diff options
author | Jens Axboe <jens.axboe@oracle.com> | 2008-01-29 08:49:21 -0500 |
---|---|---|
committer | Jens Axboe <jens.axboe@oracle.com> | 2008-01-29 15:55:05 -0500 |
commit | a168ee84c90b39ece357da127ab388f2f64db19c (patch) | |
tree | acb5527d9835c06e4eb2c308850e74db857f7d64 /block/blk-core.c | |
parent | 9bf722598fcd51073974850ae026b44389430ecc (diff) |
block: first step of splitting ll_rw_blk, rename it
Then we retain history in blk-core.c
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Diffstat (limited to 'block/blk-core.c')
-rw-r--r-- | block/blk-core.c | 4457 |
1 files changed, 4457 insertions, 0 deletions
diff --git a/block/blk-core.c b/block/blk-core.c new file mode 100644 index 000000000000..1932a56f5e4b --- /dev/null +++ b/block/blk-core.c | |||
@@ -0,0 +1,4457 @@ | |||
1 | /* | ||
2 | * Copyright (C) 1991, 1992 Linus Torvalds | ||
3 | * Copyright (C) 1994, Karl Keyte: Added support for disk statistics | ||
4 | * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE | ||
5 | * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> | ||
6 | * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000 | ||
7 | * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 | ||
8 | */ | ||
9 | |||
10 | /* | ||
11 | * This handles all read/write requests to block devices | ||
12 | */ | ||
13 | #include <linux/kernel.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/backing-dev.h> | ||
16 | #include <linux/bio.h> | ||
17 | #include <linux/blkdev.h> | ||
18 | #include <linux/highmem.h> | ||
19 | #include <linux/mm.h> | ||
20 | #include <linux/kernel_stat.h> | ||
21 | #include <linux/string.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ | ||
24 | #include <linux/completion.h> | ||
25 | #include <linux/slab.h> | ||
26 | #include <linux/swap.h> | ||
27 | #include <linux/writeback.h> | ||
28 | #include <linux/task_io_accounting_ops.h> | ||
29 | #include <linux/interrupt.h> | ||
30 | #include <linux/cpu.h> | ||
31 | #include <linux/blktrace_api.h> | ||
32 | #include <linux/fault-inject.h> | ||
33 | #include <linux/scatterlist.h> | ||
34 | |||
35 | /* | ||
36 | * for max sense size | ||
37 | */ | ||
38 | #include <scsi/scsi_cmnd.h> | ||
39 | |||
40 | static void blk_unplug_work(struct work_struct *work); | ||
41 | static void blk_unplug_timeout(unsigned long data); | ||
42 | static void drive_stat_acct(struct request *rq, int new_io); | ||
43 | static void init_request_from_bio(struct request *req, struct bio *bio); | ||
44 | static int __make_request(struct request_queue *q, struct bio *bio); | ||
45 | static struct io_context *current_io_context(gfp_t gfp_flags, int node); | ||
46 | static void blk_recalc_rq_segments(struct request *rq); | ||
47 | static void blk_rq_bio_prep(struct request_queue *q, struct request *rq, | ||
48 | struct bio *bio); | ||
49 | |||
50 | /* | ||
51 | * For the allocated request tables | ||
52 | */ | ||
53 | static struct kmem_cache *request_cachep; | ||
54 | |||
55 | /* | ||
56 | * For queue allocation | ||
57 | */ | ||
58 | static struct kmem_cache *requestq_cachep; | ||
59 | |||
60 | /* | ||
61 | * For io context allocations | ||
62 | */ | ||
63 | static struct kmem_cache *iocontext_cachep; | ||
64 | |||
65 | /* | ||
66 | * Controlling structure to kblockd | ||
67 | */ | ||
68 | static struct workqueue_struct *kblockd_workqueue; | ||
69 | |||
70 | unsigned long blk_max_low_pfn, blk_max_pfn; | ||
71 | |||
72 | EXPORT_SYMBOL(blk_max_low_pfn); | ||
73 | EXPORT_SYMBOL(blk_max_pfn); | ||
74 | |||
75 | static DEFINE_PER_CPU(struct list_head, blk_cpu_done); | ||
76 | |||
77 | /* Amount of time in which a process may batch requests */ | ||
78 | #define BLK_BATCH_TIME (HZ/50UL) | ||
79 | |||
80 | /* Number of requests a "batching" process may submit */ | ||
81 | #define BLK_BATCH_REQ 32 | ||
82 | |||
83 | /* | ||
84 | * Return the threshold (number of used requests) at which the queue is | ||
85 | * considered to be congested. It include a little hysteresis to keep the | ||
86 | * context switch rate down. | ||
87 | */ | ||
88 | static inline int queue_congestion_on_threshold(struct request_queue *q) | ||
89 | { | ||
90 | return q->nr_congestion_on; | ||
91 | } | ||
92 | |||
93 | /* | ||
94 | * The threshold at which a queue is considered to be uncongested | ||
95 | */ | ||
96 | static inline int queue_congestion_off_threshold(struct request_queue *q) | ||
97 | { | ||
98 | return q->nr_congestion_off; | ||
99 | } | ||
100 | |||
101 | static void blk_queue_congestion_threshold(struct request_queue *q) | ||
102 | { | ||
103 | int nr; | ||
104 | |||
105 | nr = q->nr_requests - (q->nr_requests / 8) + 1; | ||
106 | if (nr > q->nr_requests) | ||
107 | nr = q->nr_requests; | ||
108 | q->nr_congestion_on = nr; | ||
109 | |||
110 | nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; | ||
111 | if (nr < 1) | ||
112 | nr = 1; | ||
113 | q->nr_congestion_off = nr; | ||
114 | } | ||
115 | |||
116 | /** | ||
117 | * blk_get_backing_dev_info - get the address of a queue's backing_dev_info | ||
118 | * @bdev: device | ||
119 | * | ||
120 | * Locates the passed device's request queue and returns the address of its | ||
121 | * backing_dev_info | ||
122 | * | ||
123 | * Will return NULL if the request queue cannot be located. | ||
124 | */ | ||
125 | struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) | ||
126 | { | ||
127 | struct backing_dev_info *ret = NULL; | ||
128 | struct request_queue *q = bdev_get_queue(bdev); | ||
129 | |||
130 | if (q) | ||
131 | ret = &q->backing_dev_info; | ||
132 | return ret; | ||
133 | } | ||
134 | EXPORT_SYMBOL(blk_get_backing_dev_info); | ||
135 | |||
136 | /** | ||
137 | * blk_queue_prep_rq - set a prepare_request function for queue | ||
138 | * @q: queue | ||
139 | * @pfn: prepare_request function | ||
140 | * | ||
141 | * It's possible for a queue to register a prepare_request callback which | ||
142 | * is invoked before the request is handed to the request_fn. The goal of | ||
143 | * the function is to prepare a request for I/O, it can be used to build a | ||
144 | * cdb from the request data for instance. | ||
145 | * | ||
146 | */ | ||
147 | void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) | ||
148 | { | ||
149 | q->prep_rq_fn = pfn; | ||
150 | } | ||
151 | |||
152 | EXPORT_SYMBOL(blk_queue_prep_rq); | ||
153 | |||
154 | /** | ||
155 | * blk_queue_merge_bvec - set a merge_bvec function for queue | ||
156 | * @q: queue | ||
157 | * @mbfn: merge_bvec_fn | ||
158 | * | ||
159 | * Usually queues have static limitations on the max sectors or segments that | ||
160 | * we can put in a request. Stacking drivers may have some settings that | ||
161 | * are dynamic, and thus we have to query the queue whether it is ok to | ||
162 | * add a new bio_vec to a bio at a given offset or not. If the block device | ||
163 | * has such limitations, it needs to register a merge_bvec_fn to control | ||
164 | * the size of bio's sent to it. Note that a block device *must* allow a | ||
165 | * single page to be added to an empty bio. The block device driver may want | ||
166 | * to use the bio_split() function to deal with these bio's. By default | ||
167 | * no merge_bvec_fn is defined for a queue, and only the fixed limits are | ||
168 | * honored. | ||
169 | */ | ||
170 | void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) | ||
171 | { | ||
172 | q->merge_bvec_fn = mbfn; | ||
173 | } | ||
174 | |||
175 | EXPORT_SYMBOL(blk_queue_merge_bvec); | ||
176 | |||
177 | void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) | ||
178 | { | ||
179 | q->softirq_done_fn = fn; | ||
180 | } | ||
181 | |||
182 | EXPORT_SYMBOL(blk_queue_softirq_done); | ||
183 | |||
184 | /** | ||
185 | * blk_queue_make_request - define an alternate make_request function for a device | ||
186 | * @q: the request queue for the device to be affected | ||
187 | * @mfn: the alternate make_request function | ||
188 | * | ||
189 | * Description: | ||
190 | * The normal way for &struct bios to be passed to a device | ||
191 | * driver is for them to be collected into requests on a request | ||
192 | * queue, and then to allow the device driver to select requests | ||
193 | * off that queue when it is ready. This works well for many block | ||
194 | * devices. However some block devices (typically virtual devices | ||
195 | * such as md or lvm) do not benefit from the processing on the | ||
196 | * request queue, and are served best by having the requests passed | ||
197 | * directly to them. This can be achieved by providing a function | ||
198 | * to blk_queue_make_request(). | ||
199 | * | ||
200 | * Caveat: | ||
201 | * The driver that does this *must* be able to deal appropriately | ||
202 | * with buffers in "highmemory". This can be accomplished by either calling | ||
203 | * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling | ||
204 | * blk_queue_bounce() to create a buffer in normal memory. | ||
205 | **/ | ||
206 | void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn) | ||
207 | { | ||
208 | /* | ||
209 | * set defaults | ||
210 | */ | ||
211 | q->nr_requests = BLKDEV_MAX_RQ; | ||
212 | blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); | ||
213 | blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); | ||
214 | q->make_request_fn = mfn; | ||
215 | q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; | ||
216 | q->backing_dev_info.state = 0; | ||
217 | q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; | ||
218 | blk_queue_max_sectors(q, SAFE_MAX_SECTORS); | ||
219 | blk_queue_hardsect_size(q, 512); | ||
220 | blk_queue_dma_alignment(q, 511); | ||
221 | blk_queue_congestion_threshold(q); | ||
222 | q->nr_batching = BLK_BATCH_REQ; | ||
223 | |||
224 | q->unplug_thresh = 4; /* hmm */ | ||
225 | q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ | ||
226 | if (q->unplug_delay == 0) | ||
227 | q->unplug_delay = 1; | ||
228 | |||
229 | INIT_WORK(&q->unplug_work, blk_unplug_work); | ||
230 | |||
231 | q->unplug_timer.function = blk_unplug_timeout; | ||
232 | q->unplug_timer.data = (unsigned long)q; | ||
233 | |||
234 | /* | ||
235 | * by default assume old behaviour and bounce for any highmem page | ||
236 | */ | ||
237 | blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); | ||
238 | } | ||
239 | |||
240 | EXPORT_SYMBOL(blk_queue_make_request); | ||
241 | |||
242 | static void rq_init(struct request_queue *q, struct request *rq) | ||
243 | { | ||
244 | INIT_LIST_HEAD(&rq->queuelist); | ||
245 | INIT_LIST_HEAD(&rq->donelist); | ||
246 | |||
247 | rq->errors = 0; | ||
248 | rq->bio = rq->biotail = NULL; | ||
249 | INIT_HLIST_NODE(&rq->hash); | ||
250 | RB_CLEAR_NODE(&rq->rb_node); | ||
251 | rq->ioprio = 0; | ||
252 | rq->buffer = NULL; | ||
253 | rq->ref_count = 1; | ||
254 | rq->q = q; | ||
255 | rq->special = NULL; | ||
256 | rq->data_len = 0; | ||
257 | rq->data = NULL; | ||
258 | rq->nr_phys_segments = 0; | ||
259 | rq->sense = NULL; | ||
260 | rq->end_io = NULL; | ||
261 | rq->end_io_data = NULL; | ||
262 | rq->completion_data = NULL; | ||
263 | rq->next_rq = NULL; | ||
264 | } | ||
265 | |||
266 | /** | ||
267 | * blk_queue_ordered - does this queue support ordered writes | ||
268 | * @q: the request queue | ||
269 | * @ordered: one of QUEUE_ORDERED_* | ||
270 | * @prepare_flush_fn: rq setup helper for cache flush ordered writes | ||
271 | * | ||
272 | * Description: | ||
273 | * For journalled file systems, doing ordered writes on a commit | ||
274 | * block instead of explicitly doing wait_on_buffer (which is bad | ||
275 | * for performance) can be a big win. Block drivers supporting this | ||
276 | * feature should call this function and indicate so. | ||
277 | * | ||
278 | **/ | ||
279 | int blk_queue_ordered(struct request_queue *q, unsigned ordered, | ||
280 | prepare_flush_fn *prepare_flush_fn) | ||
281 | { | ||
282 | if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) && | ||
283 | prepare_flush_fn == NULL) { | ||
284 | printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n"); | ||
285 | return -EINVAL; | ||
286 | } | ||
287 | |||
288 | if (ordered != QUEUE_ORDERED_NONE && | ||
289 | ordered != QUEUE_ORDERED_DRAIN && | ||
290 | ordered != QUEUE_ORDERED_DRAIN_FLUSH && | ||
291 | ordered != QUEUE_ORDERED_DRAIN_FUA && | ||
292 | ordered != QUEUE_ORDERED_TAG && | ||
293 | ordered != QUEUE_ORDERED_TAG_FLUSH && | ||
294 | ordered != QUEUE_ORDERED_TAG_FUA) { | ||
295 | printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered); | ||
296 | return -EINVAL; | ||
297 | } | ||
298 | |||
299 | q->ordered = ordered; | ||
300 | q->next_ordered = ordered; | ||
301 | q->prepare_flush_fn = prepare_flush_fn; | ||
302 | |||
303 | return 0; | ||
304 | } | ||
305 | |||
306 | EXPORT_SYMBOL(blk_queue_ordered); | ||
307 | |||
308 | /* | ||
309 | * Cache flushing for ordered writes handling | ||
310 | */ | ||
311 | inline unsigned blk_ordered_cur_seq(struct request_queue *q) | ||
312 | { | ||
313 | if (!q->ordseq) | ||
314 | return 0; | ||
315 | return 1 << ffz(q->ordseq); | ||
316 | } | ||
317 | |||
318 | unsigned blk_ordered_req_seq(struct request *rq) | ||
319 | { | ||
320 | struct request_queue *q = rq->q; | ||
321 | |||
322 | BUG_ON(q->ordseq == 0); | ||
323 | |||
324 | if (rq == &q->pre_flush_rq) | ||
325 | return QUEUE_ORDSEQ_PREFLUSH; | ||
326 | if (rq == &q->bar_rq) | ||
327 | return QUEUE_ORDSEQ_BAR; | ||
328 | if (rq == &q->post_flush_rq) | ||
329 | return QUEUE_ORDSEQ_POSTFLUSH; | ||
330 | |||
331 | /* | ||
332 | * !fs requests don't need to follow barrier ordering. Always | ||
333 | * put them at the front. This fixes the following deadlock. | ||
334 | * | ||
335 | * http://thread.gmane.org/gmane.linux.kernel/537473 | ||
336 | */ | ||
337 | if (!blk_fs_request(rq)) | ||
338 | return QUEUE_ORDSEQ_DRAIN; | ||
339 | |||
340 | if ((rq->cmd_flags & REQ_ORDERED_COLOR) == | ||
341 | (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR)) | ||
342 | return QUEUE_ORDSEQ_DRAIN; | ||
343 | else | ||
344 | return QUEUE_ORDSEQ_DONE; | ||
345 | } | ||
346 | |||
347 | void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error) | ||
348 | { | ||
349 | struct request *rq; | ||
350 | |||
351 | if (error && !q->orderr) | ||
352 | q->orderr = error; | ||
353 | |||
354 | BUG_ON(q->ordseq & seq); | ||
355 | q->ordseq |= seq; | ||
356 | |||
357 | if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE) | ||
358 | return; | ||
359 | |||
360 | /* | ||
361 | * Okay, sequence complete. | ||
362 | */ | ||
363 | q->ordseq = 0; | ||
364 | rq = q->orig_bar_rq; | ||
365 | |||
366 | if (__blk_end_request(rq, q->orderr, blk_rq_bytes(rq))) | ||
367 | BUG(); | ||
368 | } | ||
369 | |||
370 | static void pre_flush_end_io(struct request *rq, int error) | ||
371 | { | ||
372 | elv_completed_request(rq->q, rq); | ||
373 | blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error); | ||
374 | } | ||
375 | |||
376 | static void bar_end_io(struct request *rq, int error) | ||
377 | { | ||
378 | elv_completed_request(rq->q, rq); | ||
379 | blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error); | ||
380 | } | ||
381 | |||
382 | static void post_flush_end_io(struct request *rq, int error) | ||
383 | { | ||
384 | elv_completed_request(rq->q, rq); | ||
385 | blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error); | ||
386 | } | ||
387 | |||
388 | static void queue_flush(struct request_queue *q, unsigned which) | ||
389 | { | ||
390 | struct request *rq; | ||
391 | rq_end_io_fn *end_io; | ||
392 | |||
393 | if (which == QUEUE_ORDERED_PREFLUSH) { | ||
394 | rq = &q->pre_flush_rq; | ||
395 | end_io = pre_flush_end_io; | ||
396 | } else { | ||
397 | rq = &q->post_flush_rq; | ||
398 | end_io = post_flush_end_io; | ||
399 | } | ||
400 | |||
401 | rq->cmd_flags = REQ_HARDBARRIER; | ||
402 | rq_init(q, rq); | ||
403 | rq->elevator_private = NULL; | ||
404 | rq->elevator_private2 = NULL; | ||
405 | rq->rq_disk = q->bar_rq.rq_disk; | ||
406 | rq->end_io = end_io; | ||
407 | q->prepare_flush_fn(q, rq); | ||
408 | |||
409 | elv_insert(q, rq, ELEVATOR_INSERT_FRONT); | ||
410 | } | ||
411 | |||
412 | static inline struct request *start_ordered(struct request_queue *q, | ||
413 | struct request *rq) | ||
414 | { | ||
415 | q->orderr = 0; | ||
416 | q->ordered = q->next_ordered; | ||
417 | q->ordseq |= QUEUE_ORDSEQ_STARTED; | ||
418 | |||
419 | /* | ||
420 | * Prep proxy barrier request. | ||
421 | */ | ||
422 | blkdev_dequeue_request(rq); | ||
423 | q->orig_bar_rq = rq; | ||
424 | rq = &q->bar_rq; | ||
425 | rq->cmd_flags = 0; | ||
426 | rq_init(q, rq); | ||
427 | if (bio_data_dir(q->orig_bar_rq->bio) == WRITE) | ||
428 | rq->cmd_flags |= REQ_RW; | ||
429 | if (q->ordered & QUEUE_ORDERED_FUA) | ||
430 | rq->cmd_flags |= REQ_FUA; | ||
431 | rq->elevator_private = NULL; | ||
432 | rq->elevator_private2 = NULL; | ||
433 | init_request_from_bio(rq, q->orig_bar_rq->bio); | ||
434 | rq->end_io = bar_end_io; | ||
435 | |||
436 | /* | ||
437 | * Queue ordered sequence. As we stack them at the head, we | ||
438 | * need to queue in reverse order. Note that we rely on that | ||
439 | * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs | ||
440 | * request gets inbetween ordered sequence. If this request is | ||
441 | * an empty barrier, we don't need to do a postflush ever since | ||
442 | * there will be no data written between the pre and post flush. | ||
443 | * Hence a single flush will suffice. | ||
444 | */ | ||
445 | if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq)) | ||
446 | queue_flush(q, QUEUE_ORDERED_POSTFLUSH); | ||
447 | else | ||
448 | q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH; | ||
449 | |||
450 | elv_insert(q, rq, ELEVATOR_INSERT_FRONT); | ||
451 | |||
452 | if (q->ordered & QUEUE_ORDERED_PREFLUSH) { | ||
453 | queue_flush(q, QUEUE_ORDERED_PREFLUSH); | ||
454 | rq = &q->pre_flush_rq; | ||
455 | } else | ||
456 | q->ordseq |= QUEUE_ORDSEQ_PREFLUSH; | ||
457 | |||
458 | if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0) | ||
459 | q->ordseq |= QUEUE_ORDSEQ_DRAIN; | ||
460 | else | ||
461 | rq = NULL; | ||
462 | |||
463 | return rq; | ||
464 | } | ||
465 | |||
466 | int blk_do_ordered(struct request_queue *q, struct request **rqp) | ||
467 | { | ||
468 | struct request *rq = *rqp; | ||
469 | const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq); | ||
470 | |||
471 | if (!q->ordseq) { | ||
472 | if (!is_barrier) | ||
473 | return 1; | ||
474 | |||
475 | if (q->next_ordered != QUEUE_ORDERED_NONE) { | ||
476 | *rqp = start_ordered(q, rq); | ||
477 | return 1; | ||
478 | } else { | ||
479 | /* | ||
480 | * This can happen when the queue switches to | ||
481 | * ORDERED_NONE while this request is on it. | ||
482 | */ | ||
483 | blkdev_dequeue_request(rq); | ||
484 | if (__blk_end_request(rq, -EOPNOTSUPP, | ||
485 | blk_rq_bytes(rq))) | ||
486 | BUG(); | ||
487 | *rqp = NULL; | ||
488 | return 0; | ||
489 | } | ||
490 | } | ||
491 | |||
492 | /* | ||
493 | * Ordered sequence in progress | ||
494 | */ | ||
495 | |||
496 | /* Special requests are not subject to ordering rules. */ | ||
497 | if (!blk_fs_request(rq) && | ||
498 | rq != &q->pre_flush_rq && rq != &q->post_flush_rq) | ||
499 | return 1; | ||
500 | |||
501 | if (q->ordered & QUEUE_ORDERED_TAG) { | ||
502 | /* Ordered by tag. Blocking the next barrier is enough. */ | ||
503 | if (is_barrier && rq != &q->bar_rq) | ||
504 | *rqp = NULL; | ||
505 | } else { | ||
506 | /* Ordered by draining. Wait for turn. */ | ||
507 | WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q)); | ||
508 | if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q)) | ||
509 | *rqp = NULL; | ||
510 | } | ||
511 | |||
512 | return 1; | ||
513 | } | ||
514 | |||
515 | static void req_bio_endio(struct request *rq, struct bio *bio, | ||
516 | unsigned int nbytes, int error) | ||
517 | { | ||
518 | struct request_queue *q = rq->q; | ||
519 | |||
520 | if (&q->bar_rq != rq) { | ||
521 | if (error) | ||
522 | clear_bit(BIO_UPTODATE, &bio->bi_flags); | ||
523 | else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | ||
524 | error = -EIO; | ||
525 | |||
526 | if (unlikely(nbytes > bio->bi_size)) { | ||
527 | printk("%s: want %u bytes done, only %u left\n", | ||
528 | __FUNCTION__, nbytes, bio->bi_size); | ||
529 | nbytes = bio->bi_size; | ||
530 | } | ||
531 | |||
532 | bio->bi_size -= nbytes; | ||
533 | bio->bi_sector += (nbytes >> 9); | ||
534 | if (bio->bi_size == 0) | ||
535 | bio_endio(bio, error); | ||
536 | } else { | ||
537 | |||
538 | /* | ||
539 | * Okay, this is the barrier request in progress, just | ||
540 | * record the error; | ||
541 | */ | ||
542 | if (error && !q->orderr) | ||
543 | q->orderr = error; | ||
544 | } | ||
545 | } | ||
546 | |||
547 | /** | ||
548 | * blk_queue_bounce_limit - set bounce buffer limit for queue | ||
549 | * @q: the request queue for the device | ||
550 | * @dma_addr: bus address limit | ||
551 | * | ||
552 | * Description: | ||
553 | * Different hardware can have different requirements as to what pages | ||
554 | * it can do I/O directly to. A low level driver can call | ||
555 | * blk_queue_bounce_limit to have lower memory pages allocated as bounce | ||
556 | * buffers for doing I/O to pages residing above @page. | ||
557 | **/ | ||
558 | void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr) | ||
559 | { | ||
560 | unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT; | ||
561 | int dma = 0; | ||
562 | |||
563 | q->bounce_gfp = GFP_NOIO; | ||
564 | #if BITS_PER_LONG == 64 | ||
565 | /* Assume anything <= 4GB can be handled by IOMMU. | ||
566 | Actually some IOMMUs can handle everything, but I don't | ||
567 | know of a way to test this here. */ | ||
568 | if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) | ||
569 | dma = 1; | ||
570 | q->bounce_pfn = max_low_pfn; | ||
571 | #else | ||
572 | if (bounce_pfn < blk_max_low_pfn) | ||
573 | dma = 1; | ||
574 | q->bounce_pfn = bounce_pfn; | ||
575 | #endif | ||
576 | if (dma) { | ||
577 | init_emergency_isa_pool(); | ||
578 | q->bounce_gfp = GFP_NOIO | GFP_DMA; | ||
579 | q->bounce_pfn = bounce_pfn; | ||
580 | } | ||
581 | } | ||
582 | |||
583 | EXPORT_SYMBOL(blk_queue_bounce_limit); | ||
584 | |||
585 | /** | ||
586 | * blk_queue_max_sectors - set max sectors for a request for this queue | ||
587 | * @q: the request queue for the device | ||
588 | * @max_sectors: max sectors in the usual 512b unit | ||
589 | * | ||
590 | * Description: | ||
591 | * Enables a low level driver to set an upper limit on the size of | ||
592 | * received requests. | ||
593 | **/ | ||
594 | void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) | ||
595 | { | ||
596 | if ((max_sectors << 9) < PAGE_CACHE_SIZE) { | ||
597 | max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); | ||
598 | printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors); | ||
599 | } | ||
600 | |||
601 | if (BLK_DEF_MAX_SECTORS > max_sectors) | ||
602 | q->max_hw_sectors = q->max_sectors = max_sectors; | ||
603 | else { | ||
604 | q->max_sectors = BLK_DEF_MAX_SECTORS; | ||
605 | q->max_hw_sectors = max_sectors; | ||
606 | } | ||
607 | } | ||
608 | |||
609 | EXPORT_SYMBOL(blk_queue_max_sectors); | ||
610 | |||
611 | /** | ||
612 | * blk_queue_max_phys_segments - set max phys segments for a request for this queue | ||
613 | * @q: the request queue for the device | ||
614 | * @max_segments: max number of segments | ||
615 | * | ||
616 | * Description: | ||
617 | * Enables a low level driver to set an upper limit on the number of | ||
618 | * physical data segments in a request. This would be the largest sized | ||
619 | * scatter list the driver could handle. | ||
620 | **/ | ||
621 | void blk_queue_max_phys_segments(struct request_queue *q, | ||
622 | unsigned short max_segments) | ||
623 | { | ||
624 | if (!max_segments) { | ||
625 | max_segments = 1; | ||
626 | printk("%s: set to minimum %d\n", __FUNCTION__, max_segments); | ||
627 | } | ||
628 | |||
629 | q->max_phys_segments = max_segments; | ||
630 | } | ||
631 | |||
632 | EXPORT_SYMBOL(blk_queue_max_phys_segments); | ||
633 | |||
634 | /** | ||
635 | * blk_queue_max_hw_segments - set max hw segments for a request for this queue | ||
636 | * @q: the request queue for the device | ||
637 | * @max_segments: max number of segments | ||
638 | * | ||
639 | * Description: | ||
640 | * Enables a low level driver to set an upper limit on the number of | ||
641 | * hw data segments in a request. This would be the largest number of | ||
642 | * address/length pairs the host adapter can actually give as once | ||
643 | * to the device. | ||
644 | **/ | ||
645 | void blk_queue_max_hw_segments(struct request_queue *q, | ||
646 | unsigned short max_segments) | ||
647 | { | ||
648 | if (!max_segments) { | ||
649 | max_segments = 1; | ||
650 | printk("%s: set to minimum %d\n", __FUNCTION__, max_segments); | ||
651 | } | ||
652 | |||
653 | q->max_hw_segments = max_segments; | ||
654 | } | ||
655 | |||
656 | EXPORT_SYMBOL(blk_queue_max_hw_segments); | ||
657 | |||
658 | /** | ||
659 | * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg | ||
660 | * @q: the request queue for the device | ||
661 | * @max_size: max size of segment in bytes | ||
662 | * | ||
663 | * Description: | ||
664 | * Enables a low level driver to set an upper limit on the size of a | ||
665 | * coalesced segment | ||
666 | **/ | ||
667 | void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) | ||
668 | { | ||
669 | if (max_size < PAGE_CACHE_SIZE) { | ||
670 | max_size = PAGE_CACHE_SIZE; | ||
671 | printk("%s: set to minimum %d\n", __FUNCTION__, max_size); | ||
672 | } | ||
673 | |||
674 | q->max_segment_size = max_size; | ||
675 | } | ||
676 | |||
677 | EXPORT_SYMBOL(blk_queue_max_segment_size); | ||
678 | |||
679 | /** | ||
680 | * blk_queue_hardsect_size - set hardware sector size for the queue | ||
681 | * @q: the request queue for the device | ||
682 | * @size: the hardware sector size, in bytes | ||
683 | * | ||
684 | * Description: | ||
685 | * This should typically be set to the lowest possible sector size | ||
686 | * that the hardware can operate on (possible without reverting to | ||
687 | * even internal read-modify-write operations). Usually the default | ||
688 | * of 512 covers most hardware. | ||
689 | **/ | ||
690 | void blk_queue_hardsect_size(struct request_queue *q, unsigned short size) | ||
691 | { | ||
692 | q->hardsect_size = size; | ||
693 | } | ||
694 | |||
695 | EXPORT_SYMBOL(blk_queue_hardsect_size); | ||
696 | |||
697 | /* | ||
698 | * Returns the minimum that is _not_ zero, unless both are zero. | ||
699 | */ | ||
700 | #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) | ||
701 | |||
702 | /** | ||
703 | * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers | ||
704 | * @t: the stacking driver (top) | ||
705 | * @b: the underlying device (bottom) | ||
706 | **/ | ||
707 | void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) | ||
708 | { | ||
709 | /* zero is "infinity" */ | ||
710 | t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors); | ||
711 | t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors); | ||
712 | |||
713 | t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments); | ||
714 | t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments); | ||
715 | t->max_segment_size = min(t->max_segment_size,b->max_segment_size); | ||
716 | t->hardsect_size = max(t->hardsect_size,b->hardsect_size); | ||
717 | if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) | ||
718 | clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags); | ||
719 | } | ||
720 | |||
721 | EXPORT_SYMBOL(blk_queue_stack_limits); | ||
722 | |||
723 | /** | ||
724 | * blk_queue_dma_drain - Set up a drain buffer for excess dma. | ||
725 | * | ||
726 | * @q: the request queue for the device | ||
727 | * @buf: physically contiguous buffer | ||
728 | * @size: size of the buffer in bytes | ||
729 | * | ||
730 | * Some devices have excess DMA problems and can't simply discard (or | ||
731 | * zero fill) the unwanted piece of the transfer. They have to have a | ||
732 | * real area of memory to transfer it into. The use case for this is | ||
733 | * ATAPI devices in DMA mode. If the packet command causes a transfer | ||
734 | * bigger than the transfer size some HBAs will lock up if there | ||
735 | * aren't DMA elements to contain the excess transfer. What this API | ||
736 | * does is adjust the queue so that the buf is always appended | ||
737 | * silently to the scatterlist. | ||
738 | * | ||
739 | * Note: This routine adjusts max_hw_segments to make room for | ||
740 | * appending the drain buffer. If you call | ||
741 | * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after | ||
742 | * calling this routine, you must set the limit to one fewer than your | ||
743 | * device can support otherwise there won't be room for the drain | ||
744 | * buffer. | ||
745 | */ | ||
746 | int blk_queue_dma_drain(struct request_queue *q, void *buf, | ||
747 | unsigned int size) | ||
748 | { | ||
749 | if (q->max_hw_segments < 2 || q->max_phys_segments < 2) | ||
750 | return -EINVAL; | ||
751 | /* make room for appending the drain */ | ||
752 | --q->max_hw_segments; | ||
753 | --q->max_phys_segments; | ||
754 | q->dma_drain_buffer = buf; | ||
755 | q->dma_drain_size = size; | ||
756 | |||
757 | return 0; | ||
758 | } | ||
759 | |||
760 | EXPORT_SYMBOL_GPL(blk_queue_dma_drain); | ||
761 | |||
762 | /** | ||
763 | * blk_queue_segment_boundary - set boundary rules for segment merging | ||
764 | * @q: the request queue for the device | ||
765 | * @mask: the memory boundary mask | ||
766 | **/ | ||
767 | void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) | ||
768 | { | ||
769 | if (mask < PAGE_CACHE_SIZE - 1) { | ||
770 | mask = PAGE_CACHE_SIZE - 1; | ||
771 | printk("%s: set to minimum %lx\n", __FUNCTION__, mask); | ||
772 | } | ||
773 | |||
774 | q->seg_boundary_mask = mask; | ||
775 | } | ||
776 | |||
777 | EXPORT_SYMBOL(blk_queue_segment_boundary); | ||
778 | |||
779 | /** | ||
780 | * blk_queue_dma_alignment - set dma length and memory alignment | ||
781 | * @q: the request queue for the device | ||
782 | * @mask: alignment mask | ||
783 | * | ||
784 | * description: | ||
785 | * set required memory and length aligment for direct dma transactions. | ||
786 | * this is used when buiding direct io requests for the queue. | ||
787 | * | ||
788 | **/ | ||
789 | void blk_queue_dma_alignment(struct request_queue *q, int mask) | ||
790 | { | ||
791 | q->dma_alignment = mask; | ||
792 | } | ||
793 | |||
794 | EXPORT_SYMBOL(blk_queue_dma_alignment); | ||
795 | |||
796 | /** | ||
797 | * blk_queue_update_dma_alignment - update dma length and memory alignment | ||
798 | * @q: the request queue for the device | ||
799 | * @mask: alignment mask | ||
800 | * | ||
801 | * description: | ||
802 | * update required memory and length aligment for direct dma transactions. | ||
803 | * If the requested alignment is larger than the current alignment, then | ||
804 | * the current queue alignment is updated to the new value, otherwise it | ||
805 | * is left alone. The design of this is to allow multiple objects | ||
806 | * (driver, device, transport etc) to set their respective | ||
807 | * alignments without having them interfere. | ||
808 | * | ||
809 | **/ | ||
810 | void blk_queue_update_dma_alignment(struct request_queue *q, int mask) | ||
811 | { | ||
812 | BUG_ON(mask > PAGE_SIZE); | ||
813 | |||
814 | if (mask > q->dma_alignment) | ||
815 | q->dma_alignment = mask; | ||
816 | } | ||
817 | |||
818 | EXPORT_SYMBOL(blk_queue_update_dma_alignment); | ||
819 | |||
820 | /** | ||
821 | * blk_queue_find_tag - find a request by its tag and queue | ||
822 | * @q: The request queue for the device | ||
823 | * @tag: The tag of the request | ||
824 | * | ||
825 | * Notes: | ||
826 | * Should be used when a device returns a tag and you want to match | ||
827 | * it with a request. | ||
828 | * | ||
829 | * no locks need be held. | ||
830 | **/ | ||
831 | struct request *blk_queue_find_tag(struct request_queue *q, int tag) | ||
832 | { | ||
833 | return blk_map_queue_find_tag(q->queue_tags, tag); | ||
834 | } | ||
835 | |||
836 | EXPORT_SYMBOL(blk_queue_find_tag); | ||
837 | |||
838 | /** | ||
839 | * __blk_free_tags - release a given set of tag maintenance info | ||
840 | * @bqt: the tag map to free | ||
841 | * | ||
842 | * Tries to free the specified @bqt@. Returns true if it was | ||
843 | * actually freed and false if there are still references using it | ||
844 | */ | ||
845 | static int __blk_free_tags(struct blk_queue_tag *bqt) | ||
846 | { | ||
847 | int retval; | ||
848 | |||
849 | retval = atomic_dec_and_test(&bqt->refcnt); | ||
850 | if (retval) { | ||
851 | BUG_ON(bqt->busy); | ||
852 | |||
853 | kfree(bqt->tag_index); | ||
854 | bqt->tag_index = NULL; | ||
855 | |||
856 | kfree(bqt->tag_map); | ||
857 | bqt->tag_map = NULL; | ||
858 | |||
859 | kfree(bqt); | ||
860 | |||
861 | } | ||
862 | |||
863 | return retval; | ||
864 | } | ||
865 | |||
866 | /** | ||
867 | * __blk_queue_free_tags - release tag maintenance info | ||
868 | * @q: the request queue for the device | ||
869 | * | ||
870 | * Notes: | ||
871 | * blk_cleanup_queue() will take care of calling this function, if tagging | ||
872 | * has been used. So there's no need to call this directly. | ||
873 | **/ | ||
874 | static void __blk_queue_free_tags(struct request_queue *q) | ||
875 | { | ||
876 | struct blk_queue_tag *bqt = q->queue_tags; | ||
877 | |||
878 | if (!bqt) | ||
879 | return; | ||
880 | |||
881 | __blk_free_tags(bqt); | ||
882 | |||
883 | q->queue_tags = NULL; | ||
884 | q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED); | ||
885 | } | ||
886 | |||
887 | |||
888 | /** | ||
889 | * blk_free_tags - release a given set of tag maintenance info | ||
890 | * @bqt: the tag map to free | ||
891 | * | ||
892 | * For externally managed @bqt@ frees the map. Callers of this | ||
893 | * function must guarantee to have released all the queues that | ||
894 | * might have been using this tag map. | ||
895 | */ | ||
896 | void blk_free_tags(struct blk_queue_tag *bqt) | ||
897 | { | ||
898 | if (unlikely(!__blk_free_tags(bqt))) | ||
899 | BUG(); | ||
900 | } | ||
901 | EXPORT_SYMBOL(blk_free_tags); | ||
902 | |||
903 | /** | ||
904 | * blk_queue_free_tags - release tag maintenance info | ||
905 | * @q: the request queue for the device | ||
906 | * | ||
907 | * Notes: | ||
908 | * This is used to disabled tagged queuing to a device, yet leave | ||
909 | * queue in function. | ||
910 | **/ | ||
911 | void blk_queue_free_tags(struct request_queue *q) | ||
912 | { | ||
913 | clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags); | ||
914 | } | ||
915 | |||
916 | EXPORT_SYMBOL(blk_queue_free_tags); | ||
917 | |||
918 | static int | ||
919 | init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth) | ||
920 | { | ||
921 | struct request **tag_index; | ||
922 | unsigned long *tag_map; | ||
923 | int nr_ulongs; | ||
924 | |||
925 | if (q && depth > q->nr_requests * 2) { | ||
926 | depth = q->nr_requests * 2; | ||
927 | printk(KERN_ERR "%s: adjusted depth to %d\n", | ||
928 | __FUNCTION__, depth); | ||
929 | } | ||
930 | |||
931 | tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC); | ||
932 | if (!tag_index) | ||
933 | goto fail; | ||
934 | |||
935 | nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG; | ||
936 | tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC); | ||
937 | if (!tag_map) | ||
938 | goto fail; | ||
939 | |||
940 | tags->real_max_depth = depth; | ||
941 | tags->max_depth = depth; | ||
942 | tags->tag_index = tag_index; | ||
943 | tags->tag_map = tag_map; | ||
944 | |||
945 | return 0; | ||
946 | fail: | ||
947 | kfree(tag_index); | ||
948 | return -ENOMEM; | ||
949 | } | ||
950 | |||
951 | static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q, | ||
952 | int depth) | ||
953 | { | ||
954 | struct blk_queue_tag *tags; | ||
955 | |||
956 | tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC); | ||
957 | if (!tags) | ||
958 | goto fail; | ||
959 | |||
960 | if (init_tag_map(q, tags, depth)) | ||
961 | goto fail; | ||
962 | |||
963 | tags->busy = 0; | ||
964 | atomic_set(&tags->refcnt, 1); | ||
965 | return tags; | ||
966 | fail: | ||
967 | kfree(tags); | ||
968 | return NULL; | ||
969 | } | ||
970 | |||
971 | /** | ||
972 | * blk_init_tags - initialize the tag info for an external tag map | ||
973 | * @depth: the maximum queue depth supported | ||
974 | * @tags: the tag to use | ||
975 | **/ | ||
976 | struct blk_queue_tag *blk_init_tags(int depth) | ||
977 | { | ||
978 | return __blk_queue_init_tags(NULL, depth); | ||
979 | } | ||
980 | EXPORT_SYMBOL(blk_init_tags); | ||
981 | |||
982 | /** | ||
983 | * blk_queue_init_tags - initialize the queue tag info | ||
984 | * @q: the request queue for the device | ||
985 | * @depth: the maximum queue depth supported | ||
986 | * @tags: the tag to use | ||
987 | **/ | ||
988 | int blk_queue_init_tags(struct request_queue *q, int depth, | ||
989 | struct blk_queue_tag *tags) | ||
990 | { | ||
991 | int rc; | ||
992 | |||
993 | BUG_ON(tags && q->queue_tags && tags != q->queue_tags); | ||
994 | |||
995 | if (!tags && !q->queue_tags) { | ||
996 | tags = __blk_queue_init_tags(q, depth); | ||
997 | |||
998 | if (!tags) | ||
999 | goto fail; | ||
1000 | } else if (q->queue_tags) { | ||
1001 | if ((rc = blk_queue_resize_tags(q, depth))) | ||
1002 | return rc; | ||
1003 | set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags); | ||
1004 | return 0; | ||
1005 | } else | ||
1006 | atomic_inc(&tags->refcnt); | ||
1007 | |||
1008 | /* | ||
1009 | * assign it, all done | ||
1010 | */ | ||
1011 | q->queue_tags = tags; | ||
1012 | q->queue_flags |= (1 << QUEUE_FLAG_QUEUED); | ||
1013 | INIT_LIST_HEAD(&q->tag_busy_list); | ||
1014 | return 0; | ||
1015 | fail: | ||
1016 | kfree(tags); | ||
1017 | return -ENOMEM; | ||
1018 | } | ||
1019 | |||
1020 | EXPORT_SYMBOL(blk_queue_init_tags); | ||
1021 | |||
1022 | /** | ||
1023 | * blk_queue_resize_tags - change the queueing depth | ||
1024 | * @q: the request queue for the device | ||
1025 | * @new_depth: the new max command queueing depth | ||
1026 | * | ||
1027 | * Notes: | ||
1028 | * Must be called with the queue lock held. | ||
1029 | **/ | ||
1030 | int blk_queue_resize_tags(struct request_queue *q, int new_depth) | ||
1031 | { | ||
1032 | struct blk_queue_tag *bqt = q->queue_tags; | ||
1033 | struct request **tag_index; | ||
1034 | unsigned long *tag_map; | ||
1035 | int max_depth, nr_ulongs; | ||
1036 | |||
1037 | if (!bqt) | ||
1038 | return -ENXIO; | ||
1039 | |||
1040 | /* | ||
1041 | * if we already have large enough real_max_depth. just | ||
1042 | * adjust max_depth. *NOTE* as requests with tag value | ||
1043 | * between new_depth and real_max_depth can be in-flight, tag | ||
1044 | * map can not be shrunk blindly here. | ||
1045 | */ | ||
1046 | if (new_depth <= bqt->real_max_depth) { | ||
1047 | bqt->max_depth = new_depth; | ||
1048 | return 0; | ||
1049 | } | ||
1050 | |||
1051 | /* | ||
1052 | * Currently cannot replace a shared tag map with a new | ||
1053 | * one, so error out if this is the case | ||
1054 | */ | ||
1055 | if (atomic_read(&bqt->refcnt) != 1) | ||
1056 | return -EBUSY; | ||
1057 | |||
1058 | /* | ||
1059 | * save the old state info, so we can copy it back | ||
1060 | */ | ||
1061 | tag_index = bqt->tag_index; | ||
1062 | tag_map = bqt->tag_map; | ||
1063 | max_depth = bqt->real_max_depth; | ||
1064 | |||
1065 | if (init_tag_map(q, bqt, new_depth)) | ||
1066 | return -ENOMEM; | ||
1067 | |||
1068 | memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *)); | ||
1069 | nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG; | ||
1070 | memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long)); | ||
1071 | |||
1072 | kfree(tag_index); | ||
1073 | kfree(tag_map); | ||
1074 | return 0; | ||
1075 | } | ||
1076 | |||
1077 | EXPORT_SYMBOL(blk_queue_resize_tags); | ||
1078 | |||
1079 | /** | ||
1080 | * blk_queue_end_tag - end tag operations for a request | ||
1081 | * @q: the request queue for the device | ||
1082 | * @rq: the request that has completed | ||
1083 | * | ||
1084 | * Description: | ||
1085 | * Typically called when end_that_request_first() returns 0, meaning | ||
1086 | * all transfers have been done for a request. It's important to call | ||
1087 | * this function before end_that_request_last(), as that will put the | ||
1088 | * request back on the free list thus corrupting the internal tag list. | ||
1089 | * | ||
1090 | * Notes: | ||
1091 | * queue lock must be held. | ||
1092 | **/ | ||
1093 | void blk_queue_end_tag(struct request_queue *q, struct request *rq) | ||
1094 | { | ||
1095 | struct blk_queue_tag *bqt = q->queue_tags; | ||
1096 | int tag = rq->tag; | ||
1097 | |||
1098 | BUG_ON(tag == -1); | ||
1099 | |||
1100 | if (unlikely(tag >= bqt->real_max_depth)) | ||
1101 | /* | ||
1102 | * This can happen after tag depth has been reduced. | ||
1103 | * FIXME: how about a warning or info message here? | ||
1104 | */ | ||
1105 | return; | ||
1106 | |||
1107 | list_del_init(&rq->queuelist); | ||
1108 | rq->cmd_flags &= ~REQ_QUEUED; | ||
1109 | rq->tag = -1; | ||
1110 | |||
1111 | if (unlikely(bqt->tag_index[tag] == NULL)) | ||
1112 | printk(KERN_ERR "%s: tag %d is missing\n", | ||
1113 | __FUNCTION__, tag); | ||
1114 | |||
1115 | bqt->tag_index[tag] = NULL; | ||
1116 | |||
1117 | if (unlikely(!test_bit(tag, bqt->tag_map))) { | ||
1118 | printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n", | ||
1119 | __FUNCTION__, tag); | ||
1120 | return; | ||
1121 | } | ||
1122 | /* | ||
1123 | * The tag_map bit acts as a lock for tag_index[bit], so we need | ||
1124 | * unlock memory barrier semantics. | ||
1125 | */ | ||
1126 | clear_bit_unlock(tag, bqt->tag_map); | ||
1127 | bqt->busy--; | ||
1128 | } | ||
1129 | |||
1130 | EXPORT_SYMBOL(blk_queue_end_tag); | ||
1131 | |||
1132 | /** | ||
1133 | * blk_queue_start_tag - find a free tag and assign it | ||
1134 | * @q: the request queue for the device | ||
1135 | * @rq: the block request that needs tagging | ||
1136 | * | ||
1137 | * Description: | ||
1138 | * This can either be used as a stand-alone helper, or possibly be | ||
1139 | * assigned as the queue &prep_rq_fn (in which case &struct request | ||
1140 | * automagically gets a tag assigned). Note that this function | ||
1141 | * assumes that any type of request can be queued! if this is not | ||
1142 | * true for your device, you must check the request type before | ||
1143 | * calling this function. The request will also be removed from | ||
1144 | * the request queue, so it's the drivers responsibility to readd | ||
1145 | * it if it should need to be restarted for some reason. | ||
1146 | * | ||
1147 | * Notes: | ||
1148 | * queue lock must be held. | ||
1149 | **/ | ||
1150 | int blk_queue_start_tag(struct request_queue *q, struct request *rq) | ||
1151 | { | ||
1152 | struct blk_queue_tag *bqt = q->queue_tags; | ||
1153 | int tag; | ||
1154 | |||
1155 | if (unlikely((rq->cmd_flags & REQ_QUEUED))) { | ||
1156 | printk(KERN_ERR | ||
1157 | "%s: request %p for device [%s] already tagged %d", | ||
1158 | __FUNCTION__, rq, | ||
1159 | rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag); | ||
1160 | BUG(); | ||
1161 | } | ||
1162 | |||
1163 | /* | ||
1164 | * Protect against shared tag maps, as we may not have exclusive | ||
1165 | * access to the tag map. | ||
1166 | */ | ||
1167 | do { | ||
1168 | tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth); | ||
1169 | if (tag >= bqt->max_depth) | ||
1170 | return 1; | ||
1171 | |||
1172 | } while (test_and_set_bit_lock(tag, bqt->tag_map)); | ||
1173 | /* | ||
1174 | * We need lock ordering semantics given by test_and_set_bit_lock. | ||
1175 | * See blk_queue_end_tag for details. | ||
1176 | */ | ||
1177 | |||
1178 | rq->cmd_flags |= REQ_QUEUED; | ||
1179 | rq->tag = tag; | ||
1180 | bqt->tag_index[tag] = rq; | ||
1181 | blkdev_dequeue_request(rq); | ||
1182 | list_add(&rq->queuelist, &q->tag_busy_list); | ||
1183 | bqt->busy++; | ||
1184 | return 0; | ||
1185 | } | ||
1186 | |||
1187 | EXPORT_SYMBOL(blk_queue_start_tag); | ||
1188 | |||
1189 | /** | ||
1190 | * blk_queue_invalidate_tags - invalidate all pending tags | ||
1191 | * @q: the request queue for the device | ||
1192 | * | ||
1193 | * Description: | ||
1194 | * Hardware conditions may dictate a need to stop all pending requests. | ||
1195 | * In this case, we will safely clear the block side of the tag queue and | ||
1196 | * readd all requests to the request queue in the right order. | ||
1197 | * | ||
1198 | * Notes: | ||
1199 | * queue lock must be held. | ||
1200 | **/ | ||
1201 | void blk_queue_invalidate_tags(struct request_queue *q) | ||
1202 | { | ||
1203 | struct list_head *tmp, *n; | ||
1204 | |||
1205 | list_for_each_safe(tmp, n, &q->tag_busy_list) | ||
1206 | blk_requeue_request(q, list_entry_rq(tmp)); | ||
1207 | } | ||
1208 | |||
1209 | EXPORT_SYMBOL(blk_queue_invalidate_tags); | ||
1210 | |||
1211 | void blk_dump_rq_flags(struct request *rq, char *msg) | ||
1212 | { | ||
1213 | int bit; | ||
1214 | |||
1215 | printk("%s: dev %s: type=%x, flags=%x\n", msg, | ||
1216 | rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, | ||
1217 | rq->cmd_flags); | ||
1218 | |||
1219 | printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector, | ||
1220 | rq->nr_sectors, | ||
1221 | rq->current_nr_sectors); | ||
1222 | printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len); | ||
1223 | |||
1224 | if (blk_pc_request(rq)) { | ||
1225 | printk("cdb: "); | ||
1226 | for (bit = 0; bit < sizeof(rq->cmd); bit++) | ||
1227 | printk("%02x ", rq->cmd[bit]); | ||
1228 | printk("\n"); | ||
1229 | } | ||
1230 | } | ||
1231 | |||
1232 | EXPORT_SYMBOL(blk_dump_rq_flags); | ||
1233 | |||
1234 | void blk_recount_segments(struct request_queue *q, struct bio *bio) | ||
1235 | { | ||
1236 | struct request rq; | ||
1237 | struct bio *nxt = bio->bi_next; | ||
1238 | rq.q = q; | ||
1239 | rq.bio = rq.biotail = bio; | ||
1240 | bio->bi_next = NULL; | ||
1241 | blk_recalc_rq_segments(&rq); | ||
1242 | bio->bi_next = nxt; | ||
1243 | bio->bi_phys_segments = rq.nr_phys_segments; | ||
1244 | bio->bi_hw_segments = rq.nr_hw_segments; | ||
1245 | bio->bi_flags |= (1 << BIO_SEG_VALID); | ||
1246 | } | ||
1247 | EXPORT_SYMBOL(blk_recount_segments); | ||
1248 | |||
1249 | static void blk_recalc_rq_segments(struct request *rq) | ||
1250 | { | ||
1251 | int nr_phys_segs; | ||
1252 | int nr_hw_segs; | ||
1253 | unsigned int phys_size; | ||
1254 | unsigned int hw_size; | ||
1255 | struct bio_vec *bv, *bvprv = NULL; | ||
1256 | int seg_size; | ||
1257 | int hw_seg_size; | ||
1258 | int cluster; | ||
1259 | struct req_iterator iter; | ||
1260 | int high, highprv = 1; | ||
1261 | struct request_queue *q = rq->q; | ||
1262 | |||
1263 | if (!rq->bio) | ||
1264 | return; | ||
1265 | |||
1266 | cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER); | ||
1267 | hw_seg_size = seg_size = 0; | ||
1268 | phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0; | ||
1269 | rq_for_each_segment(bv, rq, iter) { | ||
1270 | /* | ||
1271 | * the trick here is making sure that a high page is never | ||
1272 | * considered part of another segment, since that might | ||
1273 | * change with the bounce page. | ||
1274 | */ | ||
1275 | high = page_to_pfn(bv->bv_page) > q->bounce_pfn; | ||
1276 | if (high || highprv) | ||
1277 | goto new_hw_segment; | ||
1278 | if (cluster) { | ||
1279 | if (seg_size + bv->bv_len > q->max_segment_size) | ||
1280 | goto new_segment; | ||
1281 | if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv)) | ||
1282 | goto new_segment; | ||
1283 | if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv)) | ||
1284 | goto new_segment; | ||
1285 | if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) | ||
1286 | goto new_hw_segment; | ||
1287 | |||
1288 | seg_size += bv->bv_len; | ||
1289 | hw_seg_size += bv->bv_len; | ||
1290 | bvprv = bv; | ||
1291 | continue; | ||
1292 | } | ||
1293 | new_segment: | ||
1294 | if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) && | ||
1295 | !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) | ||
1296 | hw_seg_size += bv->bv_len; | ||
1297 | else { | ||
1298 | new_hw_segment: | ||
1299 | if (nr_hw_segs == 1 && | ||
1300 | hw_seg_size > rq->bio->bi_hw_front_size) | ||
1301 | rq->bio->bi_hw_front_size = hw_seg_size; | ||
1302 | hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len; | ||
1303 | nr_hw_segs++; | ||
1304 | } | ||
1305 | |||
1306 | nr_phys_segs++; | ||
1307 | bvprv = bv; | ||
1308 | seg_size = bv->bv_len; | ||
1309 | highprv = high; | ||
1310 | } | ||
1311 | |||
1312 | if (nr_hw_segs == 1 && | ||
1313 | hw_seg_size > rq->bio->bi_hw_front_size) | ||
1314 | rq->bio->bi_hw_front_size = hw_seg_size; | ||
1315 | if (hw_seg_size > rq->biotail->bi_hw_back_size) | ||
1316 | rq->biotail->bi_hw_back_size = hw_seg_size; | ||
1317 | rq->nr_phys_segments = nr_phys_segs; | ||
1318 | rq->nr_hw_segments = nr_hw_segs; | ||
1319 | } | ||
1320 | |||
1321 | static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio, | ||
1322 | struct bio *nxt) | ||
1323 | { | ||
1324 | if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER))) | ||
1325 | return 0; | ||
1326 | |||
1327 | if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt))) | ||
1328 | return 0; | ||
1329 | if (bio->bi_size + nxt->bi_size > q->max_segment_size) | ||
1330 | return 0; | ||
1331 | |||
1332 | /* | ||
1333 | * bio and nxt are contigous in memory, check if the queue allows | ||
1334 | * these two to be merged into one | ||
1335 | */ | ||
1336 | if (BIO_SEG_BOUNDARY(q, bio, nxt)) | ||
1337 | return 1; | ||
1338 | |||
1339 | return 0; | ||
1340 | } | ||
1341 | |||
1342 | static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio, | ||
1343 | struct bio *nxt) | ||
1344 | { | ||
1345 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | ||
1346 | blk_recount_segments(q, bio); | ||
1347 | if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID))) | ||
1348 | blk_recount_segments(q, nxt); | ||
1349 | if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) || | ||
1350 | BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size)) | ||
1351 | return 0; | ||
1352 | if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size) | ||
1353 | return 0; | ||
1354 | |||
1355 | return 1; | ||
1356 | } | ||
1357 | |||
1358 | /* | ||
1359 | * map a request to scatterlist, return number of sg entries setup. Caller | ||
1360 | * must make sure sg can hold rq->nr_phys_segments entries | ||
1361 | */ | ||
1362 | int blk_rq_map_sg(struct request_queue *q, struct request *rq, | ||
1363 | struct scatterlist *sglist) | ||
1364 | { | ||
1365 | struct bio_vec *bvec, *bvprv; | ||
1366 | struct req_iterator iter; | ||
1367 | struct scatterlist *sg; | ||
1368 | int nsegs, cluster; | ||
1369 | |||
1370 | nsegs = 0; | ||
1371 | cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER); | ||
1372 | |||
1373 | /* | ||
1374 | * for each bio in rq | ||
1375 | */ | ||
1376 | bvprv = NULL; | ||
1377 | sg = NULL; | ||
1378 | rq_for_each_segment(bvec, rq, iter) { | ||
1379 | int nbytes = bvec->bv_len; | ||
1380 | |||
1381 | if (bvprv && cluster) { | ||
1382 | if (sg->length + nbytes > q->max_segment_size) | ||
1383 | goto new_segment; | ||
1384 | |||
1385 | if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) | ||
1386 | goto new_segment; | ||
1387 | if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec)) | ||
1388 | goto new_segment; | ||
1389 | |||
1390 | sg->length += nbytes; | ||
1391 | } else { | ||
1392 | new_segment: | ||
1393 | if (!sg) | ||
1394 | sg = sglist; | ||
1395 | else { | ||
1396 | /* | ||
1397 | * If the driver previously mapped a shorter | ||
1398 | * list, we could see a termination bit | ||
1399 | * prematurely unless it fully inits the sg | ||
1400 | * table on each mapping. We KNOW that there | ||
1401 | * must be more entries here or the driver | ||
1402 | * would be buggy, so force clear the | ||
1403 | * termination bit to avoid doing a full | ||
1404 | * sg_init_table() in drivers for each command. | ||
1405 | */ | ||
1406 | sg->page_link &= ~0x02; | ||
1407 | sg = sg_next(sg); | ||
1408 | } | ||
1409 | |||
1410 | sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset); | ||
1411 | nsegs++; | ||
1412 | } | ||
1413 | bvprv = bvec; | ||
1414 | } /* segments in rq */ | ||
1415 | |||
1416 | if (q->dma_drain_size) { | ||
1417 | sg->page_link &= ~0x02; | ||
1418 | sg = sg_next(sg); | ||
1419 | sg_set_page(sg, virt_to_page(q->dma_drain_buffer), | ||
1420 | q->dma_drain_size, | ||
1421 | ((unsigned long)q->dma_drain_buffer) & | ||
1422 | (PAGE_SIZE - 1)); | ||
1423 | nsegs++; | ||
1424 | } | ||
1425 | |||
1426 | if (sg) | ||
1427 | sg_mark_end(sg); | ||
1428 | |||
1429 | return nsegs; | ||
1430 | } | ||
1431 | |||
1432 | EXPORT_SYMBOL(blk_rq_map_sg); | ||
1433 | |||
1434 | /* | ||
1435 | * the standard queue merge functions, can be overridden with device | ||
1436 | * specific ones if so desired | ||
1437 | */ | ||
1438 | |||
1439 | static inline int ll_new_mergeable(struct request_queue *q, | ||
1440 | struct request *req, | ||
1441 | struct bio *bio) | ||
1442 | { | ||
1443 | int nr_phys_segs = bio_phys_segments(q, bio); | ||
1444 | |||
1445 | if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) { | ||
1446 | req->cmd_flags |= REQ_NOMERGE; | ||
1447 | if (req == q->last_merge) | ||
1448 | q->last_merge = NULL; | ||
1449 | return 0; | ||
1450 | } | ||
1451 | |||
1452 | /* | ||
1453 | * A hw segment is just getting larger, bump just the phys | ||
1454 | * counter. | ||
1455 | */ | ||
1456 | req->nr_phys_segments += nr_phys_segs; | ||
1457 | return 1; | ||
1458 | } | ||
1459 | |||
1460 | static inline int ll_new_hw_segment(struct request_queue *q, | ||
1461 | struct request *req, | ||
1462 | struct bio *bio) | ||
1463 | { | ||
1464 | int nr_hw_segs = bio_hw_segments(q, bio); | ||
1465 | int nr_phys_segs = bio_phys_segments(q, bio); | ||
1466 | |||
1467 | if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments | ||
1468 | || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) { | ||
1469 | req->cmd_flags |= REQ_NOMERGE; | ||
1470 | if (req == q->last_merge) | ||
1471 | q->last_merge = NULL; | ||
1472 | return 0; | ||
1473 | } | ||
1474 | |||
1475 | /* | ||
1476 | * This will form the start of a new hw segment. Bump both | ||
1477 | * counters. | ||
1478 | */ | ||
1479 | req->nr_hw_segments += nr_hw_segs; | ||
1480 | req->nr_phys_segments += nr_phys_segs; | ||
1481 | return 1; | ||
1482 | } | ||
1483 | |||
1484 | static int ll_back_merge_fn(struct request_queue *q, struct request *req, | ||
1485 | struct bio *bio) | ||
1486 | { | ||
1487 | unsigned short max_sectors; | ||
1488 | int len; | ||
1489 | |||
1490 | if (unlikely(blk_pc_request(req))) | ||
1491 | max_sectors = q->max_hw_sectors; | ||
1492 | else | ||
1493 | max_sectors = q->max_sectors; | ||
1494 | |||
1495 | if (req->nr_sectors + bio_sectors(bio) > max_sectors) { | ||
1496 | req->cmd_flags |= REQ_NOMERGE; | ||
1497 | if (req == q->last_merge) | ||
1498 | q->last_merge = NULL; | ||
1499 | return 0; | ||
1500 | } | ||
1501 | if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID))) | ||
1502 | blk_recount_segments(q, req->biotail); | ||
1503 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | ||
1504 | blk_recount_segments(q, bio); | ||
1505 | len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size; | ||
1506 | if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) && | ||
1507 | !BIOVEC_VIRT_OVERSIZE(len)) { | ||
1508 | int mergeable = ll_new_mergeable(q, req, bio); | ||
1509 | |||
1510 | if (mergeable) { | ||
1511 | if (req->nr_hw_segments == 1) | ||
1512 | req->bio->bi_hw_front_size = len; | ||
1513 | if (bio->bi_hw_segments == 1) | ||
1514 | bio->bi_hw_back_size = len; | ||
1515 | } | ||
1516 | return mergeable; | ||
1517 | } | ||
1518 | |||
1519 | return ll_new_hw_segment(q, req, bio); | ||
1520 | } | ||
1521 | |||
1522 | static int ll_front_merge_fn(struct request_queue *q, struct request *req, | ||
1523 | struct bio *bio) | ||
1524 | { | ||
1525 | unsigned short max_sectors; | ||
1526 | int len; | ||
1527 | |||
1528 | if (unlikely(blk_pc_request(req))) | ||
1529 | max_sectors = q->max_hw_sectors; | ||
1530 | else | ||
1531 | max_sectors = q->max_sectors; | ||
1532 | |||
1533 | |||
1534 | if (req->nr_sectors + bio_sectors(bio) > max_sectors) { | ||
1535 | req->cmd_flags |= REQ_NOMERGE; | ||
1536 | if (req == q->last_merge) | ||
1537 | q->last_merge = NULL; | ||
1538 | return 0; | ||
1539 | } | ||
1540 | len = bio->bi_hw_back_size + req->bio->bi_hw_front_size; | ||
1541 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | ||
1542 | blk_recount_segments(q, bio); | ||
1543 | if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID))) | ||
1544 | blk_recount_segments(q, req->bio); | ||
1545 | if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) && | ||
1546 | !BIOVEC_VIRT_OVERSIZE(len)) { | ||
1547 | int mergeable = ll_new_mergeable(q, req, bio); | ||
1548 | |||
1549 | if (mergeable) { | ||
1550 | if (bio->bi_hw_segments == 1) | ||
1551 | bio->bi_hw_front_size = len; | ||
1552 | if (req->nr_hw_segments == 1) | ||
1553 | req->biotail->bi_hw_back_size = len; | ||
1554 | } | ||
1555 | return mergeable; | ||
1556 | } | ||
1557 | |||
1558 | return ll_new_hw_segment(q, req, bio); | ||
1559 | } | ||
1560 | |||
1561 | static int ll_merge_requests_fn(struct request_queue *q, struct request *req, | ||
1562 | struct request *next) | ||
1563 | { | ||
1564 | int total_phys_segments; | ||
1565 | int total_hw_segments; | ||
1566 | |||
1567 | /* | ||
1568 | * First check if the either of the requests are re-queued | ||
1569 | * requests. Can't merge them if they are. | ||
1570 | */ | ||
1571 | if (req->special || next->special) | ||
1572 | return 0; | ||
1573 | |||
1574 | /* | ||
1575 | * Will it become too large? | ||
1576 | */ | ||
1577 | if ((req->nr_sectors + next->nr_sectors) > q->max_sectors) | ||
1578 | return 0; | ||
1579 | |||
1580 | total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; | ||
1581 | if (blk_phys_contig_segment(q, req->biotail, next->bio)) | ||
1582 | total_phys_segments--; | ||
1583 | |||
1584 | if (total_phys_segments > q->max_phys_segments) | ||
1585 | return 0; | ||
1586 | |||
1587 | total_hw_segments = req->nr_hw_segments + next->nr_hw_segments; | ||
1588 | if (blk_hw_contig_segment(q, req->biotail, next->bio)) { | ||
1589 | int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size; | ||
1590 | /* | ||
1591 | * propagate the combined length to the end of the requests | ||
1592 | */ | ||
1593 | if (req->nr_hw_segments == 1) | ||
1594 | req->bio->bi_hw_front_size = len; | ||
1595 | if (next->nr_hw_segments == 1) | ||
1596 | next->biotail->bi_hw_back_size = len; | ||
1597 | total_hw_segments--; | ||
1598 | } | ||
1599 | |||
1600 | if (total_hw_segments > q->max_hw_segments) | ||
1601 | return 0; | ||
1602 | |||
1603 | /* Merge is OK... */ | ||
1604 | req->nr_phys_segments = total_phys_segments; | ||
1605 | req->nr_hw_segments = total_hw_segments; | ||
1606 | return 1; | ||
1607 | } | ||
1608 | |||
1609 | /* | ||
1610 | * "plug" the device if there are no outstanding requests: this will | ||
1611 | * force the transfer to start only after we have put all the requests | ||
1612 | * on the list. | ||
1613 | * | ||
1614 | * This is called with interrupts off and no requests on the queue and | ||
1615 | * with the queue lock held. | ||
1616 | */ | ||
1617 | void blk_plug_device(struct request_queue *q) | ||
1618 | { | ||
1619 | WARN_ON(!irqs_disabled()); | ||
1620 | |||
1621 | /* | ||
1622 | * don't plug a stopped queue, it must be paired with blk_start_queue() | ||
1623 | * which will restart the queueing | ||
1624 | */ | ||
1625 | if (blk_queue_stopped(q)) | ||
1626 | return; | ||
1627 | |||
1628 | if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) { | ||
1629 | mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); | ||
1630 | blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG); | ||
1631 | } | ||
1632 | } | ||
1633 | |||
1634 | EXPORT_SYMBOL(blk_plug_device); | ||
1635 | |||
1636 | /* | ||
1637 | * remove the queue from the plugged list, if present. called with | ||
1638 | * queue lock held and interrupts disabled. | ||
1639 | */ | ||
1640 | int blk_remove_plug(struct request_queue *q) | ||
1641 | { | ||
1642 | WARN_ON(!irqs_disabled()); | ||
1643 | |||
1644 | if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) | ||
1645 | return 0; | ||
1646 | |||
1647 | del_timer(&q->unplug_timer); | ||
1648 | return 1; | ||
1649 | } | ||
1650 | |||
1651 | EXPORT_SYMBOL(blk_remove_plug); | ||
1652 | |||
1653 | /* | ||
1654 | * remove the plug and let it rip.. | ||
1655 | */ | ||
1656 | void __generic_unplug_device(struct request_queue *q) | ||
1657 | { | ||
1658 | if (unlikely(blk_queue_stopped(q))) | ||
1659 | return; | ||
1660 | |||
1661 | if (!blk_remove_plug(q)) | ||
1662 | return; | ||
1663 | |||
1664 | q->request_fn(q); | ||
1665 | } | ||
1666 | EXPORT_SYMBOL(__generic_unplug_device); | ||
1667 | |||
1668 | /** | ||
1669 | * generic_unplug_device - fire a request queue | ||
1670 | * @q: The &struct request_queue in question | ||
1671 | * | ||
1672 | * Description: | ||
1673 | * Linux uses plugging to build bigger requests queues before letting | ||
1674 | * the device have at them. If a queue is plugged, the I/O scheduler | ||
1675 | * is still adding and merging requests on the queue. Once the queue | ||
1676 | * gets unplugged, the request_fn defined for the queue is invoked and | ||
1677 | * transfers started. | ||
1678 | **/ | ||
1679 | void generic_unplug_device(struct request_queue *q) | ||
1680 | { | ||
1681 | spin_lock_irq(q->queue_lock); | ||
1682 | __generic_unplug_device(q); | ||
1683 | spin_unlock_irq(q->queue_lock); | ||
1684 | } | ||
1685 | EXPORT_SYMBOL(generic_unplug_device); | ||
1686 | |||
1687 | static void blk_backing_dev_unplug(struct backing_dev_info *bdi, | ||
1688 | struct page *page) | ||
1689 | { | ||
1690 | struct request_queue *q = bdi->unplug_io_data; | ||
1691 | |||
1692 | blk_unplug(q); | ||
1693 | } | ||
1694 | |||
1695 | static void blk_unplug_work(struct work_struct *work) | ||
1696 | { | ||
1697 | struct request_queue *q = | ||
1698 | container_of(work, struct request_queue, unplug_work); | ||
1699 | |||
1700 | blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, | ||
1701 | q->rq.count[READ] + q->rq.count[WRITE]); | ||
1702 | |||
1703 | q->unplug_fn(q); | ||
1704 | } | ||
1705 | |||
1706 | static void blk_unplug_timeout(unsigned long data) | ||
1707 | { | ||
1708 | struct request_queue *q = (struct request_queue *)data; | ||
1709 | |||
1710 | blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL, | ||
1711 | q->rq.count[READ] + q->rq.count[WRITE]); | ||
1712 | |||
1713 | kblockd_schedule_work(&q->unplug_work); | ||
1714 | } | ||
1715 | |||
1716 | void blk_unplug(struct request_queue *q) | ||
1717 | { | ||
1718 | /* | ||
1719 | * devices don't necessarily have an ->unplug_fn defined | ||
1720 | */ | ||
1721 | if (q->unplug_fn) { | ||
1722 | blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, | ||
1723 | q->rq.count[READ] + q->rq.count[WRITE]); | ||
1724 | |||
1725 | q->unplug_fn(q); | ||
1726 | } | ||
1727 | } | ||
1728 | EXPORT_SYMBOL(blk_unplug); | ||
1729 | |||
1730 | /** | ||
1731 | * blk_start_queue - restart a previously stopped queue | ||
1732 | * @q: The &struct request_queue in question | ||
1733 | * | ||
1734 | * Description: | ||
1735 | * blk_start_queue() will clear the stop flag on the queue, and call | ||
1736 | * the request_fn for the queue if it was in a stopped state when | ||
1737 | * entered. Also see blk_stop_queue(). Queue lock must be held. | ||
1738 | **/ | ||
1739 | void blk_start_queue(struct request_queue *q) | ||
1740 | { | ||
1741 | WARN_ON(!irqs_disabled()); | ||
1742 | |||
1743 | clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags); | ||
1744 | |||
1745 | /* | ||
1746 | * one level of recursion is ok and is much faster than kicking | ||
1747 | * the unplug handling | ||
1748 | */ | ||
1749 | if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { | ||
1750 | q->request_fn(q); | ||
1751 | clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags); | ||
1752 | } else { | ||
1753 | blk_plug_device(q); | ||
1754 | kblockd_schedule_work(&q->unplug_work); | ||
1755 | } | ||
1756 | } | ||
1757 | |||
1758 | EXPORT_SYMBOL(blk_start_queue); | ||
1759 | |||
1760 | /** | ||
1761 | * blk_stop_queue - stop a queue | ||
1762 | * @q: The &struct request_queue in question | ||
1763 | * | ||
1764 | * Description: | ||
1765 | * The Linux block layer assumes that a block driver will consume all | ||
1766 | * entries on the request queue when the request_fn strategy is called. | ||
1767 | * Often this will not happen, because of hardware limitations (queue | ||
1768 | * depth settings). If a device driver gets a 'queue full' response, | ||
1769 | * or if it simply chooses not to queue more I/O at one point, it can | ||
1770 | * call this function to prevent the request_fn from being called until | ||
1771 | * the driver has signalled it's ready to go again. This happens by calling | ||
1772 | * blk_start_queue() to restart queue operations. Queue lock must be held. | ||
1773 | **/ | ||
1774 | void blk_stop_queue(struct request_queue *q) | ||
1775 | { | ||
1776 | blk_remove_plug(q); | ||
1777 | set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags); | ||
1778 | } | ||
1779 | EXPORT_SYMBOL(blk_stop_queue); | ||
1780 | |||
1781 | /** | ||
1782 | * blk_sync_queue - cancel any pending callbacks on a queue | ||
1783 | * @q: the queue | ||
1784 | * | ||
1785 | * Description: | ||
1786 | * The block layer may perform asynchronous callback activity | ||
1787 | * on a queue, such as calling the unplug function after a timeout. | ||
1788 | * A block device may call blk_sync_queue to ensure that any | ||
1789 | * such activity is cancelled, thus allowing it to release resources | ||
1790 | * that the callbacks might use. The caller must already have made sure | ||
1791 | * that its ->make_request_fn will not re-add plugging prior to calling | ||
1792 | * this function. | ||
1793 | * | ||
1794 | */ | ||
1795 | void blk_sync_queue(struct request_queue *q) | ||
1796 | { | ||
1797 | del_timer_sync(&q->unplug_timer); | ||
1798 | kblockd_flush_work(&q->unplug_work); | ||
1799 | } | ||
1800 | EXPORT_SYMBOL(blk_sync_queue); | ||
1801 | |||
1802 | /** | ||
1803 | * blk_run_queue - run a single device queue | ||
1804 | * @q: The queue to run | ||
1805 | */ | ||
1806 | void blk_run_queue(struct request_queue *q) | ||
1807 | { | ||
1808 | unsigned long flags; | ||
1809 | |||
1810 | spin_lock_irqsave(q->queue_lock, flags); | ||
1811 | blk_remove_plug(q); | ||
1812 | |||
1813 | /* | ||
1814 | * Only recurse once to avoid overrunning the stack, let the unplug | ||
1815 | * handling reinvoke the handler shortly if we already got there. | ||
1816 | */ | ||
1817 | if (!elv_queue_empty(q)) { | ||
1818 | if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { | ||
1819 | q->request_fn(q); | ||
1820 | clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags); | ||
1821 | } else { | ||
1822 | blk_plug_device(q); | ||
1823 | kblockd_schedule_work(&q->unplug_work); | ||
1824 | } | ||
1825 | } | ||
1826 | |||
1827 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
1828 | } | ||
1829 | EXPORT_SYMBOL(blk_run_queue); | ||
1830 | |||
1831 | /** | ||
1832 | * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed | ||
1833 | * @kobj: the kobj belonging of the request queue to be released | ||
1834 | * | ||
1835 | * Description: | ||
1836 | * blk_cleanup_queue is the pair to blk_init_queue() or | ||
1837 | * blk_queue_make_request(). It should be called when a request queue is | ||
1838 | * being released; typically when a block device is being de-registered. | ||
1839 | * Currently, its primary task it to free all the &struct request | ||
1840 | * structures that were allocated to the queue and the queue itself. | ||
1841 | * | ||
1842 | * Caveat: | ||
1843 | * Hopefully the low level driver will have finished any | ||
1844 | * outstanding requests first... | ||
1845 | **/ | ||
1846 | static void blk_release_queue(struct kobject *kobj) | ||
1847 | { | ||
1848 | struct request_queue *q = | ||
1849 | container_of(kobj, struct request_queue, kobj); | ||
1850 | struct request_list *rl = &q->rq; | ||
1851 | |||
1852 | blk_sync_queue(q); | ||
1853 | |||
1854 | if (rl->rq_pool) | ||
1855 | mempool_destroy(rl->rq_pool); | ||
1856 | |||
1857 | if (q->queue_tags) | ||
1858 | __blk_queue_free_tags(q); | ||
1859 | |||
1860 | blk_trace_shutdown(q); | ||
1861 | |||
1862 | bdi_destroy(&q->backing_dev_info); | ||
1863 | kmem_cache_free(requestq_cachep, q); | ||
1864 | } | ||
1865 | |||
1866 | void blk_put_queue(struct request_queue *q) | ||
1867 | { | ||
1868 | kobject_put(&q->kobj); | ||
1869 | } | ||
1870 | EXPORT_SYMBOL(blk_put_queue); | ||
1871 | |||
1872 | void blk_cleanup_queue(struct request_queue * q) | ||
1873 | { | ||
1874 | mutex_lock(&q->sysfs_lock); | ||
1875 | set_bit(QUEUE_FLAG_DEAD, &q->queue_flags); | ||
1876 | mutex_unlock(&q->sysfs_lock); | ||
1877 | |||
1878 | if (q->elevator) | ||
1879 | elevator_exit(q->elevator); | ||
1880 | |||
1881 | blk_put_queue(q); | ||
1882 | } | ||
1883 | |||
1884 | EXPORT_SYMBOL(blk_cleanup_queue); | ||
1885 | |||
1886 | static int blk_init_free_list(struct request_queue *q) | ||
1887 | { | ||
1888 | struct request_list *rl = &q->rq; | ||
1889 | |||
1890 | rl->count[READ] = rl->count[WRITE] = 0; | ||
1891 | rl->starved[READ] = rl->starved[WRITE] = 0; | ||
1892 | rl->elvpriv = 0; | ||
1893 | init_waitqueue_head(&rl->wait[READ]); | ||
1894 | init_waitqueue_head(&rl->wait[WRITE]); | ||
1895 | |||
1896 | rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, | ||
1897 | mempool_free_slab, request_cachep, q->node); | ||
1898 | |||
1899 | if (!rl->rq_pool) | ||
1900 | return -ENOMEM; | ||
1901 | |||
1902 | return 0; | ||
1903 | } | ||
1904 | |||
1905 | struct request_queue *blk_alloc_queue(gfp_t gfp_mask) | ||
1906 | { | ||
1907 | return blk_alloc_queue_node(gfp_mask, -1); | ||
1908 | } | ||
1909 | EXPORT_SYMBOL(blk_alloc_queue); | ||
1910 | |||
1911 | static struct kobj_type queue_ktype; | ||
1912 | |||
1913 | struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) | ||
1914 | { | ||
1915 | struct request_queue *q; | ||
1916 | int err; | ||
1917 | |||
1918 | q = kmem_cache_alloc_node(requestq_cachep, | ||
1919 | gfp_mask | __GFP_ZERO, node_id); | ||
1920 | if (!q) | ||
1921 | return NULL; | ||
1922 | |||
1923 | q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; | ||
1924 | q->backing_dev_info.unplug_io_data = q; | ||
1925 | err = bdi_init(&q->backing_dev_info); | ||
1926 | if (err) { | ||
1927 | kmem_cache_free(requestq_cachep, q); | ||
1928 | return NULL; | ||
1929 | } | ||
1930 | |||
1931 | init_timer(&q->unplug_timer); | ||
1932 | |||
1933 | kobject_init(&q->kobj, &queue_ktype); | ||
1934 | |||
1935 | mutex_init(&q->sysfs_lock); | ||
1936 | |||
1937 | return q; | ||
1938 | } | ||
1939 | EXPORT_SYMBOL(blk_alloc_queue_node); | ||
1940 | |||
1941 | /** | ||
1942 | * blk_init_queue - prepare a request queue for use with a block device | ||
1943 | * @rfn: The function to be called to process requests that have been | ||
1944 | * placed on the queue. | ||
1945 | * @lock: Request queue spin lock | ||
1946 | * | ||
1947 | * Description: | ||
1948 | * If a block device wishes to use the standard request handling procedures, | ||
1949 | * which sorts requests and coalesces adjacent requests, then it must | ||
1950 | * call blk_init_queue(). The function @rfn will be called when there | ||
1951 | * are requests on the queue that need to be processed. If the device | ||
1952 | * supports plugging, then @rfn may not be called immediately when requests | ||
1953 | * are available on the queue, but may be called at some time later instead. | ||
1954 | * Plugged queues are generally unplugged when a buffer belonging to one | ||
1955 | * of the requests on the queue is needed, or due to memory pressure. | ||
1956 | * | ||
1957 | * @rfn is not required, or even expected, to remove all requests off the | ||
1958 | * queue, but only as many as it can handle at a time. If it does leave | ||
1959 | * requests on the queue, it is responsible for arranging that the requests | ||
1960 | * get dealt with eventually. | ||
1961 | * | ||
1962 | * The queue spin lock must be held while manipulating the requests on the | ||
1963 | * request queue; this lock will be taken also from interrupt context, so irq | ||
1964 | * disabling is needed for it. | ||
1965 | * | ||
1966 | * Function returns a pointer to the initialized request queue, or NULL if | ||
1967 | * it didn't succeed. | ||
1968 | * | ||
1969 | * Note: | ||
1970 | * blk_init_queue() must be paired with a blk_cleanup_queue() call | ||
1971 | * when the block device is deactivated (such as at module unload). | ||
1972 | **/ | ||
1973 | |||
1974 | struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) | ||
1975 | { | ||
1976 | return blk_init_queue_node(rfn, lock, -1); | ||
1977 | } | ||
1978 | EXPORT_SYMBOL(blk_init_queue); | ||
1979 | |||
1980 | struct request_queue * | ||
1981 | blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) | ||
1982 | { | ||
1983 | struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); | ||
1984 | |||
1985 | if (!q) | ||
1986 | return NULL; | ||
1987 | |||
1988 | q->node = node_id; | ||
1989 | if (blk_init_free_list(q)) { | ||
1990 | kmem_cache_free(requestq_cachep, q); | ||
1991 | return NULL; | ||
1992 | } | ||
1993 | |||
1994 | /* | ||
1995 | * if caller didn't supply a lock, they get per-queue locking with | ||
1996 | * our embedded lock | ||
1997 | */ | ||
1998 | if (!lock) { | ||
1999 | spin_lock_init(&q->__queue_lock); | ||
2000 | lock = &q->__queue_lock; | ||
2001 | } | ||
2002 | |||
2003 | q->request_fn = rfn; | ||
2004 | q->prep_rq_fn = NULL; | ||
2005 | q->unplug_fn = generic_unplug_device; | ||
2006 | q->queue_flags = (1 << QUEUE_FLAG_CLUSTER); | ||
2007 | q->queue_lock = lock; | ||
2008 | |||
2009 | blk_queue_segment_boundary(q, 0xffffffff); | ||
2010 | |||
2011 | blk_queue_make_request(q, __make_request); | ||
2012 | blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); | ||
2013 | |||
2014 | blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); | ||
2015 | blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); | ||
2016 | |||
2017 | q->sg_reserved_size = INT_MAX; | ||
2018 | |||
2019 | /* | ||
2020 | * all done | ||
2021 | */ | ||
2022 | if (!elevator_init(q, NULL)) { | ||
2023 | blk_queue_congestion_threshold(q); | ||
2024 | return q; | ||
2025 | } | ||
2026 | |||
2027 | blk_put_queue(q); | ||
2028 | return NULL; | ||
2029 | } | ||
2030 | EXPORT_SYMBOL(blk_init_queue_node); | ||
2031 | |||
2032 | int blk_get_queue(struct request_queue *q) | ||
2033 | { | ||
2034 | if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { | ||
2035 | kobject_get(&q->kobj); | ||
2036 | return 0; | ||
2037 | } | ||
2038 | |||
2039 | return 1; | ||
2040 | } | ||
2041 | |||
2042 | EXPORT_SYMBOL(blk_get_queue); | ||
2043 | |||
2044 | static inline void blk_free_request(struct request_queue *q, struct request *rq) | ||
2045 | { | ||
2046 | if (rq->cmd_flags & REQ_ELVPRIV) | ||
2047 | elv_put_request(q, rq); | ||
2048 | mempool_free(rq, q->rq.rq_pool); | ||
2049 | } | ||
2050 | |||
2051 | static struct request * | ||
2052 | blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) | ||
2053 | { | ||
2054 | struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); | ||
2055 | |||
2056 | if (!rq) | ||
2057 | return NULL; | ||
2058 | |||
2059 | /* | ||
2060 | * first three bits are identical in rq->cmd_flags and bio->bi_rw, | ||
2061 | * see bio.h and blkdev.h | ||
2062 | */ | ||
2063 | rq->cmd_flags = rw | REQ_ALLOCED; | ||
2064 | |||
2065 | if (priv) { | ||
2066 | if (unlikely(elv_set_request(q, rq, gfp_mask))) { | ||
2067 | mempool_free(rq, q->rq.rq_pool); | ||
2068 | return NULL; | ||
2069 | } | ||
2070 | rq->cmd_flags |= REQ_ELVPRIV; | ||
2071 | } | ||
2072 | |||
2073 | return rq; | ||
2074 | } | ||
2075 | |||
2076 | /* | ||
2077 | * ioc_batching returns true if the ioc is a valid batching request and | ||
2078 | * should be given priority access to a request. | ||
2079 | */ | ||
2080 | static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) | ||
2081 | { | ||
2082 | if (!ioc) | ||
2083 | return 0; | ||
2084 | |||
2085 | /* | ||
2086 | * Make sure the process is able to allocate at least 1 request | ||
2087 | * even if the batch times out, otherwise we could theoretically | ||
2088 | * lose wakeups. | ||
2089 | */ | ||
2090 | return ioc->nr_batch_requests == q->nr_batching || | ||
2091 | (ioc->nr_batch_requests > 0 | ||
2092 | && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); | ||
2093 | } | ||
2094 | |||
2095 | /* | ||
2096 | * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This | ||
2097 | * will cause the process to be a "batcher" on all queues in the system. This | ||
2098 | * is the behaviour we want though - once it gets a wakeup it should be given | ||
2099 | * a nice run. | ||
2100 | */ | ||
2101 | static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) | ||
2102 | { | ||
2103 | if (!ioc || ioc_batching(q, ioc)) | ||
2104 | return; | ||
2105 | |||
2106 | ioc->nr_batch_requests = q->nr_batching; | ||
2107 | ioc->last_waited = jiffies; | ||
2108 | } | ||
2109 | |||
2110 | static void __freed_request(struct request_queue *q, int rw) | ||
2111 | { | ||
2112 | struct request_list *rl = &q->rq; | ||
2113 | |||
2114 | if (rl->count[rw] < queue_congestion_off_threshold(q)) | ||
2115 | blk_clear_queue_congested(q, rw); | ||
2116 | |||
2117 | if (rl->count[rw] + 1 <= q->nr_requests) { | ||
2118 | if (waitqueue_active(&rl->wait[rw])) | ||
2119 | wake_up(&rl->wait[rw]); | ||
2120 | |||
2121 | blk_clear_queue_full(q, rw); | ||
2122 | } | ||
2123 | } | ||
2124 | |||
2125 | /* | ||
2126 | * A request has just been released. Account for it, update the full and | ||
2127 | * congestion status, wake up any waiters. Called under q->queue_lock. | ||
2128 | */ | ||
2129 | static void freed_request(struct request_queue *q, int rw, int priv) | ||
2130 | { | ||
2131 | struct request_list *rl = &q->rq; | ||
2132 | |||
2133 | rl->count[rw]--; | ||
2134 | if (priv) | ||
2135 | rl->elvpriv--; | ||
2136 | |||
2137 | __freed_request(q, rw); | ||
2138 | |||
2139 | if (unlikely(rl->starved[rw ^ 1])) | ||
2140 | __freed_request(q, rw ^ 1); | ||
2141 | } | ||
2142 | |||
2143 | #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) | ||
2144 | /* | ||
2145 | * Get a free request, queue_lock must be held. | ||
2146 | * Returns NULL on failure, with queue_lock held. | ||
2147 | * Returns !NULL on success, with queue_lock *not held*. | ||
2148 | */ | ||
2149 | static struct request *get_request(struct request_queue *q, int rw_flags, | ||
2150 | struct bio *bio, gfp_t gfp_mask) | ||
2151 | { | ||
2152 | struct request *rq = NULL; | ||
2153 | struct request_list *rl = &q->rq; | ||
2154 | struct io_context *ioc = NULL; | ||
2155 | const int rw = rw_flags & 0x01; | ||
2156 | int may_queue, priv; | ||
2157 | |||
2158 | may_queue = elv_may_queue(q, rw_flags); | ||
2159 | if (may_queue == ELV_MQUEUE_NO) | ||
2160 | goto rq_starved; | ||
2161 | |||
2162 | if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) { | ||
2163 | if (rl->count[rw]+1 >= q->nr_requests) { | ||
2164 | ioc = current_io_context(GFP_ATOMIC, q->node); | ||
2165 | /* | ||
2166 | * The queue will fill after this allocation, so set | ||
2167 | * it as full, and mark this process as "batching". | ||
2168 | * This process will be allowed to complete a batch of | ||
2169 | * requests, others will be blocked. | ||
2170 | */ | ||
2171 | if (!blk_queue_full(q, rw)) { | ||
2172 | ioc_set_batching(q, ioc); | ||
2173 | blk_set_queue_full(q, rw); | ||
2174 | } else { | ||
2175 | if (may_queue != ELV_MQUEUE_MUST | ||
2176 | && !ioc_batching(q, ioc)) { | ||
2177 | /* | ||
2178 | * The queue is full and the allocating | ||
2179 | * process is not a "batcher", and not | ||
2180 | * exempted by the IO scheduler | ||
2181 | */ | ||
2182 | goto out; | ||
2183 | } | ||
2184 | } | ||
2185 | } | ||
2186 | blk_set_queue_congested(q, rw); | ||
2187 | } | ||
2188 | |||
2189 | /* | ||
2190 | * Only allow batching queuers to allocate up to 50% over the defined | ||
2191 | * limit of requests, otherwise we could have thousands of requests | ||
2192 | * allocated with any setting of ->nr_requests | ||
2193 | */ | ||
2194 | if (rl->count[rw] >= (3 * q->nr_requests / 2)) | ||
2195 | goto out; | ||
2196 | |||
2197 | rl->count[rw]++; | ||
2198 | rl->starved[rw] = 0; | ||
2199 | |||
2200 | priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); | ||
2201 | if (priv) | ||
2202 | rl->elvpriv++; | ||
2203 | |||
2204 | spin_unlock_irq(q->queue_lock); | ||
2205 | |||
2206 | rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); | ||
2207 | if (unlikely(!rq)) { | ||
2208 | /* | ||
2209 | * Allocation failed presumably due to memory. Undo anything | ||
2210 | * we might have messed up. | ||
2211 | * | ||
2212 | * Allocating task should really be put onto the front of the | ||
2213 | * wait queue, but this is pretty rare. | ||
2214 | */ | ||
2215 | spin_lock_irq(q->queue_lock); | ||
2216 | freed_request(q, rw, priv); | ||
2217 | |||
2218 | /* | ||
2219 | * in the very unlikely event that allocation failed and no | ||
2220 | * requests for this direction was pending, mark us starved | ||
2221 | * so that freeing of a request in the other direction will | ||
2222 | * notice us. another possible fix would be to split the | ||
2223 | * rq mempool into READ and WRITE | ||
2224 | */ | ||
2225 | rq_starved: | ||
2226 | if (unlikely(rl->count[rw] == 0)) | ||
2227 | rl->starved[rw] = 1; | ||
2228 | |||
2229 | goto out; | ||
2230 | } | ||
2231 | |||
2232 | /* | ||
2233 | * ioc may be NULL here, and ioc_batching will be false. That's | ||
2234 | * OK, if the queue is under the request limit then requests need | ||
2235 | * not count toward the nr_batch_requests limit. There will always | ||
2236 | * be some limit enforced by BLK_BATCH_TIME. | ||
2237 | */ | ||
2238 | if (ioc_batching(q, ioc)) | ||
2239 | ioc->nr_batch_requests--; | ||
2240 | |||
2241 | rq_init(q, rq); | ||
2242 | |||
2243 | blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ); | ||
2244 | out: | ||
2245 | return rq; | ||
2246 | } | ||
2247 | |||
2248 | /* | ||
2249 | * No available requests for this queue, unplug the device and wait for some | ||
2250 | * requests to become available. | ||
2251 | * | ||
2252 | * Called with q->queue_lock held, and returns with it unlocked. | ||
2253 | */ | ||
2254 | static struct request *get_request_wait(struct request_queue *q, int rw_flags, | ||
2255 | struct bio *bio) | ||
2256 | { | ||
2257 | const int rw = rw_flags & 0x01; | ||
2258 | struct request *rq; | ||
2259 | |||
2260 | rq = get_request(q, rw_flags, bio, GFP_NOIO); | ||
2261 | while (!rq) { | ||
2262 | DEFINE_WAIT(wait); | ||
2263 | struct request_list *rl = &q->rq; | ||
2264 | |||
2265 | prepare_to_wait_exclusive(&rl->wait[rw], &wait, | ||
2266 | TASK_UNINTERRUPTIBLE); | ||
2267 | |||
2268 | rq = get_request(q, rw_flags, bio, GFP_NOIO); | ||
2269 | |||
2270 | if (!rq) { | ||
2271 | struct io_context *ioc; | ||
2272 | |||
2273 | blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ); | ||
2274 | |||
2275 | __generic_unplug_device(q); | ||
2276 | spin_unlock_irq(q->queue_lock); | ||
2277 | io_schedule(); | ||
2278 | |||
2279 | /* | ||
2280 | * After sleeping, we become a "batching" process and | ||
2281 | * will be able to allocate at least one request, and | ||
2282 | * up to a big batch of them for a small period time. | ||
2283 | * See ioc_batching, ioc_set_batching | ||
2284 | */ | ||
2285 | ioc = current_io_context(GFP_NOIO, q->node); | ||
2286 | ioc_set_batching(q, ioc); | ||
2287 | |||
2288 | spin_lock_irq(q->queue_lock); | ||
2289 | } | ||
2290 | finish_wait(&rl->wait[rw], &wait); | ||
2291 | } | ||
2292 | |||
2293 | return rq; | ||
2294 | } | ||
2295 | |||
2296 | struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) | ||
2297 | { | ||
2298 | struct request *rq; | ||
2299 | |||
2300 | BUG_ON(rw != READ && rw != WRITE); | ||
2301 | |||
2302 | spin_lock_irq(q->queue_lock); | ||
2303 | if (gfp_mask & __GFP_WAIT) { | ||
2304 | rq = get_request_wait(q, rw, NULL); | ||
2305 | } else { | ||
2306 | rq = get_request(q, rw, NULL, gfp_mask); | ||
2307 | if (!rq) | ||
2308 | spin_unlock_irq(q->queue_lock); | ||
2309 | } | ||
2310 | /* q->queue_lock is unlocked at this point */ | ||
2311 | |||
2312 | return rq; | ||
2313 | } | ||
2314 | EXPORT_SYMBOL(blk_get_request); | ||
2315 | |||
2316 | /** | ||
2317 | * blk_start_queueing - initiate dispatch of requests to device | ||
2318 | * @q: request queue to kick into gear | ||
2319 | * | ||
2320 | * This is basically a helper to remove the need to know whether a queue | ||
2321 | * is plugged or not if someone just wants to initiate dispatch of requests | ||
2322 | * for this queue. | ||
2323 | * | ||
2324 | * The queue lock must be held with interrupts disabled. | ||
2325 | */ | ||
2326 | void blk_start_queueing(struct request_queue *q) | ||
2327 | { | ||
2328 | if (!blk_queue_plugged(q)) | ||
2329 | q->request_fn(q); | ||
2330 | else | ||
2331 | __generic_unplug_device(q); | ||
2332 | } | ||
2333 | EXPORT_SYMBOL(blk_start_queueing); | ||
2334 | |||
2335 | /** | ||
2336 | * blk_requeue_request - put a request back on queue | ||
2337 | * @q: request queue where request should be inserted | ||
2338 | * @rq: request to be inserted | ||
2339 | * | ||
2340 | * Description: | ||
2341 | * Drivers often keep queueing requests until the hardware cannot accept | ||
2342 | * more, when that condition happens we need to put the request back | ||
2343 | * on the queue. Must be called with queue lock held. | ||
2344 | */ | ||
2345 | void blk_requeue_request(struct request_queue *q, struct request *rq) | ||
2346 | { | ||
2347 | blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); | ||
2348 | |||
2349 | if (blk_rq_tagged(rq)) | ||
2350 | blk_queue_end_tag(q, rq); | ||
2351 | |||
2352 | elv_requeue_request(q, rq); | ||
2353 | } | ||
2354 | |||
2355 | EXPORT_SYMBOL(blk_requeue_request); | ||
2356 | |||
2357 | /** | ||
2358 | * blk_insert_request - insert a special request in to a request queue | ||
2359 | * @q: request queue where request should be inserted | ||
2360 | * @rq: request to be inserted | ||
2361 | * @at_head: insert request at head or tail of queue | ||
2362 | * @data: private data | ||
2363 | * | ||
2364 | * Description: | ||
2365 | * Many block devices need to execute commands asynchronously, so they don't | ||
2366 | * block the whole kernel from preemption during request execution. This is | ||
2367 | * accomplished normally by inserting aritficial requests tagged as | ||
2368 | * REQ_SPECIAL in to the corresponding request queue, and letting them be | ||
2369 | * scheduled for actual execution by the request queue. | ||
2370 | * | ||
2371 | * We have the option of inserting the head or the tail of the queue. | ||
2372 | * Typically we use the tail for new ioctls and so forth. We use the head | ||
2373 | * of the queue for things like a QUEUE_FULL message from a device, or a | ||
2374 | * host that is unable to accept a particular command. | ||
2375 | */ | ||
2376 | void blk_insert_request(struct request_queue *q, struct request *rq, | ||
2377 | int at_head, void *data) | ||
2378 | { | ||
2379 | int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; | ||
2380 | unsigned long flags; | ||
2381 | |||
2382 | /* | ||
2383 | * tell I/O scheduler that this isn't a regular read/write (ie it | ||
2384 | * must not attempt merges on this) and that it acts as a soft | ||
2385 | * barrier | ||
2386 | */ | ||
2387 | rq->cmd_type = REQ_TYPE_SPECIAL; | ||
2388 | rq->cmd_flags |= REQ_SOFTBARRIER; | ||
2389 | |||
2390 | rq->special = data; | ||
2391 | |||
2392 | spin_lock_irqsave(q->queue_lock, flags); | ||
2393 | |||
2394 | /* | ||
2395 | * If command is tagged, release the tag | ||
2396 | */ | ||
2397 | if (blk_rq_tagged(rq)) | ||
2398 | blk_queue_end_tag(q, rq); | ||
2399 | |||
2400 | drive_stat_acct(rq, 1); | ||
2401 | __elv_add_request(q, rq, where, 0); | ||
2402 | blk_start_queueing(q); | ||
2403 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
2404 | } | ||
2405 | |||
2406 | EXPORT_SYMBOL(blk_insert_request); | ||
2407 | |||
2408 | static int __blk_rq_unmap_user(struct bio *bio) | ||
2409 | { | ||
2410 | int ret = 0; | ||
2411 | |||
2412 | if (bio) { | ||
2413 | if (bio_flagged(bio, BIO_USER_MAPPED)) | ||
2414 | bio_unmap_user(bio); | ||
2415 | else | ||
2416 | ret = bio_uncopy_user(bio); | ||
2417 | } | ||
2418 | |||
2419 | return ret; | ||
2420 | } | ||
2421 | |||
2422 | int blk_rq_append_bio(struct request_queue *q, struct request *rq, | ||
2423 | struct bio *bio) | ||
2424 | { | ||
2425 | if (!rq->bio) | ||
2426 | blk_rq_bio_prep(q, rq, bio); | ||
2427 | else if (!ll_back_merge_fn(q, rq, bio)) | ||
2428 | return -EINVAL; | ||
2429 | else { | ||
2430 | rq->biotail->bi_next = bio; | ||
2431 | rq->biotail = bio; | ||
2432 | |||
2433 | rq->data_len += bio->bi_size; | ||
2434 | } | ||
2435 | return 0; | ||
2436 | } | ||
2437 | EXPORT_SYMBOL(blk_rq_append_bio); | ||
2438 | |||
2439 | static int __blk_rq_map_user(struct request_queue *q, struct request *rq, | ||
2440 | void __user *ubuf, unsigned int len) | ||
2441 | { | ||
2442 | unsigned long uaddr; | ||
2443 | struct bio *bio, *orig_bio; | ||
2444 | int reading, ret; | ||
2445 | |||
2446 | reading = rq_data_dir(rq) == READ; | ||
2447 | |||
2448 | /* | ||
2449 | * if alignment requirement is satisfied, map in user pages for | ||
2450 | * direct dma. else, set up kernel bounce buffers | ||
2451 | */ | ||
2452 | uaddr = (unsigned long) ubuf; | ||
2453 | if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q))) | ||
2454 | bio = bio_map_user(q, NULL, uaddr, len, reading); | ||
2455 | else | ||
2456 | bio = bio_copy_user(q, uaddr, len, reading); | ||
2457 | |||
2458 | if (IS_ERR(bio)) | ||
2459 | return PTR_ERR(bio); | ||
2460 | |||
2461 | orig_bio = bio; | ||
2462 | blk_queue_bounce(q, &bio); | ||
2463 | |||
2464 | /* | ||
2465 | * We link the bounce buffer in and could have to traverse it | ||
2466 | * later so we have to get a ref to prevent it from being freed | ||
2467 | */ | ||
2468 | bio_get(bio); | ||
2469 | |||
2470 | ret = blk_rq_append_bio(q, rq, bio); | ||
2471 | if (!ret) | ||
2472 | return bio->bi_size; | ||
2473 | |||
2474 | /* if it was boucned we must call the end io function */ | ||
2475 | bio_endio(bio, 0); | ||
2476 | __blk_rq_unmap_user(orig_bio); | ||
2477 | bio_put(bio); | ||
2478 | return ret; | ||
2479 | } | ||
2480 | |||
2481 | /** | ||
2482 | * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage | ||
2483 | * @q: request queue where request should be inserted | ||
2484 | * @rq: request structure to fill | ||
2485 | * @ubuf: the user buffer | ||
2486 | * @len: length of user data | ||
2487 | * | ||
2488 | * Description: | ||
2489 | * Data will be mapped directly for zero copy io, if possible. Otherwise | ||
2490 | * a kernel bounce buffer is used. | ||
2491 | * | ||
2492 | * A matching blk_rq_unmap_user() must be issued at the end of io, while | ||
2493 | * still in process context. | ||
2494 | * | ||
2495 | * Note: The mapped bio may need to be bounced through blk_queue_bounce() | ||
2496 | * before being submitted to the device, as pages mapped may be out of | ||
2497 | * reach. It's the callers responsibility to make sure this happens. The | ||
2498 | * original bio must be passed back in to blk_rq_unmap_user() for proper | ||
2499 | * unmapping. | ||
2500 | */ | ||
2501 | int blk_rq_map_user(struct request_queue *q, struct request *rq, | ||
2502 | void __user *ubuf, unsigned long len) | ||
2503 | { | ||
2504 | unsigned long bytes_read = 0; | ||
2505 | struct bio *bio = NULL; | ||
2506 | int ret; | ||
2507 | |||
2508 | if (len > (q->max_hw_sectors << 9)) | ||
2509 | return -EINVAL; | ||
2510 | if (!len || !ubuf) | ||
2511 | return -EINVAL; | ||
2512 | |||
2513 | while (bytes_read != len) { | ||
2514 | unsigned long map_len, end, start; | ||
2515 | |||
2516 | map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE); | ||
2517 | end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1) | ||
2518 | >> PAGE_SHIFT; | ||
2519 | start = (unsigned long)ubuf >> PAGE_SHIFT; | ||
2520 | |||
2521 | /* | ||
2522 | * A bad offset could cause us to require BIO_MAX_PAGES + 1 | ||
2523 | * pages. If this happens we just lower the requested | ||
2524 | * mapping len by a page so that we can fit | ||
2525 | */ | ||
2526 | if (end - start > BIO_MAX_PAGES) | ||
2527 | map_len -= PAGE_SIZE; | ||
2528 | |||
2529 | ret = __blk_rq_map_user(q, rq, ubuf, map_len); | ||
2530 | if (ret < 0) | ||
2531 | goto unmap_rq; | ||
2532 | if (!bio) | ||
2533 | bio = rq->bio; | ||
2534 | bytes_read += ret; | ||
2535 | ubuf += ret; | ||
2536 | } | ||
2537 | |||
2538 | rq->buffer = rq->data = NULL; | ||
2539 | return 0; | ||
2540 | unmap_rq: | ||
2541 | blk_rq_unmap_user(bio); | ||
2542 | return ret; | ||
2543 | } | ||
2544 | |||
2545 | EXPORT_SYMBOL(blk_rq_map_user); | ||
2546 | |||
2547 | /** | ||
2548 | * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage | ||
2549 | * @q: request queue where request should be inserted | ||
2550 | * @rq: request to map data to | ||
2551 | * @iov: pointer to the iovec | ||
2552 | * @iov_count: number of elements in the iovec | ||
2553 | * @len: I/O byte count | ||
2554 | * | ||
2555 | * Description: | ||
2556 | * Data will be mapped directly for zero copy io, if possible. Otherwise | ||
2557 | * a kernel bounce buffer is used. | ||
2558 | * | ||
2559 | * A matching blk_rq_unmap_user() must be issued at the end of io, while | ||
2560 | * still in process context. | ||
2561 | * | ||
2562 | * Note: The mapped bio may need to be bounced through blk_queue_bounce() | ||
2563 | * before being submitted to the device, as pages mapped may be out of | ||
2564 | * reach. It's the callers responsibility to make sure this happens. The | ||
2565 | * original bio must be passed back in to blk_rq_unmap_user() for proper | ||
2566 | * unmapping. | ||
2567 | */ | ||
2568 | int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, | ||
2569 | struct sg_iovec *iov, int iov_count, unsigned int len) | ||
2570 | { | ||
2571 | struct bio *bio; | ||
2572 | |||
2573 | if (!iov || iov_count <= 0) | ||
2574 | return -EINVAL; | ||
2575 | |||
2576 | /* we don't allow misaligned data like bio_map_user() does. If the | ||
2577 | * user is using sg, they're expected to know the alignment constraints | ||
2578 | * and respect them accordingly */ | ||
2579 | bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ); | ||
2580 | if (IS_ERR(bio)) | ||
2581 | return PTR_ERR(bio); | ||
2582 | |||
2583 | if (bio->bi_size != len) { | ||
2584 | bio_endio(bio, 0); | ||
2585 | bio_unmap_user(bio); | ||
2586 | return -EINVAL; | ||
2587 | } | ||
2588 | |||
2589 | bio_get(bio); | ||
2590 | blk_rq_bio_prep(q, rq, bio); | ||
2591 | rq->buffer = rq->data = NULL; | ||
2592 | return 0; | ||
2593 | } | ||
2594 | |||
2595 | EXPORT_SYMBOL(blk_rq_map_user_iov); | ||
2596 | |||
2597 | /** | ||
2598 | * blk_rq_unmap_user - unmap a request with user data | ||
2599 | * @bio: start of bio list | ||
2600 | * | ||
2601 | * Description: | ||
2602 | * Unmap a rq previously mapped by blk_rq_map_user(). The caller must | ||
2603 | * supply the original rq->bio from the blk_rq_map_user() return, since | ||
2604 | * the io completion may have changed rq->bio. | ||
2605 | */ | ||
2606 | int blk_rq_unmap_user(struct bio *bio) | ||
2607 | { | ||
2608 | struct bio *mapped_bio; | ||
2609 | int ret = 0, ret2; | ||
2610 | |||
2611 | while (bio) { | ||
2612 | mapped_bio = bio; | ||
2613 | if (unlikely(bio_flagged(bio, BIO_BOUNCED))) | ||
2614 | mapped_bio = bio->bi_private; | ||
2615 | |||
2616 | ret2 = __blk_rq_unmap_user(mapped_bio); | ||
2617 | if (ret2 && !ret) | ||
2618 | ret = ret2; | ||
2619 | |||
2620 | mapped_bio = bio; | ||
2621 | bio = bio->bi_next; | ||
2622 | bio_put(mapped_bio); | ||
2623 | } | ||
2624 | |||
2625 | return ret; | ||
2626 | } | ||
2627 | |||
2628 | EXPORT_SYMBOL(blk_rq_unmap_user); | ||
2629 | |||
2630 | /** | ||
2631 | * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage | ||
2632 | * @q: request queue where request should be inserted | ||
2633 | * @rq: request to fill | ||
2634 | * @kbuf: the kernel buffer | ||
2635 | * @len: length of user data | ||
2636 | * @gfp_mask: memory allocation flags | ||
2637 | */ | ||
2638 | int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, | ||
2639 | unsigned int len, gfp_t gfp_mask) | ||
2640 | { | ||
2641 | struct bio *bio; | ||
2642 | |||
2643 | if (len > (q->max_hw_sectors << 9)) | ||
2644 | return -EINVAL; | ||
2645 | if (!len || !kbuf) | ||
2646 | return -EINVAL; | ||
2647 | |||
2648 | bio = bio_map_kern(q, kbuf, len, gfp_mask); | ||
2649 | if (IS_ERR(bio)) | ||
2650 | return PTR_ERR(bio); | ||
2651 | |||
2652 | if (rq_data_dir(rq) == WRITE) | ||
2653 | bio->bi_rw |= (1 << BIO_RW); | ||
2654 | |||
2655 | blk_rq_bio_prep(q, rq, bio); | ||
2656 | blk_queue_bounce(q, &rq->bio); | ||
2657 | rq->buffer = rq->data = NULL; | ||
2658 | return 0; | ||
2659 | } | ||
2660 | |||
2661 | EXPORT_SYMBOL(blk_rq_map_kern); | ||
2662 | |||
2663 | /** | ||
2664 | * blk_execute_rq_nowait - insert a request into queue for execution | ||
2665 | * @q: queue to insert the request in | ||
2666 | * @bd_disk: matching gendisk | ||
2667 | * @rq: request to insert | ||
2668 | * @at_head: insert request at head or tail of queue | ||
2669 | * @done: I/O completion handler | ||
2670 | * | ||
2671 | * Description: | ||
2672 | * Insert a fully prepared request at the back of the io scheduler queue | ||
2673 | * for execution. Don't wait for completion. | ||
2674 | */ | ||
2675 | void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk, | ||
2676 | struct request *rq, int at_head, | ||
2677 | rq_end_io_fn *done) | ||
2678 | { | ||
2679 | int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; | ||
2680 | |||
2681 | rq->rq_disk = bd_disk; | ||
2682 | rq->cmd_flags |= REQ_NOMERGE; | ||
2683 | rq->end_io = done; | ||
2684 | WARN_ON(irqs_disabled()); | ||
2685 | spin_lock_irq(q->queue_lock); | ||
2686 | __elv_add_request(q, rq, where, 1); | ||
2687 | __generic_unplug_device(q); | ||
2688 | spin_unlock_irq(q->queue_lock); | ||
2689 | } | ||
2690 | EXPORT_SYMBOL_GPL(blk_execute_rq_nowait); | ||
2691 | |||
2692 | /** | ||
2693 | * blk_execute_rq - insert a request into queue for execution | ||
2694 | * @q: queue to insert the request in | ||
2695 | * @bd_disk: matching gendisk | ||
2696 | * @rq: request to insert | ||
2697 | * @at_head: insert request at head or tail of queue | ||
2698 | * | ||
2699 | * Description: | ||
2700 | * Insert a fully prepared request at the back of the io scheduler queue | ||
2701 | * for execution and wait for completion. | ||
2702 | */ | ||
2703 | int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk, | ||
2704 | struct request *rq, int at_head) | ||
2705 | { | ||
2706 | DECLARE_COMPLETION_ONSTACK(wait); | ||
2707 | char sense[SCSI_SENSE_BUFFERSIZE]; | ||
2708 | int err = 0; | ||
2709 | |||
2710 | /* | ||
2711 | * we need an extra reference to the request, so we can look at | ||
2712 | * it after io completion | ||
2713 | */ | ||
2714 | rq->ref_count++; | ||
2715 | |||
2716 | if (!rq->sense) { | ||
2717 | memset(sense, 0, sizeof(sense)); | ||
2718 | rq->sense = sense; | ||
2719 | rq->sense_len = 0; | ||
2720 | } | ||
2721 | |||
2722 | rq->end_io_data = &wait; | ||
2723 | blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq); | ||
2724 | wait_for_completion(&wait); | ||
2725 | |||
2726 | if (rq->errors) | ||
2727 | err = -EIO; | ||
2728 | |||
2729 | return err; | ||
2730 | } | ||
2731 | |||
2732 | EXPORT_SYMBOL(blk_execute_rq); | ||
2733 | |||
2734 | static void bio_end_empty_barrier(struct bio *bio, int err) | ||
2735 | { | ||
2736 | if (err) | ||
2737 | clear_bit(BIO_UPTODATE, &bio->bi_flags); | ||
2738 | |||
2739 | complete(bio->bi_private); | ||
2740 | } | ||
2741 | |||
2742 | /** | ||
2743 | * blkdev_issue_flush - queue a flush | ||
2744 | * @bdev: blockdev to issue flush for | ||
2745 | * @error_sector: error sector | ||
2746 | * | ||
2747 | * Description: | ||
2748 | * Issue a flush for the block device in question. Caller can supply | ||
2749 | * room for storing the error offset in case of a flush error, if they | ||
2750 | * wish to. Caller must run wait_for_completion() on its own. | ||
2751 | */ | ||
2752 | int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector) | ||
2753 | { | ||
2754 | DECLARE_COMPLETION_ONSTACK(wait); | ||
2755 | struct request_queue *q; | ||
2756 | struct bio *bio; | ||
2757 | int ret; | ||
2758 | |||
2759 | if (bdev->bd_disk == NULL) | ||
2760 | return -ENXIO; | ||
2761 | |||
2762 | q = bdev_get_queue(bdev); | ||
2763 | if (!q) | ||
2764 | return -ENXIO; | ||
2765 | |||
2766 | bio = bio_alloc(GFP_KERNEL, 0); | ||
2767 | if (!bio) | ||
2768 | return -ENOMEM; | ||
2769 | |||
2770 | bio->bi_end_io = bio_end_empty_barrier; | ||
2771 | bio->bi_private = &wait; | ||
2772 | bio->bi_bdev = bdev; | ||
2773 | submit_bio(1 << BIO_RW_BARRIER, bio); | ||
2774 | |||
2775 | wait_for_completion(&wait); | ||
2776 | |||
2777 | /* | ||
2778 | * The driver must store the error location in ->bi_sector, if | ||
2779 | * it supports it. For non-stacked drivers, this should be copied | ||
2780 | * from rq->sector. | ||
2781 | */ | ||
2782 | if (error_sector) | ||
2783 | *error_sector = bio->bi_sector; | ||
2784 | |||
2785 | ret = 0; | ||
2786 | if (!bio_flagged(bio, BIO_UPTODATE)) | ||
2787 | ret = -EIO; | ||
2788 | |||
2789 | bio_put(bio); | ||
2790 | return ret; | ||
2791 | } | ||
2792 | |||
2793 | EXPORT_SYMBOL(blkdev_issue_flush); | ||
2794 | |||
2795 | static void drive_stat_acct(struct request *rq, int new_io) | ||
2796 | { | ||
2797 | int rw = rq_data_dir(rq); | ||
2798 | |||
2799 | if (!blk_fs_request(rq) || !rq->rq_disk) | ||
2800 | return; | ||
2801 | |||
2802 | if (!new_io) { | ||
2803 | __disk_stat_inc(rq->rq_disk, merges[rw]); | ||
2804 | } else { | ||
2805 | disk_round_stats(rq->rq_disk); | ||
2806 | rq->rq_disk->in_flight++; | ||
2807 | } | ||
2808 | } | ||
2809 | |||
2810 | /* | ||
2811 | * add-request adds a request to the linked list. | ||
2812 | * queue lock is held and interrupts disabled, as we muck with the | ||
2813 | * request queue list. | ||
2814 | */ | ||
2815 | static inline void add_request(struct request_queue * q, struct request * req) | ||
2816 | { | ||
2817 | drive_stat_acct(req, 1); | ||
2818 | |||
2819 | /* | ||
2820 | * elevator indicated where it wants this request to be | ||
2821 | * inserted at elevator_merge time | ||
2822 | */ | ||
2823 | __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); | ||
2824 | } | ||
2825 | |||
2826 | /* | ||
2827 | * disk_round_stats() - Round off the performance stats on a struct | ||
2828 | * disk_stats. | ||
2829 | * | ||
2830 | * The average IO queue length and utilisation statistics are maintained | ||
2831 | * by observing the current state of the queue length and the amount of | ||
2832 | * time it has been in this state for. | ||
2833 | * | ||
2834 | * Normally, that accounting is done on IO completion, but that can result | ||
2835 | * in more than a second's worth of IO being accounted for within any one | ||
2836 | * second, leading to >100% utilisation. To deal with that, we call this | ||
2837 | * function to do a round-off before returning the results when reading | ||
2838 | * /proc/diskstats. This accounts immediately for all queue usage up to | ||
2839 | * the current jiffies and restarts the counters again. | ||
2840 | */ | ||
2841 | void disk_round_stats(struct gendisk *disk) | ||
2842 | { | ||
2843 | unsigned long now = jiffies; | ||
2844 | |||
2845 | if (now == disk->stamp) | ||
2846 | return; | ||
2847 | |||
2848 | if (disk->in_flight) { | ||
2849 | __disk_stat_add(disk, time_in_queue, | ||
2850 | disk->in_flight * (now - disk->stamp)); | ||
2851 | __disk_stat_add(disk, io_ticks, (now - disk->stamp)); | ||
2852 | } | ||
2853 | disk->stamp = now; | ||
2854 | } | ||
2855 | |||
2856 | EXPORT_SYMBOL_GPL(disk_round_stats); | ||
2857 | |||
2858 | /* | ||
2859 | * queue lock must be held | ||
2860 | */ | ||
2861 | void __blk_put_request(struct request_queue *q, struct request *req) | ||
2862 | { | ||
2863 | if (unlikely(!q)) | ||
2864 | return; | ||
2865 | if (unlikely(--req->ref_count)) | ||
2866 | return; | ||
2867 | |||
2868 | elv_completed_request(q, req); | ||
2869 | |||
2870 | /* | ||
2871 | * Request may not have originated from ll_rw_blk. if not, | ||
2872 | * it didn't come out of our reserved rq pools | ||
2873 | */ | ||
2874 | if (req->cmd_flags & REQ_ALLOCED) { | ||
2875 | int rw = rq_data_dir(req); | ||
2876 | int priv = req->cmd_flags & REQ_ELVPRIV; | ||
2877 | |||
2878 | BUG_ON(!list_empty(&req->queuelist)); | ||
2879 | BUG_ON(!hlist_unhashed(&req->hash)); | ||
2880 | |||
2881 | blk_free_request(q, req); | ||
2882 | freed_request(q, rw, priv); | ||
2883 | } | ||
2884 | } | ||
2885 | |||
2886 | EXPORT_SYMBOL_GPL(__blk_put_request); | ||
2887 | |||
2888 | void blk_put_request(struct request *req) | ||
2889 | { | ||
2890 | unsigned long flags; | ||
2891 | struct request_queue *q = req->q; | ||
2892 | |||
2893 | /* | ||
2894 | * Gee, IDE calls in w/ NULL q. Fix IDE and remove the | ||
2895 | * following if (q) test. | ||
2896 | */ | ||
2897 | if (q) { | ||
2898 | spin_lock_irqsave(q->queue_lock, flags); | ||
2899 | __blk_put_request(q, req); | ||
2900 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
2901 | } | ||
2902 | } | ||
2903 | |||
2904 | EXPORT_SYMBOL(blk_put_request); | ||
2905 | |||
2906 | /** | ||
2907 | * blk_end_sync_rq - executes a completion event on a request | ||
2908 | * @rq: request to complete | ||
2909 | * @error: end io status of the request | ||
2910 | */ | ||
2911 | void blk_end_sync_rq(struct request *rq, int error) | ||
2912 | { | ||
2913 | struct completion *waiting = rq->end_io_data; | ||
2914 | |||
2915 | rq->end_io_data = NULL; | ||
2916 | __blk_put_request(rq->q, rq); | ||
2917 | |||
2918 | /* | ||
2919 | * complete last, if this is a stack request the process (and thus | ||
2920 | * the rq pointer) could be invalid right after this complete() | ||
2921 | */ | ||
2922 | complete(waiting); | ||
2923 | } | ||
2924 | EXPORT_SYMBOL(blk_end_sync_rq); | ||
2925 | |||
2926 | /* | ||
2927 | * Has to be called with the request spinlock acquired | ||
2928 | */ | ||
2929 | static int attempt_merge(struct request_queue *q, struct request *req, | ||
2930 | struct request *next) | ||
2931 | { | ||
2932 | if (!rq_mergeable(req) || !rq_mergeable(next)) | ||
2933 | return 0; | ||
2934 | |||
2935 | /* | ||
2936 | * not contiguous | ||
2937 | */ | ||
2938 | if (req->sector + req->nr_sectors != next->sector) | ||
2939 | return 0; | ||
2940 | |||
2941 | if (rq_data_dir(req) != rq_data_dir(next) | ||
2942 | || req->rq_disk != next->rq_disk | ||
2943 | || next->special) | ||
2944 | return 0; | ||
2945 | |||
2946 | /* | ||
2947 | * If we are allowed to merge, then append bio list | ||
2948 | * from next to rq and release next. merge_requests_fn | ||
2949 | * will have updated segment counts, update sector | ||
2950 | * counts here. | ||
2951 | */ | ||
2952 | if (!ll_merge_requests_fn(q, req, next)) | ||
2953 | return 0; | ||
2954 | |||
2955 | /* | ||
2956 | * At this point we have either done a back merge | ||
2957 | * or front merge. We need the smaller start_time of | ||
2958 | * the merged requests to be the current request | ||
2959 | * for accounting purposes. | ||
2960 | */ | ||
2961 | if (time_after(req->start_time, next->start_time)) | ||
2962 | req->start_time = next->start_time; | ||
2963 | |||
2964 | req->biotail->bi_next = next->bio; | ||
2965 | req->biotail = next->biotail; | ||
2966 | |||
2967 | req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors; | ||
2968 | |||
2969 | elv_merge_requests(q, req, next); | ||
2970 | |||
2971 | if (req->rq_disk) { | ||
2972 | disk_round_stats(req->rq_disk); | ||
2973 | req->rq_disk->in_flight--; | ||
2974 | } | ||
2975 | |||
2976 | req->ioprio = ioprio_best(req->ioprio, next->ioprio); | ||
2977 | |||
2978 | __blk_put_request(q, next); | ||
2979 | return 1; | ||
2980 | } | ||
2981 | |||
2982 | static inline int attempt_back_merge(struct request_queue *q, | ||
2983 | struct request *rq) | ||
2984 | { | ||
2985 | struct request *next = elv_latter_request(q, rq); | ||
2986 | |||
2987 | if (next) | ||
2988 | return attempt_merge(q, rq, next); | ||
2989 | |||
2990 | return 0; | ||
2991 | } | ||
2992 | |||
2993 | static inline int attempt_front_merge(struct request_queue *q, | ||
2994 | struct request *rq) | ||
2995 | { | ||
2996 | struct request *prev = elv_former_request(q, rq); | ||
2997 | |||
2998 | if (prev) | ||
2999 | return attempt_merge(q, prev, rq); | ||
3000 | |||
3001 | return 0; | ||
3002 | } | ||
3003 | |||
3004 | static void init_request_from_bio(struct request *req, struct bio *bio) | ||
3005 | { | ||
3006 | req->cmd_type = REQ_TYPE_FS; | ||
3007 | |||
3008 | /* | ||
3009 | * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) | ||
3010 | */ | ||
3011 | if (bio_rw_ahead(bio) || bio_failfast(bio)) | ||
3012 | req->cmd_flags |= REQ_FAILFAST; | ||
3013 | |||
3014 | /* | ||
3015 | * REQ_BARRIER implies no merging, but lets make it explicit | ||
3016 | */ | ||
3017 | if (unlikely(bio_barrier(bio))) | ||
3018 | req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); | ||
3019 | |||
3020 | if (bio_sync(bio)) | ||
3021 | req->cmd_flags |= REQ_RW_SYNC; | ||
3022 | if (bio_rw_meta(bio)) | ||
3023 | req->cmd_flags |= REQ_RW_META; | ||
3024 | |||
3025 | req->errors = 0; | ||
3026 | req->hard_sector = req->sector = bio->bi_sector; | ||
3027 | req->ioprio = bio_prio(bio); | ||
3028 | req->start_time = jiffies; | ||
3029 | blk_rq_bio_prep(req->q, req, bio); | ||
3030 | } | ||
3031 | |||
3032 | static int __make_request(struct request_queue *q, struct bio *bio) | ||
3033 | { | ||
3034 | struct request *req; | ||
3035 | int el_ret, nr_sectors, barrier, err; | ||
3036 | const unsigned short prio = bio_prio(bio); | ||
3037 | const int sync = bio_sync(bio); | ||
3038 | int rw_flags; | ||
3039 | |||
3040 | nr_sectors = bio_sectors(bio); | ||
3041 | |||
3042 | /* | ||
3043 | * low level driver can indicate that it wants pages above a | ||
3044 | * certain limit bounced to low memory (ie for highmem, or even | ||
3045 | * ISA dma in theory) | ||
3046 | */ | ||
3047 | blk_queue_bounce(q, &bio); | ||
3048 | |||
3049 | barrier = bio_barrier(bio); | ||
3050 | if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) { | ||
3051 | err = -EOPNOTSUPP; | ||
3052 | goto end_io; | ||
3053 | } | ||
3054 | |||
3055 | spin_lock_irq(q->queue_lock); | ||
3056 | |||
3057 | if (unlikely(barrier) || elv_queue_empty(q)) | ||
3058 | goto get_rq; | ||
3059 | |||
3060 | el_ret = elv_merge(q, &req, bio); | ||
3061 | switch (el_ret) { | ||
3062 | case ELEVATOR_BACK_MERGE: | ||
3063 | BUG_ON(!rq_mergeable(req)); | ||
3064 | |||
3065 | if (!ll_back_merge_fn(q, req, bio)) | ||
3066 | break; | ||
3067 | |||
3068 | blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); | ||
3069 | |||
3070 | req->biotail->bi_next = bio; | ||
3071 | req->biotail = bio; | ||
3072 | req->nr_sectors = req->hard_nr_sectors += nr_sectors; | ||
3073 | req->ioprio = ioprio_best(req->ioprio, prio); | ||
3074 | drive_stat_acct(req, 0); | ||
3075 | if (!attempt_back_merge(q, req)) | ||
3076 | elv_merged_request(q, req, el_ret); | ||
3077 | goto out; | ||
3078 | |||
3079 | case ELEVATOR_FRONT_MERGE: | ||
3080 | BUG_ON(!rq_mergeable(req)); | ||
3081 | |||
3082 | if (!ll_front_merge_fn(q, req, bio)) | ||
3083 | break; | ||
3084 | |||
3085 | blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); | ||
3086 | |||
3087 | bio->bi_next = req->bio; | ||
3088 | req->bio = bio; | ||
3089 | |||
3090 | /* | ||
3091 | * may not be valid. if the low level driver said | ||
3092 | * it didn't need a bounce buffer then it better | ||
3093 | * not touch req->buffer either... | ||
3094 | */ | ||
3095 | req->buffer = bio_data(bio); | ||
3096 | req->current_nr_sectors = bio_cur_sectors(bio); | ||
3097 | req->hard_cur_sectors = req->current_nr_sectors; | ||
3098 | req->sector = req->hard_sector = bio->bi_sector; | ||
3099 | req->nr_sectors = req->hard_nr_sectors += nr_sectors; | ||
3100 | req->ioprio = ioprio_best(req->ioprio, prio); | ||
3101 | drive_stat_acct(req, 0); | ||
3102 | if (!attempt_front_merge(q, req)) | ||
3103 | elv_merged_request(q, req, el_ret); | ||
3104 | goto out; | ||
3105 | |||
3106 | /* ELV_NO_MERGE: elevator says don't/can't merge. */ | ||
3107 | default: | ||
3108 | ; | ||
3109 | } | ||
3110 | |||
3111 | get_rq: | ||
3112 | /* | ||
3113 | * This sync check and mask will be re-done in init_request_from_bio(), | ||
3114 | * but we need to set it earlier to expose the sync flag to the | ||
3115 | * rq allocator and io schedulers. | ||
3116 | */ | ||
3117 | rw_flags = bio_data_dir(bio); | ||
3118 | if (sync) | ||
3119 | rw_flags |= REQ_RW_SYNC; | ||
3120 | |||
3121 | /* | ||
3122 | * Grab a free request. This is might sleep but can not fail. | ||
3123 | * Returns with the queue unlocked. | ||
3124 | */ | ||
3125 | req = get_request_wait(q, rw_flags, bio); | ||
3126 | |||
3127 | /* | ||
3128 | * After dropping the lock and possibly sleeping here, our request | ||
3129 | * may now be mergeable after it had proven unmergeable (above). | ||
3130 | * We don't worry about that case for efficiency. It won't happen | ||
3131 | * often, and the elevators are able to handle it. | ||
3132 | */ | ||
3133 | init_request_from_bio(req, bio); | ||
3134 | |||
3135 | spin_lock_irq(q->queue_lock); | ||
3136 | if (elv_queue_empty(q)) | ||
3137 | blk_plug_device(q); | ||
3138 | add_request(q, req); | ||
3139 | out: | ||
3140 | if (sync) | ||
3141 | __generic_unplug_device(q); | ||
3142 | |||
3143 | spin_unlock_irq(q->queue_lock); | ||
3144 | return 0; | ||
3145 | |||
3146 | end_io: | ||
3147 | bio_endio(bio, err); | ||
3148 | return 0; | ||
3149 | } | ||
3150 | |||
3151 | /* | ||
3152 | * If bio->bi_dev is a partition, remap the location | ||
3153 | */ | ||
3154 | static inline void blk_partition_remap(struct bio *bio) | ||
3155 | { | ||
3156 | struct block_device *bdev = bio->bi_bdev; | ||
3157 | |||
3158 | if (bio_sectors(bio) && bdev != bdev->bd_contains) { | ||
3159 | struct hd_struct *p = bdev->bd_part; | ||
3160 | const int rw = bio_data_dir(bio); | ||
3161 | |||
3162 | p->sectors[rw] += bio_sectors(bio); | ||
3163 | p->ios[rw]++; | ||
3164 | |||
3165 | bio->bi_sector += p->start_sect; | ||
3166 | bio->bi_bdev = bdev->bd_contains; | ||
3167 | |||
3168 | blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio, | ||
3169 | bdev->bd_dev, bio->bi_sector, | ||
3170 | bio->bi_sector - p->start_sect); | ||
3171 | } | ||
3172 | } | ||
3173 | |||
3174 | static void handle_bad_sector(struct bio *bio) | ||
3175 | { | ||
3176 | char b[BDEVNAME_SIZE]; | ||
3177 | |||
3178 | printk(KERN_INFO "attempt to access beyond end of device\n"); | ||
3179 | printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", | ||
3180 | bdevname(bio->bi_bdev, b), | ||
3181 | bio->bi_rw, | ||
3182 | (unsigned long long)bio->bi_sector + bio_sectors(bio), | ||
3183 | (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); | ||
3184 | |||
3185 | set_bit(BIO_EOF, &bio->bi_flags); | ||
3186 | } | ||
3187 | |||
3188 | #ifdef CONFIG_FAIL_MAKE_REQUEST | ||
3189 | |||
3190 | static DECLARE_FAULT_ATTR(fail_make_request); | ||
3191 | |||
3192 | static int __init setup_fail_make_request(char *str) | ||
3193 | { | ||
3194 | return setup_fault_attr(&fail_make_request, str); | ||
3195 | } | ||
3196 | __setup("fail_make_request=", setup_fail_make_request); | ||
3197 | |||
3198 | static int should_fail_request(struct bio *bio) | ||
3199 | { | ||
3200 | if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) || | ||
3201 | (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail)) | ||
3202 | return should_fail(&fail_make_request, bio->bi_size); | ||
3203 | |||
3204 | return 0; | ||
3205 | } | ||
3206 | |||
3207 | static int __init fail_make_request_debugfs(void) | ||
3208 | { | ||
3209 | return init_fault_attr_dentries(&fail_make_request, | ||
3210 | "fail_make_request"); | ||
3211 | } | ||
3212 | |||
3213 | late_initcall(fail_make_request_debugfs); | ||
3214 | |||
3215 | #else /* CONFIG_FAIL_MAKE_REQUEST */ | ||
3216 | |||
3217 | static inline int should_fail_request(struct bio *bio) | ||
3218 | { | ||
3219 | return 0; | ||
3220 | } | ||
3221 | |||
3222 | #endif /* CONFIG_FAIL_MAKE_REQUEST */ | ||
3223 | |||
3224 | /* | ||
3225 | * Check whether this bio extends beyond the end of the device. | ||
3226 | */ | ||
3227 | static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) | ||
3228 | { | ||
3229 | sector_t maxsector; | ||
3230 | |||
3231 | if (!nr_sectors) | ||
3232 | return 0; | ||
3233 | |||
3234 | /* Test device or partition size, when known. */ | ||
3235 | maxsector = bio->bi_bdev->bd_inode->i_size >> 9; | ||
3236 | if (maxsector) { | ||
3237 | sector_t sector = bio->bi_sector; | ||
3238 | |||
3239 | if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { | ||
3240 | /* | ||
3241 | * This may well happen - the kernel calls bread() | ||
3242 | * without checking the size of the device, e.g., when | ||
3243 | * mounting a device. | ||
3244 | */ | ||
3245 | handle_bad_sector(bio); | ||
3246 | return 1; | ||
3247 | } | ||
3248 | } | ||
3249 | |||
3250 | return 0; | ||
3251 | } | ||
3252 | |||
3253 | /** | ||
3254 | * generic_make_request: hand a buffer to its device driver for I/O | ||
3255 | * @bio: The bio describing the location in memory and on the device. | ||
3256 | * | ||
3257 | * generic_make_request() is used to make I/O requests of block | ||
3258 | * devices. It is passed a &struct bio, which describes the I/O that needs | ||
3259 | * to be done. | ||
3260 | * | ||
3261 | * generic_make_request() does not return any status. The | ||
3262 | * success/failure status of the request, along with notification of | ||
3263 | * completion, is delivered asynchronously through the bio->bi_end_io | ||
3264 | * function described (one day) else where. | ||
3265 | * | ||
3266 | * The caller of generic_make_request must make sure that bi_io_vec | ||
3267 | * are set to describe the memory buffer, and that bi_dev and bi_sector are | ||
3268 | * set to describe the device address, and the | ||
3269 | * bi_end_io and optionally bi_private are set to describe how | ||
3270 | * completion notification should be signaled. | ||
3271 | * | ||
3272 | * generic_make_request and the drivers it calls may use bi_next if this | ||
3273 | * bio happens to be merged with someone else, and may change bi_dev and | ||
3274 | * bi_sector for remaps as it sees fit. So the values of these fields | ||
3275 | * should NOT be depended on after the call to generic_make_request. | ||
3276 | */ | ||
3277 | static inline void __generic_make_request(struct bio *bio) | ||
3278 | { | ||
3279 | struct request_queue *q; | ||
3280 | sector_t old_sector; | ||
3281 | int ret, nr_sectors = bio_sectors(bio); | ||
3282 | dev_t old_dev; | ||
3283 | int err = -EIO; | ||
3284 | |||
3285 | might_sleep(); | ||
3286 | |||
3287 | if (bio_check_eod(bio, nr_sectors)) | ||
3288 | goto end_io; | ||
3289 | |||
3290 | /* | ||
3291 | * Resolve the mapping until finished. (drivers are | ||
3292 | * still free to implement/resolve their own stacking | ||
3293 | * by explicitly returning 0) | ||
3294 | * | ||
3295 | * NOTE: we don't repeat the blk_size check for each new device. | ||
3296 | * Stacking drivers are expected to know what they are doing. | ||
3297 | */ | ||
3298 | old_sector = -1; | ||
3299 | old_dev = 0; | ||
3300 | do { | ||
3301 | char b[BDEVNAME_SIZE]; | ||
3302 | |||
3303 | q = bdev_get_queue(bio->bi_bdev); | ||
3304 | if (!q) { | ||
3305 | printk(KERN_ERR | ||
3306 | "generic_make_request: Trying to access " | ||
3307 | "nonexistent block-device %s (%Lu)\n", | ||
3308 | bdevname(bio->bi_bdev, b), | ||
3309 | (long long) bio->bi_sector); | ||
3310 | end_io: | ||
3311 | bio_endio(bio, err); | ||
3312 | break; | ||
3313 | } | ||
3314 | |||
3315 | if (unlikely(nr_sectors > q->max_hw_sectors)) { | ||
3316 | printk("bio too big device %s (%u > %u)\n", | ||
3317 | bdevname(bio->bi_bdev, b), | ||
3318 | bio_sectors(bio), | ||
3319 | q->max_hw_sectors); | ||
3320 | goto end_io; | ||
3321 | } | ||
3322 | |||
3323 | if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) | ||
3324 | goto end_io; | ||
3325 | |||
3326 | if (should_fail_request(bio)) | ||
3327 | goto end_io; | ||
3328 | |||
3329 | /* | ||
3330 | * If this device has partitions, remap block n | ||
3331 | * of partition p to block n+start(p) of the disk. | ||
3332 | */ | ||
3333 | blk_partition_remap(bio); | ||
3334 | |||
3335 | if (old_sector != -1) | ||
3336 | blk_add_trace_remap(q, bio, old_dev, bio->bi_sector, | ||
3337 | old_sector); | ||
3338 | |||
3339 | blk_add_trace_bio(q, bio, BLK_TA_QUEUE); | ||
3340 | |||
3341 | old_sector = bio->bi_sector; | ||
3342 | old_dev = bio->bi_bdev->bd_dev; | ||
3343 | |||
3344 | if (bio_check_eod(bio, nr_sectors)) | ||
3345 | goto end_io; | ||
3346 | if (bio_empty_barrier(bio) && !q->prepare_flush_fn) { | ||
3347 | err = -EOPNOTSUPP; | ||
3348 | goto end_io; | ||
3349 | } | ||
3350 | |||
3351 | ret = q->make_request_fn(q, bio); | ||
3352 | } while (ret); | ||
3353 | } | ||
3354 | |||
3355 | /* | ||
3356 | * We only want one ->make_request_fn to be active at a time, | ||
3357 | * else stack usage with stacked devices could be a problem. | ||
3358 | * So use current->bio_{list,tail} to keep a list of requests | ||
3359 | * submited by a make_request_fn function. | ||
3360 | * current->bio_tail is also used as a flag to say if | ||
3361 | * generic_make_request is currently active in this task or not. | ||
3362 | * If it is NULL, then no make_request is active. If it is non-NULL, | ||
3363 | * then a make_request is active, and new requests should be added | ||
3364 | * at the tail | ||
3365 | */ | ||
3366 | void generic_make_request(struct bio *bio) | ||
3367 | { | ||
3368 | if (current->bio_tail) { | ||
3369 | /* make_request is active */ | ||
3370 | *(current->bio_tail) = bio; | ||
3371 | bio->bi_next = NULL; | ||
3372 | current->bio_tail = &bio->bi_next; | ||
3373 | return; | ||
3374 | } | ||
3375 | /* following loop may be a bit non-obvious, and so deserves some | ||
3376 | * explanation. | ||
3377 | * Before entering the loop, bio->bi_next is NULL (as all callers | ||
3378 | * ensure that) so we have a list with a single bio. | ||
3379 | * We pretend that we have just taken it off a longer list, so | ||
3380 | * we assign bio_list to the next (which is NULL) and bio_tail | ||
3381 | * to &bio_list, thus initialising the bio_list of new bios to be | ||
3382 | * added. __generic_make_request may indeed add some more bios | ||
3383 | * through a recursive call to generic_make_request. If it | ||
3384 | * did, we find a non-NULL value in bio_list and re-enter the loop | ||
3385 | * from the top. In this case we really did just take the bio | ||
3386 | * of the top of the list (no pretending) and so fixup bio_list and | ||
3387 | * bio_tail or bi_next, and call into __generic_make_request again. | ||
3388 | * | ||
3389 | * The loop was structured like this to make only one call to | ||
3390 | * __generic_make_request (which is important as it is large and | ||
3391 | * inlined) and to keep the structure simple. | ||
3392 | */ | ||
3393 | BUG_ON(bio->bi_next); | ||
3394 | do { | ||
3395 | current->bio_list = bio->bi_next; | ||
3396 | if (bio->bi_next == NULL) | ||
3397 | current->bio_tail = ¤t->bio_list; | ||
3398 | else | ||
3399 | bio->bi_next = NULL; | ||
3400 | __generic_make_request(bio); | ||
3401 | bio = current->bio_list; | ||
3402 | } while (bio); | ||
3403 | current->bio_tail = NULL; /* deactivate */ | ||
3404 | } | ||
3405 | |||
3406 | EXPORT_SYMBOL(generic_make_request); | ||
3407 | |||
3408 | /** | ||
3409 | * submit_bio: submit a bio to the block device layer for I/O | ||
3410 | * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) | ||
3411 | * @bio: The &struct bio which describes the I/O | ||
3412 | * | ||
3413 | * submit_bio() is very similar in purpose to generic_make_request(), and | ||
3414 | * uses that function to do most of the work. Both are fairly rough | ||
3415 | * interfaces, @bio must be presetup and ready for I/O. | ||
3416 | * | ||
3417 | */ | ||
3418 | void submit_bio(int rw, struct bio *bio) | ||
3419 | { | ||
3420 | int count = bio_sectors(bio); | ||
3421 | |||
3422 | bio->bi_rw |= rw; | ||
3423 | |||
3424 | /* | ||
3425 | * If it's a regular read/write or a barrier with data attached, | ||
3426 | * go through the normal accounting stuff before submission. | ||
3427 | */ | ||
3428 | if (!bio_empty_barrier(bio)) { | ||
3429 | |||
3430 | BIO_BUG_ON(!bio->bi_size); | ||
3431 | BIO_BUG_ON(!bio->bi_io_vec); | ||
3432 | |||
3433 | if (rw & WRITE) { | ||
3434 | count_vm_events(PGPGOUT, count); | ||
3435 | } else { | ||
3436 | task_io_account_read(bio->bi_size); | ||
3437 | count_vm_events(PGPGIN, count); | ||
3438 | } | ||
3439 | |||
3440 | if (unlikely(block_dump)) { | ||
3441 | char b[BDEVNAME_SIZE]; | ||
3442 | printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", | ||
3443 | current->comm, task_pid_nr(current), | ||
3444 | (rw & WRITE) ? "WRITE" : "READ", | ||
3445 | (unsigned long long)bio->bi_sector, | ||
3446 | bdevname(bio->bi_bdev,b)); | ||
3447 | } | ||
3448 | } | ||
3449 | |||
3450 | generic_make_request(bio); | ||
3451 | } | ||
3452 | |||
3453 | EXPORT_SYMBOL(submit_bio); | ||
3454 | |||
3455 | static void blk_recalc_rq_sectors(struct request *rq, int nsect) | ||
3456 | { | ||
3457 | if (blk_fs_request(rq)) { | ||
3458 | rq->hard_sector += nsect; | ||
3459 | rq->hard_nr_sectors -= nsect; | ||
3460 | |||
3461 | /* | ||
3462 | * Move the I/O submission pointers ahead if required. | ||
3463 | */ | ||
3464 | if ((rq->nr_sectors >= rq->hard_nr_sectors) && | ||
3465 | (rq->sector <= rq->hard_sector)) { | ||
3466 | rq->sector = rq->hard_sector; | ||
3467 | rq->nr_sectors = rq->hard_nr_sectors; | ||
3468 | rq->hard_cur_sectors = bio_cur_sectors(rq->bio); | ||
3469 | rq->current_nr_sectors = rq->hard_cur_sectors; | ||
3470 | rq->buffer = bio_data(rq->bio); | ||
3471 | } | ||
3472 | |||
3473 | /* | ||
3474 | * if total number of sectors is less than the first segment | ||
3475 | * size, something has gone terribly wrong | ||
3476 | */ | ||
3477 | if (rq->nr_sectors < rq->current_nr_sectors) { | ||
3478 | printk("blk: request botched\n"); | ||
3479 | rq->nr_sectors = rq->current_nr_sectors; | ||
3480 | } | ||
3481 | } | ||
3482 | } | ||
3483 | |||
3484 | /** | ||
3485 | * __end_that_request_first - end I/O on a request | ||
3486 | * @req: the request being processed | ||
3487 | * @error: 0 for success, < 0 for error | ||
3488 | * @nr_bytes: number of bytes to complete | ||
3489 | * | ||
3490 | * Description: | ||
3491 | * Ends I/O on a number of bytes attached to @req, and sets it up | ||
3492 | * for the next range of segments (if any) in the cluster. | ||
3493 | * | ||
3494 | * Return: | ||
3495 | * 0 - we are done with this request, call end_that_request_last() | ||
3496 | * 1 - still buffers pending for this request | ||
3497 | **/ | ||
3498 | static int __end_that_request_first(struct request *req, int error, | ||
3499 | int nr_bytes) | ||
3500 | { | ||
3501 | int total_bytes, bio_nbytes, next_idx = 0; | ||
3502 | struct bio *bio; | ||
3503 | |||
3504 | blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE); | ||
3505 | |||
3506 | /* | ||
3507 | * for a REQ_BLOCK_PC request, we want to carry any eventual | ||
3508 | * sense key with us all the way through | ||
3509 | */ | ||
3510 | if (!blk_pc_request(req)) | ||
3511 | req->errors = 0; | ||
3512 | |||
3513 | if (error) { | ||
3514 | if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET)) | ||
3515 | printk("end_request: I/O error, dev %s, sector %llu\n", | ||
3516 | req->rq_disk ? req->rq_disk->disk_name : "?", | ||
3517 | (unsigned long long)req->sector); | ||
3518 | } | ||
3519 | |||
3520 | if (blk_fs_request(req) && req->rq_disk) { | ||
3521 | const int rw = rq_data_dir(req); | ||
3522 | |||
3523 | disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9); | ||
3524 | } | ||
3525 | |||
3526 | total_bytes = bio_nbytes = 0; | ||
3527 | while ((bio = req->bio) != NULL) { | ||
3528 | int nbytes; | ||
3529 | |||
3530 | /* | ||
3531 | * For an empty barrier request, the low level driver must | ||
3532 | * store a potential error location in ->sector. We pass | ||
3533 | * that back up in ->bi_sector. | ||
3534 | */ | ||
3535 | if (blk_empty_barrier(req)) | ||
3536 | bio->bi_sector = req->sector; | ||
3537 | |||
3538 | if (nr_bytes >= bio->bi_size) { | ||
3539 | req->bio = bio->bi_next; | ||
3540 | nbytes = bio->bi_size; | ||
3541 | req_bio_endio(req, bio, nbytes, error); | ||
3542 | next_idx = 0; | ||
3543 | bio_nbytes = 0; | ||
3544 | } else { | ||
3545 | int idx = bio->bi_idx + next_idx; | ||
3546 | |||
3547 | if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { | ||
3548 | blk_dump_rq_flags(req, "__end_that"); | ||
3549 | printk("%s: bio idx %d >= vcnt %d\n", | ||
3550 | __FUNCTION__, | ||
3551 | bio->bi_idx, bio->bi_vcnt); | ||
3552 | break; | ||
3553 | } | ||
3554 | |||
3555 | nbytes = bio_iovec_idx(bio, idx)->bv_len; | ||
3556 | BIO_BUG_ON(nbytes > bio->bi_size); | ||
3557 | |||
3558 | /* | ||
3559 | * not a complete bvec done | ||
3560 | */ | ||
3561 | if (unlikely(nbytes > nr_bytes)) { | ||
3562 | bio_nbytes += nr_bytes; | ||
3563 | total_bytes += nr_bytes; | ||
3564 | break; | ||
3565 | } | ||
3566 | |||
3567 | /* | ||
3568 | * advance to the next vector | ||
3569 | */ | ||
3570 | next_idx++; | ||
3571 | bio_nbytes += nbytes; | ||
3572 | } | ||
3573 | |||
3574 | total_bytes += nbytes; | ||
3575 | nr_bytes -= nbytes; | ||
3576 | |||
3577 | if ((bio = req->bio)) { | ||
3578 | /* | ||
3579 | * end more in this run, or just return 'not-done' | ||
3580 | */ | ||
3581 | if (unlikely(nr_bytes <= 0)) | ||
3582 | break; | ||
3583 | } | ||
3584 | } | ||
3585 | |||
3586 | /* | ||
3587 | * completely done | ||
3588 | */ | ||
3589 | if (!req->bio) | ||
3590 | return 0; | ||
3591 | |||
3592 | /* | ||
3593 | * if the request wasn't completed, update state | ||
3594 | */ | ||
3595 | if (bio_nbytes) { | ||
3596 | req_bio_endio(req, bio, bio_nbytes, error); | ||
3597 | bio->bi_idx += next_idx; | ||
3598 | bio_iovec(bio)->bv_offset += nr_bytes; | ||
3599 | bio_iovec(bio)->bv_len -= nr_bytes; | ||
3600 | } | ||
3601 | |||
3602 | blk_recalc_rq_sectors(req, total_bytes >> 9); | ||
3603 | blk_recalc_rq_segments(req); | ||
3604 | return 1; | ||
3605 | } | ||
3606 | |||
3607 | /* | ||
3608 | * splice the completion data to a local structure and hand off to | ||
3609 | * process_completion_queue() to complete the requests | ||
3610 | */ | ||
3611 | static void blk_done_softirq(struct softirq_action *h) | ||
3612 | { | ||
3613 | struct list_head *cpu_list, local_list; | ||
3614 | |||
3615 | local_irq_disable(); | ||
3616 | cpu_list = &__get_cpu_var(blk_cpu_done); | ||
3617 | list_replace_init(cpu_list, &local_list); | ||
3618 | local_irq_enable(); | ||
3619 | |||
3620 | while (!list_empty(&local_list)) { | ||
3621 | struct request *rq = list_entry(local_list.next, struct request, donelist); | ||
3622 | |||
3623 | list_del_init(&rq->donelist); | ||
3624 | rq->q->softirq_done_fn(rq); | ||
3625 | } | ||
3626 | } | ||
3627 | |||
3628 | static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action, | ||
3629 | void *hcpu) | ||
3630 | { | ||
3631 | /* | ||
3632 | * If a CPU goes away, splice its entries to the current CPU | ||
3633 | * and trigger a run of the softirq | ||
3634 | */ | ||
3635 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { | ||
3636 | int cpu = (unsigned long) hcpu; | ||
3637 | |||
3638 | local_irq_disable(); | ||
3639 | list_splice_init(&per_cpu(blk_cpu_done, cpu), | ||
3640 | &__get_cpu_var(blk_cpu_done)); | ||
3641 | raise_softirq_irqoff(BLOCK_SOFTIRQ); | ||
3642 | local_irq_enable(); | ||
3643 | } | ||
3644 | |||
3645 | return NOTIFY_OK; | ||
3646 | } | ||
3647 | |||
3648 | |||
3649 | static struct notifier_block blk_cpu_notifier __cpuinitdata = { | ||
3650 | .notifier_call = blk_cpu_notify, | ||
3651 | }; | ||
3652 | |||
3653 | /** | ||
3654 | * blk_complete_request - end I/O on a request | ||
3655 | * @req: the request being processed | ||
3656 | * | ||
3657 | * Description: | ||
3658 | * Ends all I/O on a request. It does not handle partial completions, | ||
3659 | * unless the driver actually implements this in its completion callback | ||
3660 | * through requeueing. The actual completion happens out-of-order, | ||
3661 | * through a softirq handler. The user must have registered a completion | ||
3662 | * callback through blk_queue_softirq_done(). | ||
3663 | **/ | ||
3664 | |||
3665 | void blk_complete_request(struct request *req) | ||
3666 | { | ||
3667 | struct list_head *cpu_list; | ||
3668 | unsigned long flags; | ||
3669 | |||
3670 | BUG_ON(!req->q->softirq_done_fn); | ||
3671 | |||
3672 | local_irq_save(flags); | ||
3673 | |||
3674 | cpu_list = &__get_cpu_var(blk_cpu_done); | ||
3675 | list_add_tail(&req->donelist, cpu_list); | ||
3676 | raise_softirq_irqoff(BLOCK_SOFTIRQ); | ||
3677 | |||
3678 | local_irq_restore(flags); | ||
3679 | } | ||
3680 | |||
3681 | EXPORT_SYMBOL(blk_complete_request); | ||
3682 | |||
3683 | /* | ||
3684 | * queue lock must be held | ||
3685 | */ | ||
3686 | static void end_that_request_last(struct request *req, int error) | ||
3687 | { | ||
3688 | struct gendisk *disk = req->rq_disk; | ||
3689 | |||
3690 | if (blk_rq_tagged(req)) | ||
3691 | blk_queue_end_tag(req->q, req); | ||
3692 | |||
3693 | if (blk_queued_rq(req)) | ||
3694 | blkdev_dequeue_request(req); | ||
3695 | |||
3696 | if (unlikely(laptop_mode) && blk_fs_request(req)) | ||
3697 | laptop_io_completion(); | ||
3698 | |||
3699 | /* | ||
3700 | * Account IO completion. bar_rq isn't accounted as a normal | ||
3701 | * IO on queueing nor completion. Accounting the containing | ||
3702 | * request is enough. | ||
3703 | */ | ||
3704 | if (disk && blk_fs_request(req) && req != &req->q->bar_rq) { | ||
3705 | unsigned long duration = jiffies - req->start_time; | ||
3706 | const int rw = rq_data_dir(req); | ||
3707 | |||
3708 | __disk_stat_inc(disk, ios[rw]); | ||
3709 | __disk_stat_add(disk, ticks[rw], duration); | ||
3710 | disk_round_stats(disk); | ||
3711 | disk->in_flight--; | ||
3712 | } | ||
3713 | |||
3714 | if (req->end_io) | ||
3715 | req->end_io(req, error); | ||
3716 | else { | ||
3717 | if (blk_bidi_rq(req)) | ||
3718 | __blk_put_request(req->next_rq->q, req->next_rq); | ||
3719 | |||
3720 | __blk_put_request(req->q, req); | ||
3721 | } | ||
3722 | } | ||
3723 | |||
3724 | static inline void __end_request(struct request *rq, int uptodate, | ||
3725 | unsigned int nr_bytes) | ||
3726 | { | ||
3727 | int error = 0; | ||
3728 | |||
3729 | if (uptodate <= 0) | ||
3730 | error = uptodate ? uptodate : -EIO; | ||
3731 | |||
3732 | __blk_end_request(rq, error, nr_bytes); | ||
3733 | } | ||
3734 | |||
3735 | /** | ||
3736 | * blk_rq_bytes - Returns bytes left to complete in the entire request | ||
3737 | **/ | ||
3738 | unsigned int blk_rq_bytes(struct request *rq) | ||
3739 | { | ||
3740 | if (blk_fs_request(rq)) | ||
3741 | return rq->hard_nr_sectors << 9; | ||
3742 | |||
3743 | return rq->data_len; | ||
3744 | } | ||
3745 | EXPORT_SYMBOL_GPL(blk_rq_bytes); | ||
3746 | |||
3747 | /** | ||
3748 | * blk_rq_cur_bytes - Returns bytes left to complete in the current segment | ||
3749 | **/ | ||
3750 | unsigned int blk_rq_cur_bytes(struct request *rq) | ||
3751 | { | ||
3752 | if (blk_fs_request(rq)) | ||
3753 | return rq->current_nr_sectors << 9; | ||
3754 | |||
3755 | if (rq->bio) | ||
3756 | return rq->bio->bi_size; | ||
3757 | |||
3758 | return rq->data_len; | ||
3759 | } | ||
3760 | EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); | ||
3761 | |||
3762 | /** | ||
3763 | * end_queued_request - end all I/O on a queued request | ||
3764 | * @rq: the request being processed | ||
3765 | * @uptodate: error value or 0/1 uptodate flag | ||
3766 | * | ||
3767 | * Description: | ||
3768 | * Ends all I/O on a request, and removes it from the block layer queues. | ||
3769 | * Not suitable for normal IO completion, unless the driver still has | ||
3770 | * the request attached to the block layer. | ||
3771 | * | ||
3772 | **/ | ||
3773 | void end_queued_request(struct request *rq, int uptodate) | ||
3774 | { | ||
3775 | __end_request(rq, uptodate, blk_rq_bytes(rq)); | ||
3776 | } | ||
3777 | EXPORT_SYMBOL(end_queued_request); | ||
3778 | |||
3779 | /** | ||
3780 | * end_dequeued_request - end all I/O on a dequeued request | ||
3781 | * @rq: the request being processed | ||
3782 | * @uptodate: error value or 0/1 uptodate flag | ||
3783 | * | ||
3784 | * Description: | ||
3785 | * Ends all I/O on a request. The request must already have been | ||
3786 | * dequeued using blkdev_dequeue_request(), as is normally the case | ||
3787 | * for most drivers. | ||
3788 | * | ||
3789 | **/ | ||
3790 | void end_dequeued_request(struct request *rq, int uptodate) | ||
3791 | { | ||
3792 | __end_request(rq, uptodate, blk_rq_bytes(rq)); | ||
3793 | } | ||
3794 | EXPORT_SYMBOL(end_dequeued_request); | ||
3795 | |||
3796 | |||
3797 | /** | ||
3798 | * end_request - end I/O on the current segment of the request | ||
3799 | * @req: the request being processed | ||
3800 | * @uptodate: error value or 0/1 uptodate flag | ||
3801 | * | ||
3802 | * Description: | ||
3803 | * Ends I/O on the current segment of a request. If that is the only | ||
3804 | * remaining segment, the request is also completed and freed. | ||
3805 | * | ||
3806 | * This is a remnant of how older block drivers handled IO completions. | ||
3807 | * Modern drivers typically end IO on the full request in one go, unless | ||
3808 | * they have a residual value to account for. For that case this function | ||
3809 | * isn't really useful, unless the residual just happens to be the | ||
3810 | * full current segment. In other words, don't use this function in new | ||
3811 | * code. Either use end_request_completely(), or the | ||
3812 | * end_that_request_chunk() (along with end_that_request_last()) for | ||
3813 | * partial completions. | ||
3814 | * | ||
3815 | **/ | ||
3816 | void end_request(struct request *req, int uptodate) | ||
3817 | { | ||
3818 | __end_request(req, uptodate, req->hard_cur_sectors << 9); | ||
3819 | } | ||
3820 | EXPORT_SYMBOL(end_request); | ||
3821 | |||
3822 | /** | ||
3823 | * blk_end_io - Generic end_io function to complete a request. | ||
3824 | * @rq: the request being processed | ||
3825 | * @error: 0 for success, < 0 for error | ||
3826 | * @nr_bytes: number of bytes to complete @rq | ||
3827 | * @bidi_bytes: number of bytes to complete @rq->next_rq | ||
3828 | * @drv_callback: function called between completion of bios in the request | ||
3829 | * and completion of the request. | ||
3830 | * If the callback returns non 0, this helper returns without | ||
3831 | * completion of the request. | ||
3832 | * | ||
3833 | * Description: | ||
3834 | * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. | ||
3835 | * If @rq has leftover, sets it up for the next range of segments. | ||
3836 | * | ||
3837 | * Return: | ||
3838 | * 0 - we are done with this request | ||
3839 | * 1 - this request is not freed yet, it still has pending buffers. | ||
3840 | **/ | ||
3841 | static int blk_end_io(struct request *rq, int error, int nr_bytes, | ||
3842 | int bidi_bytes, int (drv_callback)(struct request *)) | ||
3843 | { | ||
3844 | struct request_queue *q = rq->q; | ||
3845 | unsigned long flags = 0UL; | ||
3846 | |||
3847 | if (blk_fs_request(rq) || blk_pc_request(rq)) { | ||
3848 | if (__end_that_request_first(rq, error, nr_bytes)) | ||
3849 | return 1; | ||
3850 | |||
3851 | /* Bidi request must be completed as a whole */ | ||
3852 | if (blk_bidi_rq(rq) && | ||
3853 | __end_that_request_first(rq->next_rq, error, bidi_bytes)) | ||
3854 | return 1; | ||
3855 | } | ||
3856 | |||
3857 | /* Special feature for tricky drivers */ | ||
3858 | if (drv_callback && drv_callback(rq)) | ||
3859 | return 1; | ||
3860 | |||
3861 | add_disk_randomness(rq->rq_disk); | ||
3862 | |||
3863 | spin_lock_irqsave(q->queue_lock, flags); | ||
3864 | end_that_request_last(rq, error); | ||
3865 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
3866 | |||
3867 | return 0; | ||
3868 | } | ||
3869 | |||
3870 | /** | ||
3871 | * blk_end_request - Helper function for drivers to complete the request. | ||
3872 | * @rq: the request being processed | ||
3873 | * @error: 0 for success, < 0 for error | ||
3874 | * @nr_bytes: number of bytes to complete | ||
3875 | * | ||
3876 | * Description: | ||
3877 | * Ends I/O on a number of bytes attached to @rq. | ||
3878 | * If @rq has leftover, sets it up for the next range of segments. | ||
3879 | * | ||
3880 | * Return: | ||
3881 | * 0 - we are done with this request | ||
3882 | * 1 - still buffers pending for this request | ||
3883 | **/ | ||
3884 | int blk_end_request(struct request *rq, int error, int nr_bytes) | ||
3885 | { | ||
3886 | return blk_end_io(rq, error, nr_bytes, 0, NULL); | ||
3887 | } | ||
3888 | EXPORT_SYMBOL_GPL(blk_end_request); | ||
3889 | |||
3890 | /** | ||
3891 | * __blk_end_request - Helper function for drivers to complete the request. | ||
3892 | * @rq: the request being processed | ||
3893 | * @error: 0 for success, < 0 for error | ||
3894 | * @nr_bytes: number of bytes to complete | ||
3895 | * | ||
3896 | * Description: | ||
3897 | * Must be called with queue lock held unlike blk_end_request(). | ||
3898 | * | ||
3899 | * Return: | ||
3900 | * 0 - we are done with this request | ||
3901 | * 1 - still buffers pending for this request | ||
3902 | **/ | ||
3903 | int __blk_end_request(struct request *rq, int error, int nr_bytes) | ||
3904 | { | ||
3905 | if (blk_fs_request(rq) || blk_pc_request(rq)) { | ||
3906 | if (__end_that_request_first(rq, error, nr_bytes)) | ||
3907 | return 1; | ||
3908 | } | ||
3909 | |||
3910 | add_disk_randomness(rq->rq_disk); | ||
3911 | |||
3912 | end_that_request_last(rq, error); | ||
3913 | |||
3914 | return 0; | ||
3915 | } | ||
3916 | EXPORT_SYMBOL_GPL(__blk_end_request); | ||
3917 | |||
3918 | /** | ||
3919 | * blk_end_bidi_request - Helper function for drivers to complete bidi request. | ||
3920 | * @rq: the bidi request being processed | ||
3921 | * @error: 0 for success, < 0 for error | ||
3922 | * @nr_bytes: number of bytes to complete @rq | ||
3923 | * @bidi_bytes: number of bytes to complete @rq->next_rq | ||
3924 | * | ||
3925 | * Description: | ||
3926 | * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. | ||
3927 | * | ||
3928 | * Return: | ||
3929 | * 0 - we are done with this request | ||
3930 | * 1 - still buffers pending for this request | ||
3931 | **/ | ||
3932 | int blk_end_bidi_request(struct request *rq, int error, int nr_bytes, | ||
3933 | int bidi_bytes) | ||
3934 | { | ||
3935 | return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); | ||
3936 | } | ||
3937 | EXPORT_SYMBOL_GPL(blk_end_bidi_request); | ||
3938 | |||
3939 | /** | ||
3940 | * blk_end_request_callback - Special helper function for tricky drivers | ||
3941 | * @rq: the request being processed | ||
3942 | * @error: 0 for success, < 0 for error | ||
3943 | * @nr_bytes: number of bytes to complete | ||
3944 | * @drv_callback: function called between completion of bios in the request | ||
3945 | * and completion of the request. | ||
3946 | * If the callback returns non 0, this helper returns without | ||
3947 | * completion of the request. | ||
3948 | * | ||
3949 | * Description: | ||
3950 | * Ends I/O on a number of bytes attached to @rq. | ||
3951 | * If @rq has leftover, sets it up for the next range of segments. | ||
3952 | * | ||
3953 | * This special helper function is used only for existing tricky drivers. | ||
3954 | * (e.g. cdrom_newpc_intr() of ide-cd) | ||
3955 | * This interface will be removed when such drivers are rewritten. | ||
3956 | * Don't use this interface in other places anymore. | ||
3957 | * | ||
3958 | * Return: | ||
3959 | * 0 - we are done with this request | ||
3960 | * 1 - this request is not freed yet. | ||
3961 | * this request still has pending buffers or | ||
3962 | * the driver doesn't want to finish this request yet. | ||
3963 | **/ | ||
3964 | int blk_end_request_callback(struct request *rq, int error, int nr_bytes, | ||
3965 | int (drv_callback)(struct request *)) | ||
3966 | { | ||
3967 | return blk_end_io(rq, error, nr_bytes, 0, drv_callback); | ||
3968 | } | ||
3969 | EXPORT_SYMBOL_GPL(blk_end_request_callback); | ||
3970 | |||
3971 | static void blk_rq_bio_prep(struct request_queue *q, struct request *rq, | ||
3972 | struct bio *bio) | ||
3973 | { | ||
3974 | /* first two bits are identical in rq->cmd_flags and bio->bi_rw */ | ||
3975 | rq->cmd_flags |= (bio->bi_rw & 3); | ||
3976 | |||
3977 | rq->nr_phys_segments = bio_phys_segments(q, bio); | ||
3978 | rq->nr_hw_segments = bio_hw_segments(q, bio); | ||
3979 | rq->current_nr_sectors = bio_cur_sectors(bio); | ||
3980 | rq->hard_cur_sectors = rq->current_nr_sectors; | ||
3981 | rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); | ||
3982 | rq->buffer = bio_data(bio); | ||
3983 | rq->data_len = bio->bi_size; | ||
3984 | |||
3985 | rq->bio = rq->biotail = bio; | ||
3986 | |||
3987 | if (bio->bi_bdev) | ||
3988 | rq->rq_disk = bio->bi_bdev->bd_disk; | ||
3989 | } | ||
3990 | |||
3991 | int kblockd_schedule_work(struct work_struct *work) | ||
3992 | { | ||
3993 | return queue_work(kblockd_workqueue, work); | ||
3994 | } | ||
3995 | |||
3996 | EXPORT_SYMBOL(kblockd_schedule_work); | ||
3997 | |||
3998 | void kblockd_flush_work(struct work_struct *work) | ||
3999 | { | ||
4000 | cancel_work_sync(work); | ||
4001 | } | ||
4002 | EXPORT_SYMBOL(kblockd_flush_work); | ||
4003 | |||
4004 | int __init blk_dev_init(void) | ||
4005 | { | ||
4006 | int i; | ||
4007 | |||
4008 | kblockd_workqueue = create_workqueue("kblockd"); | ||
4009 | if (!kblockd_workqueue) | ||
4010 | panic("Failed to create kblockd\n"); | ||
4011 | |||
4012 | request_cachep = kmem_cache_create("blkdev_requests", | ||
4013 | sizeof(struct request), 0, SLAB_PANIC, NULL); | ||
4014 | |||
4015 | requestq_cachep = kmem_cache_create("blkdev_queue", | ||
4016 | sizeof(struct request_queue), 0, SLAB_PANIC, NULL); | ||
4017 | |||
4018 | iocontext_cachep = kmem_cache_create("blkdev_ioc", | ||
4019 | sizeof(struct io_context), 0, SLAB_PANIC, NULL); | ||
4020 | |||
4021 | for_each_possible_cpu(i) | ||
4022 | INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); | ||
4023 | |||
4024 | open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL); | ||
4025 | register_hotcpu_notifier(&blk_cpu_notifier); | ||
4026 | |||
4027 | blk_max_low_pfn = max_low_pfn - 1; | ||
4028 | blk_max_pfn = max_pfn - 1; | ||
4029 | |||
4030 | return 0; | ||
4031 | } | ||
4032 | |||
4033 | static void cfq_dtor(struct io_context *ioc) | ||
4034 | { | ||
4035 | struct cfq_io_context *cic[1]; | ||
4036 | int r; | ||
4037 | |||
4038 | /* | ||
4039 | * We don't have a specific key to lookup with, so use the gang | ||
4040 | * lookup to just retrieve the first item stored. The cfq exit | ||
4041 | * function will iterate the full tree, so any member will do. | ||
4042 | */ | ||
4043 | r = radix_tree_gang_lookup(&ioc->radix_root, (void **) cic, 0, 1); | ||
4044 | if (r > 0) | ||
4045 | cic[0]->dtor(ioc); | ||
4046 | } | ||
4047 | |||
4048 | /* | ||
4049 | * IO Context helper functions. put_io_context() returns 1 if there are no | ||
4050 | * more users of this io context, 0 otherwise. | ||
4051 | */ | ||
4052 | int put_io_context(struct io_context *ioc) | ||
4053 | { | ||
4054 | if (ioc == NULL) | ||
4055 | return 1; | ||
4056 | |||
4057 | BUG_ON(atomic_read(&ioc->refcount) == 0); | ||
4058 | |||
4059 | if (atomic_dec_and_test(&ioc->refcount)) { | ||
4060 | rcu_read_lock(); | ||
4061 | if (ioc->aic && ioc->aic->dtor) | ||
4062 | ioc->aic->dtor(ioc->aic); | ||
4063 | rcu_read_unlock(); | ||
4064 | cfq_dtor(ioc); | ||
4065 | |||
4066 | kmem_cache_free(iocontext_cachep, ioc); | ||
4067 | return 1; | ||
4068 | } | ||
4069 | return 0; | ||
4070 | } | ||
4071 | EXPORT_SYMBOL(put_io_context); | ||
4072 | |||
4073 | static void cfq_exit(struct io_context *ioc) | ||
4074 | { | ||
4075 | struct cfq_io_context *cic[1]; | ||
4076 | int r; | ||
4077 | |||
4078 | rcu_read_lock(); | ||
4079 | /* | ||
4080 | * See comment for cfq_dtor() | ||
4081 | */ | ||
4082 | r = radix_tree_gang_lookup(&ioc->radix_root, (void **) cic, 0, 1); | ||
4083 | rcu_read_unlock(); | ||
4084 | |||
4085 | if (r > 0) | ||
4086 | cic[0]->exit(ioc); | ||
4087 | } | ||
4088 | |||
4089 | /* Called by the exitting task */ | ||
4090 | void exit_io_context(void) | ||
4091 | { | ||
4092 | struct io_context *ioc; | ||
4093 | |||
4094 | task_lock(current); | ||
4095 | ioc = current->io_context; | ||
4096 | current->io_context = NULL; | ||
4097 | task_unlock(current); | ||
4098 | |||
4099 | if (atomic_dec_and_test(&ioc->nr_tasks)) { | ||
4100 | if (ioc->aic && ioc->aic->exit) | ||
4101 | ioc->aic->exit(ioc->aic); | ||
4102 | cfq_exit(ioc); | ||
4103 | |||
4104 | put_io_context(ioc); | ||
4105 | } | ||
4106 | } | ||
4107 | |||
4108 | struct io_context *alloc_io_context(gfp_t gfp_flags, int node) | ||
4109 | { | ||
4110 | struct io_context *ret; | ||
4111 | |||
4112 | ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node); | ||
4113 | if (ret) { | ||
4114 | atomic_set(&ret->refcount, 1); | ||
4115 | atomic_set(&ret->nr_tasks, 1); | ||
4116 | spin_lock_init(&ret->lock); | ||
4117 | ret->ioprio_changed = 0; | ||
4118 | ret->ioprio = 0; | ||
4119 | ret->last_waited = jiffies; /* doesn't matter... */ | ||
4120 | ret->nr_batch_requests = 0; /* because this is 0 */ | ||
4121 | ret->aic = NULL; | ||
4122 | INIT_RADIX_TREE(&ret->radix_root, GFP_ATOMIC | __GFP_HIGH); | ||
4123 | ret->ioc_data = NULL; | ||
4124 | } | ||
4125 | |||
4126 | return ret; | ||
4127 | } | ||
4128 | |||
4129 | /* | ||
4130 | * If the current task has no IO context then create one and initialise it. | ||
4131 | * Otherwise, return its existing IO context. | ||
4132 | * | ||
4133 | * This returned IO context doesn't have a specifically elevated refcount, | ||
4134 | * but since the current task itself holds a reference, the context can be | ||
4135 | * used in general code, so long as it stays within `current` context. | ||
4136 | */ | ||
4137 | static struct io_context *current_io_context(gfp_t gfp_flags, int node) | ||
4138 | { | ||
4139 | struct task_struct *tsk = current; | ||
4140 | struct io_context *ret; | ||
4141 | |||
4142 | ret = tsk->io_context; | ||
4143 | if (likely(ret)) | ||
4144 | return ret; | ||
4145 | |||
4146 | ret = alloc_io_context(gfp_flags, node); | ||
4147 | if (ret) { | ||
4148 | /* make sure set_task_ioprio() sees the settings above */ | ||
4149 | smp_wmb(); | ||
4150 | tsk->io_context = ret; | ||
4151 | } | ||
4152 | |||
4153 | return ret; | ||
4154 | } | ||
4155 | |||
4156 | /* | ||
4157 | * If the current task has no IO context then create one and initialise it. | ||
4158 | * If it does have a context, take a ref on it. | ||
4159 | * | ||
4160 | * This is always called in the context of the task which submitted the I/O. | ||
4161 | */ | ||
4162 | struct io_context *get_io_context(gfp_t gfp_flags, int node) | ||
4163 | { | ||
4164 | struct io_context *ret = NULL; | ||
4165 | |||
4166 | /* | ||
4167 | * Check for unlikely race with exiting task. ioc ref count is | ||
4168 | * zero when ioc is being detached. | ||
4169 | */ | ||
4170 | do { | ||
4171 | ret = current_io_context(gfp_flags, node); | ||
4172 | if (unlikely(!ret)) | ||
4173 | break; | ||
4174 | } while (!atomic_inc_not_zero(&ret->refcount)); | ||
4175 | |||
4176 | return ret; | ||
4177 | } | ||
4178 | EXPORT_SYMBOL(get_io_context); | ||
4179 | |||
4180 | void copy_io_context(struct io_context **pdst, struct io_context **psrc) | ||
4181 | { | ||
4182 | struct io_context *src = *psrc; | ||
4183 | struct io_context *dst = *pdst; | ||
4184 | |||
4185 | if (src) { | ||
4186 | BUG_ON(atomic_read(&src->refcount) == 0); | ||
4187 | atomic_inc(&src->refcount); | ||
4188 | put_io_context(dst); | ||
4189 | *pdst = src; | ||
4190 | } | ||
4191 | } | ||
4192 | EXPORT_SYMBOL(copy_io_context); | ||
4193 | |||
4194 | void swap_io_context(struct io_context **ioc1, struct io_context **ioc2) | ||
4195 | { | ||
4196 | struct io_context *temp; | ||
4197 | temp = *ioc1; | ||
4198 | *ioc1 = *ioc2; | ||
4199 | *ioc2 = temp; | ||
4200 | } | ||
4201 | EXPORT_SYMBOL(swap_io_context); | ||
4202 | |||
4203 | /* | ||
4204 | * sysfs parts below | ||
4205 | */ | ||
4206 | struct queue_sysfs_entry { | ||
4207 | struct attribute attr; | ||
4208 | ssize_t (*show)(struct request_queue *, char *); | ||
4209 | ssize_t (*store)(struct request_queue *, const char *, size_t); | ||
4210 | }; | ||
4211 | |||
4212 | static ssize_t | ||
4213 | queue_var_show(unsigned int var, char *page) | ||
4214 | { | ||
4215 | return sprintf(page, "%d\n", var); | ||
4216 | } | ||
4217 | |||
4218 | static ssize_t | ||
4219 | queue_var_store(unsigned long *var, const char *page, size_t count) | ||
4220 | { | ||
4221 | char *p = (char *) page; | ||
4222 | |||
4223 | *var = simple_strtoul(p, &p, 10); | ||
4224 | return count; | ||
4225 | } | ||
4226 | |||
4227 | static ssize_t queue_requests_show(struct request_queue *q, char *page) | ||
4228 | { | ||
4229 | return queue_var_show(q->nr_requests, (page)); | ||
4230 | } | ||
4231 | |||
4232 | static ssize_t | ||
4233 | queue_requests_store(struct request_queue *q, const char *page, size_t count) | ||
4234 | { | ||
4235 | struct request_list *rl = &q->rq; | ||
4236 | unsigned long nr; | ||
4237 | int ret = queue_var_store(&nr, page, count); | ||
4238 | if (nr < BLKDEV_MIN_RQ) | ||
4239 | nr = BLKDEV_MIN_RQ; | ||
4240 | |||
4241 | spin_lock_irq(q->queue_lock); | ||
4242 | q->nr_requests = nr; | ||
4243 | blk_queue_congestion_threshold(q); | ||
4244 | |||
4245 | if (rl->count[READ] >= queue_congestion_on_threshold(q)) | ||
4246 | blk_set_queue_congested(q, READ); | ||
4247 | else if (rl->count[READ] < queue_congestion_off_threshold(q)) | ||
4248 | blk_clear_queue_congested(q, READ); | ||
4249 | |||
4250 | if (rl->count[WRITE] >= queue_congestion_on_threshold(q)) | ||
4251 | blk_set_queue_congested(q, WRITE); | ||
4252 | else if (rl->count[WRITE] < queue_congestion_off_threshold(q)) | ||
4253 | blk_clear_queue_congested(q, WRITE); | ||
4254 | |||
4255 | if (rl->count[READ] >= q->nr_requests) { | ||
4256 | blk_set_queue_full(q, READ); | ||
4257 | } else if (rl->count[READ]+1 <= q->nr_requests) { | ||
4258 | blk_clear_queue_full(q, READ); | ||
4259 | wake_up(&rl->wait[READ]); | ||
4260 | } | ||
4261 | |||
4262 | if (rl->count[WRITE] >= q->nr_requests) { | ||
4263 | blk_set_queue_full(q, WRITE); | ||
4264 | } else if (rl->count[WRITE]+1 <= q->nr_requests) { | ||
4265 | blk_clear_queue_full(q, WRITE); | ||
4266 | wake_up(&rl->wait[WRITE]); | ||
4267 | } | ||
4268 | spin_unlock_irq(q->queue_lock); | ||
4269 | return ret; | ||
4270 | } | ||
4271 | |||
4272 | static ssize_t queue_ra_show(struct request_queue *q, char *page) | ||
4273 | { | ||
4274 | int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10); | ||
4275 | |||
4276 | return queue_var_show(ra_kb, (page)); | ||
4277 | } | ||
4278 | |||
4279 | static ssize_t | ||
4280 | queue_ra_store(struct request_queue *q, const char *page, size_t count) | ||
4281 | { | ||
4282 | unsigned long ra_kb; | ||
4283 | ssize_t ret = queue_var_store(&ra_kb, page, count); | ||
4284 | |||
4285 | spin_lock_irq(q->queue_lock); | ||
4286 | q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10); | ||
4287 | spin_unlock_irq(q->queue_lock); | ||
4288 | |||
4289 | return ret; | ||
4290 | } | ||
4291 | |||
4292 | static ssize_t queue_max_sectors_show(struct request_queue *q, char *page) | ||
4293 | { | ||
4294 | int max_sectors_kb = q->max_sectors >> 1; | ||
4295 | |||
4296 | return queue_var_show(max_sectors_kb, (page)); | ||
4297 | } | ||
4298 | |||
4299 | static ssize_t | ||
4300 | queue_max_sectors_store(struct request_queue *q, const char *page, size_t count) | ||
4301 | { | ||
4302 | unsigned long max_sectors_kb, | ||
4303 | max_hw_sectors_kb = q->max_hw_sectors >> 1, | ||
4304 | page_kb = 1 << (PAGE_CACHE_SHIFT - 10); | ||
4305 | ssize_t ret = queue_var_store(&max_sectors_kb, page, count); | ||
4306 | |||
4307 | if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb) | ||
4308 | return -EINVAL; | ||
4309 | /* | ||
4310 | * Take the queue lock to update the readahead and max_sectors | ||
4311 | * values synchronously: | ||
4312 | */ | ||
4313 | spin_lock_irq(q->queue_lock); | ||
4314 | q->max_sectors = max_sectors_kb << 1; | ||
4315 | spin_unlock_irq(q->queue_lock); | ||
4316 | |||
4317 | return ret; | ||
4318 | } | ||
4319 | |||
4320 | static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page) | ||
4321 | { | ||
4322 | int max_hw_sectors_kb = q->max_hw_sectors >> 1; | ||
4323 | |||
4324 | return queue_var_show(max_hw_sectors_kb, (page)); | ||
4325 | } | ||
4326 | |||
4327 | |||
4328 | static struct queue_sysfs_entry queue_requests_entry = { | ||
4329 | .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR }, | ||
4330 | .show = queue_requests_show, | ||
4331 | .store = queue_requests_store, | ||
4332 | }; | ||
4333 | |||
4334 | static struct queue_sysfs_entry queue_ra_entry = { | ||
4335 | .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR }, | ||
4336 | .show = queue_ra_show, | ||
4337 | .store = queue_ra_store, | ||
4338 | }; | ||
4339 | |||
4340 | static struct queue_sysfs_entry queue_max_sectors_entry = { | ||
4341 | .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR }, | ||
4342 | .show = queue_max_sectors_show, | ||
4343 | .store = queue_max_sectors_store, | ||
4344 | }; | ||
4345 | |||
4346 | static struct queue_sysfs_entry queue_max_hw_sectors_entry = { | ||
4347 | .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO }, | ||
4348 | .show = queue_max_hw_sectors_show, | ||
4349 | }; | ||
4350 | |||
4351 | static struct queue_sysfs_entry queue_iosched_entry = { | ||
4352 | .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR }, | ||
4353 | .show = elv_iosched_show, | ||
4354 | .store = elv_iosched_store, | ||
4355 | }; | ||
4356 | |||
4357 | static struct attribute *default_attrs[] = { | ||
4358 | &queue_requests_entry.attr, | ||
4359 | &queue_ra_entry.attr, | ||
4360 | &queue_max_hw_sectors_entry.attr, | ||
4361 | &queue_max_sectors_entry.attr, | ||
4362 | &queue_iosched_entry.attr, | ||
4363 | NULL, | ||
4364 | }; | ||
4365 | |||
4366 | #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr) | ||
4367 | |||
4368 | static ssize_t | ||
4369 | queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page) | ||
4370 | { | ||
4371 | struct queue_sysfs_entry *entry = to_queue(attr); | ||
4372 | struct request_queue *q = | ||
4373 | container_of(kobj, struct request_queue, kobj); | ||
4374 | ssize_t res; | ||
4375 | |||
4376 | if (!entry->show) | ||
4377 | return -EIO; | ||
4378 | mutex_lock(&q->sysfs_lock); | ||
4379 | if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) { | ||
4380 | mutex_unlock(&q->sysfs_lock); | ||
4381 | return -ENOENT; | ||
4382 | } | ||
4383 | res = entry->show(q, page); | ||
4384 | mutex_unlock(&q->sysfs_lock); | ||
4385 | return res; | ||
4386 | } | ||
4387 | |||
4388 | static ssize_t | ||
4389 | queue_attr_store(struct kobject *kobj, struct attribute *attr, | ||
4390 | const char *page, size_t length) | ||
4391 | { | ||
4392 | struct queue_sysfs_entry *entry = to_queue(attr); | ||
4393 | struct request_queue *q = container_of(kobj, struct request_queue, kobj); | ||
4394 | |||
4395 | ssize_t res; | ||
4396 | |||
4397 | if (!entry->store) | ||
4398 | return -EIO; | ||
4399 | mutex_lock(&q->sysfs_lock); | ||
4400 | if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) { | ||
4401 | mutex_unlock(&q->sysfs_lock); | ||
4402 | return -ENOENT; | ||
4403 | } | ||
4404 | res = entry->store(q, page, length); | ||
4405 | mutex_unlock(&q->sysfs_lock); | ||
4406 | return res; | ||
4407 | } | ||
4408 | |||
4409 | static struct sysfs_ops queue_sysfs_ops = { | ||
4410 | .show = queue_attr_show, | ||
4411 | .store = queue_attr_store, | ||
4412 | }; | ||
4413 | |||
4414 | static struct kobj_type queue_ktype = { | ||
4415 | .sysfs_ops = &queue_sysfs_ops, | ||
4416 | .default_attrs = default_attrs, | ||
4417 | .release = blk_release_queue, | ||
4418 | }; | ||
4419 | |||
4420 | int blk_register_queue(struct gendisk *disk) | ||
4421 | { | ||
4422 | int ret; | ||
4423 | |||
4424 | struct request_queue *q = disk->queue; | ||
4425 | |||
4426 | if (!q || !q->request_fn) | ||
4427 | return -ENXIO; | ||
4428 | |||
4429 | ret = kobject_add(&q->kobj, kobject_get(&disk->dev.kobj), | ||
4430 | "%s", "queue"); | ||
4431 | if (ret < 0) | ||
4432 | return ret; | ||
4433 | |||
4434 | kobject_uevent(&q->kobj, KOBJ_ADD); | ||
4435 | |||
4436 | ret = elv_register_queue(q); | ||
4437 | if (ret) { | ||
4438 | kobject_uevent(&q->kobj, KOBJ_REMOVE); | ||
4439 | kobject_del(&q->kobj); | ||
4440 | return ret; | ||
4441 | } | ||
4442 | |||
4443 | return 0; | ||
4444 | } | ||
4445 | |||
4446 | void blk_unregister_queue(struct gendisk *disk) | ||
4447 | { | ||
4448 | struct request_queue *q = disk->queue; | ||
4449 | |||
4450 | if (q && q->request_fn) { | ||
4451 | elv_unregister_queue(q); | ||
4452 | |||
4453 | kobject_uevent(&q->kobj, KOBJ_REMOVE); | ||
4454 | kobject_del(&q->kobj); | ||
4455 | kobject_put(&disk->dev.kobj); | ||
4456 | } | ||
4457 | } | ||