diff options
author | James Hogan <james.hogan@imgtec.com> | 2012-10-05 11:27:03 -0400 |
---|---|---|
committer | James Hogan <james.hogan@imgtec.com> | 2013-03-02 15:09:51 -0500 |
commit | f507758ccbed5c354cc1ce3b8f53ea072d7bc222 (patch) | |
tree | dd474b63b194039b5c6c97790016f55a02a93643 /arch | |
parent | 42682c6c42a5765b2c7cccfca170368fef6191ef (diff) |
metag: DMA
Add DMA mapping code.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Diffstat (limited to 'arch')
-rw-r--r-- | arch/metag/include/asm/dma-mapping.h | 183 | ||||
-rw-r--r-- | arch/metag/kernel/dma.c | 507 |
2 files changed, 690 insertions, 0 deletions
diff --git a/arch/metag/include/asm/dma-mapping.h b/arch/metag/include/asm/dma-mapping.h new file mode 100644 index 000000000000..b5f80a62fe8b --- /dev/null +++ b/arch/metag/include/asm/dma-mapping.h | |||
@@ -0,0 +1,183 @@ | |||
1 | #ifndef _ASM_METAG_DMA_MAPPING_H | ||
2 | #define _ASM_METAG_DMA_MAPPING_H | ||
3 | |||
4 | #include <linux/mm.h> | ||
5 | |||
6 | #include <asm/cache.h> | ||
7 | #include <asm/io.h> | ||
8 | #include <linux/scatterlist.h> | ||
9 | #include <asm/bug.h> | ||
10 | |||
11 | #define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f) | ||
12 | #define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h) | ||
13 | |||
14 | void *dma_alloc_coherent(struct device *dev, size_t size, | ||
15 | dma_addr_t *dma_handle, gfp_t flag); | ||
16 | |||
17 | void dma_free_coherent(struct device *dev, size_t size, | ||
18 | void *vaddr, dma_addr_t dma_handle); | ||
19 | |||
20 | void dma_sync_for_device(void *vaddr, size_t size, int dma_direction); | ||
21 | void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction); | ||
22 | |||
23 | int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, | ||
24 | void *cpu_addr, dma_addr_t dma_addr, size_t size); | ||
25 | |||
26 | int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, | ||
27 | void *cpu_addr, dma_addr_t dma_addr, size_t size); | ||
28 | |||
29 | static inline dma_addr_t | ||
30 | dma_map_single(struct device *dev, void *ptr, size_t size, | ||
31 | enum dma_data_direction direction) | ||
32 | { | ||
33 | BUG_ON(!valid_dma_direction(direction)); | ||
34 | WARN_ON(size == 0); | ||
35 | dma_sync_for_device(ptr, size, direction); | ||
36 | return virt_to_phys(ptr); | ||
37 | } | ||
38 | |||
39 | static inline void | ||
40 | dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, | ||
41 | enum dma_data_direction direction) | ||
42 | { | ||
43 | BUG_ON(!valid_dma_direction(direction)); | ||
44 | dma_sync_for_cpu(phys_to_virt(dma_addr), size, direction); | ||
45 | } | ||
46 | |||
47 | static inline int | ||
48 | dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, | ||
49 | enum dma_data_direction direction) | ||
50 | { | ||
51 | struct scatterlist *sg; | ||
52 | int i; | ||
53 | |||
54 | BUG_ON(!valid_dma_direction(direction)); | ||
55 | WARN_ON(nents == 0 || sglist[0].length == 0); | ||
56 | |||
57 | for_each_sg(sglist, sg, nents, i) { | ||
58 | BUG_ON(!sg_page(sg)); | ||
59 | |||
60 | sg->dma_address = sg_phys(sg); | ||
61 | dma_sync_for_device(sg_virt(sg), sg->length, direction); | ||
62 | } | ||
63 | |||
64 | return nents; | ||
65 | } | ||
66 | |||
67 | static inline dma_addr_t | ||
68 | dma_map_page(struct device *dev, struct page *page, unsigned long offset, | ||
69 | size_t size, enum dma_data_direction direction) | ||
70 | { | ||
71 | BUG_ON(!valid_dma_direction(direction)); | ||
72 | dma_sync_for_device((void *)(page_to_phys(page) + offset), size, | ||
73 | direction); | ||
74 | return page_to_phys(page) + offset; | ||
75 | } | ||
76 | |||
77 | static inline void | ||
78 | dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, | ||
79 | enum dma_data_direction direction) | ||
80 | { | ||
81 | BUG_ON(!valid_dma_direction(direction)); | ||
82 | dma_sync_for_cpu(phys_to_virt(dma_address), size, direction); | ||
83 | } | ||
84 | |||
85 | |||
86 | static inline void | ||
87 | dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nhwentries, | ||
88 | enum dma_data_direction direction) | ||
89 | { | ||
90 | struct scatterlist *sg; | ||
91 | int i; | ||
92 | |||
93 | BUG_ON(!valid_dma_direction(direction)); | ||
94 | WARN_ON(nhwentries == 0 || sglist[0].length == 0); | ||
95 | |||
96 | for_each_sg(sglist, sg, nhwentries, i) { | ||
97 | BUG_ON(!sg_page(sg)); | ||
98 | |||
99 | sg->dma_address = sg_phys(sg); | ||
100 | dma_sync_for_cpu(sg_virt(sg), sg->length, direction); | ||
101 | } | ||
102 | } | ||
103 | |||
104 | static inline void | ||
105 | dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, | ||
106 | enum dma_data_direction direction) | ||
107 | { | ||
108 | dma_sync_for_cpu(phys_to_virt(dma_handle), size, direction); | ||
109 | } | ||
110 | |||
111 | static inline void | ||
112 | dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, | ||
113 | size_t size, enum dma_data_direction direction) | ||
114 | { | ||
115 | dma_sync_for_device(phys_to_virt(dma_handle), size, direction); | ||
116 | } | ||
117 | |||
118 | static inline void | ||
119 | dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, | ||
120 | unsigned long offset, size_t size, | ||
121 | enum dma_data_direction direction) | ||
122 | { | ||
123 | dma_sync_for_cpu(phys_to_virt(dma_handle)+offset, size, | ||
124 | direction); | ||
125 | } | ||
126 | |||
127 | static inline void | ||
128 | dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle, | ||
129 | unsigned long offset, size_t size, | ||
130 | enum dma_data_direction direction) | ||
131 | { | ||
132 | dma_sync_for_device(phys_to_virt(dma_handle)+offset, size, | ||
133 | direction); | ||
134 | } | ||
135 | |||
136 | static inline void | ||
137 | dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, | ||
138 | enum dma_data_direction direction) | ||
139 | { | ||
140 | int i; | ||
141 | for (i = 0; i < nelems; i++, sg++) | ||
142 | dma_sync_for_cpu(sg_virt(sg), sg->length, direction); | ||
143 | } | ||
144 | |||
145 | static inline void | ||
146 | dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, | ||
147 | enum dma_data_direction direction) | ||
148 | { | ||
149 | int i; | ||
150 | for (i = 0; i < nelems; i++, sg++) | ||
151 | dma_sync_for_device(sg_virt(sg), sg->length, direction); | ||
152 | } | ||
153 | |||
154 | static inline int | ||
155 | dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | ||
156 | { | ||
157 | return 0; | ||
158 | } | ||
159 | |||
160 | #define dma_supported(dev, mask) (1) | ||
161 | |||
162 | static inline int | ||
163 | dma_set_mask(struct device *dev, u64 mask) | ||
164 | { | ||
165 | if (!dev->dma_mask || !dma_supported(dev, mask)) | ||
166 | return -EIO; | ||
167 | |||
168 | *dev->dma_mask = mask; | ||
169 | |||
170 | return 0; | ||
171 | } | ||
172 | |||
173 | /* | ||
174 | * dma_alloc_noncoherent() returns non-cacheable memory, so there's no need to | ||
175 | * do any flushing here. | ||
176 | */ | ||
177 | static inline void | ||
178 | dma_cache_sync(struct device *dev, void *vaddr, size_t size, | ||
179 | enum dma_data_direction direction) | ||
180 | { | ||
181 | } | ||
182 | |||
183 | #endif | ||
diff --git a/arch/metag/kernel/dma.c b/arch/metag/kernel/dma.c new file mode 100644 index 000000000000..8c00dedadc54 --- /dev/null +++ b/arch/metag/kernel/dma.c | |||
@@ -0,0 +1,507 @@ | |||
1 | /* | ||
2 | * Meta version derived from arch/powerpc/lib/dma-noncoherent.c | ||
3 | * Copyright (C) 2008 Imagination Technologies Ltd. | ||
4 | * | ||
5 | * PowerPC version derived from arch/arm/mm/consistent.c | ||
6 | * Copyright (C) 2001 Dan Malek (dmalek@jlc.net) | ||
7 | * | ||
8 | * Copyright (C) 2000 Russell King | ||
9 | * | ||
10 | * Consistent memory allocators. Used for DMA devices that want to | ||
11 | * share uncached memory with the processor core. The function return | ||
12 | * is the virtual address and 'dma_handle' is the physical address. | ||
13 | * Mostly stolen from the ARM port, with some changes for PowerPC. | ||
14 | * -- Dan | ||
15 | * | ||
16 | * Reorganized to get rid of the arch-specific consistent_* functions | ||
17 | * and provide non-coherent implementations for the DMA API. -Matt | ||
18 | * | ||
19 | * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent() | ||
20 | * implementation. This is pulled straight from ARM and barely | ||
21 | * modified. -Matt | ||
22 | * | ||
23 | * This program is free software; you can redistribute it and/or modify | ||
24 | * it under the terms of the GNU General Public License version 2 as | ||
25 | * published by the Free Software Foundation. | ||
26 | */ | ||
27 | |||
28 | #include <linux/sched.h> | ||
29 | #include <linux/kernel.h> | ||
30 | #include <linux/errno.h> | ||
31 | #include <linux/export.h> | ||
32 | #include <linux/string.h> | ||
33 | #include <linux/types.h> | ||
34 | #include <linux/highmem.h> | ||
35 | #include <linux/dma-mapping.h> | ||
36 | #include <linux/slab.h> | ||
37 | |||
38 | #include <asm/tlbflush.h> | ||
39 | #include <asm/mmu.h> | ||
40 | |||
41 | #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_START) \ | ||
42 | >> PAGE_SHIFT) | ||
43 | |||
44 | static u64 get_coherent_dma_mask(struct device *dev) | ||
45 | { | ||
46 | u64 mask = ~0ULL; | ||
47 | |||
48 | if (dev) { | ||
49 | mask = dev->coherent_dma_mask; | ||
50 | |||
51 | /* | ||
52 | * Sanity check the DMA mask - it must be non-zero, and | ||
53 | * must be able to be satisfied by a DMA allocation. | ||
54 | */ | ||
55 | if (mask == 0) { | ||
56 | dev_warn(dev, "coherent DMA mask is unset\n"); | ||
57 | return 0; | ||
58 | } | ||
59 | } | ||
60 | |||
61 | return mask; | ||
62 | } | ||
63 | /* | ||
64 | * This is the page table (2MB) covering uncached, DMA consistent allocations | ||
65 | */ | ||
66 | static pte_t *consistent_pte; | ||
67 | static DEFINE_SPINLOCK(consistent_lock); | ||
68 | |||
69 | /* | ||
70 | * VM region handling support. | ||
71 | * | ||
72 | * This should become something generic, handling VM region allocations for | ||
73 | * vmalloc and similar (ioremap, module space, etc). | ||
74 | * | ||
75 | * I envisage vmalloc()'s supporting vm_struct becoming: | ||
76 | * | ||
77 | * struct vm_struct { | ||
78 | * struct metag_vm_region region; | ||
79 | * unsigned long flags; | ||
80 | * struct page **pages; | ||
81 | * unsigned int nr_pages; | ||
82 | * unsigned long phys_addr; | ||
83 | * }; | ||
84 | * | ||
85 | * get_vm_area() would then call metag_vm_region_alloc with an appropriate | ||
86 | * struct metag_vm_region head (eg): | ||
87 | * | ||
88 | * struct metag_vm_region vmalloc_head = { | ||
89 | * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), | ||
90 | * .vm_start = VMALLOC_START, | ||
91 | * .vm_end = VMALLOC_END, | ||
92 | * }; | ||
93 | * | ||
94 | * However, vmalloc_head.vm_start is variable (typically, it is dependent on | ||
95 | * the amount of RAM found at boot time.) I would imagine that get_vm_area() | ||
96 | * would have to initialise this each time prior to calling | ||
97 | * metag_vm_region_alloc(). | ||
98 | */ | ||
99 | struct metag_vm_region { | ||
100 | struct list_head vm_list; | ||
101 | unsigned long vm_start; | ||
102 | unsigned long vm_end; | ||
103 | struct page *vm_pages; | ||
104 | int vm_active; | ||
105 | }; | ||
106 | |||
107 | static struct metag_vm_region consistent_head = { | ||
108 | .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), | ||
109 | .vm_start = CONSISTENT_START, | ||
110 | .vm_end = CONSISTENT_END, | ||
111 | }; | ||
112 | |||
113 | static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region | ||
114 | *head, size_t size, | ||
115 | gfp_t gfp) | ||
116 | { | ||
117 | unsigned long addr = head->vm_start, end = head->vm_end - size; | ||
118 | unsigned long flags; | ||
119 | struct metag_vm_region *c, *new; | ||
120 | |||
121 | new = kmalloc(sizeof(struct metag_vm_region), gfp); | ||
122 | if (!new) | ||
123 | goto out; | ||
124 | |||
125 | spin_lock_irqsave(&consistent_lock, flags); | ||
126 | |||
127 | list_for_each_entry(c, &head->vm_list, vm_list) { | ||
128 | if ((addr + size) < addr) | ||
129 | goto nospc; | ||
130 | if ((addr + size) <= c->vm_start) | ||
131 | goto found; | ||
132 | addr = c->vm_end; | ||
133 | if (addr > end) | ||
134 | goto nospc; | ||
135 | } | ||
136 | |||
137 | found: | ||
138 | /* | ||
139 | * Insert this entry _before_ the one we found. | ||
140 | */ | ||
141 | list_add_tail(&new->vm_list, &c->vm_list); | ||
142 | new->vm_start = addr; | ||
143 | new->vm_end = addr + size; | ||
144 | new->vm_active = 1; | ||
145 | |||
146 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
147 | return new; | ||
148 | |||
149 | nospc: | ||
150 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
151 | kfree(new); | ||
152 | out: | ||
153 | return NULL; | ||
154 | } | ||
155 | |||
156 | static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region | ||
157 | *head, unsigned long addr) | ||
158 | { | ||
159 | struct metag_vm_region *c; | ||
160 | |||
161 | list_for_each_entry(c, &head->vm_list, vm_list) { | ||
162 | if (c->vm_active && c->vm_start == addr) | ||
163 | goto out; | ||
164 | } | ||
165 | c = NULL; | ||
166 | out: | ||
167 | return c; | ||
168 | } | ||
169 | |||
170 | /* | ||
171 | * Allocate DMA-coherent memory space and return both the kernel remapped | ||
172 | * virtual and bus address for that space. | ||
173 | */ | ||
174 | void *dma_alloc_coherent(struct device *dev, size_t size, | ||
175 | dma_addr_t *handle, gfp_t gfp) | ||
176 | { | ||
177 | struct page *page; | ||
178 | struct metag_vm_region *c; | ||
179 | unsigned long order; | ||
180 | u64 mask = get_coherent_dma_mask(dev); | ||
181 | u64 limit; | ||
182 | |||
183 | if (!consistent_pte) { | ||
184 | pr_err("%s: not initialised\n", __func__); | ||
185 | dump_stack(); | ||
186 | return NULL; | ||
187 | } | ||
188 | |||
189 | if (!mask) | ||
190 | goto no_page; | ||
191 | size = PAGE_ALIGN(size); | ||
192 | limit = (mask + 1) & ~mask; | ||
193 | if ((limit && size >= limit) | ||
194 | || size >= (CONSISTENT_END - CONSISTENT_START)) { | ||
195 | pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n", | ||
196 | size, mask); | ||
197 | return NULL; | ||
198 | } | ||
199 | |||
200 | order = get_order(size); | ||
201 | |||
202 | if (mask != 0xffffffff) | ||
203 | gfp |= GFP_DMA; | ||
204 | |||
205 | page = alloc_pages(gfp, order); | ||
206 | if (!page) | ||
207 | goto no_page; | ||
208 | |||
209 | /* | ||
210 | * Invalidate any data that might be lurking in the | ||
211 | * kernel direct-mapped region for device DMA. | ||
212 | */ | ||
213 | { | ||
214 | void *kaddr = page_address(page); | ||
215 | memset(kaddr, 0, size); | ||
216 | flush_dcache_region(kaddr, size); | ||
217 | } | ||
218 | |||
219 | /* | ||
220 | * Allocate a virtual address in the consistent mapping region. | ||
221 | */ | ||
222 | c = metag_vm_region_alloc(&consistent_head, size, | ||
223 | gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); | ||
224 | if (c) { | ||
225 | unsigned long vaddr = c->vm_start; | ||
226 | pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr); | ||
227 | struct page *end = page + (1 << order); | ||
228 | |||
229 | c->vm_pages = page; | ||
230 | split_page(page, order); | ||
231 | |||
232 | /* | ||
233 | * Set the "dma handle" | ||
234 | */ | ||
235 | *handle = page_to_bus(page); | ||
236 | |||
237 | do { | ||
238 | BUG_ON(!pte_none(*pte)); | ||
239 | |||
240 | SetPageReserved(page); | ||
241 | set_pte_at(&init_mm, vaddr, | ||
242 | pte, mk_pte(page, | ||
243 | pgprot_writecombine | ||
244 | (PAGE_KERNEL))); | ||
245 | page++; | ||
246 | pte++; | ||
247 | vaddr += PAGE_SIZE; | ||
248 | } while (size -= PAGE_SIZE); | ||
249 | |||
250 | /* | ||
251 | * Free the otherwise unused pages. | ||
252 | */ | ||
253 | while (page < end) { | ||
254 | __free_page(page); | ||
255 | page++; | ||
256 | } | ||
257 | |||
258 | return (void *)c->vm_start; | ||
259 | } | ||
260 | |||
261 | if (page) | ||
262 | __free_pages(page, order); | ||
263 | no_page: | ||
264 | return NULL; | ||
265 | } | ||
266 | EXPORT_SYMBOL(dma_alloc_coherent); | ||
267 | |||
268 | /* | ||
269 | * free a page as defined by the above mapping. | ||
270 | */ | ||
271 | void dma_free_coherent(struct device *dev, size_t size, | ||
272 | void *vaddr, dma_addr_t dma_handle) | ||
273 | { | ||
274 | struct metag_vm_region *c; | ||
275 | unsigned long flags, addr; | ||
276 | pte_t *ptep; | ||
277 | |||
278 | size = PAGE_ALIGN(size); | ||
279 | |||
280 | spin_lock_irqsave(&consistent_lock, flags); | ||
281 | |||
282 | c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr); | ||
283 | if (!c) | ||
284 | goto no_area; | ||
285 | |||
286 | c->vm_active = 0; | ||
287 | if ((c->vm_end - c->vm_start) != size) { | ||
288 | pr_err("%s: freeing wrong coherent size (%ld != %d)\n", | ||
289 | __func__, c->vm_end - c->vm_start, size); | ||
290 | dump_stack(); | ||
291 | size = c->vm_end - c->vm_start; | ||
292 | } | ||
293 | |||
294 | ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start); | ||
295 | addr = c->vm_start; | ||
296 | do { | ||
297 | pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); | ||
298 | unsigned long pfn; | ||
299 | |||
300 | ptep++; | ||
301 | addr += PAGE_SIZE; | ||
302 | |||
303 | if (!pte_none(pte) && pte_present(pte)) { | ||
304 | pfn = pte_pfn(pte); | ||
305 | |||
306 | if (pfn_valid(pfn)) { | ||
307 | struct page *page = pfn_to_page(pfn); | ||
308 | ClearPageReserved(page); | ||
309 | |||
310 | __free_page(page); | ||
311 | continue; | ||
312 | } | ||
313 | } | ||
314 | |||
315 | pr_crit("%s: bad page in kernel page table\n", | ||
316 | __func__); | ||
317 | } while (size -= PAGE_SIZE); | ||
318 | |||
319 | flush_tlb_kernel_range(c->vm_start, c->vm_end); | ||
320 | |||
321 | list_del(&c->vm_list); | ||
322 | |||
323 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
324 | |||
325 | kfree(c); | ||
326 | return; | ||
327 | |||
328 | no_area: | ||
329 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
330 | pr_err("%s: trying to free invalid coherent area: %p\n", | ||
331 | __func__, vaddr); | ||
332 | dump_stack(); | ||
333 | } | ||
334 | EXPORT_SYMBOL(dma_free_coherent); | ||
335 | |||
336 | |||
337 | static int dma_mmap(struct device *dev, struct vm_area_struct *vma, | ||
338 | void *cpu_addr, dma_addr_t dma_addr, size_t size) | ||
339 | { | ||
340 | int ret = -ENXIO; | ||
341 | |||
342 | unsigned long flags, user_size, kern_size; | ||
343 | struct metag_vm_region *c; | ||
344 | |||
345 | user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | ||
346 | |||
347 | spin_lock_irqsave(&consistent_lock, flags); | ||
348 | c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr); | ||
349 | spin_unlock_irqrestore(&consistent_lock, flags); | ||
350 | |||
351 | if (c) { | ||
352 | unsigned long off = vma->vm_pgoff; | ||
353 | |||
354 | kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; | ||
355 | |||
356 | if (off < kern_size && | ||
357 | user_size <= (kern_size - off)) { | ||
358 | ret = remap_pfn_range(vma, vma->vm_start, | ||
359 | page_to_pfn(c->vm_pages) + off, | ||
360 | user_size << PAGE_SHIFT, | ||
361 | vma->vm_page_prot); | ||
362 | } | ||
363 | } | ||
364 | |||
365 | |||
366 | return ret; | ||
367 | } | ||
368 | |||
369 | int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, | ||
370 | void *cpu_addr, dma_addr_t dma_addr, size_t size) | ||
371 | { | ||
372 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | ||
373 | return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | ||
374 | } | ||
375 | EXPORT_SYMBOL(dma_mmap_coherent); | ||
376 | |||
377 | int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, | ||
378 | void *cpu_addr, dma_addr_t dma_addr, size_t size) | ||
379 | { | ||
380 | vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); | ||
381 | return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | ||
382 | } | ||
383 | EXPORT_SYMBOL(dma_mmap_writecombine); | ||
384 | |||
385 | |||
386 | |||
387 | |||
388 | /* | ||
389 | * Initialise the consistent memory allocation. | ||
390 | */ | ||
391 | static int __init dma_alloc_init(void) | ||
392 | { | ||
393 | pgd_t *pgd, *pgd_k; | ||
394 | pud_t *pud, *pud_k; | ||
395 | pmd_t *pmd, *pmd_k; | ||
396 | pte_t *pte; | ||
397 | int ret = 0; | ||
398 | |||
399 | do { | ||
400 | int offset = pgd_index(CONSISTENT_START); | ||
401 | pgd = pgd_offset(&init_mm, CONSISTENT_START); | ||
402 | pud = pud_alloc(&init_mm, pgd, CONSISTENT_START); | ||
403 | pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START); | ||
404 | if (!pmd) { | ||
405 | pr_err("%s: no pmd tables\n", __func__); | ||
406 | ret = -ENOMEM; | ||
407 | break; | ||
408 | } | ||
409 | WARN_ON(!pmd_none(*pmd)); | ||
410 | |||
411 | pte = pte_alloc_kernel(pmd, CONSISTENT_START); | ||
412 | if (!pte) { | ||
413 | pr_err("%s: no pte tables\n", __func__); | ||
414 | ret = -ENOMEM; | ||
415 | break; | ||
416 | } | ||
417 | |||
418 | pgd_k = ((pgd_t *) mmu_get_base()) + offset; | ||
419 | pud_k = pud_offset(pgd_k, CONSISTENT_START); | ||
420 | pmd_k = pmd_offset(pud_k, CONSISTENT_START); | ||
421 | set_pmd(pmd_k, *pmd); | ||
422 | |||
423 | consistent_pte = pte; | ||
424 | } while (0); | ||
425 | |||
426 | return ret; | ||
427 | } | ||
428 | early_initcall(dma_alloc_init); | ||
429 | |||
430 | /* | ||
431 | * make an area consistent to devices. | ||
432 | */ | ||
433 | void dma_sync_for_device(void *vaddr, size_t size, int dma_direction) | ||
434 | { | ||
435 | /* | ||
436 | * Ensure any writes get through the write combiner. This is necessary | ||
437 | * even with DMA_FROM_DEVICE, or the write may dirty the cache after | ||
438 | * we've invalidated it and get written back during the DMA. | ||
439 | */ | ||
440 | |||
441 | barrier(); | ||
442 | |||
443 | switch (dma_direction) { | ||
444 | case DMA_BIDIRECTIONAL: | ||
445 | /* | ||
446 | * Writeback to ensure the device can see our latest changes and | ||
447 | * so that we have no dirty lines, and invalidate the cache | ||
448 | * lines too in preparation for receiving the buffer back | ||
449 | * (dma_sync_for_cpu) later. | ||
450 | */ | ||
451 | flush_dcache_region(vaddr, size); | ||
452 | break; | ||
453 | case DMA_TO_DEVICE: | ||
454 | /* | ||
455 | * Writeback to ensure the device can see our latest changes. | ||
456 | * There's no need to invalidate as the device shouldn't write | ||
457 | * to the buffer. | ||
458 | */ | ||
459 | writeback_dcache_region(vaddr, size); | ||
460 | break; | ||
461 | case DMA_FROM_DEVICE: | ||
462 | /* | ||
463 | * Invalidate to ensure we have no dirty lines that could get | ||
464 | * written back during the DMA. It's also safe to flush | ||
465 | * (writeback) here if necessary. | ||
466 | */ | ||
467 | invalidate_dcache_region(vaddr, size); | ||
468 | break; | ||
469 | case DMA_NONE: | ||
470 | BUG(); | ||
471 | } | ||
472 | |||
473 | wmb(); | ||
474 | } | ||
475 | EXPORT_SYMBOL(dma_sync_for_device); | ||
476 | |||
477 | /* | ||
478 | * make an area consistent to the core. | ||
479 | */ | ||
480 | void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction) | ||
481 | { | ||
482 | /* | ||
483 | * Hardware L2 cache prefetch doesn't occur across 4K physical | ||
484 | * boundaries, however according to Documentation/DMA-API-HOWTO.txt | ||
485 | * kmalloc'd memory is DMA'able, so accesses in nearby memory could | ||
486 | * trigger a cache fill in the DMA buffer. | ||
487 | * | ||
488 | * This should never cause dirty lines, so a flush or invalidate should | ||
489 | * be safe to allow us to see data from the device. | ||
490 | */ | ||
491 | if (_meta_l2c_pf_is_enabled()) { | ||
492 | switch (dma_direction) { | ||
493 | case DMA_BIDIRECTIONAL: | ||
494 | case DMA_FROM_DEVICE: | ||
495 | invalidate_dcache_region(vaddr, size); | ||
496 | break; | ||
497 | case DMA_TO_DEVICE: | ||
498 | /* The device shouldn't have written to the buffer */ | ||
499 | break; | ||
500 | case DMA_NONE: | ||
501 | BUG(); | ||
502 | } | ||
503 | } | ||
504 | |||
505 | rmb(); | ||
506 | } | ||
507 | EXPORT_SYMBOL(dma_sync_for_cpu); | ||