, i) { | ||
| 1701 | struct page *page = bvec->bv_page; | ||
| 1702 | |||
| 1703 | if (PageDirty(page) || PageCompound(page)) { | ||
| 1704 | page_cache_release(page); | ||
| 1705 | bvec->bv_page = NULL; | ||
| 1706 | } else { | ||
| 1707 | nr_clean_pages++; | ||
| 1708 | } | ||
| 1709 | } | ||
| 1710 | |||
| 1711 | if (nr_clean_pages) { | ||
| 1712 | unsigned long flags; | ||
| 1713 | |||
| 1714 | spin_lock_irqsave(&bio_dirty_lock, flags); | ||
| 1715 | bio->bi_private = bio_dirty_list; | ||
| 1716 | bio_dirty_list = bio; | ||
| 1717 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | ||
| 1718 | schedule_work(&bio_dirty_work); | ||
| 1719 | } else { | ||
| 1720 | bio_put(bio); | ||
| 1721 | } | ||
| 1722 | } | ||
| 1723 | |||
| 1724 | #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE | ||
| 1725 | void bio_flush_dcache_pages(struct bio *bi) | ||
| 1726 | { | ||
| 1727 | struct bio_vec bvec; | ||
| 1728 | struct bvec_iter iter; | ||
| 1729 | |||
| 1730 | bio_for_each_segment(bvec, bi, iter) | ||
| 1731 | flush_dcache_page(bvec.bv_page); | ||
| 1732 | } | ||
| 1733 | EXPORT_SYMBOL(bio_flush_dcache_pages); | ||
| 1734 | #endif | ||
| 1735 | |||
| 1736 | /** | ||
| 1737 | * bio_endio - end I/O on a bio | ||
| 1738 | * @bio: bio | ||
| 1739 | * @error: error, if any | ||
| 1740 | * | ||
| 1741 | * Description: | ||
| 1742 | * bio_endio() will end I/O on the whole bio. bio_endio() is the | ||
| 1743 | * preferred way to end I/O on a bio, it takes care of clearing | ||
| 1744 | * BIO_UPTODATE on error. @error is 0 on success, and and one of the | ||
| 1745 | * established -Exxxx (-EIO, for instance) error values in case | ||
| 1746 | * something went wrong. No one should call bi_end_io() directly on a | ||
| 1747 | * bio unless they own it and thus know that it has an end_io | ||
| 1748 | * function. | ||
| 1749 | **/ | ||
| 1750 | void bio_endio(struct bio *bio, int error) | ||
| 1751 | { | ||
| 1752 | while (bio) { | ||
| 1753 | BUG_ON(atomic_read(&bio->bi_remaining) <= 0); | ||
| 1754 | |||
| 1755 | if (error) | ||
| 1756 | clear_bit(BIO_UPTODATE, &bio->bi_flags); | ||
| 1757 | else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | ||
| 1758 | error = -EIO; | ||
| 1759 | |||
| 1760 | if (!atomic_dec_and_test(&bio->bi_remaining)) | ||
| 1761 | return; | ||
| 1762 | |||
| 1763 | /* | ||
| 1764 | * Need to have a real endio function for chained bios, | ||
| 1765 | * otherwise various corner cases will break (like stacking | ||
| 1766 | * block devices that save/restore bi_end_io) - however, we want | ||
| 1767 | * to avoid unbounded recursion and blowing the stack. Tail call | ||
| 1768 | * optimization would handle this, but compiling with frame | ||
| 1769 | * pointers also disables gcc's sibling call optimization. | ||
| 1770 | */ | ||
| 1771 | if (bio->bi_end_io == bio_chain_endio) { | ||
| 1772 | struct bio *parent = bio->bi_private; | ||
| 1773 | bio_put(bio); | ||
| 1774 | bio = parent; | ||
| 1775 | } else { | ||
| 1776 | if (bio->bi_end_io) | ||
| 1777 | bio->bi_end_io(bio, error); | ||
| 1778 | bio = NULL; | ||
| 1779 | } | ||
| 1780 | } | ||
| 1781 | } | ||
| 1782 | EXPORT_SYMBOL(bio_endio); | ||
| 1783 | |||
| 1784 | /** | ||
| 1785 | * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining | ||
| 1786 | * @bio: bio | ||
| 1787 | * @error: error, if any | ||
| 1788 | * | ||
| 1789 | * For code that has saved and restored bi_end_io; thing hard before using this | ||
| 1790 | * function, probably you should've cloned the entire bio. | ||
| 1791 | **/ | ||
| 1792 | void bio_endio_nodec(struct bio *bio, int error) | ||
| 1793 | { | ||
| 1794 | atomic_inc(&bio->bi_remaining); | ||
| 1795 | bio_endio(bio, error); | ||
| 1796 | } | ||
| 1797 | EXPORT_SYMBOL(bio_endio_nodec); | ||
| 1798 | |||
| 1799 | /** | ||
| 1800 | * bio_split - split a bio | ||
| 1801 | * @bio: bio to split | ||
| 1802 | * @sectors: number of sectors to split from the front of @bio | ||
| 1803 | * @gfp: gfp mask | ||
| 1804 | * @bs: bio set to allocate from | ||
| 1805 | * | ||
| 1806 | * Allocates and returns a new bio which represents @sectors from the start of | ||
| 1807 | * @bio, and updates @bio to represent the remaining sectors. | ||
| 1808 | * | ||
| 1809 | * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's | ||
| 1810 | * responsibility to ensure that @bio is not freed before the split. | ||
| 1811 | */ | ||
| 1812 | struct bio *bio_split(struct bio *bio, int sectors, | ||
| 1813 | gfp_t gfp, struct bio_set *bs) | ||
| 1814 | { | ||
| 1815 | struct bio *split = NULL; | ||
| 1816 | |||
| 1817 | BUG_ON(sectors <= 0); | ||
| 1818 | BUG_ON(sectors >= bio_sectors(bio)); | ||
| 1819 | |||
| 1820 | split = bio_clone_fast(bio, gfp, bs); | ||
| 1821 | if (!split) | ||
| 1822 | return NULL; | ||
| 1823 | |||
| 1824 | split->bi_iter.bi_size = sectors << 9; | ||
| 1825 | |||
| 1826 | if (bio_integrity(split)) | ||
| 1827 | bio_integrity_trim(split, 0, sectors); | ||
| 1828 | |||
| 1829 | bio_advance(bio, split->bi_iter.bi_size); | ||
| 1830 | |||
| 1831 | return split; | ||
| 1832 | } | ||
| 1833 | EXPORT_SYMBOL(bio_split); | ||
| 1834 | |||
| 1835 | /** | ||
| 1836 | * bio_trim - trim a bio | ||
| 1837 | * @bio: bio to trim | ||
| 1838 | * @offset: number of sectors to trim from the front of @bio | ||
| 1839 | * @size: size we want to trim @bio to, in sectors | ||
| 1840 | */ | ||
| 1841 | void bio_trim(struct bio *bio, int offset, int size) | ||
| 1842 | { | ||
| 1843 | /* 'bio' is a cloned bio which we need to trim to match | ||
| 1844 | * the given offset and size. | ||
| 1845 | */ | ||
| 1846 | |||
| 1847 | size <<= 9; | ||
| 1848 | if (offset == 0 && size == bio->bi_iter.bi_size) | ||
| 1849 | return; | ||
| 1850 | |||
| 1851 | clear_bit(BIO_SEG_VALID, &bio->bi_flags); | ||
| 1852 | |||
| 1853 | bio_advance(bio, offset << 9); | ||
| 1854 | |||
| 1855 | bio->bi_iter.bi_size = size; | ||
| 1856 | } | ||
| 1857 | EXPORT_SYMBOL_GPL(bio_trim); | ||
| 1858 | |||
| 1859 | /* | ||
| 1860 | * create memory pools for biovec's in a bio_set. | ||
| 1861 | * use the global biovec slabs created for general use. | ||
| 1862 | */ | ||
| 1863 | mempool_t *biovec_create_pool(int pool_entries) | ||
| 1864 | { | ||
| 1865 | struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; | ||
| 1866 | |||
| 1867 | return mempool_create_slab_pool(pool_entries, bp->slab); | ||
| 1868 | } | ||
| 1869 | |||
| 1870 | void bioset_free(struct bio_set *bs) | ||
| 1871 | { | ||
| 1872 | if (bs->rescue_workqueue) | ||
| 1873 | destroy_workqueue(bs->rescue_workqueue); | ||
| 1874 | |||
| 1875 | if (bs->bio_pool) | ||
| 1876 | mempool_destroy(bs->bio_pool); | ||
| 1877 | |||
| 1878 | if (bs->bvec_pool) | ||
| 1879 | mempool_destroy(bs->bvec_pool); | ||
| 1880 | |||
| 1881 | bioset_integrity_free(bs); | ||
| 1882 | bio_put_slab(bs); | ||
| 1883 | |||
| 1884 | kfree(bs); | ||
| 1885 | } | ||
| 1886 | EXPORT_SYMBOL(bioset_free); | ||
| 1887 | |||
| 1888 | /** | ||
| 1889 | * bioset_create - Create a bio_set | ||
| 1890 | * @pool_size: Number of bio and bio_vecs to cache in the mempool | ||
| 1891 | * @front_pad: Number of bytes to allocate in front of the returned bio | ||
| 1892 | * | ||
| 1893 | * Description: | ||
| 1894 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | ||
| 1895 | * to ask for a number of bytes to be allocated in front of the bio. | ||
| 1896 | * Front pad allocation is useful for embedding the bio inside | ||
| 1897 | * another structure, to avoid allocating extra data to go with the bio. | ||
| 1898 | * Note that the bio must be embedded at the END of that structure always, | ||
| 1899 | * or things will break badly. | ||
| 1900 | */ | ||
| 1901 | struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) | ||
| 1902 | { | ||
| 1903 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); | ||
| 1904 | struct bio_set *bs; | ||
| 1905 | |||
| 1906 | bs = kzalloc(sizeof(*bs), GFP_KERNEL); | ||
| 1907 | if (!bs) | ||
| 1908 | return NULL; | ||
| 1909 | |||
| 1910 | bs->front_pad = front_pad; | ||
| 1911 | |||
| 1912 | spin_lock_init(&bs->rescue_lock); | ||
| 1913 | bio_list_init(&bs->rescue_list); | ||
| 1914 | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | ||
| 1915 | |||
| 1916 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); | ||
| 1917 | if (!bs->bio_slab) { | ||
| 1918 | kfree(bs); | ||
| 1919 | return NULL; | ||
| 1920 | } | ||
| 1921 | |||
| 1922 | bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); | ||
| 1923 | if (!bs->bio_pool) | ||
| 1924 | goto bad; | ||
| 1925 | |||
| 1926 | bs->bvec_pool = biovec_create_pool(pool_size); | ||
| 1927 | if (!bs->bvec_pool) | ||
| 1928 | goto bad; | ||
| 1929 | |||
| 1930 | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | ||
| 1931 | if (!bs->rescue_workqueue) | ||
| 1932 | goto bad; | ||
| 1933 | |||
| 1934 | return bs; | ||
| 1935 | bad: | ||
| 1936 | bioset_free(bs); | ||
| 1937 | return NULL; | ||
| 1938 | } | ||
| 1939 | EXPORT_SYMBOL(bioset_create); | ||
| 1940 | |||
| 1941 | #ifdef CONFIG_BLK_CGROUP | ||
| 1942 | /** | ||
| 1943 | * bio_associate_current - associate a bio with %current | ||
| 1944 | * @bio: target bio | ||
| 1945 | * | ||
| 1946 | * Associate @bio with %current if it hasn't been associated yet. Block | ||
| 1947 | * layer will treat @bio as if it were issued by %current no matter which | ||
| 1948 | * task actually issues it. | ||
| 1949 | * | ||
| 1950 | * This function takes an extra reference of @task's io_context and blkcg | ||
| 1951 | * which will be put when @bio is released. The caller must own @bio, | ||
| 1952 | * ensure %current->io_context exists, and is responsible for synchronizing | ||
| 1953 | * calls to this function. | ||
| 1954 | */ | ||
| 1955 | int bio_associate_current(struct bio *bio) | ||
| 1956 | { | ||
| 1957 | struct io_context *ioc; | ||
| 1958 | struct cgroup_subsys_state *css; | ||
| 1959 | |||
| 1960 | if (bio->bi_ioc) | ||
| 1961 | return -EBUSY; | ||
| 1962 | |||
| 1963 | ioc = current->io_context; | ||
| 1964 | if (!ioc) | ||
| 1965 | return -ENOENT; | ||
| 1966 | |||
| 1967 | /* acquire active ref on @ioc and associate */ | ||
| 1968 | get_io_context_active(ioc); | ||
| 1969 | bio->bi_ioc = ioc; | ||
| 1970 | |||
| 1971 | /* associate blkcg if exists */ | ||
| 1972 | rcu_read_lock(); | ||
| 1973 | css = task_css(current, blkio_cgrp_id); | ||
| 1974 | if (css && css_tryget(css)) | ||
| 1975 | bio->bi_css = css; | ||
| 1976 | rcu_read_unlock(); | ||
| 1977 | |||
| 1978 | return 0; | ||
| 1979 | } | ||
| 1980 | |||
| 1981 | /** | ||
| 1982 | * bio_disassociate_task - undo bio_associate_current() | ||
| 1983 | * @bio: target bio | ||
| 1984 | */ | ||
| 1985 | void bio_disassociate_task(struct bio *bio) | ||
| 1986 | { | ||
| 1987 | if (bio->bi_ioc) { | ||
| 1988 | put_io_context(bio->bi_ioc); | ||
| 1989 | bio->bi_ioc = NULL; | ||
| 1990 | } | ||
| 1991 | if (bio->bi_css) { | ||
| 1992 | css_put(bio->bi_css); | ||
| 1993 | bio->bi_css = NULL; | ||
| 1994 | } | ||
| 1995 | } | ||
| 1996 | |||
| 1997 | #endif /* CONFIG_BLK_CGROUP */ | ||
| 1998 | |||
| 1999 | static void __init biovec_init_slabs(void) | ||
| 2000 | { | ||
| 2001 | int i; | ||
| 2002 | |||
| 2003 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | ||
| 2004 | int size; | ||
| 2005 | struct biovec_slab *bvs = bvec_slabs + i; | ||
| 2006 | |||
| 2007 | if (bvs->nr_vecs <= BIO_INLINE_VECS) { | ||
| 2008 | bvs->slab = NULL; | ||
| 2009 | continue; | ||
| 2010 | } | ||
| 2011 | |||
| 2012 | size = bvs->nr_vecs * sizeof(struct bio_vec); | ||
| 2013 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | ||
| 2014 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | ||
| 2015 | } | ||
| 2016 | } | ||
| 2017 | |||
| 2018 | static int __init init_bio(void) | ||
| 2019 | { | ||
| 2020 | bio_slab_max = 2; | ||
| 2021 | bio_slab_nr = 0; | ||
| 2022 | bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); | ||
| 2023 | if (!bio_slabs) | ||
| 2024 | panic("bio: can't allocate bios\n"); | ||
| 2025 | |||
| 2026 | bio_integrity_init(); | ||
| 2027 | biovec_init_slabs(); | ||
| 2028 | |||
| 2029 | fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); | ||
| 2030 | if (!fs_bio_set) | ||
| 2031 | panic("bio: can't allocate bios\n"); | ||
| 2032 | |||
| 2033 | if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) | ||
| 2034 | panic("bio: can't create integrity pool\n"); | ||
| 2035 | |||
| 2036 | return 0; | ||
| 2037 | } | ||
| 2038 | subsys_initcall(init_bio); | ||
diff --git a/block/blk-core.c b/block/blk-core.c index c4269701cb4f..d87be5b4e554 100644 --- a/block/blk-core.c +++ b/block/blk-core.c | |||
| @@ -576,12 +576,9 @@ struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) | |||
| 576 | if (!q) | 576 | if (!q) |
| 577 | return NULL; | 577 | return NULL; |
| 578 | 578 | ||
| 579 | if (percpu_counter_init(&q->mq_usage_counter, 0)) | ||
| 580 | goto fail_q; | ||
| 581 | |||
| 582 | q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); | 579 | q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); |
| 583 | if (q->id < 0) | 580 | if (q->id < 0) |
| 584 | goto fail_c; | 581 | goto fail_q; |
| 585 | 582 | ||
| 586 | q->backing_dev_info.ra_pages = | 583 | q->backing_dev_info.ra_pages = |
| 587 | (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; | 584 | (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; |
| @@ -639,8 +636,6 @@ fail_bdi: | |||
| 639 | bdi_destroy(&q->backing_dev_info); | 636 | bdi_destroy(&q->backing_dev_info); |
| 640 | fail_id: | 637 | fail_id: |
| 641 | ida_simple_remove(&blk_queue_ida, q->id); | 638 | ida_simple_remove(&blk_queue_ida, q->id); |
| 642 | fail_c: | ||
| 643 | percpu_counter_destroy(&q->mq_usage_counter); | ||
| 644 | fail_q: | 639 | fail_q: |
| 645 | kmem_cache_free(blk_requestq_cachep, q); | 640 | kmem_cache_free(blk_requestq_cachep, q); |
| 646 | return NULL; | 641 | return NULL; |
| @@ -848,6 +843,47 @@ static void freed_request(struct request_list *rl, unsigned int flags) | |||
| 848 | __freed_request(rl, sync ^ 1); | 843 | __freed_request(rl, sync ^ 1); |
| 849 | } | 844 | } |
| 850 | 845 | ||
| 846 | int blk_update_nr_requests(struct request_queue *q, unsigned int nr) | ||
| 847 | { | ||
| 848 | struct request_list *rl; | ||
| 849 | |||
| 850 | spin_lock_irq(q->queue_lock); | ||
| 851 | q->nr_requests = nr; | ||
| 852 | blk_queue_congestion_threshold(q); | ||
| 853 | |||
| 854 | /* congestion isn't cgroup aware and follows root blkcg for now */ | ||
| 855 | rl = &q->root_rl; | ||
| 856 | |||
| 857 | if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q)) | ||
| 858 | blk_set_queue_congested(q, BLK_RW_SYNC); | ||
| 859 | else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q)) | ||
| 860 | blk_clear_queue_congested(q, BLK_RW_SYNC); | ||
| 861 | |||
| 862 | if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q)) | ||
| 863 | blk_set_queue_congested(q, BLK_RW_ASYNC); | ||
| 864 | else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q)) | ||
| 865 | blk_clear_queue_congested(q, BLK_RW_ASYNC); | ||
| 866 | |||
| 867 | blk_queue_for_each_rl(rl, q) { | ||
| 868 | if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { | ||
| 869 | blk_set_rl_full(rl, BLK_RW_SYNC); | ||
| 870 | } else { | ||
| 871 | blk_clear_rl_full(rl, BLK_RW_SYNC); | ||
| 872 | wake_up(&rl->wait[BLK_RW_SYNC]); | ||
| 873 | } | ||
| 874 | |||
| 875 | if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { | ||
| 876 | blk_set_rl_full(rl, BLK_RW_ASYNC); | ||
| 877 | } else { | ||
| 878 | blk_clear_rl_full(rl, BLK_RW_ASYNC); | ||
| 879 | wake_up(&rl->wait[BLK_RW_ASYNC]); | ||
| 880 | } | ||
| 881 | } | ||
| 882 | |||
| 883 | spin_unlock_irq(q->queue_lock); | ||
| 884 | return 0; | ||
| 885 | } | ||
| 886 | |||
| 851 | /* | 887 | /* |
| 852 | * Determine if elevator data should be initialized when allocating the | 888 | * Determine if elevator data should be initialized when allocating the |
| 853 | * request associated with @bio. | 889 | * request associated with @bio. |
| @@ -1137,7 +1173,7 @@ static struct request *blk_old_get_request(struct request_queue *q, int rw, | |||
| 1137 | struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) | 1173 | struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) |
| 1138 | { | 1174 | { |
| 1139 | if (q->mq_ops) | 1175 | if (q->mq_ops) |
| 1140 | return blk_mq_alloc_request(q, rw, gfp_mask); | 1176 | return blk_mq_alloc_request(q, rw, gfp_mask, false); |
| 1141 | else | 1177 | else |
| 1142 | return blk_old_get_request(q, rw, gfp_mask); | 1178 | return blk_old_get_request(q, rw, gfp_mask); |
| 1143 | } | 1179 | } |
| @@ -1233,12 +1269,15 @@ static void add_acct_request(struct request_queue *q, struct request *rq, | |||
| 1233 | static void part_round_stats_single(int cpu, struct hd_struct *part, | 1269 | static void part_round_stats_single(int cpu, struct hd_struct *part, |
| 1234 | unsigned long now) | 1270 | unsigned long now) |
| 1235 | { | 1271 | { |
| 1272 | int inflight; | ||
| 1273 | |||
| 1236 | if (now == part->stamp) | 1274 | if (now == part->stamp) |
| 1237 | return; | 1275 | return; |
| 1238 | 1276 | ||
| 1239 | if (part_in_flight(part)) { | 1277 | inflight = part_in_flight(part); |
| 1278 | if (inflight) { | ||
| 1240 | __part_stat_add(cpu, part, time_in_queue, | 1279 | __part_stat_add(cpu, part, time_in_queue, |
| 1241 | part_in_flight(part) * (now - part->stamp)); | 1280 | inflight * (now - part->stamp)); |
| 1242 | __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); | 1281 | __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); |
| 1243 | } | 1282 | } |
| 1244 | part->stamp = now; | 1283 | part->stamp = now; |
| @@ -1427,6 +1466,8 @@ bool bio_attempt_front_merge(struct request_queue *q, struct request *req, | |||
| 1427 | * added on the elevator at this point. In addition, we don't have | 1466 | * added on the elevator at this point. In addition, we don't have |
| 1428 | * reliable access to the elevator outside queue lock. Only check basic | 1467 | * reliable access to the elevator outside queue lock. Only check basic |
| 1429 | * merging parameters without querying the elevator. | 1468 | * merging parameters without querying the elevator. |
| 1469 | * | ||
| 1470 | * Caller must ensure !blk_queue_nomerges(q) beforehand. | ||
| 1430 | */ | 1471 | */ |
| 1431 | bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, | 1472 | bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, |
| 1432 | unsigned int *request_count) | 1473 | unsigned int *request_count) |
| @@ -1436,9 +1477,6 @@ bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, | |||
| 1436 | bool ret = false; | 1477 | bool ret = false; |
| 1437 | struct list_head *plug_list; | 1478 | struct list_head *plug_list; |
| 1438 | 1479 | ||
| 1439 | if (blk_queue_nomerges(q)) | ||
| 1440 | goto out; | ||
| 1441 | |||
| 1442 | plug = current->plug; | 1480 | plug = current->plug; |
| 1443 | if (!plug) | 1481 | if (!plug) |
| 1444 | goto out; | 1482 | goto out; |
| @@ -1517,7 +1555,8 @@ void blk_queue_bio(struct request_queue *q, struct bio *bio) | |||
| 1517 | * Check if we can merge with the plugged list before grabbing | 1555 | * Check if we can merge with the plugged list before grabbing |
| 1518 | * any locks. | 1556 | * any locks. |
| 1519 | */ | 1557 | */ |
| 1520 | if (blk_attempt_plug_merge(q, bio, &request_count)) | 1558 | if (!blk_queue_nomerges(q) && |
| 1559 | blk_attempt_plug_merge(q, bio, &request_count)) | ||
| 1521 | return; | 1560 | return; |
| 1522 | 1561 | ||
| 1523 | spin_lock_irq(q->queue_lock); | 1562 | spin_lock_irq(q->queue_lock); |
diff --git a/block/blk-flush.c b/block/blk-flush.c index ec7a224d6733..ef608b35d9be 100644 --- a/block/blk-flush.c +++ b/block/blk-flush.c | |||
| @@ -130,21 +130,13 @@ static void blk_flush_restore_request(struct request *rq) | |||
| 130 | blk_clear_rq_complete(rq); | 130 | blk_clear_rq_complete(rq); |
| 131 | } | 131 | } |
| 132 | 132 | ||
| 133 | static void mq_flush_run(struct work_struct *work) | ||
| 134 | { | ||
| 135 | struct request *rq; | ||
| 136 | |||
| 137 | rq = container_of(work, struct request, requeue_work); | ||
| 138 | |||
| 139 | memset(&rq->csd, 0, sizeof(rq->csd)); | ||
| 140 | blk_mq_insert_request(rq, false, true, false); | ||
| 141 | } | ||
| 142 | |||
| 143 | static bool blk_flush_queue_rq(struct request *rq, bool add_front) | 133 | static bool blk_flush_queue_rq(struct request *rq, bool add_front) |
| 144 | { | 134 | { |
| 145 | if (rq->q->mq_ops) { | 135 | if (rq->q->mq_ops) { |
| 146 | INIT_WORK(&rq->requeue_work, mq_flush_run); | 136 | struct request_queue *q = rq->q; |
| 147 | kblockd_schedule_work(&rq->requeue_work); | 137 | |
| 138 | blk_mq_add_to_requeue_list(rq, add_front); | ||
| 139 | blk_mq_kick_requeue_list(q); | ||
| 148 | return false; | 140 | return false; |
| 149 | } else { | 141 | } else { |
| 150 | if (add_front) | 142 | if (add_front) |
diff --git a/block/blk-iopoll.c b/block/blk-iopoll.c index c11d24e379e2..d828b44a404b 100644 --- a/block/blk-iopoll.c +++ b/block/blk-iopoll.c | |||
| @@ -64,12 +64,12 @@ EXPORT_SYMBOL(__blk_iopoll_complete); | |||
| 64 | * iopoll handler will not be invoked again before blk_iopoll_sched_prep() | 64 | * iopoll handler will not be invoked again before blk_iopoll_sched_prep() |
| 65 | * is called. | 65 | * is called. |
| 66 | **/ | 66 | **/ |
| 67 | void blk_iopoll_complete(struct blk_iopoll *iopoll) | 67 | void blk_iopoll_complete(struct blk_iopoll *iop) |
| 68 | { | 68 | { |
| 69 | unsigned long flags; | 69 | unsigned long flags; |
| 70 | 70 | ||
| 71 | local_irq_save(flags); | 71 | local_irq_save(flags); |
| 72 | __blk_iopoll_complete(iopoll); | 72 | __blk_iopoll_complete(iop); |
| 73 | local_irq_restore(flags); | 73 | local_irq_restore(flags); |
| 74 | } | 74 | } |
| 75 | EXPORT_SYMBOL(blk_iopoll_complete); | 75 | EXPORT_SYMBOL(blk_iopoll_complete); |
diff --git a/block/blk-lib.c b/block/blk-lib.c index 97a733cf3d5f..8411be3c19d3 100644 --- a/block/blk-lib.c +++ b/block/blk-lib.c | |||
| @@ -226,8 +226,8 @@ EXPORT_SYMBOL(blkdev_issue_write_same); | |||
| 226 | * Generate and issue number of bios with zerofiled pages. | 226 | * Generate and issue number of bios with zerofiled pages. |
| 227 | */ | 227 | */ |
| 228 | 228 | ||
| 229 | int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, | 229 | static int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, |
| 230 | sector_t nr_sects, gfp_t gfp_mask) | 230 | sector_t nr_sects, gfp_t gfp_mask) |
| 231 | { | 231 | { |
| 232 | int ret; | 232 | int ret; |
| 233 | struct bio *bio; | 233 | struct bio *bio; |
diff --git a/block/blk-mq-cpu.c b/block/blk-mq-cpu.c index 136ef8643bba..d2c253f71b86 100644 --- a/block/blk-mq-cpu.c +++ b/block/blk-mq-cpu.c | |||
| @@ -18,14 +18,18 @@ static int blk_mq_main_cpu_notify(struct notifier_block *self, | |||
| 18 | { | 18 | { |
| 19 | unsigned int cpu = (unsigned long) hcpu; | 19 | unsigned int cpu = (unsigned long) hcpu; |
| 20 | struct blk_mq_cpu_notifier *notify; | 20 | struct blk_mq_cpu_notifier *notify; |
| 21 | int ret = NOTIFY_OK; | ||
| 21 | 22 | ||
| 22 | raw_spin_lock(&blk_mq_cpu_notify_lock); | 23 | raw_spin_lock(&blk_mq_cpu_notify_lock); |
| 23 | 24 | ||
| 24 | list_for_each_entry(notify, &blk_mq_cpu_notify_list, list) | 25 | list_for_each_entry(notify, &blk_mq_cpu_notify_list, list) { |
| 25 | notify->notify(notify->data, action, cpu); | 26 | ret = notify->notify(notify->data, action, cpu); |
| 27 | if (ret != NOTIFY_OK) | ||
| 28 | break; | ||
| 29 | } | ||
| 26 | 30 | ||
| 27 | raw_spin_unlock(&blk_mq_cpu_notify_lock); | 31 | raw_spin_unlock(&blk_mq_cpu_notify_lock); |
| 28 | return NOTIFY_OK; | 32 | return ret; |
| 29 | } | 33 | } |
| 30 | 34 | ||
| 31 | void blk_mq_register_cpu_notifier(struct blk_mq_cpu_notifier *notifier) | 35 | void blk_mq_register_cpu_notifier(struct blk_mq_cpu_notifier *notifier) |
| @@ -45,7 +49,7 @@ void blk_mq_unregister_cpu_notifier(struct blk_mq_cpu_notifier *notifier) | |||
| 45 | } | 49 | } |
| 46 | 50 | ||
| 47 | void blk_mq_init_cpu_notifier(struct blk_mq_cpu_notifier *notifier, | 51 | void blk_mq_init_cpu_notifier(struct blk_mq_cpu_notifier *notifier, |
| 48 | void (*fn)(void *, unsigned long, unsigned int), | 52 | int (*fn)(void *, unsigned long, unsigned int), |
| 49 | void *data) | 53 | void *data) |
| 50 | { | 54 | { |
| 51 | notifier->notify = fn; | 55 | notifier->notify = fn; |
diff --git a/block/blk-mq-cpumap.c b/block/blk-mq-cpumap.c index 5d0f93cf358c..0daacb927be1 100644 --- a/block/blk-mq-cpumap.c +++ b/block/blk-mq-cpumap.c | |||
| @@ -96,3 +96,19 @@ unsigned int *blk_mq_make_queue_map(struct blk_mq_tag_set *set) | |||
| 96 | kfree(map); | 96 | kfree(map); |
| 97 | return NULL; | 97 | return NULL; |
| 98 | } | 98 | } |
| 99 | |||
| 100 | /* | ||
| 101 | * We have no quick way of doing reverse lookups. This is only used at | ||
| 102 | * queue init time, so runtime isn't important. | ||
| 103 | */ | ||
| 104 | int blk_mq_hw_queue_to_node(unsigned int *mq_map, unsigned int index) | ||
| 105 | { | ||
| 106 | int i; | ||
| 107 | |||
| 108 | for_each_possible_cpu(i) { | ||
| 109 | if (index == mq_map[i]) | ||
| 110 | return cpu_to_node(i); | ||
| 111 | } | ||
| 112 | |||
| 113 | return NUMA_NO_NODE; | ||
| 114 | } | ||
diff --git a/block/blk-mq-sysfs.c b/block/blk-mq-sysfs.c index 9176a6984857..99a60a829e69 100644 --- a/block/blk-mq-sysfs.c +++ b/block/blk-mq-sysfs.c | |||
| @@ -203,45 +203,14 @@ static ssize_t blk_mq_hw_sysfs_rq_list_show(struct blk_mq_hw_ctx *hctx, | |||
| 203 | return ret; | 203 | return ret; |
| 204 | } | 204 | } |
| 205 | 205 | ||
| 206 | static ssize_t blk_mq_hw_sysfs_ipi_show(struct blk_mq_hw_ctx *hctx, char *page) | 206 | static ssize_t blk_mq_hw_sysfs_tags_show(struct blk_mq_hw_ctx *hctx, char *page) |
| 207 | { | ||
| 208 | ssize_t ret; | ||
| 209 | |||
| 210 | spin_lock(&hctx->lock); | ||
| 211 | ret = sprintf(page, "%u\n", !!(hctx->flags & BLK_MQ_F_SHOULD_IPI)); | ||
| 212 | spin_unlock(&hctx->lock); | ||
| 213 | |||
| 214 | return ret; | ||
| 215 | } | ||
| 216 | |||
| 217 | static ssize_t blk_mq_hw_sysfs_ipi_store(struct blk_mq_hw_ctx *hctx, | ||
| 218 | const char *page, size_t len) | ||
| 219 | { | 207 | { |
| 220 | struct blk_mq_ctx *ctx; | 208 | return blk_mq_tag_sysfs_show(hctx->tags, page); |
| 221 | unsigned long ret; | ||
| 222 | unsigned int i; | ||
| 223 | |||
| 224 | if (kstrtoul(page, 10, &ret)) { | ||
| 225 | pr_err("blk-mq-sysfs: invalid input '%s'\n", page); | ||
| 226 | return -EINVAL; | ||
| 227 | } | ||
| 228 | |||
| 229 | spin_lock(&hctx->lock); | ||
| 230 | if (ret) | ||
| 231 | hctx->flags |= BLK_MQ_F_SHOULD_IPI; | ||
| 232 | else | ||
| 233 | hctx->flags &= ~BLK_MQ_F_SHOULD_IPI; | ||
| 234 | spin_unlock(&hctx->lock); | ||
| 235 | |||
| 236 | hctx_for_each_ctx(hctx, ctx, i) | ||
| 237 | ctx->ipi_redirect = !!ret; | ||
| 238 | |||
| 239 | return len; | ||
| 240 | } | 209 | } |
| 241 | 210 | ||
| 242 | static ssize_t blk_mq_hw_sysfs_tags_show(struct blk_mq_hw_ctx *hctx, char *page) | 211 | static ssize_t blk_mq_hw_sysfs_active_show(struct blk_mq_hw_ctx *hctx, char *page) |
| 243 | { | 212 | { |
| 244 | return blk_mq_tag_sysfs_show(hctx->tags, page); | 213 | return sprintf(page, "%u\n", atomic_read(&hctx->nr_active)); |
| 245 | } | 214 | } |
| 246 | 215 | ||
| 247 | static ssize_t blk_mq_hw_sysfs_cpus_show(struct blk_mq_hw_ctx *hctx, char *page) | 216 | static ssize_t blk_mq_hw_sysfs_cpus_show(struct blk_mq_hw_ctx *hctx, char *page) |
| @@ -303,15 +272,14 @@ static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_dispatched = { | |||
| 303 | .attr = {.name = "dispatched", .mode = S_IRUGO }, | 272 | .attr = {.name = "dispatched", .mode = S_IRUGO }, |
| 304 | .show = blk_mq_hw_sysfs_dispatched_show, | 273 | .show = blk_mq_hw_sysfs_dispatched_show, |
| 305 | }; | 274 | }; |
| 275 | static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_active = { | ||
| 276 | .attr = {.name = "active", .mode = S_IRUGO }, | ||
| 277 | .show = blk_mq_hw_sysfs_active_show, | ||
| 278 | }; | ||
| 306 | static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_pending = { | 279 | static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_pending = { |
| 307 | .attr = {.name = "pending", .mode = S_IRUGO }, | 280 | .attr = {.name = "pending", .mode = S_IRUGO }, |
| 308 | .show = blk_mq_hw_sysfs_rq_list_show, | 281 | .show = blk_mq_hw_sysfs_rq_list_show, |
| 309 | }; | 282 | }; |
| 310 | static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_ipi = { | ||
| 311 | .attr = {.name = "ipi_redirect", .mode = S_IRUGO | S_IWUSR}, | ||
| 312 | .show = blk_mq_hw_sysfs_ipi_show, | ||
| 313 | .store = blk_mq_hw_sysfs_ipi_store, | ||
| 314 | }; | ||
| 315 | static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_tags = { | 283 | static struct blk_mq_hw_ctx_sysfs_entry blk_mq_hw_sysfs_tags = { |
| 316 | .attr = {.name = "tags", .mode = S_IRUGO }, | 284 | .attr = {.name = "tags", .mode = S_IRUGO }, |
| 317 | .show = blk_mq_hw_sysfs_tags_show, | 285 | .show = blk_mq_hw_sysfs_tags_show, |
| @@ -326,9 +294,9 @@ static struct attribute *default_hw_ctx_attrs[] = { | |||
| 326 | &blk_mq_hw_sysfs_run.attr, | 294 | &blk_mq_hw_sysfs_run.attr, |
| 327 | &blk_mq_hw_sysfs_dispatched.attr, | 295 | &blk_mq_hw_sysfs_dispatched.attr, |
| 328 | &blk_mq_hw_sysfs_pending.attr, | 296 | &blk_mq_hw_sysfs_pending.attr, |
| 329 | &blk_mq_hw_sysfs_ipi.attr, | ||
| 330 | &blk_mq_hw_sysfs_tags.attr, | 297 | &blk_mq_hw_sysfs_tags.attr, |
| 331 | &blk_mq_hw_sysfs_cpus.attr, | 298 | &blk_mq_hw_sysfs_cpus.attr, |
| 299 | &blk_mq_hw_sysfs_active.attr, | ||
| 332 | NULL, | 300 | NULL, |
| 333 | }; | 301 | }; |
| 334 | 302 | ||
diff --git a/block/blk-mq-tag.c b/block/blk-mq-tag.c index 7a799c46c32d..0d0640d38a06 100644 --- a/block/blk-mq-tag.c +++ b/block/blk-mq-tag.c | |||
| @@ -1,64 +1,333 @@ | |||
| 1 | #include <linux/kernel.h> | 1 | #include <linux/kernel.h> |
| 2 | #include <linux/module.h> | 2 | #include <linux/module.h> |
| 3 | #include <linux/random.h> | ||
| 3 | 4 | ||
| 4 | #include <linux/blk-mq.h> | 5 | #include <linux/blk-mq.h> |
| 5 | #include "blk.h" | 6 | #include "blk.h" |
| 6 | #include "blk-mq.h" | 7 | #include "blk-mq.h" |
| 7 | #include "blk-mq-tag.h" | 8 | #include "blk-mq-tag.h" |
| 8 | 9 | ||
| 9 | void blk_mq_wait_for_tags(struct blk_mq_tags *tags) | 10 | static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt) |
| 10 | { | 11 | { |
| 11 | int tag = blk_mq_get_tag(tags, __GFP_WAIT, false); | 12 | int i; |
| 12 | blk_mq_put_tag(tags, tag); | 13 | |
| 14 | for (i = 0; i < bt->map_nr; i++) { | ||
| 15 | struct blk_align_bitmap *bm = &bt->map[i]; | ||
| 16 | int ret; | ||
| 17 | |||
| 18 | ret = find_first_zero_bit(&bm->word, bm->depth); | ||
| 19 | if (ret < bm->depth) | ||
| 20 | return true; | ||
| 21 | } | ||
| 22 | |||
| 23 | return false; | ||
| 13 | } | 24 | } |
| 14 | 25 | ||
| 15 | bool blk_mq_has_free_tags(struct blk_mq_tags *tags) | 26 | bool blk_mq_has_free_tags(struct blk_mq_tags *tags) |
| 16 | { | 27 | { |
| 17 | return !tags || | 28 | if (!tags) |
| 18 | percpu_ida_free_tags(&tags->free_tags, nr_cpu_ids) != 0; | 29 | return true; |
| 30 | |||
| 31 | return bt_has_free_tags(&tags->bitmap_tags); | ||
| 32 | } | ||
| 33 | |||
| 34 | static inline void bt_index_inc(unsigned int *index) | ||
| 35 | { | ||
| 36 | *index = (*index + 1) & (BT_WAIT_QUEUES - 1); | ||
| 37 | } | ||
| 38 | |||
| 39 | /* | ||
| 40 | * If a previously inactive queue goes active, bump the active user count. | ||
| 41 | */ | ||
| 42 | bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) | ||
| 43 | { | ||
| 44 | if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && | ||
| 45 | !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) | ||
| 46 | atomic_inc(&hctx->tags->active_queues); | ||
| 47 | |||
| 48 | return true; | ||
| 49 | } | ||
| 50 | |||
| 51 | /* | ||
| 52 | * Wakeup all potentially sleeping on normal (non-reserved) tags | ||
| 53 | */ | ||
| 54 | static void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags) | ||
| 55 | { | ||
| 56 | struct blk_mq_bitmap_tags *bt; | ||
| 57 | int i, wake_index; | ||
| 58 | |||
| 59 | bt = &tags->bitmap_tags; | ||
| 60 | wake_index = bt->wake_index; | ||
| 61 | for (i = 0; i < BT_WAIT_QUEUES; i++) { | ||
| 62 | struct bt_wait_state *bs = &bt->bs[wake_index]; | ||
| 63 | |||
| 64 | if (waitqueue_active(&bs->wait)) | ||
| 65 | wake_up(&bs->wait); | ||
| 66 | |||
| 67 | bt_index_inc(&wake_index); | ||
| 68 | } | ||
| 19 | } | 69 | } |
| 20 | 70 | ||
| 21 | static unsigned int __blk_mq_get_tag(struct blk_mq_tags *tags, gfp_t gfp) | 71 | /* |
| 72 | * If a previously busy queue goes inactive, potential waiters could now | ||
| 73 | * be allowed to queue. Wake them up and check. | ||
| 74 | */ | ||
| 75 | void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) | ||
| 22 | { | 76 | { |
| 77 | struct blk_mq_tags *tags = hctx->tags; | ||
| 78 | |||
| 79 | if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) | ||
| 80 | return; | ||
| 81 | |||
| 82 | atomic_dec(&tags->active_queues); | ||
| 83 | |||
| 84 | blk_mq_tag_wakeup_all(tags); | ||
| 85 | } | ||
| 86 | |||
| 87 | /* | ||
| 88 | * For shared tag users, we track the number of currently active users | ||
| 89 | * and attempt to provide a fair share of the tag depth for each of them. | ||
| 90 | */ | ||
| 91 | static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, | ||
| 92 | struct blk_mq_bitmap_tags *bt) | ||
| 93 | { | ||
| 94 | unsigned int depth, users; | ||
| 95 | |||
| 96 | if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) | ||
| 97 | return true; | ||
| 98 | if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) | ||
| 99 | return true; | ||
| 100 | |||
| 101 | /* | ||
| 102 | * Don't try dividing an ant | ||
| 103 | */ | ||
| 104 | if (bt->depth == 1) | ||
| 105 | return true; | ||
| 106 | |||
| 107 | users = atomic_read(&hctx->tags->active_queues); | ||
| 108 | if (!users) | ||
| 109 | return true; | ||
| 110 | |||
| 111 | /* | ||
| 112 | * Allow at least some tags | ||
| 113 | */ | ||
| 114 | depth = max((bt->depth + users - 1) / users, 4U); | ||
| 115 | return atomic_read(&hctx->nr_active) < depth; | ||
| 116 | } | ||
| 117 | |||
| 118 | static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag) | ||
| 119 | { | ||
| 120 | int tag, org_last_tag, end; | ||
| 121 | |||
| 122 | org_last_tag = last_tag; | ||
| 123 | end = bm->depth; | ||
| 124 | do { | ||
| 125 | restart: | ||
| 126 | tag = find_next_zero_bit(&bm->word, end, last_tag); | ||
| 127 | if (unlikely(tag >= end)) { | ||
| 128 | /* | ||
| 129 | * We started with an offset, start from 0 to | ||
| 130 | * exhaust the map. | ||
| 131 | */ | ||
| 132 | if (org_last_tag && last_tag) { | ||
| 133 | end = last_tag; | ||
| 134 | last_tag = 0; | ||
| 135 | goto restart; | ||
| 136 | } | ||
| 137 | return -1; | ||
| 138 | } | ||
| 139 | last_tag = tag + 1; | ||
| 140 | } while (test_and_set_bit_lock(tag, &bm->word)); | ||
| 141 | |||
| 142 | return tag; | ||
| 143 | } | ||
| 144 | |||
| 145 | /* | ||
| 146 | * Straight forward bitmap tag implementation, where each bit is a tag | ||
| 147 | * (cleared == free, and set == busy). The small twist is using per-cpu | ||
| 148 | * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue | ||
| 149 | * contexts. This enables us to drastically limit the space searched, | ||
| 150 | * without dirtying an extra shared cacheline like we would if we stored | ||
| 151 | * the cache value inside the shared blk_mq_bitmap_tags structure. On top | ||
| 152 | * of that, each word of tags is in a separate cacheline. This means that | ||
| 153 | * multiple users will tend to stick to different cachelines, at least | ||
| 154 | * until the map is exhausted. | ||
| 155 | */ | ||
| 156 | static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt, | ||
| 157 | unsigned int *tag_cache) | ||
| 158 | { | ||
| 159 | unsigned int last_tag, org_last_tag; | ||
| 160 | int index, i, tag; | ||
| 161 | |||
| 162 | if (!hctx_may_queue(hctx, bt)) | ||
| 163 | return -1; | ||
| 164 | |||
| 165 | last_tag = org_last_tag = *tag_cache; | ||
| 166 | index = TAG_TO_INDEX(bt, last_tag); | ||
| 167 | |||
| 168 | for (i = 0; i < bt->map_nr; i++) { | ||
| 169 | tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag)); | ||
| 170 | if (tag != -1) { | ||
| 171 | tag += (index << bt->bits_per_word); | ||
| 172 | goto done; | ||
| 173 | } | ||
| 174 | |||
| 175 | last_tag = 0; | ||
| 176 | if (++index >= bt->map_nr) | ||
| 177 | index = 0; | ||
| 178 | } | ||
| 179 | |||
| 180 | *tag_cache = 0; | ||
| 181 | return -1; | ||
| 182 | |||
| 183 | /* | ||
| 184 | * Only update the cache from the allocation path, if we ended | ||
| 185 | * up using the specific cached tag. | ||
| 186 | */ | ||
| 187 | done: | ||
| 188 | if (tag == org_last_tag) { | ||
| 189 | last_tag = tag + 1; | ||
| 190 | if (last_tag >= bt->depth - 1) | ||
| 191 | last_tag = 0; | ||
| 192 | |||
| 193 | *tag_cache = last_tag; | ||
| 194 | } | ||
| 195 | |||
| 196 | return tag; | ||
| 197 | } | ||
| 198 | |||
| 199 | static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt, | ||
| 200 | struct blk_mq_hw_ctx *hctx) | ||
| 201 | { | ||
| 202 | struct bt_wait_state *bs; | ||
| 203 | |||
| 204 | if (!hctx) | ||
| 205 | return &bt->bs[0]; | ||
| 206 | |||
| 207 | bs = &bt->bs[hctx->wait_index]; | ||
| 208 | bt_index_inc(&hctx->wait_index); | ||
| 209 | return bs; | ||
| 210 | } | ||
| 211 | |||
| 212 | static int bt_get(struct blk_mq_bitmap_tags *bt, struct blk_mq_hw_ctx *hctx, | ||
| 213 | unsigned int *last_tag, gfp_t gfp) | ||
| 214 | { | ||
| 215 | struct bt_wait_state *bs; | ||
| 216 | DEFINE_WAIT(wait); | ||
| 23 | int tag; | 217 | int tag; |
| 24 | 218 | ||
| 25 | tag = percpu_ida_alloc(&tags->free_tags, (gfp & __GFP_WAIT) ? | 219 | tag = __bt_get(hctx, bt, last_tag); |
| 26 | TASK_UNINTERRUPTIBLE : TASK_RUNNING); | 220 | if (tag != -1) |
| 27 | if (tag < 0) | 221 | return tag; |
| 28 | return BLK_MQ_TAG_FAIL; | 222 | |
| 29 | return tag + tags->nr_reserved_tags; | 223 | if (!(gfp & __GFP_WAIT)) |
| 224 | return -1; | ||
| 225 | |||
| 226 | bs = bt_wait_ptr(bt, hctx); | ||
| 227 | do { | ||
| 228 | bool was_empty; | ||
| 229 | |||
| 230 | was_empty = list_empty(&wait.task_list); | ||
| 231 | prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE); | ||
| 232 | |||
| 233 | tag = __bt_get(hctx, bt, last_tag); | ||
| 234 | if (tag != -1) | ||
| 235 | break; | ||
| 236 | |||
| 237 | if (was_empty) | ||
| 238 | atomic_set(&bs->wait_cnt, bt->wake_cnt); | ||
| 239 | |||
| 240 | io_schedule(); | ||
| 241 | } while (1); | ||
| 242 | |||
| 243 | finish_wait(&bs->wait, &wait); | ||
| 244 | return tag; | ||
| 245 | } | ||
| 246 | |||
| 247 | static unsigned int __blk_mq_get_tag(struct blk_mq_tags *tags, | ||
| 248 | struct blk_mq_hw_ctx *hctx, | ||
| 249 | unsigned int *last_tag, gfp_t gfp) | ||
| 250 | { | ||
| 251 | int tag; | ||
| 252 | |||
| 253 | tag = bt_get(&tags->bitmap_tags, hctx, last_tag, gfp); | ||
| 254 | if (tag >= 0) | ||
| 255 | return tag + tags->nr_reserved_tags; | ||
| 256 | |||
| 257 | return BLK_MQ_TAG_FAIL; | ||
| 30 | } | 258 | } |
| 31 | 259 | ||
| 32 | static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_tags *tags, | 260 | static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_tags *tags, |
| 33 | gfp_t gfp) | 261 | gfp_t gfp) |
| 34 | { | 262 | { |
| 35 | int tag; | 263 | int tag, zero = 0; |
| 36 | 264 | ||
| 37 | if (unlikely(!tags->nr_reserved_tags)) { | 265 | if (unlikely(!tags->nr_reserved_tags)) { |
| 38 | WARN_ON_ONCE(1); | 266 | WARN_ON_ONCE(1); |
| 39 | return BLK_MQ_TAG_FAIL; | 267 | return BLK_MQ_TAG_FAIL; |
| 40 | } | 268 | } |
| 41 | 269 | ||
| 42 | tag = percpu_ida_alloc(&tags->reserved_tags, (gfp & __GFP_WAIT) ? | 270 | tag = bt_get(&tags->breserved_tags, NULL, &zero, gfp); |
| 43 | TASK_UNINTERRUPTIBLE : TASK_RUNNING); | ||
| 44 | if (tag < 0) | 271 | if (tag < 0) |
| 45 | return BLK_MQ_TAG_FAIL; | 272 | return BLK_MQ_TAG_FAIL; |
| 273 | |||
| 46 | return tag; | 274 | return tag; |
| 47 | } | 275 | } |
| 48 | 276 | ||
| 49 | unsigned int blk_mq_get_tag(struct blk_mq_tags *tags, gfp_t gfp, bool reserved) | 277 | unsigned int blk_mq_get_tag(struct blk_mq_hw_ctx *hctx, unsigned int *last_tag, |
| 278 | gfp_t gfp, bool reserved) | ||
| 50 | { | 279 | { |
| 51 | if (!reserved) | 280 | if (!reserved) |
| 52 | return __blk_mq_get_tag(tags, gfp); | 281 | return __blk_mq_get_tag(hctx->tags, hctx, last_tag, gfp); |
| 53 | 282 | ||
| 54 | return __blk_mq_get_reserved_tag(tags, gfp); | 283 | return __blk_mq_get_reserved_tag(hctx->tags, gfp); |
| 284 | } | ||
| 285 | |||
| 286 | static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt) | ||
| 287 | { | ||
| 288 | int i, wake_index; | ||
| 289 | |||
| 290 | wake_index = bt->wake_index; | ||
| 291 | for (i = 0; i < BT_WAIT_QUEUES; i++) { | ||
| 292 | struct bt_wait_state *bs = &bt->bs[wake_index]; | ||
| 293 | |||
| 294 | if (waitqueue_active(&bs->wait)) { | ||
| 295 | if (wake_index != bt->wake_index) | ||
| 296 | bt->wake_index = wake_index; | ||
| 297 | |||
| 298 | return bs; | ||
| 299 | } | ||
| 300 | |||
| 301 | bt_index_inc(&wake_index); | ||
| 302 | } | ||
| 303 | |||
| 304 | return NULL; | ||
| 305 | } | ||
| 306 | |||
| 307 | static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag) | ||
| 308 | { | ||
| 309 | const int index = TAG_TO_INDEX(bt, tag); | ||
| 310 | struct bt_wait_state *bs; | ||
| 311 | |||
| 312 | /* | ||
| 313 | * The unlock memory barrier need to order access to req in free | ||
| 314 | * path and clearing tag bit | ||
| 315 | */ | ||
| 316 | clear_bit_unlock(TAG_TO_BIT(bt, tag), &bt->map[index].word); | ||
| 317 | |||
| 318 | bs = bt_wake_ptr(bt); | ||
| 319 | if (bs && atomic_dec_and_test(&bs->wait_cnt)) { | ||
| 320 | atomic_set(&bs->wait_cnt, bt->wake_cnt); | ||
| 321 | bt_index_inc(&bt->wake_index); | ||
| 322 | wake_up(&bs->wait); | ||
| 323 | } | ||
| 55 | } | 324 | } |
| 56 | 325 | ||
| 57 | static void __blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag) | 326 | static void __blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag) |
| 58 | { | 327 | { |
| 59 | BUG_ON(tag >= tags->nr_tags); | 328 | BUG_ON(tag >= tags->nr_tags); |
| 60 | 329 | ||
| 61 | percpu_ida_free(&tags->free_tags, tag - tags->nr_reserved_tags); | 330 | bt_clear_tag(&tags->bitmap_tags, tag); |
| 62 | } | 331 | } |
| 63 | 332 | ||
| 64 | static void __blk_mq_put_reserved_tag(struct blk_mq_tags *tags, | 333 | static void __blk_mq_put_reserved_tag(struct blk_mq_tags *tags, |
| @@ -66,22 +335,43 @@ static void __blk_mq_put_reserved_tag(struct blk_mq_tags *tags, | |||
| 66 | { | 335 | { |
| 67 | BUG_ON(tag >= tags->nr_reserved_tags); | 336 | BUG_ON(tag >= tags->nr_reserved_tags); |
| 68 | 337 | ||
| 69 | percpu_ida_free(&tags->reserved_tags, tag); | 338 | bt_clear_tag(&tags->breserved_tags, tag); |
| 70 | } | 339 | } |
| 71 | 340 | ||
| 72 | void blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag) | 341 | void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag, |
| 342 | unsigned int *last_tag) | ||
| 73 | { | 343 | { |
| 74 | if (tag >= tags->nr_reserved_tags) | 344 | struct blk_mq_tags *tags = hctx->tags; |
| 75 | __blk_mq_put_tag(tags, tag); | 345 | |
| 76 | else | 346 | if (tag >= tags->nr_reserved_tags) { |
| 347 | const int real_tag = tag - tags->nr_reserved_tags; | ||
| 348 | |||
| 349 | __blk_mq_put_tag(tags, real_tag); | ||
| 350 | *last_tag = real_tag; | ||
| 351 | } else | ||
| 77 | __blk_mq_put_reserved_tag(tags, tag); | 352 | __blk_mq_put_reserved_tag(tags, tag); |
| 78 | } | 353 | } |
| 79 | 354 | ||
| 80 | static int __blk_mq_tag_iter(unsigned id, void *data) | 355 | static void bt_for_each_free(struct blk_mq_bitmap_tags *bt, |
| 356 | unsigned long *free_map, unsigned int off) | ||
| 81 | { | 357 | { |
| 82 | unsigned long *tag_map = data; | 358 | int i; |
| 83 | __set_bit(id, tag_map); | 359 | |
| 84 | return 0; | 360 | for (i = 0; i < bt->map_nr; i++) { |
| 361 | struct blk_align_bitmap *bm = &bt->map[i]; | ||
| 362 | int bit = 0; | ||
| 363 | |||
| 364 | do { | ||
| 365 | bit = find_next_zero_bit(&bm->word, bm->depth, bit); | ||
| 366 | if (bit >= bm->depth) | ||
| 367 | break; | ||
| 368 | |||
| 369 | __set_bit(bit + off, free_map); | ||
| 370 | bit++; | ||
| 371 | } while (1); | ||
| 372 | |||
| 373 | off += (1 << bt->bits_per_word); | ||
| 374 | } | ||
| 85 | } | 375 | } |
| 86 | 376 | ||
| 87 | void blk_mq_tag_busy_iter(struct blk_mq_tags *tags, | 377 | void blk_mq_tag_busy_iter(struct blk_mq_tags *tags, |
| @@ -95,21 +385,128 @@ void blk_mq_tag_busy_iter(struct blk_mq_tags *tags, | |||
| 95 | if (!tag_map) | 385 | if (!tag_map) |
| 96 | return; | 386 | return; |
| 97 | 387 | ||
| 98 | percpu_ida_for_each_free(&tags->free_tags, __blk_mq_tag_iter, tag_map); | 388 | bt_for_each_free(&tags->bitmap_tags, tag_map, tags->nr_reserved_tags); |
| 99 | if (tags->nr_reserved_tags) | 389 | if (tags->nr_reserved_tags) |
| 100 | percpu_ida_for_each_free(&tags->reserved_tags, __blk_mq_tag_iter, | 390 | bt_for_each_free(&tags->breserved_tags, tag_map, 0); |
| 101 | tag_map); | ||
| 102 | 391 | ||
| 103 | fn(data, tag_map); | 392 | fn(data, tag_map); |
| 104 | kfree(tag_map); | 393 | kfree(tag_map); |
| 105 | } | 394 | } |
| 395 | EXPORT_SYMBOL(blk_mq_tag_busy_iter); | ||
| 396 | |||
| 397 | static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt) | ||
| 398 | { | ||
| 399 | unsigned int i, used; | ||
| 400 | |||
| 401 | for (i = 0, used = 0; i < bt->map_nr; i++) { | ||
| 402 | struct blk_align_bitmap *bm = &bt->map[i]; | ||
| 403 | |||
| 404 | used += bitmap_weight(&bm->word, bm->depth); | ||
| 405 | } | ||
| 406 | |||
| 407 | return bt->depth - used; | ||
| 408 | } | ||
| 409 | |||
| 410 | static void bt_update_count(struct blk_mq_bitmap_tags *bt, | ||
| 411 | unsigned int depth) | ||
| 412 | { | ||
| 413 | unsigned int tags_per_word = 1U << bt->bits_per_word; | ||
| 414 | unsigned int map_depth = depth; | ||
| 415 | |||
| 416 | if (depth) { | ||
| 417 | int i; | ||
| 418 | |||
| 419 | for (i = 0; i < bt->map_nr; i++) { | ||
| 420 | bt->map[i].depth = min(map_depth, tags_per_word); | ||
| 421 | map_depth -= bt->map[i].depth; | ||
| 422 | } | ||
| 423 | } | ||
| 424 | |||
| 425 | bt->wake_cnt = BT_WAIT_BATCH; | ||
| 426 | if (bt->wake_cnt > depth / 4) | ||
| 427 | bt->wake_cnt = max(1U, depth / 4); | ||
| 428 | |||
| 429 | bt->depth = depth; | ||
| 430 | } | ||
| 431 | |||
| 432 | static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth, | ||
| 433 | int node, bool reserved) | ||
| 434 | { | ||
| 435 | int i; | ||
| 436 | |||
| 437 | bt->bits_per_word = ilog2(BITS_PER_LONG); | ||
| 438 | |||
| 439 | /* | ||
| 440 | * Depth can be zero for reserved tags, that's not a failure | ||
| 441 | * condition. | ||
| 442 | */ | ||
| 443 | if (depth) { | ||
| 444 | unsigned int nr, tags_per_word; | ||
| 445 | |||
| 446 | tags_per_word = (1 << bt->bits_per_word); | ||
| 447 | |||
| 448 | /* | ||
| 449 | * If the tag space is small, shrink the number of tags | ||
| 450 | * per word so we spread over a few cachelines, at least. | ||
| 451 | * If less than 4 tags, just forget about it, it's not | ||
| 452 | * going to work optimally anyway. | ||
| 453 | */ | ||
| 454 | if (depth >= 4) { | ||
| 455 | while (tags_per_word * 4 > depth) { | ||
| 456 | bt->bits_per_word--; | ||
| 457 | tags_per_word = (1 << bt->bits_per_word); | ||
| 458 | } | ||
| 459 | } | ||
| 460 | |||
| 461 | nr = ALIGN(depth, tags_per_word) / tags_per_word; | ||
| 462 | bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap), | ||
| 463 | GFP_KERNEL, node); | ||
| 464 | if (!bt->map) | ||
| 465 | return -ENOMEM; | ||
| 466 | |||
| 467 | bt->map_nr = nr; | ||
| 468 | } | ||
| 469 | |||
| 470 | bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL); | ||
| 471 | if (!bt->bs) { | ||
| 472 | kfree(bt->map); | ||
| 473 | return -ENOMEM; | ||
| 474 | } | ||
| 475 | |||
| 476 | for (i = 0; i < BT_WAIT_QUEUES; i++) | ||
| 477 | init_waitqueue_head(&bt->bs[i].wait); | ||
| 478 | |||
| 479 | bt_update_count(bt, depth); | ||
| 480 | return 0; | ||
| 481 | } | ||
| 482 | |||
| 483 | static void bt_free(struct blk_mq_bitmap_tags *bt) | ||
| 484 | { | ||
| 485 | kfree(bt->map); | ||
| 486 | kfree(bt->bs); | ||
| 487 | } | ||
| 488 | |||
| 489 | static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, | ||
| 490 | int node) | ||
| 491 | { | ||
| 492 | unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; | ||
| 493 | |||
| 494 | if (bt_alloc(&tags->bitmap_tags, depth, node, false)) | ||
| 495 | goto enomem; | ||
| 496 | if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true)) | ||
| 497 | goto enomem; | ||
| 498 | |||
| 499 | return tags; | ||
| 500 | enomem: | ||
| 501 | bt_free(&tags->bitmap_tags); | ||
| 502 | kfree(tags); | ||
| 503 | return NULL; | ||
| 504 | } | ||
| 106 | 505 | ||
| 107 | struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, | 506 | struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, |
| 108 | unsigned int reserved_tags, int node) | 507 | unsigned int reserved_tags, int node) |
| 109 | { | 508 | { |
| 110 | unsigned int nr_tags, nr_cache; | ||
| 111 | struct blk_mq_tags *tags; | 509 | struct blk_mq_tags *tags; |
| 112 | int ret; | ||
| 113 | 510 | ||
| 114 | if (total_tags > BLK_MQ_TAG_MAX) { | 511 | if (total_tags > BLK_MQ_TAG_MAX) { |
| 115 | pr_err("blk-mq: tag depth too large\n"); | 512 | pr_err("blk-mq: tag depth too large\n"); |
| @@ -120,73 +517,59 @@ struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, | |||
| 120 | if (!tags) | 517 | if (!tags) |
| 121 | return NULL; | 518 | return NULL; |
| 122 | 519 | ||
| 123 | nr_tags = total_tags - reserved_tags; | ||
| 124 | nr_cache = nr_tags / num_possible_cpus(); | ||
| 125 | |||
| 126 | if (nr_cache < BLK_MQ_TAG_CACHE_MIN) | ||
| 127 | nr_cache = BLK_MQ_TAG_CACHE_MIN; | ||
| 128 | else if (nr_cache > BLK_MQ_TAG_CACHE_MAX) | ||
| 129 | nr_cache = BLK_MQ_TAG_CACHE_MAX; | ||
| 130 | |||
| 131 | tags->nr_tags = total_tags; | 520 | tags->nr_tags = total_tags; |
| 132 | tags->nr_reserved_tags = reserved_tags; | 521 | tags->nr_reserved_tags = reserved_tags; |
| 133 | tags->nr_max_cache = nr_cache; | ||
| 134 | tags->nr_batch_move = max(1u, nr_cache / 2); | ||
| 135 | 522 | ||
| 136 | ret = __percpu_ida_init(&tags->free_tags, tags->nr_tags - | 523 | return blk_mq_init_bitmap_tags(tags, node); |
| 137 | tags->nr_reserved_tags, | 524 | } |
| 138 | tags->nr_max_cache, | ||
| 139 | tags->nr_batch_move); | ||
| 140 | if (ret) | ||
| 141 | goto err_free_tags; | ||
| 142 | 525 | ||
| 143 | if (reserved_tags) { | 526 | void blk_mq_free_tags(struct blk_mq_tags *tags) |
| 144 | /* | 527 | { |
| 145 | * With max_cahe and batch set to 1, the allocator fallbacks to | 528 | bt_free(&tags->bitmap_tags); |
| 146 | * no cached. It's fine reserved tags allocation is slow. | 529 | bt_free(&tags->breserved_tags); |
| 147 | */ | 530 | kfree(tags); |
| 148 | ret = __percpu_ida_init(&tags->reserved_tags, reserved_tags, | 531 | } |
| 149 | 1, 1); | ||
| 150 | if (ret) | ||
| 151 | goto err_reserved_tags; | ||
| 152 | } | ||
| 153 | 532 | ||
| 154 | return tags; | 533 | void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag) |
| 534 | { | ||
| 535 | unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; | ||
| 155 | 536 | ||
| 156 | err_reserved_tags: | 537 | *tag = prandom_u32() % depth; |
| 157 | percpu_ida_destroy(&tags->free_tags); | ||
| 158 | err_free_tags: | ||
| 159 | kfree(tags); | ||
| 160 | return NULL; | ||
| 161 | } | 538 | } |
| 162 | 539 | ||
| 163 | void blk_mq_free_tags(struct blk_mq_tags *tags) | 540 | int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth) |
| 164 | { | 541 | { |
| 165 | percpu_ida_destroy(&tags->free_tags); | 542 | tdepth -= tags->nr_reserved_tags; |
| 166 | percpu_ida_destroy(&tags->reserved_tags); | 543 | if (tdepth > tags->nr_tags) |
| 167 | kfree(tags); | 544 | return -EINVAL; |
| 545 | |||
| 546 | /* | ||
| 547 | * Don't need (or can't) update reserved tags here, they remain | ||
| 548 | * static and should never need resizing. | ||
| 549 | */ | ||
| 550 | bt_update_count(&tags->bitmap_tags, tdepth); | ||
| 551 | blk_mq_tag_wakeup_all(tags); | ||
| 552 | return 0; | ||
| 168 | } | 553 | } |
| 169 | 554 | ||
| 170 | ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page) | 555 | ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page) |
| 171 | { | 556 | { |
| 172 | char *orig_page = page; | 557 | char *orig_page = page; |
| 173 | unsigned int cpu; | 558 | unsigned int free, res; |
| 174 | 559 | ||
| 175 | if (!tags) | 560 | if (!tags) |
| 176 | return 0; | 561 | return 0; |
| 177 | 562 | ||
| 178 | page += sprintf(page, "nr_tags=%u, reserved_tags=%u, batch_move=%u," | 563 | page += sprintf(page, "nr_tags=%u, reserved_tags=%u, " |
| 179 | " max_cache=%u\n", tags->nr_tags, tags->nr_reserved_tags, | 564 | "bits_per_word=%u\n", |
| 180 | tags->nr_batch_move, tags->nr_max_cache); | 565 | tags->nr_tags, tags->nr_reserved_tags, |
| 566 | tags->bitmap_tags.bits_per_word); | ||
| 181 | 567 | ||
| 182 | page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", | 568 | free = bt_unused_tags(&tags->bitmap_tags); |
| 183 | percpu_ida_free_tags(&tags->free_tags, nr_cpu_ids), | 569 | res = bt_unused_tags(&tags->breserved_tags); |
| 184 | percpu_ida_free_tags(&tags->reserved_tags, nr_cpu_ids)); | ||
| 185 | 570 | ||
| 186 | for_each_possible_cpu(cpu) { | 571 | page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res); |
| 187 | page += sprintf(page, " cpu%02u: nr_free=%u\n", cpu, | 572 | page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues)); |
| 188 | percpu_ida_free_tags(&tags->free_tags, cpu)); | ||
| 189 | } | ||
| 190 | 573 | ||
| 191 | return page - orig_page; | 574 | return page - orig_page; |
| 192 | } | 575 | } |
diff --git a/block/blk-mq-tag.h b/block/blk-mq-tag.h index b602e3fa66ea..c959de58d2a5 100644 --- a/block/blk-mq-tag.h +++ b/block/blk-mq-tag.h | |||
| @@ -1,7 +1,32 @@ | |||
| 1 | #ifndef INT_BLK_MQ_TAG_H | 1 | #ifndef INT_BLK_MQ_TAG_H |
| 2 | #define INT_BLK_MQ_TAG_H | 2 | #define INT_BLK_MQ_TAG_H |
| 3 | 3 | ||
| 4 | #include <linux/percpu_ida.h> | 4 | #include "blk-mq.h" |
| 5 | |||
| 6 | enum { | ||
| 7 | BT_WAIT_QUEUES = 8, | ||
| 8 | BT_WAIT_BATCH = 8, | ||
| 9 | }; | ||
| 10 | |||
| 11 | struct bt_wait_state { | ||
| 12 | atomic_t wait_cnt; | ||
| 13 | wait_queue_head_t wait; | ||
| 14 | } ____cacheline_aligned_in_smp; | ||
| 15 | |||
| 16 | #define TAG_TO_INDEX(bt, tag) ((tag) >> (bt)->bits_per_word) | ||
| 17 | #define TAG_TO_BIT(bt, tag) ((tag) & ((1 << (bt)->bits_per_word) - 1)) | ||
| 18 | |||
| 19 | struct blk_mq_bitmap_tags { | ||
| 20 | unsigned int depth; | ||
| 21 | unsigned int wake_cnt; | ||
| 22 | unsigned int bits_per_word; | ||
| 23 | |||
| 24 | unsigned int map_nr; | ||
| 25 | struct blk_align_bitmap *map; | ||
| 26 | |||
| 27 | unsigned int wake_index; | ||
| 28 | struct bt_wait_state *bs; | ||
| 29 | }; | ||
| 5 | 30 | ||
| 6 | /* | 31 | /* |
| 7 | * Tag address space map. | 32 | * Tag address space map. |
| @@ -9,11 +34,11 @@ | |||
| 9 | struct blk_mq_tags { | 34 | struct blk_mq_tags { |
| 10 | unsigned int nr_tags; | 35 | unsigned int nr_tags; |
| 11 | unsigned int nr_reserved_tags; | 36 | unsigned int nr_reserved_tags; |
| 12 | unsigned int nr_batch_move; | ||
| 13 | unsigned int nr_max_cache; | ||
| 14 | 37 | ||
| 15 | struct percpu_ida free_tags; | 38 | atomic_t active_queues; |
| 16 | struct percpu_ida reserved_tags; | 39 | |
| 40 | struct blk_mq_bitmap_tags bitmap_tags; | ||
| 41 | struct blk_mq_bitmap_tags breserved_tags; | ||
| 17 | 42 | ||
| 18 | struct request **rqs; | 43 | struct request **rqs; |
| 19 | struct list_head page_list; | 44 | struct list_head page_list; |
| @@ -23,12 +48,12 @@ struct blk_mq_tags { | |||
| 23 | extern struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags, unsigned int reserved_tags, int node); | 48 | extern struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags, unsigned int reserved_tags, int node); |
| 24 | extern void blk_mq_free_tags(struct blk_mq_tags *tags); | 49 | extern void blk_mq_free_tags(struct blk_mq_tags *tags); |
| 25 | 50 | ||
| 26 | extern unsigned int blk_mq_get_tag(struct blk_mq_tags *tags, gfp_t gfp, bool reserved); | 51 | extern unsigned int blk_mq_get_tag(struct blk_mq_hw_ctx *hctx, unsigned int *last_tag, gfp_t gfp, bool reserved); |
| 27 | extern void blk_mq_wait_for_tags(struct blk_mq_tags *tags); | 52 | extern void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag, unsigned int *last_tag); |
| 28 | extern void blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag); | ||
| 29 | extern void blk_mq_tag_busy_iter(struct blk_mq_tags *tags, void (*fn)(void *data, unsigned long *), void *data); | ||
| 30 | extern bool blk_mq_has_free_tags(struct blk_mq_tags *tags); | 53 | extern bool blk_mq_has_free_tags(struct blk_mq_tags *tags); |
| 31 | extern ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page); | 54 | extern ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page); |
| 55 | extern void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *last_tag); | ||
| 56 | extern int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int depth); | ||
| 32 | 57 | ||
| 33 | enum { | 58 | enum { |
| 34 | BLK_MQ_TAG_CACHE_MIN = 1, | 59 | BLK_MQ_TAG_CACHE_MIN = 1, |
| @@ -41,4 +66,23 @@ enum { | |||
| 41 | BLK_MQ_TAG_MAX = BLK_MQ_TAG_FAIL - 1, | 66 | BLK_MQ_TAG_MAX = BLK_MQ_TAG_FAIL - 1, |
| 42 | }; | 67 | }; |
| 43 | 68 | ||
| 69 | extern bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *); | ||
| 70 | extern void __blk_mq_tag_idle(struct blk_mq_hw_ctx *); | ||
| 71 | |||
| 72 | static inline bool blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) | ||
| 73 | { | ||
| 74 | if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) | ||
| 75 | return false; | ||
| 76 | |||
| 77 | return __blk_mq_tag_busy(hctx); | ||
| 78 | } | ||
| 79 | |||
| 80 | static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) | ||
| 81 | { | ||
| 82 | if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) | ||
| 83 | return; | ||
| 84 | |||
| 85 | __blk_mq_tag_idle(hctx); | ||
| 86 | } | ||
| 87 | |||
| 44 | #endif | 88 | #endif |
diff --git a/block/blk-mq.c b/block/blk-mq.c index ee225cc312b8..ae14749b530c 100644 --- a/block/blk-mq.c +++ b/block/blk-mq.c | |||
| @@ -56,39 +56,40 @@ static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) | |||
| 56 | { | 56 | { |
| 57 | unsigned int i; | 57 | unsigned int i; |
| 58 | 58 | ||
| 59 | for (i = 0; i < hctx->nr_ctx_map; i++) | 59 | for (i = 0; i < hctx->ctx_map.map_size; i++) |
| 60 | if (hctx->ctx_map[i]) | 60 | if (hctx->ctx_map.map[i].word) |
| 61 | return true; | 61 | return true; |
| 62 | 62 | ||
| 63 | return false; | 63 | return false; |
| 64 | } | 64 | } |
| 65 | 65 | ||
| 66 | static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx, | ||
| 67 | struct blk_mq_ctx *ctx) | ||
| 68 | { | ||
| 69 | return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word]; | ||
| 70 | } | ||
| 71 | |||
| 72 | #define CTX_TO_BIT(hctx, ctx) \ | ||
| 73 | ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1)) | ||
| 74 | |||
| 66 | /* | 75 | /* |
| 67 | * Mark this ctx as having pending work in this hardware queue | 76 | * Mark this ctx as having pending work in this hardware queue |
| 68 | */ | 77 | */ |
| 69 | static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, | 78 | static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, |
| 70 | struct blk_mq_ctx *ctx) | 79 | struct blk_mq_ctx *ctx) |
| 71 | { | 80 | { |
| 72 | if (!test_bit(ctx->index_hw, hctx->ctx_map)) | 81 | struct blk_align_bitmap *bm = get_bm(hctx, ctx); |
| 73 | set_bit(ctx->index_hw, hctx->ctx_map); | 82 | |
| 83 | if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word)) | ||
| 84 | set_bit(CTX_TO_BIT(hctx, ctx), &bm->word); | ||
| 74 | } | 85 | } |
| 75 | 86 | ||
| 76 | static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx, | 87 | static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, |
| 77 | gfp_t gfp, bool reserved) | 88 | struct blk_mq_ctx *ctx) |
| 78 | { | 89 | { |
| 79 | struct request *rq; | 90 | struct blk_align_bitmap *bm = get_bm(hctx, ctx); |
| 80 | unsigned int tag; | ||
| 81 | |||
| 82 | tag = blk_mq_get_tag(hctx->tags, gfp, reserved); | ||
| 83 | if (tag != BLK_MQ_TAG_FAIL) { | ||
| 84 | rq = hctx->tags->rqs[tag]; | ||
| 85 | blk_rq_init(hctx->queue, rq); | ||
| 86 | rq->tag = tag; | ||
| 87 | |||
| 88 | return rq; | ||
| 89 | } | ||
| 90 | 91 | ||
| 91 | return NULL; | 92 | clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word); |
| 92 | } | 93 | } |
| 93 | 94 | ||
| 94 | static int blk_mq_queue_enter(struct request_queue *q) | 95 | static int blk_mq_queue_enter(struct request_queue *q) |
| @@ -187,70 +188,109 @@ static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx, | |||
| 187 | if (blk_queue_io_stat(q)) | 188 | if (blk_queue_io_stat(q)) |
| 188 | rw_flags |= REQ_IO_STAT; | 189 | rw_flags |= REQ_IO_STAT; |
| 189 | 190 | ||
| 191 | INIT_LIST_HEAD(&rq->queuelist); | ||
| 192 | /* csd/requeue_work/fifo_time is initialized before use */ | ||
| 193 | rq->q = q; | ||
| 190 | rq->mq_ctx = ctx; | 194 | rq->mq_ctx = ctx; |
| 191 | rq->cmd_flags = rw_flags; | 195 | rq->cmd_flags |= rw_flags; |
| 196 | rq->cmd_type = 0; | ||
| 197 | /* do not touch atomic flags, it needs atomic ops against the timer */ | ||
| 198 | rq->cpu = -1; | ||
| 199 | rq->__data_len = 0; | ||
| 200 | rq->__sector = (sector_t) -1; | ||
| 201 | rq->bio = NULL; | ||
| 202 | rq->biotail = NULL; | ||
| 203 | INIT_HLIST_NODE(&rq->hash); | ||
| 204 | RB_CLEAR_NODE(&rq->rb_node); | ||
| 205 | memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv))); | ||
| 206 | rq->rq_disk = NULL; | ||
| 207 | rq->part = NULL; | ||
| 192 | rq->start_time = jiffies; | 208 | rq->start_time = jiffies; |
| 209 | #ifdef CONFIG_BLK_CGROUP | ||
| 210 | rq->rl = NULL; | ||
| 193 | set_start_time_ns(rq); | 211 | set_start_time_ns(rq); |
| 212 | rq->io_start_time_ns = 0; | ||
| 213 | #endif | ||
| 214 | rq->nr_phys_segments = 0; | ||
| 215 | #if defined(CONFIG_BLK_DEV_INTEGRITY) | ||
| 216 | rq->nr_integrity_segments = 0; | ||
| 217 | #endif | ||
| 218 | rq->ioprio = 0; | ||
| 219 | rq->special = NULL; | ||
| 220 | /* tag was already set */ | ||
| 221 | rq->errors = 0; | ||
| 222 | memset(rq->__cmd, 0, sizeof(rq->__cmd)); | ||
| 223 | rq->cmd = rq->__cmd; | ||
| 224 | rq->cmd_len = BLK_MAX_CDB; | ||
| 225 | |||
| 226 | rq->extra_len = 0; | ||
| 227 | rq->sense_len = 0; | ||
| 228 | rq->resid_len = 0; | ||
| 229 | rq->sense = NULL; | ||
| 230 | |||
| 231 | rq->deadline = 0; | ||
| 232 | INIT_LIST_HEAD(&rq->timeout_list); | ||
| 233 | rq->timeout = 0; | ||
| 234 | rq->retries = 0; | ||
| 235 | rq->end_io = NULL; | ||
| 236 | rq->end_io_data = NULL; | ||
| 237 | rq->next_rq = NULL; | ||
| 238 | |||
| 194 | ctx->rq_dispatched[rw_is_sync(rw_flags)]++; | 239 | ctx->rq_dispatched[rw_is_sync(rw_flags)]++; |
| 195 | } | 240 | } |
| 196 | 241 | ||
| 197 | static struct request *blk_mq_alloc_request_pinned(struct request_queue *q, | 242 | static struct request * |
| 198 | int rw, gfp_t gfp, | 243 | __blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx, |
| 199 | bool reserved) | 244 | struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved) |
| 200 | { | 245 | { |
| 201 | struct request *rq; | 246 | struct request *rq; |
| 247 | unsigned int tag; | ||
| 202 | 248 | ||
| 203 | do { | 249 | tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved); |
| 204 | struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); | 250 | if (tag != BLK_MQ_TAG_FAIL) { |
| 205 | struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu); | 251 | rq = hctx->tags->rqs[tag]; |
| 206 | |||
| 207 | rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved); | ||
| 208 | if (rq) { | ||
| 209 | blk_mq_rq_ctx_init(q, ctx, rq, rw); | ||
| 210 | break; | ||
| 211 | } | ||
| 212 | 252 | ||
| 213 | if (gfp & __GFP_WAIT) { | 253 | rq->cmd_flags = 0; |
| 214 | __blk_mq_run_hw_queue(hctx); | 254 | if (blk_mq_tag_busy(hctx)) { |
| 215 | blk_mq_put_ctx(ctx); | 255 | rq->cmd_flags = REQ_MQ_INFLIGHT; |
| 216 | } else { | 256 | atomic_inc(&hctx->nr_active); |
| 217 | blk_mq_put_ctx(ctx); | ||
| 218 | break; | ||
| 219 | } | 257 | } |
| 220 | 258 | ||
| 221 | blk_mq_wait_for_tags(hctx->tags); | 259 | rq->tag = tag; |
| 222 | } while (1); | 260 | blk_mq_rq_ctx_init(q, ctx, rq, rw); |
| 261 | return rq; | ||
| 262 | } | ||
| 223 | 263 | ||
| 224 | return rq; | 264 | return NULL; |
| 225 | } | 265 | } |
| 226 | 266 | ||
| 227 | struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp) | 267 | struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp, |
| 268 | bool reserved) | ||
| 228 | { | 269 | { |
| 270 | struct blk_mq_ctx *ctx; | ||
| 271 | struct blk_mq_hw_ctx *hctx; | ||
| 229 | struct request *rq; | 272 | struct request *rq; |
| 230 | 273 | ||
| 231 | if (blk_mq_queue_enter(q)) | 274 | if (blk_mq_queue_enter(q)) |
| 232 | return NULL; | 275 | return NULL; |
| 233 | 276 | ||
| 234 | rq = blk_mq_alloc_request_pinned(q, rw, gfp, false); | 277 | ctx = blk_mq_get_ctx(q); |
| 235 | if (rq) | 278 | hctx = q->mq_ops->map_queue(q, ctx->cpu); |
| 236 | blk_mq_put_ctx(rq->mq_ctx); | ||
| 237 | return rq; | ||
| 238 | } | ||
| 239 | |||
| 240 | struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw, | ||
| 241 | gfp_t gfp) | ||
| 242 | { | ||
| 243 | struct request *rq; | ||
| 244 | 279 | ||
| 245 | if (blk_mq_queue_enter(q)) | 280 | rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT, |
| 246 | return NULL; | 281 | reserved); |
| 282 | if (!rq && (gfp & __GFP_WAIT)) { | ||
| 283 | __blk_mq_run_hw_queue(hctx); | ||
| 284 | blk_mq_put_ctx(ctx); | ||
| 247 | 285 | ||
| 248 | rq = blk_mq_alloc_request_pinned(q, rw, gfp, true); | 286 | ctx = blk_mq_get_ctx(q); |
| 249 | if (rq) | 287 | hctx = q->mq_ops->map_queue(q, ctx->cpu); |
| 250 | blk_mq_put_ctx(rq->mq_ctx); | 288 | rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved); |
| 289 | } | ||
| 290 | blk_mq_put_ctx(ctx); | ||
| 251 | return rq; | 291 | return rq; |
| 252 | } | 292 | } |
| 253 | EXPORT_SYMBOL(blk_mq_alloc_reserved_request); | 293 | EXPORT_SYMBOL(blk_mq_alloc_request); |
| 254 | 294 | ||
| 255 | static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, | 295 | static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, |
| 256 | struct blk_mq_ctx *ctx, struct request *rq) | 296 | struct blk_mq_ctx *ctx, struct request *rq) |
| @@ -258,7 +298,11 @@ static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx, | |||
| 258 | const int tag = rq->tag; | 298 | const int tag = rq->tag; |
| 259 | struct request_queue *q = rq->q; | 299 | struct request_queue *q = rq->q; |
| 260 | 300 | ||
| 261 | blk_mq_put_tag(hctx->tags, tag); | 301 | if (rq->cmd_flags & REQ_MQ_INFLIGHT) |
| 302 | atomic_dec(&hctx->nr_active); | ||
| 303 | |||
| 304 | clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags); | ||
| 305 | blk_mq_put_tag(hctx, tag, &ctx->last_tag); | ||
| 262 | blk_mq_queue_exit(q); | 306 | blk_mq_queue_exit(q); |
| 263 | } | 307 | } |
| 264 | 308 | ||
| @@ -326,15 +370,19 @@ static void __blk_mq_complete_request_remote(void *data) | |||
| 326 | void __blk_mq_complete_request(struct request *rq) | 370 | void __blk_mq_complete_request(struct request *rq) |
| 327 | { | 371 | { |
| 328 | struct blk_mq_ctx *ctx = rq->mq_ctx; | 372 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
| 373 | bool shared = false; | ||
| 329 | int cpu; | 374 | int cpu; |
| 330 | 375 | ||
| 331 | if (!ctx->ipi_redirect) { | 376 | if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { |
| 332 | rq->q->softirq_done_fn(rq); | 377 | rq->q->softirq_done_fn(rq); |
| 333 | return; | 378 | return; |
| 334 | } | 379 | } |
| 335 | 380 | ||
| 336 | cpu = get_cpu(); | 381 | cpu = get_cpu(); |
| 337 | if (cpu != ctx->cpu && cpu_online(ctx->cpu)) { | 382 | if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) |
| 383 | shared = cpus_share_cache(cpu, ctx->cpu); | ||
| 384 | |||
| 385 | if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { | ||
| 338 | rq->csd.func = __blk_mq_complete_request_remote; | 386 | rq->csd.func = __blk_mq_complete_request_remote; |
| 339 | rq->csd.info = rq; | 387 | rq->csd.info = rq; |
| 340 | rq->csd.flags = 0; | 388 | rq->csd.flags = 0; |
| @@ -355,10 +403,16 @@ void __blk_mq_complete_request(struct request *rq) | |||
| 355 | **/ | 403 | **/ |
| 356 | void blk_mq_complete_request(struct request *rq) | 404 | void blk_mq_complete_request(struct request *rq) |
| 357 | { | 405 | { |
| 358 | if (unlikely(blk_should_fake_timeout(rq->q))) | 406 | struct request_queue *q = rq->q; |
| 407 | |||
| 408 | if (unlikely(blk_should_fake_timeout(q))) | ||
| 359 | return; | 409 | return; |
| 360 | if (!blk_mark_rq_complete(rq)) | 410 | if (!blk_mark_rq_complete(rq)) { |
| 361 | __blk_mq_complete_request(rq); | 411 | if (q->softirq_done_fn) |
| 412 | __blk_mq_complete_request(rq); | ||
| 413 | else | ||
| 414 | blk_mq_end_io(rq, rq->errors); | ||
| 415 | } | ||
| 362 | } | 416 | } |
| 363 | EXPORT_SYMBOL(blk_mq_complete_request); | 417 | EXPORT_SYMBOL(blk_mq_complete_request); |
| 364 | 418 | ||
| @@ -375,10 +429,22 @@ static void blk_mq_start_request(struct request *rq, bool last) | |||
| 375 | /* | 429 | /* |
| 376 | * Just mark start time and set the started bit. Due to memory | 430 | * Just mark start time and set the started bit. Due to memory |
| 377 | * ordering, we know we'll see the correct deadline as long as | 431 | * ordering, we know we'll see the correct deadline as long as |
| 378 | * REQ_ATOMIC_STARTED is seen. | 432 | * REQ_ATOMIC_STARTED is seen. Use the default queue timeout, |
| 433 | * unless one has been set in the request. | ||
| 434 | */ | ||
| 435 | if (!rq->timeout) | ||
| 436 | rq->deadline = jiffies + q->rq_timeout; | ||
| 437 | else | ||
| 438 | rq->deadline = jiffies + rq->timeout; | ||
| 439 | |||
| 440 | /* | ||
| 441 | * Mark us as started and clear complete. Complete might have been | ||
| 442 | * set if requeue raced with timeout, which then marked it as | ||
| 443 | * complete. So be sure to clear complete again when we start | ||
| 444 | * the request, otherwise we'll ignore the completion event. | ||
| 379 | */ | 445 | */ |
| 380 | rq->deadline = jiffies + q->rq_timeout; | ||
| 381 | set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); | 446 | set_bit(REQ_ATOM_STARTED, &rq->atomic_flags); |
| 447 | clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags); | ||
| 382 | 448 | ||
| 383 | if (q->dma_drain_size && blk_rq_bytes(rq)) { | 449 | if (q->dma_drain_size && blk_rq_bytes(rq)) { |
| 384 | /* | 450 | /* |
| @@ -415,18 +481,72 @@ static void __blk_mq_requeue_request(struct request *rq) | |||
| 415 | 481 | ||
| 416 | void blk_mq_requeue_request(struct request *rq) | 482 | void blk_mq_requeue_request(struct request *rq) |
| 417 | { | 483 | { |
| 418 | struct request_queue *q = rq->q; | ||
| 419 | |||
| 420 | __blk_mq_requeue_request(rq); | 484 | __blk_mq_requeue_request(rq); |
| 421 | blk_clear_rq_complete(rq); | 485 | blk_clear_rq_complete(rq); |
| 422 | 486 | ||
| 423 | trace_block_rq_requeue(q, rq); | ||
| 424 | |||
| 425 | BUG_ON(blk_queued_rq(rq)); | 487 | BUG_ON(blk_queued_rq(rq)); |
| 426 | blk_mq_insert_request(rq, true, true, false); | 488 | blk_mq_add_to_requeue_list(rq, true); |
| 427 | } | 489 | } |
| 428 | EXPORT_SYMBOL(blk_mq_requeue_request); | 490 | EXPORT_SYMBOL(blk_mq_requeue_request); |
| 429 | 491 | ||
| 492 | static void blk_mq_requeue_work(struct work_struct *work) | ||
| 493 | { | ||
| 494 | struct request_queue *q = | ||
| 495 | container_of(work, struct request_queue, requeue_work); | ||
| 496 | LIST_HEAD(rq_list); | ||
| 497 | struct request *rq, *next; | ||
| 498 | unsigned long flags; | ||
| 499 | |||
| 500 | spin_lock_irqsave(&q->requeue_lock, flags); | ||
| 501 | list_splice_init(&q->requeue_list, &rq_list); | ||
| 502 | spin_unlock_irqrestore(&q->requeue_lock, flags); | ||
| 503 | |||
| 504 | list_for_each_entry_safe(rq, next, &rq_list, queuelist) { | ||
| 505 | if (!(rq->cmd_flags & REQ_SOFTBARRIER)) | ||
| 506 | continue; | ||
| 507 | |||
| 508 | rq->cmd_flags &= ~REQ_SOFTBARRIER; | ||
| 509 | list_del_init(&rq->queuelist); | ||
| 510 | blk_mq_insert_request(rq, true, false, false); | ||
| 511 | } | ||
| 512 | |||
| 513 | while (!list_empty(&rq_list)) { | ||
| 514 | rq = list_entry(rq_list.next, struct request, queuelist); | ||
| 515 | list_del_init(&rq->queuelist); | ||
| 516 | blk_mq_insert_request(rq, false, false, false); | ||
| 517 | } | ||
| 518 | |||
| 519 | blk_mq_run_queues(q, false); | ||
| 520 | } | ||
| 521 | |||
| 522 | void blk_mq_add_to_requeue_list(struct request *rq, bool at_head) | ||
| 523 | { | ||
| 524 | struct request_queue *q = rq->q; | ||
| 525 | unsigned long flags; | ||
| 526 | |||
| 527 | /* | ||
| 528 | * We abuse this flag that is otherwise used by the I/O scheduler to | ||
| 529 | * request head insertation from the workqueue. | ||
| 530 | */ | ||
| 531 | BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER); | ||
| 532 | |||
| 533 | spin_lock_irqsave(&q->requeue_lock, flags); | ||
| 534 | if (at_head) { | ||
| 535 | rq->cmd_flags |= REQ_SOFTBARRIER; | ||
| 536 | list_add(&rq->queuelist, &q->requeue_list); | ||
| 537 | } else { | ||
| 538 | list_add_tail(&rq->queuelist, &q->requeue_list); | ||
| 539 | } | ||
| 540 | spin_unlock_irqrestore(&q->requeue_lock, flags); | ||
| 541 | } | ||
| 542 | EXPORT_SYMBOL(blk_mq_add_to_requeue_list); | ||
| 543 | |||
| 544 | void blk_mq_kick_requeue_list(struct request_queue *q) | ||
| 545 | { | ||
| 546 | kblockd_schedule_work(&q->requeue_work); | ||
| 547 | } | ||
| 548 | EXPORT_SYMBOL(blk_mq_kick_requeue_list); | ||
| 549 | |||
| 430 | struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) | 550 | struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) |
| 431 | { | 551 | { |
| 432 | return tags->rqs[tag]; | 552 | return tags->rqs[tag]; |
| @@ -485,6 +605,28 @@ static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx, | |||
| 485 | blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data); | 605 | blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data); |
| 486 | } | 606 | } |
| 487 | 607 | ||
| 608 | static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq) | ||
| 609 | { | ||
| 610 | struct request_queue *q = rq->q; | ||
| 611 | |||
| 612 | /* | ||
| 613 | * We know that complete is set at this point. If STARTED isn't set | ||
| 614 | * anymore, then the request isn't active and the "timeout" should | ||
| 615 | * just be ignored. This can happen due to the bitflag ordering. | ||
| 616 | * Timeout first checks if STARTED is set, and if it is, assumes | ||
| 617 | * the request is active. But if we race with completion, then | ||
| 618 | * we both flags will get cleared. So check here again, and ignore | ||
| 619 | * a timeout event with a request that isn't active. | ||
| 620 | */ | ||
| 621 | if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) | ||
| 622 | return BLK_EH_NOT_HANDLED; | ||
| 623 | |||
| 624 | if (!q->mq_ops->timeout) | ||
| 625 | return BLK_EH_RESET_TIMER; | ||
| 626 | |||
| 627 | return q->mq_ops->timeout(rq); | ||
| 628 | } | ||
| 629 | |||
| 488 | static void blk_mq_rq_timer(unsigned long data) | 630 | static void blk_mq_rq_timer(unsigned long data) |
| 489 | { | 631 | { |
| 490 | struct request_queue *q = (struct request_queue *) data; | 632 | struct request_queue *q = (struct request_queue *) data; |
| @@ -492,11 +634,24 @@ static void blk_mq_rq_timer(unsigned long data) | |||
| 492 | unsigned long next = 0; | 634 | unsigned long next = 0; |
| 493 | int i, next_set = 0; | 635 | int i, next_set = 0; |
| 494 | 636 | ||
| 495 | queue_for_each_hw_ctx(q, hctx, i) | 637 | queue_for_each_hw_ctx(q, hctx, i) { |
| 638 | /* | ||
| 639 | * If not software queues are currently mapped to this | ||
| 640 | * hardware queue, there's nothing to check | ||
| 641 | */ | ||
| 642 | if (!hctx->nr_ctx || !hctx->tags) | ||
| 643 | continue; | ||
| 644 | |||
| 496 | blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set); | 645 | blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set); |
| 646 | } | ||
| 497 | 647 | ||
| 498 | if (next_set) | 648 | if (next_set) { |
| 499 | mod_timer(&q->timeout, round_jiffies_up(next)); | 649 | next = blk_rq_timeout(round_jiffies_up(next)); |
| 650 | mod_timer(&q->timeout, next); | ||
| 651 | } else { | ||
| 652 | queue_for_each_hw_ctx(q, hctx, i) | ||
| 653 | blk_mq_tag_idle(hctx); | ||
| 654 | } | ||
| 500 | } | 655 | } |
| 501 | 656 | ||
| 502 | /* | 657 | /* |
| @@ -538,9 +693,38 @@ static bool blk_mq_attempt_merge(struct request_queue *q, | |||
| 538 | return false; | 693 | return false; |
| 539 | } | 694 | } |
| 540 | 695 | ||
| 541 | void blk_mq_add_timer(struct request *rq) | 696 | /* |
| 697 | * Process software queues that have been marked busy, splicing them | ||
| 698 | * to the for-dispatch | ||
| 699 | */ | ||
| 700 | static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) | ||
| 542 | { | 701 | { |
| 543 | __blk_add_timer(rq, NULL); | 702 | struct blk_mq_ctx *ctx; |
| 703 | int i; | ||
| 704 | |||
| 705 | for (i = 0; i < hctx->ctx_map.map_size; i++) { | ||
| 706 | struct blk_align_bitmap *bm = &hctx->ctx_map.map[i]; | ||
| 707 | unsigned int off, bit; | ||
| 708 | |||
| 709 | if (!bm->word) | ||
| 710 | continue; | ||
| 711 | |||
| 712 | bit = 0; | ||
| 713 | off = i * hctx->ctx_map.bits_per_word; | ||
| 714 | do { | ||
| 715 | bit = find_next_bit(&bm->word, bm->depth, bit); | ||
| 716 | if (bit >= bm->depth) | ||
| 717 | break; | ||
| 718 | |||
| 719 | ctx = hctx->ctxs[bit + off]; | ||
| 720 | clear_bit(bit, &bm->word); | ||
| 721 | spin_lock(&ctx->lock); | ||
| 722 | list_splice_tail_init(&ctx->rq_list, list); | ||
| 723 | spin_unlock(&ctx->lock); | ||
| 724 | |||
| 725 | bit++; | ||
| 726 | } while (1); | ||
| 727 | } | ||
| 544 | } | 728 | } |
| 545 | 729 | ||
| 546 | /* | 730 | /* |
| @@ -552,10 +736,9 @@ void blk_mq_add_timer(struct request *rq) | |||
| 552 | static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) | 736 | static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) |
| 553 | { | 737 | { |
| 554 | struct request_queue *q = hctx->queue; | 738 | struct request_queue *q = hctx->queue; |
| 555 | struct blk_mq_ctx *ctx; | ||
| 556 | struct request *rq; | 739 | struct request *rq; |
| 557 | LIST_HEAD(rq_list); | 740 | LIST_HEAD(rq_list); |
| 558 | int bit, queued; | 741 | int queued; |
| 559 | 742 | ||
| 560 | WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); | 743 | WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)); |
| 561 | 744 | ||
| @@ -567,15 +750,7 @@ static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) | |||
| 567 | /* | 750 | /* |
| 568 | * Touch any software queue that has pending entries. | 751 | * Touch any software queue that has pending entries. |
| 569 | */ | 752 | */ |
| 570 | for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) { | 753 | flush_busy_ctxs(hctx, &rq_list); |
| 571 | clear_bit(bit, hctx->ctx_map); | ||
| 572 | ctx = hctx->ctxs[bit]; | ||
| 573 | BUG_ON(bit != ctx->index_hw); | ||
| 574 | |||
| 575 | spin_lock(&ctx->lock); | ||
| 576 | list_splice_tail_init(&ctx->rq_list, &rq_list); | ||
| 577 | spin_unlock(&ctx->lock); | ||
| 578 | } | ||
| 579 | 754 | ||
| 580 | /* | 755 | /* |
| 581 | * If we have previous entries on our dispatch list, grab them | 756 | * If we have previous entries on our dispatch list, grab them |
| @@ -589,13 +764,9 @@ static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) | |||
| 589 | } | 764 | } |
| 590 | 765 | ||
| 591 | /* | 766 | /* |
| 592 | * Delete and return all entries from our dispatch list | ||
| 593 | */ | ||
| 594 | queued = 0; | ||
| 595 | |||
| 596 | /* | ||
| 597 | * Now process all the entries, sending them to the driver. | 767 | * Now process all the entries, sending them to the driver. |
| 598 | */ | 768 | */ |
| 769 | queued = 0; | ||
| 599 | while (!list_empty(&rq_list)) { | 770 | while (!list_empty(&rq_list)) { |
| 600 | int ret; | 771 | int ret; |
| 601 | 772 | ||
| @@ -610,11 +781,6 @@ static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) | |||
| 610 | queued++; | 781 | queued++; |
| 611 | continue; | 782 | continue; |
| 612 | case BLK_MQ_RQ_QUEUE_BUSY: | 783 | case BLK_MQ_RQ_QUEUE_BUSY: |
| 613 | /* | ||
| 614 | * FIXME: we should have a mechanism to stop the queue | ||
| 615 | * like blk_stop_queue, otherwise we will waste cpu | ||
| 616 | * time | ||
| 617 | */ | ||
| 618 | list_add(&rq->queuelist, &rq_list); | 784 | list_add(&rq->queuelist, &rq_list); |
| 619 | __blk_mq_requeue_request(rq); | 785 | __blk_mq_requeue_request(rq); |
| 620 | break; | 786 | break; |
| @@ -646,6 +812,30 @@ static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) | |||
| 646 | } | 812 | } |
| 647 | } | 813 | } |
| 648 | 814 | ||
| 815 | /* | ||
| 816 | * It'd be great if the workqueue API had a way to pass | ||
| 817 | * in a mask and had some smarts for more clever placement. | ||
| 818 | * For now we just round-robin here, switching for every | ||
| 819 | * BLK_MQ_CPU_WORK_BATCH queued items. | ||
| 820 | */ | ||
| 821 | static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) | ||
| 822 | { | ||
| 823 | int cpu = hctx->next_cpu; | ||
| 824 | |||
| 825 | if (--hctx->next_cpu_batch <= 0) { | ||
| 826 | int next_cpu; | ||
| 827 | |||
| 828 | next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask); | ||
| 829 | if (next_cpu >= nr_cpu_ids) | ||
| 830 | next_cpu = cpumask_first(hctx->cpumask); | ||
| 831 | |||
| 832 | hctx->next_cpu = next_cpu; | ||
| 833 | hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; | ||
| 834 | } | ||
| 835 | |||
| 836 | return cpu; | ||
| 837 | } | ||
| 838 | |||
| 649 | void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) | 839 | void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) |
| 650 | { | 840 | { |
| 651 | if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) | 841 | if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state))) |
| @@ -658,13 +848,7 @@ void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) | |||
| 658 | else { | 848 | else { |
| 659 | unsigned int cpu; | 849 | unsigned int cpu; |
| 660 | 850 | ||
| 661 | /* | 851 | cpu = blk_mq_hctx_next_cpu(hctx); |
| 662 | * It'd be great if the workqueue API had a way to pass | ||
| 663 | * in a mask and had some smarts for more clever placement | ||
| 664 | * than the first CPU. Or we could round-robin here. For now, | ||
| 665 | * just queue on the first CPU. | ||
| 666 | */ | ||
| 667 | cpu = cpumask_first(hctx->cpumask); | ||
| 668 | kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); | 852 | kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0); |
| 669 | } | 853 | } |
| 670 | } | 854 | } |
| @@ -771,13 +955,7 @@ void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) | |||
| 771 | else { | 955 | else { |
| 772 | unsigned int cpu; | 956 | unsigned int cpu; |
| 773 | 957 | ||
| 774 | /* | 958 | cpu = blk_mq_hctx_next_cpu(hctx); |
| 775 | * It'd be great if the workqueue API had a way to pass | ||
| 776 | * in a mask and had some smarts for more clever placement | ||
| 777 | * than the first CPU. Or we could round-robin here. For now, | ||
| 778 | * just queue on the first CPU. | ||
| 779 | */ | ||
| 780 | cpu = cpumask_first(hctx->cpumask); | ||
| 781 | kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); | 959 | kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo); |
| 782 | } | 960 | } |
| 783 | } | 961 | } |
| @@ -794,12 +972,13 @@ static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, | |||
| 794 | list_add(&rq->queuelist, &ctx->rq_list); | 972 | list_add(&rq->queuelist, &ctx->rq_list); |
| 795 | else | 973 | else |
| 796 | list_add_tail(&rq->queuelist, &ctx->rq_list); | 974 | list_add_tail(&rq->queuelist, &ctx->rq_list); |
| 975 | |||
| 797 | blk_mq_hctx_mark_pending(hctx, ctx); | 976 | blk_mq_hctx_mark_pending(hctx, ctx); |
| 798 | 977 | ||
| 799 | /* | 978 | /* |
| 800 | * We do this early, to ensure we are on the right CPU. | 979 | * We do this early, to ensure we are on the right CPU. |
| 801 | */ | 980 | */ |
| 802 | blk_mq_add_timer(rq); | 981 | blk_add_timer(rq); |
| 803 | } | 982 | } |
| 804 | 983 | ||
| 805 | void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, | 984 | void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue, |
| @@ -930,21 +1109,161 @@ static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) | |||
| 930 | blk_account_io_start(rq, 1); | 1109 | blk_account_io_start(rq, 1); |
| 931 | } | 1110 | } |
| 932 | 1111 | ||
| 933 | static void blk_mq_make_request(struct request_queue *q, struct bio *bio) | 1112 | static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx, |
| 1113 | struct blk_mq_ctx *ctx, | ||
| 1114 | struct request *rq, struct bio *bio) | ||
| 1115 | { | ||
| 1116 | struct request_queue *q = hctx->queue; | ||
| 1117 | |||
| 1118 | if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) { | ||
| 1119 | blk_mq_bio_to_request(rq, bio); | ||
| 1120 | spin_lock(&ctx->lock); | ||
| 1121 | insert_rq: | ||
| 1122 | __blk_mq_insert_request(hctx, rq, false); | ||
| 1123 | spin_unlock(&ctx->lock); | ||
| 1124 | return false; | ||
| 1125 | } else { | ||
| 1126 | spin_lock(&ctx->lock); | ||
| 1127 | if (!blk_mq_attempt_merge(q, ctx, bio)) { | ||
| 1128 | blk_mq_bio_to_request(rq, bio); | ||
| 1129 | goto insert_rq; | ||
| 1130 | } | ||
| 1131 | |||
| 1132 | spin_unlock(&ctx->lock); | ||
| 1133 | __blk_mq_free_request(hctx, ctx, rq); | ||
| 1134 | return true; | ||
| 1135 | } | ||
| 1136 | } | ||
| 1137 | |||
| 1138 | struct blk_map_ctx { | ||
| 1139 | struct blk_mq_hw_ctx *hctx; | ||
| 1140 | struct blk_mq_ctx *ctx; | ||
| 1141 | }; | ||
| 1142 | |||
| 1143 | static struct request *blk_mq_map_request(struct request_queue *q, | ||
| 1144 | struct bio *bio, | ||
| 1145 | struct blk_map_ctx *data) | ||
| 934 | { | 1146 | { |
| 935 | struct blk_mq_hw_ctx *hctx; | 1147 | struct blk_mq_hw_ctx *hctx; |
| 936 | struct blk_mq_ctx *ctx; | 1148 | struct blk_mq_ctx *ctx; |
| 1149 | struct request *rq; | ||
| 1150 | int rw = bio_data_dir(bio); | ||
| 1151 | |||
| 1152 | if (unlikely(blk_mq_queue_enter(q))) { | ||
| 1153 | bio_endio(bio, -EIO); | ||
| 1154 | return NULL; | ||
| 1155 | } | ||
| 1156 | |||
| 1157 | ctx = blk_mq_get_ctx(q); | ||
| 1158 | hctx = q->mq_ops->map_queue(q, ctx->cpu); | ||
| 1159 | |||
| 1160 | if (rw_is_sync(bio->bi_rw)) | ||
| 1161 | rw |= REQ_SYNC; | ||
| 1162 | |||
| 1163 | trace_block_getrq(q, bio, rw); | ||
| 1164 | rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false); | ||
| 1165 | if (unlikely(!rq)) { | ||
| 1166 | __blk_mq_run_hw_queue(hctx); | ||
| 1167 | blk_mq_put_ctx(ctx); | ||
| 1168 | trace_block_sleeprq(q, bio, rw); | ||
| 1169 | |||
| 1170 | ctx = blk_mq_get_ctx(q); | ||
| 1171 | hctx = q->mq_ops->map_queue(q, ctx->cpu); | ||
| 1172 | rq = __blk_mq_alloc_request(q, hctx, ctx, rw, | ||
| 1173 | __GFP_WAIT|GFP_ATOMIC, false); | ||
| 1174 | } | ||
| 1175 | |||
| 1176 | hctx->queued++; | ||
| 1177 | data->hctx = hctx; | ||
| 1178 | data->ctx = ctx; | ||
| 1179 | return rq; | ||
| 1180 | } | ||
| 1181 | |||
| 1182 | /* | ||
| 1183 | * Multiple hardware queue variant. This will not use per-process plugs, | ||
| 1184 | * but will attempt to bypass the hctx queueing if we can go straight to | ||
| 1185 | * hardware for SYNC IO. | ||
| 1186 | */ | ||
| 1187 | static void blk_mq_make_request(struct request_queue *q, struct bio *bio) | ||
| 1188 | { | ||
| 937 | const int is_sync = rw_is_sync(bio->bi_rw); | 1189 | const int is_sync = rw_is_sync(bio->bi_rw); |
| 938 | const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); | 1190 | const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); |
| 939 | int rw = bio_data_dir(bio); | 1191 | struct blk_map_ctx data; |
| 940 | struct request *rq; | 1192 | struct request *rq; |
| 1193 | |||
| 1194 | blk_queue_bounce(q, &bio); | ||
| 1195 | |||
| 1196 | if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { | ||
| 1197 | bio_endio(bio, -EIO); | ||
| 1198 | return; | ||
| 1199 | } | ||
| 1200 | |||
| 1201 | rq = blk_mq_map_request(q, bio, &data); | ||
| 1202 | if (unlikely(!rq)) | ||
| 1203 | return; | ||
| 1204 | |||
| 1205 | if (unlikely(is_flush_fua)) { | ||
| 1206 | blk_mq_bio_to_request(rq, bio); | ||
| 1207 | blk_insert_flush(rq); | ||
| 1208 | goto run_queue; | ||
| 1209 | } | ||
| 1210 | |||
| 1211 | if (is_sync) { | ||
| 1212 | int ret; | ||
| 1213 | |||
| 1214 | blk_mq_bio_to_request(rq, bio); | ||
| 1215 | blk_mq_start_request(rq, true); | ||
| 1216 | |||
| 1217 | /* | ||
| 1218 | * For OK queue, we are done. For error, kill it. Any other | ||
| 1219 | * error (busy), just add it to our list as we previously | ||
| 1220 | * would have done | ||
| 1221 | */ | ||
| 1222 | ret = q->mq_ops->queue_rq(data.hctx, rq); | ||
| 1223 | if (ret == BLK_MQ_RQ_QUEUE_OK) | ||
| 1224 | goto done; | ||
| 1225 | else { | ||
| 1226 | __blk_mq_requeue_request(rq); | ||
| 1227 | |||
| 1228 | if (ret == BLK_MQ_RQ_QUEUE_ERROR) { | ||
| 1229 | rq->errors = -EIO; | ||
| 1230 | blk_mq_end_io(rq, rq->errors); | ||
| 1231 | goto done; | ||
| 1232 | } | ||
| 1233 | } | ||
| 1234 | } | ||
| 1235 | |||
| 1236 | if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { | ||
| 1237 | /* | ||
| 1238 | * For a SYNC request, send it to the hardware immediately. For | ||
| 1239 | * an ASYNC request, just ensure that we run it later on. The | ||
| 1240 | * latter allows for merging opportunities and more efficient | ||
| 1241 | * dispatching. | ||
| 1242 | */ | ||
| 1243 | run_queue: | ||
| 1244 | blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); | ||
| 1245 | } | ||
| 1246 | done: | ||
| 1247 | blk_mq_put_ctx(data.ctx); | ||
| 1248 | } | ||
| 1249 | |||
| 1250 | /* | ||
| 1251 | * Single hardware queue variant. This will attempt to use any per-process | ||
| 1252 | * plug for merging and IO deferral. | ||
| 1253 | */ | ||
| 1254 | static void blk_sq_make_request(struct request_queue *q, struct bio *bio) | ||
| 1255 | { | ||
| 1256 | const int is_sync = rw_is_sync(bio->bi_rw); | ||
| 1257 | const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA); | ||
| 941 | unsigned int use_plug, request_count = 0; | 1258 | unsigned int use_plug, request_count = 0; |
| 1259 | struct blk_map_ctx data; | ||
| 1260 | struct request *rq; | ||
| 942 | 1261 | ||
| 943 | /* | 1262 | /* |
| 944 | * If we have multiple hardware queues, just go directly to | 1263 | * If we have multiple hardware queues, just go directly to |
| 945 | * one of those for sync IO. | 1264 | * one of those for sync IO. |
| 946 | */ | 1265 | */ |
| 947 | use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync); | 1266 | use_plug = !is_flush_fua && !is_sync; |
| 948 | 1267 | ||
| 949 | blk_queue_bounce(q, &bio); | 1268 | blk_queue_bounce(q, &bio); |
| 950 | 1269 | ||
| @@ -953,33 +1272,11 @@ static void blk_mq_make_request(struct request_queue *q, struct bio *bio) | |||
| 953 | return; | 1272 | return; |
| 954 | } | 1273 | } |
| 955 | 1274 | ||
| 956 | if (use_plug && blk_attempt_plug_merge(q, bio, &request_count)) | 1275 | if (use_plug && !blk_queue_nomerges(q) && |
| 1276 | blk_attempt_plug_merge(q, bio, &request_count)) | ||
| 957 | return; | 1277 | return; |
| 958 | 1278 | ||
| 959 | if (blk_mq_queue_enter(q)) { | 1279 | rq = blk_mq_map_request(q, bio, &data); |
| 960 | bio_endio(bio, -EIO); | ||
| 961 | return; | ||
| 962 | } | ||
| 963 | |||
| 964 | ctx = blk_mq_get_ctx(q); | ||
| 965 | hctx = q->mq_ops->map_queue(q, ctx->cpu); | ||
| 966 | |||
| 967 | if (is_sync) | ||
| 968 | rw |= REQ_SYNC; | ||
| 969 | trace_block_getrq(q, bio, rw); | ||
| 970 | rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false); | ||
| 971 | if (likely(rq)) | ||
| 972 | blk_mq_rq_ctx_init(q, ctx, rq, rw); | ||
| 973 | else { | ||
| 974 | blk_mq_put_ctx(ctx); | ||
| 975 | trace_block_sleeprq(q, bio, rw); | ||
| 976 | rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC, | ||
| 977 | false); | ||
| 978 | ctx = rq->mq_ctx; | ||
| 979 | hctx = q->mq_ops->map_queue(q, ctx->cpu); | ||
| 980 | } | ||
| 981 | |||
| 982 | hctx->queued++; | ||
| 983 | 1280 | ||
| 984 | if (unlikely(is_flush_fua)) { | 1281 | if (unlikely(is_flush_fua)) { |
| 985 | blk_mq_bio_to_request(rq, bio); | 1282 | blk_mq_bio_to_request(rq, bio); |
| @@ -1004,31 +1301,23 @@ static void blk_mq_make_request(struct request_queue *q, struct bio *bio) | |||
| 1004 | trace_block_plug(q); | 1301 | trace_block_plug(q); |
| 1005 | } | 1302 | } |
| 1006 | list_add_tail(&rq->queuelist, &plug->mq_list); | 1303 | list_add_tail(&rq->queuelist, &plug->mq_list); |
| 1007 | blk_mq_put_ctx(ctx); | 1304 | blk_mq_put_ctx(data.ctx); |
| 1008 | return; | 1305 | return; |
| 1009 | } | 1306 | } |
| 1010 | } | 1307 | } |
| 1011 | 1308 | ||
| 1012 | spin_lock(&ctx->lock); | 1309 | if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) { |
| 1013 | 1310 | /* | |
| 1014 | if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) && | 1311 | * For a SYNC request, send it to the hardware immediately. For |
| 1015 | blk_mq_attempt_merge(q, ctx, bio)) | 1312 | * an ASYNC request, just ensure that we run it later on. The |
| 1016 | __blk_mq_free_request(hctx, ctx, rq); | 1313 | * latter allows for merging opportunities and more efficient |
| 1017 | else { | 1314 | * dispatching. |
| 1018 | blk_mq_bio_to_request(rq, bio); | 1315 | */ |
| 1019 | __blk_mq_insert_request(hctx, rq, false); | 1316 | run_queue: |
| 1317 | blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua); | ||
| 1020 | } | 1318 | } |
| 1021 | 1319 | ||
| 1022 | spin_unlock(&ctx->lock); | 1320 | blk_mq_put_ctx(data.ctx); |
| 1023 | |||
| 1024 | /* | ||
| 1025 | * For a SYNC request, send it to the hardware immediately. For an | ||
| 1026 | * ASYNC request, just ensure that we run it later on. The latter | ||
| 1027 | * allows for merging opportunities and more efficient dispatching. | ||
| 1028 | */ | ||
| 1029 | run_queue: | ||
| 1030 | blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua); | ||
| 1031 | blk_mq_put_ctx(ctx); | ||
| 1032 | } | 1321 | } |
| 1033 | 1322 | ||
| 1034 | /* | 1323 | /* |
| @@ -1041,10 +1330,10 @@ struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu) | |||
| 1041 | EXPORT_SYMBOL(blk_mq_map_queue); | 1330 | EXPORT_SYMBOL(blk_mq_map_queue); |
| 1042 | 1331 | ||
| 1043 | struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set, | 1332 | struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set, |
| 1044 | unsigned int hctx_index) | 1333 | unsigned int hctx_index, |
| 1334 | int node) | ||
| 1045 | { | 1335 | { |
| 1046 | return kmalloc_node(sizeof(struct blk_mq_hw_ctx), | 1336 | return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL, node); |
| 1047 | GFP_KERNEL | __GFP_ZERO, set->numa_node); | ||
| 1048 | } | 1337 | } |
| 1049 | EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue); | 1338 | EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue); |
| 1050 | 1339 | ||
| @@ -1055,52 +1344,6 @@ void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx, | |||
| 1055 | } | 1344 | } |
| 1056 | EXPORT_SYMBOL(blk_mq_free_single_hw_queue); | 1345 | EXPORT_SYMBOL(blk_mq_free_single_hw_queue); |
| 1057 | 1346 | ||
| 1058 | static void blk_mq_hctx_notify(void *data, unsigned long action, | ||
| 1059 | unsigned int cpu) | ||
| 1060 | { | ||
| 1061 | struct blk_mq_hw_ctx *hctx = data; | ||
| 1062 | struct request_queue *q = hctx->queue; | ||
| 1063 | struct blk_mq_ctx *ctx; | ||
| 1064 | LIST_HEAD(tmp); | ||
| 1065 | |||
| 1066 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) | ||
| 1067 | return; | ||
| 1068 | |||
| 1069 | /* | ||
| 1070 | * Move ctx entries to new CPU, if this one is going away. | ||
| 1071 | */ | ||
| 1072 | ctx = __blk_mq_get_ctx(q, cpu); | ||
| 1073 | |||
| 1074 | spin_lock(&ctx->lock); | ||
| 1075 | if (!list_empty(&ctx->rq_list)) { | ||
| 1076 | list_splice_init(&ctx->rq_list, &tmp); | ||
| 1077 | clear_bit(ctx->index_hw, hctx->ctx_map); | ||
| 1078 | } | ||
| 1079 | spin_unlock(&ctx->lock); | ||
| 1080 | |||
| 1081 | if (list_empty(&tmp)) | ||
| 1082 | return; | ||
| 1083 | |||
| 1084 | ctx = blk_mq_get_ctx(q); | ||
| 1085 | spin_lock(&ctx->lock); | ||
| 1086 | |||
| 1087 | while (!list_empty(&tmp)) { | ||
| 1088 | struct request *rq; | ||
| 1089 | |||
| 1090 | rq = list_first_entry(&tmp, struct request, queuelist); | ||
| 1091 | rq->mq_ctx = ctx; | ||
| 1092 | list_move_tail(&rq->queuelist, &ctx->rq_list); | ||
| 1093 | } | ||
| 1094 | |||
| 1095 | hctx = q->mq_ops->map_queue(q, ctx->cpu); | ||
| 1096 | blk_mq_hctx_mark_pending(hctx, ctx); | ||
| 1097 | |||
| 1098 | spin_unlock(&ctx->lock); | ||
| 1099 | |||
| 1100 | blk_mq_run_hw_queue(hctx, true); | ||
| 1101 | blk_mq_put_ctx(ctx); | ||
| 1102 | } | ||
| 1103 | |||
| 1104 | static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, | 1347 | static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, |
| 1105 | struct blk_mq_tags *tags, unsigned int hctx_idx) | 1348 | struct blk_mq_tags *tags, unsigned int hctx_idx) |
| 1106 | { | 1349 | { |
| @@ -1130,12 +1373,7 @@ static void blk_mq_free_rq_map(struct blk_mq_tag_set *set, | |||
| 1130 | 1373 | ||
| 1131 | static size_t order_to_size(unsigned int order) | 1374 | static size_t order_to_size(unsigned int order) |
| 1132 | { | 1375 | { |
| 1133 | size_t ret = PAGE_SIZE; | 1376 | return (size_t)PAGE_SIZE << order; |
| 1134 | |||
| 1135 | while (order--) | ||
| 1136 | ret *= 2; | ||
| 1137 | |||
| 1138 | return ret; | ||
| 1139 | } | 1377 | } |
| 1140 | 1378 | ||
| 1141 | static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, | 1379 | static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set, |
| @@ -1219,17 +1457,147 @@ fail: | |||
| 1219 | return NULL; | 1457 | return NULL; |
| 1220 | } | 1458 | } |
| 1221 | 1459 | ||
| 1460 | static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap) | ||
| 1461 | { | ||
| 1462 | kfree(bitmap->map); | ||
| 1463 | } | ||
| 1464 | |||
| 1465 | static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node) | ||
| 1466 | { | ||
| 1467 | unsigned int bpw = 8, total, num_maps, i; | ||
| 1468 | |||
| 1469 | bitmap->bits_per_word = bpw; | ||
| 1470 | |||
| 1471 | num_maps = ALIGN(nr_cpu_ids, bpw) / bpw; | ||
| 1472 | bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap), | ||
| 1473 | GFP_KERNEL, node); | ||
| 1474 | if (!bitmap->map) | ||
| 1475 | return -ENOMEM; | ||
| 1476 | |||
| 1477 | bitmap->map_size = num_maps; | ||
| 1478 | |||
| 1479 | total = nr_cpu_ids; | ||
| 1480 | for (i = 0; i < num_maps; i++) { | ||
| 1481 | bitmap->map[i].depth = min(total, bitmap->bits_per_word); | ||
| 1482 | total -= bitmap->map[i].depth; | ||
| 1483 | } | ||
| 1484 | |||
| 1485 | return 0; | ||
| 1486 | } | ||
| 1487 | |||
| 1488 | static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu) | ||
| 1489 | { | ||
| 1490 | struct request_queue *q = hctx->queue; | ||
| 1491 | struct blk_mq_ctx *ctx; | ||
| 1492 | LIST_HEAD(tmp); | ||
| 1493 | |||
| 1494 | /* | ||
| 1495 | * Move ctx entries to new CPU, if this one is going away. | ||
| 1496 | */ | ||
| 1497 | ctx = __blk_mq_get_ctx(q, cpu); | ||
| 1498 | |||
| 1499 | spin_lock(&ctx->lock); | ||
| 1500 | if (!list_empty(&ctx->rq_list)) { | ||
| 1501 | list_splice_init(&ctx->rq_list, &tmp); | ||
| 1502 | blk_mq_hctx_clear_pending(hctx, ctx); | ||
| 1503 | } | ||
| 1504 | spin_unlock(&ctx->lock); | ||
| 1505 | |||
| 1506 | if (list_empty(&tmp)) | ||
| 1507 | return NOTIFY_OK; | ||
| 1508 | |||
| 1509 | ctx = blk_mq_get_ctx(q); | ||
| 1510 | spin_lock(&ctx->lock); | ||
| 1511 | |||
| 1512 | while (!list_empty(&tmp)) { | ||
| 1513 | struct request *rq; | ||
| 1514 | |||
| 1515 | rq = list_first_entry(&tmp, struct request, queuelist); | ||
| 1516 | rq->mq_ctx = ctx; | ||
| 1517 | list_move_tail(&rq->queuelist, &ctx->rq_list); | ||
| 1518 | } | ||
| 1519 | |||
| 1520 | hctx = q->mq_ops->map_queue(q, ctx->cpu); | ||
| 1521 | blk_mq_hctx_mark_pending(hctx, ctx); | ||
| 1522 | |||
| 1523 | spin_unlock(&ctx->lock); | ||
| 1524 | |||
| 1525 | blk_mq_run_hw_queue(hctx, true); | ||
| 1526 | blk_mq_put_ctx(ctx); | ||
| 1527 | return NOTIFY_OK; | ||
| 1528 | } | ||
| 1529 | |||
| 1530 | static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu) | ||
| 1531 | { | ||
| 1532 | struct request_queue *q = hctx->queue; | ||
| 1533 | struct blk_mq_tag_set *set = q->tag_set; | ||
| 1534 | |||
| 1535 | if (set->tags[hctx->queue_num]) | ||
| 1536 | return NOTIFY_OK; | ||
| 1537 | |||
| 1538 | set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num); | ||
| 1539 | if (!set->tags[hctx->queue_num]) | ||
| 1540 | return NOTIFY_STOP; | ||
| 1541 | |||
| 1542 | hctx->tags = set->tags[hctx->queue_num]; | ||
| 1543 | return NOTIFY_OK; | ||
| 1544 | } | ||
| 1545 | |||
| 1546 | static int blk_mq_hctx_notify(void *data, unsigned long action, | ||
| 1547 | unsigned int cpu) | ||
| 1548 | { | ||
| 1549 | struct blk_mq_hw_ctx *hctx = data; | ||
| 1550 | |||
| 1551 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) | ||
| 1552 | return blk_mq_hctx_cpu_offline(hctx, cpu); | ||
| 1553 | else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) | ||
| 1554 | return blk_mq_hctx_cpu_online(hctx, cpu); | ||
| 1555 | |||
| 1556 | return NOTIFY_OK; | ||
| 1557 | } | ||
| 1558 | |||
| 1559 | static void blk_mq_exit_hw_queues(struct request_queue *q, | ||
| 1560 | struct blk_mq_tag_set *set, int nr_queue) | ||
| 1561 | { | ||
| 1562 | struct blk_mq_hw_ctx *hctx; | ||
| 1563 | unsigned int i; | ||
| 1564 | |||
| 1565 | queue_for_each_hw_ctx(q, hctx, i) { | ||
| 1566 | if (i == nr_queue) | ||
| 1567 | break; | ||
| 1568 | |||
| 1569 | if (set->ops->exit_hctx) | ||
| 1570 | set->ops->exit_hctx(hctx, i); | ||
| 1571 | |||
| 1572 | blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); | ||
| 1573 | kfree(hctx->ctxs); | ||
| 1574 | blk_mq_free_bitmap(&hctx->ctx_map); | ||
| 1575 | } | ||
| 1576 | |||
| 1577 | } | ||
| 1578 | |||
| 1579 | static void blk_mq_free_hw_queues(struct request_queue *q, | ||
| 1580 | struct blk_mq_tag_set *set) | ||
| 1581 | { | ||
| 1582 | struct blk_mq_hw_ctx *hctx; | ||
| 1583 | unsigned int i; | ||
| 1584 | |||
| 1585 | queue_for_each_hw_ctx(q, hctx, i) { | ||
| 1586 | free_cpumask_var(hctx->cpumask); | ||
| 1587 | set->ops->free_hctx(hctx, i); | ||
| 1588 | } | ||
| 1589 | } | ||
| 1590 | |||
| 1222 | static int blk_mq_init_hw_queues(struct request_queue *q, | 1591 | static int blk_mq_init_hw_queues(struct request_queue *q, |
| 1223 | struct blk_mq_tag_set *set) | 1592 | struct blk_mq_tag_set *set) |
| 1224 | { | 1593 | { |
| 1225 | struct blk_mq_hw_ctx *hctx; | 1594 | struct blk_mq_hw_ctx *hctx; |
| 1226 | unsigned int i, j; | 1595 | unsigned int i; |
| 1227 | 1596 | ||
| 1228 | /* | 1597 | /* |
| 1229 | * Initialize hardware queues | 1598 | * Initialize hardware queues |
| 1230 | */ | 1599 | */ |
| 1231 | queue_for_each_hw_ctx(q, hctx, i) { | 1600 | queue_for_each_hw_ctx(q, hctx, i) { |
| 1232 | unsigned int num_maps; | ||
| 1233 | int node; | 1601 | int node; |
| 1234 | 1602 | ||
| 1235 | node = hctx->numa_node; | 1603 | node = hctx->numa_node; |
| @@ -1260,13 +1628,9 @@ static int blk_mq_init_hw_queues(struct request_queue *q, | |||
| 1260 | if (!hctx->ctxs) | 1628 | if (!hctx->ctxs) |
| 1261 | break; | 1629 | break; |
| 1262 | 1630 | ||
| 1263 | num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG; | 1631 | if (blk_mq_alloc_bitmap(&hctx->ctx_map, node)) |
| 1264 | hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long), | ||
| 1265 | GFP_KERNEL, node); | ||
| 1266 | if (!hctx->ctx_map) | ||
| 1267 | break; | 1632 | break; |
| 1268 | 1633 | ||
| 1269 | hctx->nr_ctx_map = num_maps; | ||
| 1270 | hctx->nr_ctx = 0; | 1634 | hctx->nr_ctx = 0; |
| 1271 | 1635 | ||
| 1272 | if (set->ops->init_hctx && | 1636 | if (set->ops->init_hctx && |
| @@ -1280,16 +1644,7 @@ static int blk_mq_init_hw_queues(struct request_queue *q, | |||
| 1280 | /* | 1644 | /* |
| 1281 | * Init failed | 1645 | * Init failed |
| 1282 | */ | 1646 | */ |
| 1283 | queue_for_each_hw_ctx(q, hctx, j) { | 1647 | blk_mq_exit_hw_queues(q, set, i); |
| 1284 | if (i == j) | ||
| 1285 | break; | ||
| 1286 | |||
| 1287 | if (set->ops->exit_hctx) | ||
| 1288 | set->ops->exit_hctx(hctx, j); | ||
| 1289 | |||
| 1290 | blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); | ||
| 1291 | kfree(hctx->ctxs); | ||
| 1292 | } | ||
| 1293 | 1648 | ||
| 1294 | return 1; | 1649 | return 1; |
| 1295 | } | 1650 | } |
| @@ -1350,6 +1705,79 @@ static void blk_mq_map_swqueue(struct request_queue *q) | |||
| 1350 | ctx->index_hw = hctx->nr_ctx; | 1705 | ctx->index_hw = hctx->nr_ctx; |
| 1351 | hctx->ctxs[hctx->nr_ctx++] = ctx; | 1706 | hctx->ctxs[hctx->nr_ctx++] = ctx; |
| 1352 | } | 1707 | } |
| 1708 | |||
| 1709 | queue_for_each_hw_ctx(q, hctx, i) { | ||
| 1710 | /* | ||
| 1711 | * If not software queues are mapped to this hardware queue, | ||
| 1712 | * disable it and free the request entries | ||
| 1713 | */ | ||
| 1714 | if (!hctx->nr_ctx) { | ||
| 1715 | struct blk_mq_tag_set *set = q->tag_set; | ||
| 1716 | |||
| 1717 | if (set->tags[i]) { | ||
| 1718 | blk_mq_free_rq_map(set, set->tags[i], i); | ||
| 1719 | set->tags[i] = NULL; | ||
| 1720 | hctx->tags = NULL; | ||
| 1721 | } | ||
| 1722 | continue; | ||
| 1723 | } | ||
| 1724 | |||
| 1725 | /* | ||
| 1726 | * Initialize batch roundrobin counts | ||
| 1727 | */ | ||
| 1728 | hctx->next_cpu = cpumask_first(hctx->cpumask); | ||
| 1729 | hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; | ||
| 1730 | } | ||
| 1731 | } | ||
| 1732 | |||
| 1733 | static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set) | ||
| 1734 | { | ||
| 1735 | struct blk_mq_hw_ctx *hctx; | ||
| 1736 | struct request_queue *q; | ||
| 1737 | bool shared; | ||
| 1738 | int i; | ||
| 1739 | |||
| 1740 | if (set->tag_list.next == set->tag_list.prev) | ||
| 1741 | shared = false; | ||
| 1742 | else | ||
| 1743 | shared = true; | ||
| 1744 | |||
| 1745 | list_for_each_entry(q, &set->tag_list, tag_set_list) { | ||
| 1746 | blk_mq_freeze_queue(q); | ||
| 1747 | |||
| 1748 | queue_for_each_hw_ctx(q, hctx, i) { | ||
| 1749 | if (shared) | ||
| 1750 | hctx->flags |= BLK_MQ_F_TAG_SHARED; | ||
| 1751 | else | ||
| 1752 | hctx->flags &= ~BLK_MQ_F_TAG_SHARED; | ||
| 1753 | } | ||
| 1754 | blk_mq_unfreeze_queue(q); | ||
| 1755 | } | ||
| 1756 | } | ||
| 1757 | |||
| 1758 | static void blk_mq_del_queue_tag_set(struct request_queue *q) | ||
| 1759 | { | ||
| 1760 | struct blk_mq_tag_set *set = q->tag_set; | ||
| 1761 | |||
| 1762 | blk_mq_freeze_queue(q); | ||
| 1763 | |||
| 1764 | mutex_lock(&set->tag_list_lock); | ||
| 1765 | list_del_init(&q->tag_set_list); | ||
| 1766 | blk_mq_update_tag_set_depth(set); | ||
| 1767 | mutex_unlock(&set->tag_list_lock); | ||
| 1768 | |||
| 1769 | blk_mq_unfreeze_queue(q); | ||
| 1770 | } | ||
| 1771 | |||
| 1772 | static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, | ||
| 1773 | struct request_queue *q) | ||
| 1774 | { | ||
| 1775 | q->tag_set = set; | ||
| 1776 | |||
| 1777 | mutex_lock(&set->tag_list_lock); | ||
| 1778 | list_add_tail(&q->tag_set_list, &set->tag_list); | ||
| 1779 | blk_mq_update_tag_set_depth(set); | ||
| 1780 | mutex_unlock(&set->tag_list_lock); | ||
| 1353 | } | 1781 | } |
| 1354 | 1782 | ||
| 1355 | struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) | 1783 | struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) |
| @@ -1357,6 +1785,7 @@ struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) | |||
| 1357 | struct blk_mq_hw_ctx **hctxs; | 1785 | struct blk_mq_hw_ctx **hctxs; |
| 1358 | struct blk_mq_ctx *ctx; | 1786 | struct blk_mq_ctx *ctx; |
| 1359 | struct request_queue *q; | 1787 | struct request_queue *q; |
| 1788 | unsigned int *map; | ||
| 1360 | int i; | 1789 | int i; |
| 1361 | 1790 | ||
| 1362 | ctx = alloc_percpu(struct blk_mq_ctx); | 1791 | ctx = alloc_percpu(struct blk_mq_ctx); |
| @@ -1369,15 +1798,22 @@ struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) | |||
| 1369 | if (!hctxs) | 1798 | if (!hctxs) |
| 1370 | goto err_percpu; | 1799 | goto err_percpu; |
| 1371 | 1800 | ||
| 1801 | map = blk_mq_make_queue_map(set); | ||
| 1802 | if (!map) | ||
| 1803 | goto err_map; | ||
| 1804 | |||
| 1372 | for (i = 0; i < set->nr_hw_queues; i++) { | 1805 | for (i = 0; i < set->nr_hw_queues; i++) { |
| 1373 | hctxs[i] = set->ops->alloc_hctx(set, i); | 1806 | int node = blk_mq_hw_queue_to_node(map, i); |
| 1807 | |||
| 1808 | hctxs[i] = set->ops->alloc_hctx(set, i, node); | ||
| 1374 | if (!hctxs[i]) | 1809 | if (!hctxs[i]) |
| 1375 | goto err_hctxs; | 1810 | goto err_hctxs; |
| 1376 | 1811 | ||
| 1377 | if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL)) | 1812 | if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL)) |
| 1378 | goto err_hctxs; | 1813 | goto err_hctxs; |
| 1379 | 1814 | ||
| 1380 | hctxs[i]->numa_node = NUMA_NO_NODE; | 1815 | atomic_set(&hctxs[i]->nr_active, 0); |
| 1816 | hctxs[i]->numa_node = node; | ||
| 1381 | hctxs[i]->queue_num = i; | 1817 | hctxs[i]->queue_num = i; |
| 1382 | } | 1818 | } |
| 1383 | 1819 | ||
| @@ -1385,8 +1821,7 @@ struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) | |||
| 1385 | if (!q) | 1821 | if (!q) |
| 1386 | goto err_hctxs; | 1822 | goto err_hctxs; |
| 1387 | 1823 | ||
| 1388 | q->mq_map = blk_mq_make_queue_map(set); | 1824 | if (percpu_counter_init(&q->mq_usage_counter, 0)) |
| 1389 | if (!q->mq_map) | ||
| 1390 | goto err_map; | 1825 | goto err_map; |
| 1391 | 1826 | ||
| 1392 | setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); | 1827 | setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q); |
| @@ -1394,6 +1829,7 @@ struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) | |||
| 1394 | 1829 | ||
| 1395 | q->nr_queues = nr_cpu_ids; | 1830 | q->nr_queues = nr_cpu_ids; |
| 1396 | q->nr_hw_queues = set->nr_hw_queues; | 1831 | q->nr_hw_queues = set->nr_hw_queues; |
| 1832 | q->mq_map = map; | ||
| 1397 | 1833 | ||
| 1398 | q->queue_ctx = ctx; | 1834 | q->queue_ctx = ctx; |
| 1399 | q->queue_hw_ctx = hctxs; | 1835 | q->queue_hw_ctx = hctxs; |
| @@ -1403,11 +1839,24 @@ struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) | |||
| 1403 | 1839 | ||
| 1404 | q->sg_reserved_size = INT_MAX; | 1840 | q->sg_reserved_size = INT_MAX; |
| 1405 | 1841 | ||
| 1406 | blk_queue_make_request(q, blk_mq_make_request); | 1842 | INIT_WORK(&q->requeue_work, blk_mq_requeue_work); |
| 1407 | blk_queue_rq_timed_out(q, set->ops->timeout); | 1843 | INIT_LIST_HEAD(&q->requeue_list); |
| 1844 | spin_lock_init(&q->requeue_lock); | ||
| 1845 | |||
| 1846 | if (q->nr_hw_queues > 1) | ||
| 1847 | blk_queue_make_request(q, blk_mq_make_request); | ||
| 1848 | else | ||
| 1849 | blk_queue_make_request(q, blk_sq_make_request); | ||
| 1850 | |||
| 1851 | blk_queue_rq_timed_out(q, blk_mq_rq_timed_out); | ||
| 1408 | if (set->timeout) | 1852 | if (set->timeout) |
| 1409 | blk_queue_rq_timeout(q, set->timeout); | 1853 | blk_queue_rq_timeout(q, set->timeout); |
| 1410 | 1854 | ||
| 1855 | /* | ||
| 1856 | * Do this after blk_queue_make_request() overrides it... | ||
| 1857 | */ | ||
| 1858 | q->nr_requests = set->queue_depth; | ||
| 1859 | |||
| 1411 | if (set->ops->complete) | 1860 | if (set->ops->complete) |
| 1412 | blk_queue_softirq_done(q, set->ops->complete); | 1861 | blk_queue_softirq_done(q, set->ops->complete); |
| 1413 | 1862 | ||
| @@ -1423,27 +1872,29 @@ struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) | |||
| 1423 | if (blk_mq_init_hw_queues(q, set)) | 1872 | if (blk_mq_init_hw_queues(q, set)) |
| 1424 | goto err_flush_rq; | 1873 | goto err_flush_rq; |
| 1425 | 1874 | ||
| 1426 | blk_mq_map_swqueue(q); | ||
| 1427 | |||
| 1428 | mutex_lock(&all_q_mutex); | 1875 | mutex_lock(&all_q_mutex); |
| 1429 | list_add_tail(&q->all_q_node, &all_q_list); | 1876 | list_add_tail(&q->all_q_node, &all_q_list); |
| 1430 | mutex_unlock(&all_q_mutex); | 1877 | mutex_unlock(&all_q_mutex); |
| 1431 | 1878 | ||
| 1879 | blk_mq_add_queue_tag_set(set, q); | ||
| 1880 | |||
| 1881 | blk_mq_map_swqueue(q); | ||
| 1882 | |||
| 1432 | return q; | 1883 | return q; |
| 1433 | 1884 | ||
| 1434 | err_flush_rq: | 1885 | err_flush_rq: |
| 1435 | kfree(q->flush_rq); | 1886 | kfree(q->flush_rq); |
| 1436 | err_hw: | 1887 | err_hw: |
| 1437 | kfree(q->mq_map); | ||
| 1438 | err_map: | ||
| 1439 | blk_cleanup_queue(q); | 1888 | blk_cleanup_queue(q); |
| 1440 | err_hctxs: | 1889 | err_hctxs: |
| 1890 | kfree(map); | ||
| 1441 | for (i = 0; i < set->nr_hw_queues; i++) { | 1891 | for (i = 0; i < set->nr_hw_queues; i++) { |
| 1442 | if (!hctxs[i]) | 1892 | if (!hctxs[i]) |
| 1443 | break; | 1893 | break; |
| 1444 | free_cpumask_var(hctxs[i]->cpumask); | 1894 | free_cpumask_var(hctxs[i]->cpumask); |
| 1445 | set->ops->free_hctx(hctxs[i], i); | 1895 | set->ops->free_hctx(hctxs[i], i); |
| 1446 | } | 1896 | } |
| 1897 | err_map: | ||
| 1447 | kfree(hctxs); | 1898 | kfree(hctxs); |
| 1448 | err_percpu: | 1899 | err_percpu: |
| 1449 | free_percpu(ctx); | 1900 | free_percpu(ctx); |
| @@ -1453,18 +1904,14 @@ EXPORT_SYMBOL(blk_mq_init_queue); | |||
| 1453 | 1904 | ||
| 1454 | void blk_mq_free_queue(struct request_queue *q) | 1905 | void blk_mq_free_queue(struct request_queue *q) |
| 1455 | { | 1906 | { |
| 1456 | struct blk_mq_hw_ctx *hctx; | 1907 | struct blk_mq_tag_set *set = q->tag_set; |
| 1457 | int i; | ||
| 1458 | 1908 | ||
| 1459 | queue_for_each_hw_ctx(q, hctx, i) { | 1909 | blk_mq_del_queue_tag_set(q); |
| 1460 | kfree(hctx->ctx_map); | 1910 | |
| 1461 | kfree(hctx->ctxs); | 1911 | blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); |
| 1462 | blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier); | 1912 | blk_mq_free_hw_queues(q, set); |
| 1463 | if (q->mq_ops->exit_hctx) | 1913 | |
| 1464 | q->mq_ops->exit_hctx(hctx, i); | 1914 | percpu_counter_destroy(&q->mq_usage_counter); |
| 1465 | free_cpumask_var(hctx->cpumask); | ||
| 1466 | q->mq_ops->free_hctx(hctx, i); | ||
| 1467 | } | ||
| 1468 | 1915 | ||
| 1469 | free_percpu(q->queue_ctx); | 1916 | free_percpu(q->queue_ctx); |
| 1470 | kfree(q->queue_hw_ctx); | 1917 | kfree(q->queue_hw_ctx); |
| @@ -1503,10 +1950,10 @@ static int blk_mq_queue_reinit_notify(struct notifier_block *nb, | |||
| 1503 | struct request_queue *q; | 1950 | struct request_queue *q; |
| 1504 | 1951 | ||
| 1505 | /* | 1952 | /* |
| 1506 | * Before new mapping is established, hotadded cpu might already start | 1953 | * Before new mappings are established, hotadded cpu might already |
| 1507 | * handling requests. This doesn't break anything as we map offline | 1954 | * start handling requests. This doesn't break anything as we map |
| 1508 | * CPUs to first hardware queue. We will re-init queue below to get | 1955 | * offline CPUs to first hardware queue. We will re-init the queue |
| 1509 | * optimal settings. | 1956 | * below to get optimal settings. |
| 1510 | */ | 1957 | */ |
| 1511 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && | 1958 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN && |
| 1512 | action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) | 1959 | action != CPU_ONLINE && action != CPU_ONLINE_FROZEN) |
| @@ -1536,7 +1983,8 @@ int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) | |||
| 1536 | return -EINVAL; | 1983 | return -EINVAL; |
| 1537 | 1984 | ||
| 1538 | 1985 | ||
| 1539 | set->tags = kmalloc_node(set->nr_hw_queues * sizeof(struct blk_mq_tags), | 1986 | set->tags = kmalloc_node(set->nr_hw_queues * |
| 1987 | sizeof(struct blk_mq_tags *), | ||
| 1540 | GFP_KERNEL, set->numa_node); | 1988 | GFP_KERNEL, set->numa_node); |
| 1541 | if (!set->tags) | 1989 | if (!set->tags) |
| 1542 | goto out; | 1990 | goto out; |
| @@ -1547,6 +1995,9 @@ int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) | |||
| 1547 | goto out_unwind; | 1995 | goto out_unwind; |
| 1548 | } | 1996 | } |
| 1549 | 1997 | ||
| 1998 | mutex_init(&set->tag_list_lock); | ||
| 1999 | INIT_LIST_HEAD(&set->tag_list); | ||
| 2000 | |||
| 1550 | return 0; | 2001 | return 0; |
| 1551 | 2002 | ||
| 1552 | out_unwind: | 2003 | out_unwind: |
| @@ -1561,11 +2012,37 @@ void blk_mq_free_tag_set(struct blk_mq_tag_set *set) | |||
| 1561 | { | 2012 | { |
| 1562 | int i; | 2013 | int i; |
| 1563 | 2014 | ||
| 1564 | for (i = 0; i < set->nr_hw_queues; i++) | 2015 | for (i = 0; i < set->nr_hw_queues; i++) { |
| 1565 | blk_mq_free_rq_map(set, set->tags[i], i); | 2016 | if (set->tags[i]) |
| 2017 | blk_mq_free_rq_map(set, set->tags[i], i); | ||
| 2018 | } | ||
| 2019 | |||
| 2020 | kfree(set->tags); | ||
| 1566 | } | 2021 | } |
| 1567 | EXPORT_SYMBOL(blk_mq_free_tag_set); | 2022 | EXPORT_SYMBOL(blk_mq_free_tag_set); |
| 1568 | 2023 | ||
| 2024 | int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) | ||
| 2025 | { | ||
| 2026 | struct blk_mq_tag_set *set = q->tag_set; | ||
| 2027 | struct blk_mq_hw_ctx *hctx; | ||
| 2028 | int i, ret; | ||
| 2029 | |||
| 2030 | if (!set || nr > set->queue_depth) | ||
| 2031 | return -EINVAL; | ||
| 2032 | |||
| 2033 | ret = 0; | ||
| 2034 | queue_for_each_hw_ctx(q, hctx, i) { | ||
| 2035 | ret = blk_mq_tag_update_depth(hctx->tags, nr); | ||
| 2036 | if (ret) | ||
| 2037 | break; | ||
| 2038 | } | ||
| 2039 | |||
| 2040 | if (!ret) | ||
| 2041 | q->nr_requests = nr; | ||
| 2042 | |||
| 2043 | return ret; | ||
| 2044 | } | ||
| 2045 | |||
| 1569 | void blk_mq_disable_hotplug(void) | 2046 | void blk_mq_disable_hotplug(void) |
| 1570 | { | 2047 | { |
| 1571 | mutex_lock(&all_q_mutex); | 2048 | mutex_lock(&all_q_mutex); |
diff --git a/block/blk-mq.h b/block/blk-mq.h index 5fa14f19f752..ff5e6bf0f691 100644 --- a/block/blk-mq.h +++ b/block/blk-mq.h | |||
| @@ -11,7 +11,8 @@ struct blk_mq_ctx { | |||
| 11 | 11 | ||
| 12 | unsigned int cpu; | 12 | unsigned int cpu; |
| 13 | unsigned int index_hw; | 13 | unsigned int index_hw; |
| 14 | unsigned int ipi_redirect; | 14 | |
| 15 | unsigned int last_tag ____cacheline_aligned_in_smp; | ||
| 15 | 16 | ||
| 16 | /* incremented at dispatch time */ | 17 | /* incremented at dispatch time */ |
| 17 | unsigned long rq_dispatched[2]; | 18 | unsigned long rq_dispatched[2]; |
| @@ -22,7 +23,7 @@ struct blk_mq_ctx { | |||
| 22 | 23 | ||
| 23 | struct request_queue *queue; | 24 | struct request_queue *queue; |
| 24 | struct kobject kobj; | 25 | struct kobject kobj; |
| 25 | }; | 26 | } ____cacheline_aligned_in_smp; |
| 26 | 27 | ||
| 27 | void __blk_mq_complete_request(struct request *rq); | 28 | void __blk_mq_complete_request(struct request *rq); |
| 28 | void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); | 29 | void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); |
| @@ -31,13 +32,14 @@ void blk_mq_drain_queue(struct request_queue *q); | |||
| 31 | void blk_mq_free_queue(struct request_queue *q); | 32 | void blk_mq_free_queue(struct request_queue *q); |
| 32 | void blk_mq_clone_flush_request(struct request *flush_rq, | 33 | void blk_mq_clone_flush_request(struct request *flush_rq, |
| 33 | struct request *orig_rq); | 34 | struct request *orig_rq); |
| 35 | int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr); | ||
| 34 | 36 | ||
| 35 | /* | 37 | /* |
| 36 | * CPU hotplug helpers | 38 | * CPU hotplug helpers |
| 37 | */ | 39 | */ |
| 38 | struct blk_mq_cpu_notifier; | 40 | struct blk_mq_cpu_notifier; |
| 39 | void blk_mq_init_cpu_notifier(struct blk_mq_cpu_notifier *notifier, | 41 | void blk_mq_init_cpu_notifier(struct blk_mq_cpu_notifier *notifier, |
| 40 | void (*fn)(void *, unsigned long, unsigned int), | 42 | int (*fn)(void *, unsigned long, unsigned int), |
| 41 | void *data); | 43 | void *data); |
| 42 | void blk_mq_register_cpu_notifier(struct blk_mq_cpu_notifier *notifier); | 44 | void blk_mq_register_cpu_notifier(struct blk_mq_cpu_notifier *notifier); |
| 43 | void blk_mq_unregister_cpu_notifier(struct blk_mq_cpu_notifier *notifier); | 45 | void blk_mq_unregister_cpu_notifier(struct blk_mq_cpu_notifier *notifier); |
| @@ -50,7 +52,15 @@ void blk_mq_disable_hotplug(void); | |||
| 50 | */ | 52 | */ |
| 51 | extern unsigned int *blk_mq_make_queue_map(struct blk_mq_tag_set *set); | 53 | extern unsigned int *blk_mq_make_queue_map(struct blk_mq_tag_set *set); |
| 52 | extern int blk_mq_update_queue_map(unsigned int *map, unsigned int nr_queues); | 54 | extern int blk_mq_update_queue_map(unsigned int *map, unsigned int nr_queues); |
| 55 | extern int blk_mq_hw_queue_to_node(unsigned int *map, unsigned int); | ||
| 53 | 56 | ||
| 54 | void blk_mq_add_timer(struct request *rq); | 57 | /* |
| 58 | * Basic implementation of sparser bitmap, allowing the user to spread | ||
| 59 | * the bits over more cachelines. | ||
| 60 | */ | ||
| 61 | struct blk_align_bitmap { | ||
| 62 | unsigned long word; | ||
| 63 | unsigned long depth; | ||
| 64 | } ____cacheline_aligned_in_smp; | ||
| 55 | 65 | ||
| 56 | #endif | 66 | #endif |
diff --git a/block/blk-sysfs.c b/block/blk-sysfs.c index 7500f876dae4..23321fbab293 100644 --- a/block/blk-sysfs.c +++ b/block/blk-sysfs.c | |||
| @@ -48,11 +48,10 @@ static ssize_t queue_requests_show(struct request_queue *q, char *page) | |||
| 48 | static ssize_t | 48 | static ssize_t |
| 49 | queue_requests_store(struct request_queue *q, const char *page, size_t count) | 49 | queue_requests_store(struct request_queue *q, const char *page, size_t count) |
| 50 | { | 50 | { |
| 51 | struct request_list *rl; | ||
| 52 | unsigned long nr; | 51 | unsigned long nr; |
| 53 | int ret; | 52 | int ret, err; |
| 54 | 53 | ||
| 55 | if (!q->request_fn) | 54 | if (!q->request_fn && !q->mq_ops) |
| 56 | return -EINVAL; | 55 | return -EINVAL; |
| 57 | 56 | ||
| 58 | ret = queue_var_store(&nr, page, count); | 57 | ret = queue_var_store(&nr, page, count); |
| @@ -62,40 +61,14 @@ queue_requests_store(struct request_queue *q, const char *page, size_t count) | |||
| 62 | if (nr < BLKDEV_MIN_RQ) | 61 | if (nr < BLKDEV_MIN_RQ) |
| 63 | nr = BLKDEV_MIN_RQ; | 62 | nr = BLKDEV_MIN_RQ; |
| 64 | 63 | ||
| 65 | spin_lock_irq(q->queue_lock); | 64 | if (q->request_fn) |
| 66 | q->nr_requests = nr; | 65 | err = blk_update_nr_requests(q, nr); |
| 67 | blk_queue_congestion_threshold(q); | 66 | else |
| 68 | 67 | err = blk_mq_update_nr_requests(q, nr); | |
| 69 | /* congestion isn't cgroup aware and follows root blkcg for now */ | 68 | |
| 70 | rl = &q->root_rl; | 69 | if (err) |
| 71 | 70 | return err; | |
| 72 | if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q)) | ||
| 73 | blk_set_queue_congested(q, BLK_RW_SYNC); | ||
| 74 | else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q)) | ||
| 75 | blk_clear_queue_congested(q, BLK_RW_SYNC); | ||
| 76 | |||
| 77 | if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q)) | ||
| 78 | blk_set_queue_congested(q, BLK_RW_ASYNC); | ||
| 79 | else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q)) | ||
| 80 | blk_clear_queue_congested(q, BLK_RW_ASYNC); | ||
| 81 | |||
| 82 | blk_queue_for_each_rl(rl, q) { | ||
| 83 | if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { | ||
| 84 | blk_set_rl_full(rl, BLK_RW_SYNC); | ||
| 85 | } else { | ||
| 86 | blk_clear_rl_full(rl, BLK_RW_SYNC); | ||
| 87 | wake_up(&rl->wait[BLK_RW_SYNC]); | ||
| 88 | } | ||
| 89 | |||
| 90 | if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { | ||
| 91 | blk_set_rl_full(rl, BLK_RW_ASYNC); | ||
| 92 | } else { | ||
| 93 | blk_clear_rl_full(rl, BLK_RW_ASYNC); | ||
| 94 | wake_up(&rl->wait[BLK_RW_ASYNC]); | ||
| 95 | } | ||
| 96 | } | ||
| 97 | 71 | ||
| 98 | spin_unlock_irq(q->queue_lock); | ||
| 99 | return ret; | 72 | return ret; |
| 100 | } | 73 | } |
| 101 | 74 | ||
| @@ -544,8 +517,6 @@ static void blk_release_queue(struct kobject *kobj) | |||
| 544 | if (q->queue_tags) | 517 | if (q->queue_tags) |
| 545 | __blk_queue_free_tags(q); | 518 | __blk_queue_free_tags(q); |
| 546 | 519 | ||
| 547 | percpu_counter_destroy(&q->mq_usage_counter); | ||
| 548 | |||
| 549 | if (q->mq_ops) | 520 | if (q->mq_ops) |
| 550 | blk_mq_free_queue(q); | 521 | blk_mq_free_queue(q); |
| 551 | 522 | ||
diff --git a/block/blk-throttle.c b/block/blk-throttle.c index 033745cd7fba..9353b4683359 100644 --- a/block/blk-throttle.c +++ b/block/blk-throttle.c | |||
| @@ -744,7 +744,7 @@ static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, | |||
| 744 | static bool throtl_slice_used(struct throtl_grp *tg, bool rw) | 744 | static bool throtl_slice_used(struct throtl_grp *tg, bool rw) |
| 745 | { | 745 | { |
| 746 | if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) | 746 | if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) |
| 747 | return 0; | 747 | return false; |
| 748 | 748 | ||
| 749 | return 1; | 749 | return 1; |
| 750 | } | 750 | } |
| @@ -842,7 +842,7 @@ static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio, | |||
| 842 | if (tg->io_disp[rw] + 1 <= io_allowed) { | 842 | if (tg->io_disp[rw] + 1 <= io_allowed) { |
| 843 | if (wait) | 843 | if (wait) |
| 844 | *wait = 0; | 844 | *wait = 0; |
| 845 | return 1; | 845 | return true; |
| 846 | } | 846 | } |
| 847 | 847 | ||
| 848 | /* Calc approx time to dispatch */ | 848 | /* Calc approx time to dispatch */ |
| @@ -880,7 +880,7 @@ static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio, | |||
| 880 | if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) { | 880 | if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) { |
| 881 | if (wait) | 881 | if (wait) |
| 882 | *wait = 0; | 882 | *wait = 0; |
| 883 | return 1; | 883 | return true; |
| 884 | } | 884 | } |
| 885 | 885 | ||
| 886 | /* Calc approx time to dispatch */ | 886 | /* Calc approx time to dispatch */ |
| @@ -923,7 +923,7 @@ static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, | |||
| 923 | if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { | 923 | if (tg->bps[rw] == -1 && tg->iops[rw] == -1) { |
| 924 | if (wait) | 924 | if (wait) |
| 925 | *wait = 0; | 925 | *wait = 0; |
| 926 | return 1; | 926 | return true; |
| 927 | } | 927 | } |
| 928 | 928 | ||
| 929 | /* | 929 | /* |
| @@ -1258,7 +1258,7 @@ out_unlock: | |||
| 1258 | * of throtl_data->service_queue. Those bio's are ready and issued by this | 1258 | * of throtl_data->service_queue. Those bio's are ready and issued by this |
| 1259 | * function. | 1259 | * function. |
| 1260 | */ | 1260 | */ |
| 1261 | void blk_throtl_dispatch_work_fn(struct work_struct *work) | 1261 | static void blk_throtl_dispatch_work_fn(struct work_struct *work) |
| 1262 | { | 1262 | { |
| 1263 | struct throtl_data *td = container_of(work, struct throtl_data, | 1263 | struct throtl_data *td = container_of(work, struct throtl_data, |
| 1264 | dispatch_work); | 1264 | dispatch_work); |
diff --git a/block/blk-timeout.c b/block/blk-timeout.c index a09e8af8186c..43e8b515806f 100644 --- a/block/blk-timeout.c +++ b/block/blk-timeout.c | |||
| @@ -96,11 +96,7 @@ static void blk_rq_timed_out(struct request *req) | |||
| 96 | __blk_complete_request(req); | 96 | __blk_complete_request(req); |
| 97 | break; | 97 | break; |
| 98 | case BLK_EH_RESET_TIMER: | 98 | case BLK_EH_RESET_TIMER: |
| 99 | if (q->mq_ops) | 99 | blk_add_timer(req); |
| 100 | blk_mq_add_timer(req); | ||
| 101 | else | ||
| 102 | blk_add_timer(req); | ||
| 103 | |||
| 104 | blk_clear_rq_complete(req); | 100 | blk_clear_rq_complete(req); |
| 105 | break; | 101 | break; |
| 106 | case BLK_EH_NOT_HANDLED: | 102 | case BLK_EH_NOT_HANDLED: |
| @@ -170,7 +166,26 @@ void blk_abort_request(struct request *req) | |||
| 170 | } | 166 | } |
| 171 | EXPORT_SYMBOL_GPL(blk_abort_request); | 167 | EXPORT_SYMBOL_GPL(blk_abort_request); |
| 172 | 168 | ||
| 173 | void __blk_add_timer(struct request *req, struct list_head *timeout_list) | 169 | unsigned long blk_rq_timeout(unsigned long timeout) |
| 170 | { | ||
| 171 | unsigned long maxt; | ||
| 172 | |||
| 173 | maxt = round_jiffies_up(jiffies + BLK_MAX_TIMEOUT); | ||
| 174 | if (time_after(timeout, maxt)) | ||
| 175 | timeout = maxt; | ||
| 176 | |||
| 177 | return timeout; | ||
| 178 | } | ||
| 179 | |||
| 180 | /** | ||
| 181 | * blk_add_timer - Start timeout timer for a single request | ||
| 182 | * @req: request that is about to start running. | ||
| 183 | * | ||
| 184 | * Notes: | ||
| 185 | * Each request has its own timer, and as it is added to the queue, we | ||
| 186 | * set up the timer. When the request completes, we cancel the timer. | ||
| 187 | */ | ||
| 188 | void blk_add_timer(struct request *req) | ||
| 174 | { | 189 | { |
| 175 | struct request_queue *q = req->q; | 190 | struct request_queue *q = req->q; |
| 176 | unsigned long expiry; | 191 | unsigned long expiry; |
| @@ -188,15 +203,15 @@ void __blk_add_timer(struct request *req, struct list_head *timeout_list) | |||
| 188 | req->timeout = q->rq_timeout; | 203 | req->timeout = q->rq_timeout; |
| 189 | 204 | ||
| 190 | req->deadline = jiffies + req->timeout; | 205 | req->deadline = jiffies + req->timeout; |
| 191 | if (timeout_list) | 206 | if (!q->mq_ops) |
| 192 | list_add_tail(&req->timeout_list, timeout_list); | 207 | list_add_tail(&req->timeout_list, &req->q->timeout_list); |
| 193 | 208 | ||
| 194 | /* | 209 | /* |
| 195 | * If the timer isn't already pending or this timeout is earlier | 210 | * If the timer isn't already pending or this timeout is earlier |
| 196 | * than an existing one, modify the timer. Round up to next nearest | 211 | * than an existing one, modify the timer. Round up to next nearest |
| 197 | * second. | 212 | * second. |
| 198 | */ | 213 | */ |
| 199 | expiry = round_jiffies_up(req->deadline); | 214 | expiry = blk_rq_timeout(round_jiffies_up(req->deadline)); |
| 200 | 215 | ||
| 201 | if (!timer_pending(&q->timeout) || | 216 | if (!timer_pending(&q->timeout) || |
| 202 | time_before(expiry, q->timeout.expires)) { | 217 | time_before(expiry, q->timeout.expires)) { |
| @@ -214,17 +229,3 @@ void __blk_add_timer(struct request *req, struct list_head *timeout_list) | |||
| 214 | } | 229 | } |
| 215 | 230 | ||
| 216 | } | 231 | } |
| 217 | |||
| 218 | /** | ||
| 219 | * blk_add_timer - Start timeout timer for a single request | ||
| 220 | * @req: request that is about to start running. | ||
| 221 | * | ||
| 222 | * Notes: | ||
| 223 | * Each request has its own timer, and as it is added to the queue, we | ||
| 224 | * set up the timer. When the request completes, we cancel the timer. | ||
| 225 | */ | ||
| 226 | void blk_add_timer(struct request *req) | ||
| 227 | { | ||
| 228 | __blk_add_timer(req, &req->q->timeout_list); | ||
| 229 | } | ||
| 230 | |||
diff --git a/block/blk.h b/block/blk.h index 1d880f1f957f..45385e9abf6f 100644 --- a/block/blk.h +++ b/block/blk.h | |||
| @@ -9,6 +9,9 @@ | |||
| 9 | /* Number of requests a "batching" process may submit */ | 9 | /* Number of requests a "batching" process may submit */ |
| 10 | #define BLK_BATCH_REQ 32 | 10 | #define BLK_BATCH_REQ 32 |
| 11 | 11 | ||
| 12 | /* Max future timer expiry for timeouts */ | ||
| 13 | #define BLK_MAX_TIMEOUT (5 * HZ) | ||
| 14 | |||
| 12 | extern struct kmem_cache *blk_requestq_cachep; | 15 | extern struct kmem_cache *blk_requestq_cachep; |
| 13 | extern struct kmem_cache *request_cachep; | 16 | extern struct kmem_cache *request_cachep; |
| 14 | extern struct kobj_type blk_queue_ktype; | 17 | extern struct kobj_type blk_queue_ktype; |
| @@ -37,9 +40,9 @@ bool __blk_end_bidi_request(struct request *rq, int error, | |||
| 37 | void blk_rq_timed_out_timer(unsigned long data); | 40 | void blk_rq_timed_out_timer(unsigned long data); |
| 38 | void blk_rq_check_expired(struct request *rq, unsigned long *next_timeout, | 41 | void blk_rq_check_expired(struct request *rq, unsigned long *next_timeout, |
| 39 | unsigned int *next_set); | 42 | unsigned int *next_set); |
| 40 | void __blk_add_timer(struct request *req, struct list_head *timeout_list); | 43 | unsigned long blk_rq_timeout(unsigned long timeout); |
| 44 | void blk_add_timer(struct request *req); | ||
| 41 | void blk_delete_timer(struct request *); | 45 | void blk_delete_timer(struct request *); |
| 42 | void blk_add_timer(struct request *); | ||
| 43 | 46 | ||
| 44 | 47 | ||
| 45 | bool bio_attempt_front_merge(struct request_queue *q, struct request *req, | 48 | bool bio_attempt_front_merge(struct request_queue *q, struct request *req, |
| @@ -185,6 +188,8 @@ static inline int queue_congestion_off_threshold(struct request_queue *q) | |||
| 185 | return q->nr_congestion_off; | 188 | return q->nr_congestion_off; |
| 186 | } | 189 | } |
| 187 | 190 | ||
| 191 | extern int blk_update_nr_requests(struct request_queue *, unsigned int); | ||
| 192 | |||
| 188 | /* | 193 | /* |
| 189 | * Contribute to IO statistics IFF: | 194 | * Contribute to IO statistics IFF: |
| 190 | * | 195 | * |
diff --git a/block/bounce.c b/block/bounce.c new file mode 100644 index 000000000000..523918b8c6dc --- /dev/null +++ b/block/bounce.c | |||
| @@ -0,0 +1,287 @@ | |||
| 1 | /* bounce buffer handling for block devices | ||
| 2 | * | ||
| 3 | * - Split from highmem.c | ||
| 4 | */ | ||
| 5 | |||
| 6 | #include <linux/mm.h> | ||
| 7 | #include <linux/export.h> | ||
| 8 | #include <linux/swap.h> | ||
| 9 | #include <linux/gfp.h> | ||
| 10 | #include <linux/bio.h> | ||
| 11 | #include <linux/pagemap.h> | ||
| 12 | #include <linux/mempool.h> | ||
| 13 | #include <linux/blkdev.h> | ||
| 14 | #include <linux/init.h> | ||
| 15 | #include <linux/hash.h> | ||
| 16 | #include <linux/highmem.h> | ||
| 17 | #include <linux/bootmem.h> | ||
| 18 | #include <asm/tlbflush.h> | ||
| 19 | |||
| 20 | #include <trace/events/block.h> | ||
| 21 | |||
| 22 | #define POOL_SIZE 64 | ||
| 23 | #define ISA_POOL_SIZE 16 | ||
| 24 | |||
| 25 | static mempool_t *page_pool, *isa_page_pool; | ||
| 26 | |||
| 27 | #if defined(CONFIG_HIGHMEM) || defined(CONFIG_NEED_BOUNCE_POOL) | ||
| 28 | static __init int init_emergency_pool(void) | ||
| 29 | { | ||
| 30 | #if defined(CONFIG_HIGHMEM) && !defined(CONFIG_MEMORY_HOTPLUG) | ||
| 31 | if (max_pfn <= max_low_pfn) | ||
| 32 | return 0; | ||
| 33 | #endif | ||
| 34 | |||
| 35 | page_pool = mempool_create_page_pool(POOL_SIZE, 0); | ||
| 36 | BUG_ON(!page_pool); | ||
| 37 | printk("bounce pool size: %d pages\n", POOL_SIZE); | ||
| 38 | |||
| 39 | return 0; | ||
| 40 | } | ||
| 41 | |||
| 42 | __initcall(init_emergency_pool); | ||
| 43 | #endif | ||
| 44 | |||
| 45 | #ifdef CONFIG_HIGHMEM | ||
| 46 | /* | ||
| 47 | * highmem version, map in to vec | ||
| 48 | */ | ||
| 49 | static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom) | ||
| 50 | { | ||
| 51 | unsigned long flags; | ||
| 52 | unsigned char *vto; | ||
| 53 | |||
| 54 | local_irq_save(flags); | ||
| 55 | vto = kmap_atomic(to->bv_page); | ||
| 56 | memcpy(vto + to->bv_offset, vfrom, to->bv_len); | ||
| 57 | kunmap_atomic(vto); | ||
| 58 | local_irq_restore(flags); | ||
| 59 | } | ||
| 60 | |||
| 61 | #else /* CONFIG_HIGHMEM */ | ||
| 62 | |||
| 63 | #define bounce_copy_vec(to, vfrom) \ | ||
| 64 | memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len) | ||
| 65 | |||
| 66 | #endif /* CONFIG_HIGHMEM */ | ||
| 67 | |||
| 68 | /* | ||
| 69 | * allocate pages in the DMA region for the ISA pool | ||
| 70 | */ | ||
| 71 | static void *mempool_alloc_pages_isa(gfp_t gfp_mask, void *data) | ||
| 72 | { | ||
| 73 | return mempool_alloc_pages(gfp_mask | GFP_DMA, data); | ||
| 74 | } | ||
| 75 | |||
| 76 | /* | ||
| 77 | * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA | ||
| 78 | * as the max address, so check if the pool has already been created. | ||
| 79 | */ | ||
| 80 | int init_emergency_isa_pool(void) | ||
| 81 | { | ||
| 82 | if (isa_page_pool) | ||
| 83 | return 0; | ||
| 84 | |||
| 85 | isa_page_pool = mempool_create(ISA_POOL_SIZE, mempool_alloc_pages_isa, | ||
| 86 | mempool_free_pages, (void *) 0); | ||
| 87 | BUG_ON(!isa_page_pool); | ||
| 88 | |||
| 89 | printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE); | ||
| 90 | return 0; | ||
| 91 | } | ||
| 92 | |||
| 93 | /* | ||
| 94 | * Simple bounce buffer support for highmem pages. Depending on the | ||
| 95 | * queue gfp mask set, *to may or may not be a highmem page. kmap it | ||
| 96 | * always, it will do the Right Thing | ||
| 97 | */ | ||
| 98 | static void copy_to_high_bio_irq(struct bio *to, struct bio *from) | ||
| 99 | { | ||
| 100 | unsigned char *vfrom; | ||
| 101 | struct bio_vec tovec, *fromvec = from->bi_io_vec; | ||
| 102 | struct bvec_iter iter; | ||
| 103 | |||
| 104 | bio_for_each_segment(tovec, to, iter) { | ||
| 105 | if (tovec.bv_page != fromvec->bv_page) { | ||
| 106 | /* | ||
| 107 | * fromvec->bv_offset and fromvec->bv_len might have | ||
| 108 | * been modified by the block layer, so use the original | ||
| 109 | * copy, bounce_copy_vec already uses tovec->bv_len | ||
| 110 | */ | ||
| 111 | vfrom = page_address(fromvec->bv_page) + | ||
| 112 | tovec.bv_offset; | ||
| 113 | |||
| 114 | bounce_copy_vec(&tovec, vfrom); | ||
| 115 | flush_dcache_page(tovec.bv_page); | ||
| 116 | } | ||
| 117 | |||
| 118 | fromvec++; | ||
| 119 | } | ||
| 120 | } | ||
| 121 | |||
| 122 | static void bounce_end_io(struct bio *bio, mempool_t *pool, int err) | ||
| 123 | { | ||
| 124 | struct bio *bio_orig = bio->bi_private; | ||
| 125 | struct bio_vec *bvec, *org_vec; | ||
| 126 | int i; | ||
| 127 | |||
| 128 | if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags)) | ||
| 129 | set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags); | ||
| 130 | |||
| 131 | /* | ||
| 132 | * free up bounce indirect pages used | ||
| 133 | */ | ||
| 134 | bio_for_each_segment_all(bvec, bio, i) { | ||
| 135 | org_vec = bio_orig->bi_io_vec + i; | ||
| 136 | if (bvec->bv_page == org_vec->bv_page) | ||
| 137 | continue; | ||
| 138 | |||
| 139 | dec_zone_page_state(bvec->bv_page, NR_BOUNCE); | ||
| 140 | mempool_free(bvec->bv_page, pool); | ||
| 141 | } | ||
| 142 | |||
| 143 | bio_endio(bio_orig, err); | ||
| 144 | bio_put(bio); | ||
| 145 | } | ||
| 146 | |||
| 147 | static void bounce_end_io_write(struct bio *bio, int err) | ||
| 148 | { | ||
| 149 | bounce_end_io(bio, page_pool, err); | ||
| 150 | } | ||
| 151 | |||
| 152 | static void bounce_end_io_write_isa(struct bio *bio, int err) | ||
| 153 | { | ||
| 154 | |||
| 155 | bounce_end_io(bio, isa_page_pool, err); | ||
| 156 | } | ||
| 157 | |||
| 158 | static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err) | ||
| 159 | { | ||
| 160 | struct bio *bio_orig = bio->bi_private; | ||
| 161 | |||
| 162 | if (test_bit(BIO_UPTODATE, &bio->bi_flags)) | ||
| 163 | copy_to_high_bio_irq(bio_orig, bio); | ||
| 164 | |||
| 165 | bounce_end_io(bio, pool, err); | ||
| 166 | } | ||
| 167 | |||
| 168 | static void bounce_end_io_read(struct bio *bio, int err) | ||
| 169 | { | ||
| 170 | __bounce_end_io_read(bio, page_pool, err); | ||
| 171 | } | ||
| 172 | |||
| 173 | static void bounce_end_io_read_isa(struct bio *bio, int err) | ||
| 174 | { | ||
| 175 | __bounce_end_io_read(bio, isa_page_pool, err); | ||
| 176 | } | ||
| 177 | |||
| 178 | #ifdef CONFIG_NEED_BOUNCE_POOL | ||
| 179 | static int must_snapshot_stable_pages(struct request_queue *q, struct bio *bio) | ||
| 180 | { | ||
| 181 | if (bio_data_dir(bio) != WRITE) | ||
| 182 | return 0; | ||
| 183 | |||
| 184 | if (!bdi_cap_stable_pages_required(&q->backing_dev_info)) | ||
| 185 | return 0; | ||
| 186 | |||
| 187 | return test_bit(BIO_SNAP_STABLE, &bio->bi_flags); | ||
| 188 | } | ||
| 189 | #else | ||
| 190 | static int must_snapshot_stable_pages(struct request_queue *q, struct bio *bio) | ||
| 191 | { | ||
| 192 | return 0; | ||
| 193 | } | ||
| 194 | #endif /* CONFIG_NEED_BOUNCE_POOL */ | ||
| 195 | |||
| 196 | static void __blk_queue_bounce(struct request_queue *q, struct bio **bio_orig, | ||
| 197 | mempool_t *pool, int force) | ||
| 198 | { | ||
| 199 | struct bio *bio; | ||
| 200 | int rw = bio_data_dir(*bio_orig); | ||
| 201 | struct bio_vec *to, from; | ||
| 202 | struct bvec_iter iter; | ||
| 203 | unsigned i; | ||
| 204 | |||
| 205 | if (force) | ||
| 206 | goto bounce; | ||
| 207 | bio_for_each_segment(from, *bio_orig, iter) | ||
| 208 | if (page_to_pfn(from.bv_page) > queue_bounce_pfn(q)) | ||
| 209 | goto bounce; | ||
| 210 | |||
| 211 | return; | ||
| 212 | bounce: | ||
| 213 | bio = bio_clone_bioset(*bio_orig, GFP_NOIO, fs_bio_set); | ||
| 214 | |||
| 215 | bio_for_each_segment_all(to, bio, i) { | ||
| 216 | struct page *page = to->bv_page; | ||
| 217 | |||
| 218 | if (page_to_pfn(page) <= queue_bounce_pfn(q) && !force) | ||
| 219 | continue; | ||
| 220 | |||
| 221 | inc_zone_page_state(to->bv_page, NR_BOUNCE); | ||
| 222 | to->bv_page = mempool_alloc(pool, q->bounce_gfp); | ||
| 223 | |||
| 224 | if (rw == WRITE) { | ||
| 225 | char *vto, *vfrom; | ||
| 226 | |||
| 227 | flush_dcache_page(page); | ||
| 228 | |||
| 229 | vto = page_address(to->bv_page) + to->bv_offset; | ||
| 230 | vfrom = kmap_atomic(page) + to->bv_offset; | ||
| 231 | memcpy(vto, vfrom, to->bv_len); | ||
| 232 | kunmap_atomic(vfrom); | ||
| 233 | } | ||
| 234 | } | ||
| 235 | |||
| 236 | trace_block_bio_bounce(q, *bio_orig); | ||
| 237 | |||
| 238 | bio->bi_flags |= (1 << BIO_BOUNCED); | ||
| 239 | |||
| 240 | if (pool == page_pool) { | ||
| 241 | bio->bi_end_io = bounce_end_io_write; | ||
| 242 | if (rw == READ) | ||
| 243 | bio->bi_end_io = bounce_end_io_read; | ||
| 244 | } else { | ||
| 245 | bio->bi_end_io = bounce_end_io_write_isa; | ||
| 246 | if (rw == READ) | ||
| 247 | bio->bi_end_io = bounce_end_io_read_isa; | ||
| 248 | } | ||
| 249 | |||
| 250 | bio->bi_private = *bio_orig; | ||
| 251 | *bio_orig = bio; | ||
| 252 | } | ||
| 253 | |||
| 254 | void blk_queue_bounce(struct request_queue *q, struct bio **bio_orig) | ||
| 255 | { | ||
| 256 | int must_bounce; | ||
| 257 | mempool_t *pool; | ||
| 258 | |||
| 259 | /* | ||
| 260 | * Data-less bio, nothing to bounce | ||
| 261 | */ | ||
| 262 | if (!bio_has_data(*bio_orig)) | ||
| 263 | return; | ||
| 264 | |||
| 265 | must_bounce = must_snapshot_stable_pages(q, *bio_orig); | ||
| 266 | |||
| 267 | /* | ||
| 268 | * for non-isa bounce case, just check if the bounce pfn is equal | ||
| 269 | * to or bigger than the highest pfn in the system -- in that case, | ||
| 270 | * don't waste time iterating over bio segments | ||
| 271 | */ | ||
| 272 | if (!(q->bounce_gfp & GFP_DMA)) { | ||
| 273 | if (queue_bounce_pfn(q) >= blk_max_pfn && !must_bounce) | ||
| 274 | return; | ||
| 275 | pool = page_pool; | ||
| 276 | } else { | ||
| 277 | BUG_ON(!isa_page_pool); | ||
| 278 | pool = isa_page_pool; | ||
| 279 | } | ||
| 280 | |||
| 281 | /* | ||
| 282 | * slow path | ||
| 283 | */ | ||
| 284 | __blk_queue_bounce(q, bio_orig, pool, must_bounce); | ||
| 285 | } | ||
| 286 | |||
| 287 | EXPORT_SYMBOL(blk_queue_bounce); | ||
diff --git a/block/cfq-iosched.c b/block/cfq-iosched.c index 5063a0bd831a..22dffebc7c73 100644 --- a/block/cfq-iosched.c +++ b/block/cfq-iosched.c | |||
| @@ -4460,7 +4460,7 @@ out_free: | |||
| 4460 | static ssize_t | 4460 | static ssize_t |
| 4461 | cfq_var_show(unsigned int var, char *page) | 4461 | cfq_var_show(unsigned int var, char *page) |
| 4462 | { | 4462 | { |
| 4463 | return sprintf(page, "%d\n", var); | 4463 | return sprintf(page, "%u\n", var); |
| 4464 | } | 4464 | } |
| 4465 | 4465 | ||
| 4466 | static ssize_t | 4466 | static ssize_t |
diff --git a/block/ioprio.c b/block/ioprio.c new file mode 100644 index 000000000000..e50170ca7c33 --- /dev/null +++ b/block/ioprio.c | |||
| @@ -0,0 +1,241 @@ | |||
| 1 | /* | ||
| 2 | * fs/ioprio.c | ||
| 3 | * | ||
| 4 | * Copyright (C) 2004 Jens Axboe <axboe@kernel.dk> | ||
| 5 | * | ||
| 6 | * Helper functions for setting/querying io priorities of processes. The | ||
| 7 | * system calls closely mimmick getpriority/setpriority, see the man page for | ||
| 8 | * those. The prio argument is a composite of prio class and prio data, where | ||
| 9 | * the data argument has meaning within that class. The standard scheduling | ||
| 10 | * classes have 8 distinct prio levels, with 0 being the highest prio and 7 | ||
| 11 | * being the lowest. | ||
| 12 | * | ||
| 13 | * IOW, setting BE scheduling class with prio 2 is done ala: | ||
| 14 | * | ||
| 15 | * unsigned int prio = (IOPRIO_CLASS_BE << IOPRIO_CLASS_SHIFT) | 2; | ||
| 16 | * | ||
| 17 | * ioprio_set(PRIO_PROCESS, pid, prio); | ||
| 18 | * | ||
| 19 | * See also Documentation/block/ioprio.txt | ||
| 20 | * | ||
| 21 | */ | ||
| 22 | #include <linux/gfp.h> | ||
| 23 | #include <linux/kernel.h> | ||
| 24 | #include <linux/export.h> | ||
| 25 | #include <linux/ioprio.h> | ||
| 26 | #include <linux/blkdev.h> | ||
| 27 | #include <linux/capability.h> | ||
| 28 | #include <linux/syscalls.h> | ||
| 29 | #include <linux/security.h> | ||
| 30 | #include <linux/pid_namespace.h> | ||
| 31 | |||
| 32 | int set_task_ioprio(struct task_struct *task, int ioprio) | ||
| 33 | { | ||
| 34 | int err; | ||
| 35 | struct io_context *ioc; | ||
| 36 | const struct cred *cred = current_cred(), *tcred; | ||
| 37 | |||
| 38 | rcu_read_lock(); | ||
| 39 | tcred = __task_cred(task); | ||
| 40 | if (!uid_eq(tcred->uid, cred->euid) && | ||
| 41 | !uid_eq(tcred->uid, cred->uid) && !capable(CAP_SYS_NICE)) { | ||
| 42 | rcu_read_unlock(); | ||
| 43 | return -EPERM; | ||
| 44 | } | ||
| 45 | rcu_read_unlock(); | ||
| 46 | |||
| 47 | err = security_task_setioprio(task, ioprio); | ||
| 48 | if (err) | ||
| 49 | return err; | ||
| 50 | |||
| 51 | ioc = get_task_io_context(task, GFP_ATOMIC, NUMA_NO_NODE); | ||
| 52 | if (ioc) { | ||
| 53 | ioc->ioprio = ioprio; | ||
| 54 | put_io_context(ioc); | ||
| 55 | } | ||
| 56 | |||
| 57 | return err; | ||
| 58 | } | ||
| 59 | EXPORT_SYMBOL_GPL(set_task_ioprio); | ||
| 60 | |||
| 61 | SYSCALL_DEFINE3(ioprio_set, int, which, int, who, int, ioprio) | ||
| 62 | { | ||
| 63 | int class = IOPRIO_PRIO_CLASS(ioprio); | ||
| 64 | int data = IOPRIO_PRIO_DATA(ioprio); | ||
| 65 | struct task_struct *p, *g; | ||
| 66 | struct user_struct *user; | ||
| 67 | struct pid *pgrp; | ||
| 68 | kuid_t uid; | ||
| 69 | int ret; | ||
| 70 | |||
| 71 | switch (class) { | ||
| 72 | case IOPRIO_CLASS_RT: | ||
| 73 | if (!capable(CAP_SYS_ADMIN)) | ||
| 74 | return -EPERM; | ||
| 75 | /* fall through, rt has prio field too */ | ||
| 76 | case IOPRIO_CLASS_BE: | ||
| 77 | if (data >= IOPRIO_BE_NR || data < 0) | ||
| 78 | return -EINVAL; | ||
| 79 | |||
| 80 | break; | ||
| 81 | case IOPRIO_CLASS_IDLE: | ||
| 82 | break; | ||
| 83 | case IOPRIO_CLASS_NONE: | ||
| 84 | if (data) | ||
| 85 | return -EINVAL; | ||
| 86 | break; | ||
| 87 | default: | ||
| 88 | return -EINVAL; | ||
| 89 | } | ||
| 90 | |||
| 91 | ret = -ESRCH; | ||
| 92 | rcu_read_lock(); | ||
| 93 | switch (which) { | ||
| 94 | case IOPRIO_WHO_PROCESS: | ||
| 95 | if (!who) | ||
| 96 | p = current; | ||
| 97 | else | ||
| 98 | p = find_task_by_vpid(who); | ||
| 99 | if (p) | ||
| 100 | ret = set_task_ioprio(p, ioprio); | ||
| 101 | break; | ||
| 102 | case IOPRIO_WHO_PGRP: | ||
| 103 | if (!who) | ||
| 104 | pgrp = task_pgrp(current); | ||
| 105 | else | ||
| 106 | pgrp = find_vpid(who); | ||
| 107 | do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { | ||
| 108 | ret = set_task_ioprio(p, ioprio); | ||
| 109 | if (ret) | ||
| 110 | break; | ||
| 111 | } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); | ||
| 112 | break; | ||
| 113 | case IOPRIO_WHO_USER: | ||
| 114 | uid = make_kuid(current_user_ns(), who); | ||
| 115 | if (!uid_valid(uid)) | ||
| 116 | break; | ||
| 117 | if (!who) | ||
| 118 | user = current_user(); | ||
| 119 | else | ||
| 120 | user = find_user(uid); | ||
| 121 | |||
| 122 | if (!user) | ||
| 123 | break; | ||
| 124 | |||
| 125 | do_each_thread(g, p) { | ||
| 126 | if (!uid_eq(task_uid(p), uid)) | ||
| 127 | continue; | ||
| 128 | ret = set_task_ioprio(p, ioprio); | ||
| 129 | if (ret) | ||
| 130 | goto free_uid; | ||
| 131 | } while_each_thread(g, p); | ||
| 132 | free_uid: | ||
| 133 | if (who) | ||
| 134 | free_uid(user); | ||
| 135 | break; | ||
| 136 | default: | ||
| 137 | ret = -EINVAL; | ||
| 138 | } | ||
| 139 | |||
| 140 | rcu_read_unlock(); | ||
| 141 | return ret; | ||
| 142 | } | ||
| 143 | |||
| 144 | static int get_task_ioprio(struct task_struct *p) | ||
| 145 | { | ||
| 146 | int ret; | ||
| 147 | |||
| 148 | ret = security_task_getioprio(p); | ||
| 149 | if (ret) | ||
| 150 | goto out; | ||
| 151 | ret = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, IOPRIO_NORM); | ||
| 152 | if (p->io_context) | ||
| 153 | ret = p->io_context->ioprio; | ||
| 154 | out: | ||
| 155 | return ret; | ||
| 156 | } | ||
| 157 | |||
| 158 | int ioprio_best(unsigned short aprio, unsigned short bprio) | ||
| 159 | { | ||
| 160 | unsigned short aclass = IOPRIO_PRIO_CLASS(aprio); | ||
| 161 | unsigned short bclass = IOPRIO_PRIO_CLASS(bprio); | ||
| 162 | |||
| 163 | if (aclass == IOPRIO_CLASS_NONE) | ||
| 164 | aclass = IOPRIO_CLASS_BE; | ||
| 165 | if (bclass == IOPRIO_CLASS_NONE) | ||
| 166 | bclass = IOPRIO_CLASS_BE; | ||
| 167 | |||
| 168 | if (aclass == bclass) | ||
| 169 | return min(aprio, bprio); | ||
| 170 | if (aclass > bclass) | ||
| 171 | return bprio; | ||
| 172 | else | ||
| 173 | return aprio; | ||
| 174 | } | ||
| 175 | |||
| 176 | SYSCALL_DEFINE2(ioprio_get, int, which, int, who) | ||
| 177 | { | ||
| 178 | struct task_struct *g, *p; | ||
| 179 | struct user_struct *user; | ||
| 180 | struct pid *pgrp; | ||
| 181 | kuid_t uid; | ||
| 182 | int ret = -ESRCH; | ||
| 183 | int tmpio; | ||
| 184 | |||
| 185 | rcu_read_lock(); | ||
| 186 | switch (which) { | ||
| 187 | case IOPRIO_WHO_PROCESS: | ||
| 188 | if (!who) | ||
| 189 | p = current; | ||
| 190 | else | ||
| 191 | p = find_task_by_vpid(who); | ||
| 192 | if (p) | ||
| 193 | ret = get_task_ioprio(p); | ||
| 194 | break; | ||
| 195 | case IOPRIO_WHO_PGRP: | ||
| 196 | if (!who) | ||
| 197 | pgrp = task_pgrp(current); | ||
| 198 | else | ||
| 199 | pgrp = find_vpid(who); | ||
| 200 | do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { | ||
| 201 | tmpio = get_task_ioprio(p); | ||
| 202 | if (tmpio < 0) | ||
| 203 | continue; | ||
| 204 | if (ret == -ESRCH) | ||
| 205 | ret = tmpio; | ||
| 206 | else | ||
| 207 | ret = ioprio_best(ret, tmpio); | ||
| 208 | } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); | ||
| 209 | break; | ||
| 210 | case IOPRIO_WHO_USER: | ||
| 211 | uid = make_kuid(current_user_ns(), who); | ||
| 212 | if (!who) | ||
| 213 | user = current_user(); | ||
| 214 | else | ||
| 215 | user = find_user(uid); | ||
| 216 | |||
| 217 | if (!user) | ||
| 218 | break; | ||
| 219 | |||
| 220 | do_each_thread(g, p) { | ||
| 221 | if (!uid_eq(task_uid(p), user->uid)) | ||
| 222 | continue; | ||
| 223 | tmpio = get_task_ioprio(p); | ||
| 224 | if (tmpio < 0) | ||
| 225 | continue; | ||
| 226 | if (ret == -ESRCH) | ||
| 227 | ret = tmpio; | ||
| 228 | else | ||
| 229 | ret = ioprio_best(ret, tmpio); | ||
| 230 | } while_each_thread(g, p); | ||
| 231 | |||
| 232 | if (who) | ||
| 233 | free_uid(user); | ||
| 234 | break; | ||
| 235 | default: | ||
| 236 | ret = -EINVAL; | ||
| 237 | } | ||
| 238 | |||
| 239 | rcu_read_unlock(); | ||
| 240 | return ret; | ||
| 241 | } | ||
