aboutsummaryrefslogtreecommitdiffstats
path: root/block/blk-sysfs.c
diff options
context:
space:
mode:
authorJens Axboe <axboe@kernel.dk>2013-10-24 04:20:05 -0400
committerJens Axboe <axboe@kernel.dk>2013-10-25 06:56:00 -0400
commit320ae51feed5c2f13664aa05a76bec198967e04d (patch)
treead37ccbcc5ddb1c9c19e48965bf8fec1b05217dc /block/blk-sysfs.c
parent1dddc01af0d42b21058e0cb9c1ca9e8d5204d9b0 (diff)
blk-mq: new multi-queue block IO queueing mechanism
Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to 'block/blk-sysfs.c')
-rw-r--r--block/blk-sysfs.c13
1 files changed, 13 insertions, 0 deletions
diff --git a/block/blk-sysfs.c b/block/blk-sysfs.c
index 3aa5b195f4dd..4f8c4d90ec73 100644
--- a/block/blk-sysfs.c
+++ b/block/blk-sysfs.c
@@ -7,6 +7,7 @@
7#include <linux/bio.h> 7#include <linux/bio.h>
8#include <linux/blkdev.h> 8#include <linux/blkdev.h>
9#include <linux/blktrace_api.h> 9#include <linux/blktrace_api.h>
10#include <linux/blk-mq.h>
10 11
11#include "blk.h" 12#include "blk.h"
12#include "blk-cgroup.h" 13#include "blk-cgroup.h"
@@ -542,6 +543,11 @@ static void blk_release_queue(struct kobject *kobj)
542 if (q->queue_tags) 543 if (q->queue_tags)
543 __blk_queue_free_tags(q); 544 __blk_queue_free_tags(q);
544 545
546 percpu_counter_destroy(&q->mq_usage_counter);
547
548 if (q->mq_ops)
549 blk_mq_free_queue(q);
550
545 blk_trace_shutdown(q); 551 blk_trace_shutdown(q);
546 552
547 bdi_destroy(&q->backing_dev_info); 553 bdi_destroy(&q->backing_dev_info);
@@ -575,6 +581,7 @@ int blk_register_queue(struct gendisk *disk)
575 * bypass from queue allocation. 581 * bypass from queue allocation.
576 */ 582 */
577 blk_queue_bypass_end(q); 583 blk_queue_bypass_end(q);
584 queue_flag_set_unlocked(QUEUE_FLAG_INIT_DONE, q);
578 585
579 ret = blk_trace_init_sysfs(dev); 586 ret = blk_trace_init_sysfs(dev);
580 if (ret) 587 if (ret)
@@ -588,6 +595,9 @@ int blk_register_queue(struct gendisk *disk)
588 595
589 kobject_uevent(&q->kobj, KOBJ_ADD); 596 kobject_uevent(&q->kobj, KOBJ_ADD);
590 597
598 if (q->mq_ops)
599 blk_mq_register_disk(disk);
600
591 if (!q->request_fn) 601 if (!q->request_fn)
592 return 0; 602 return 0;
593 603
@@ -610,6 +620,9 @@ void blk_unregister_queue(struct gendisk *disk)
610 if (WARN_ON(!q)) 620 if (WARN_ON(!q))
611 return; 621 return;
612 622
623 if (q->mq_ops)
624 blk_mq_unregister_disk(disk);
625
613 if (q->request_fn) 626 if (q->request_fn)
614 elv_unregister_queue(q); 627 elv_unregister_queue(q);
615 628