aboutsummaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2010-12-13 06:43:23 -0500
committerThomas Gleixner <tglx@linutronix.de>2010-12-13 07:42:44 -0500
commitf1c18071ad70e2a78ab31fc26a18fcfa954a05c6 (patch)
treef2dcc61137171da3cffe2ca392bb694cacb65cb4 /arch
parent4720dd1b3858f0da2593188cb1e57eb0d3bc4af2 (diff)
x86: HPET: Chose a paranoid safe value for the ETIME check
commit 995bd3bb5 (x86: Hpet: Avoid the comparator readback penalty) chose 8 HPET cycles as a safe value for the ETIME check, as we had the confirmation that the posted write to the comparator register is delayed by two HPET clock cycles on Intel chipsets which showed readback problems. After that patch hit mainline we got reports from machines with newer AMD chipsets which seem to have an even longer delay. See http://thread.gmane.org/gmane.linux.kernel/1054283 and http://thread.gmane.org/gmane.linux.kernel/1069458 for further information. Boris tried to come up with an ACPI based selection of the minimum HPET cycles, but this failed on a couple of test machines. And of course we did not get any useful information from the hardware folks. For now our only option is to chose a paranoid high and safe value for the minimum HPET cycles used by the ETIME check. Adjust the minimum ns value for the HPET clockevent accordingly. Reported-Bistected-and-Tested-by: Markus Trippelsdorf <markus@trippelsdorf.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> LKML-Reference: <alpine.LFD.2.00.1012131222420.2653@localhost6.localdomain6> Cc: Simon Kirby <sim@hostway.ca> Cc: Borislav Petkov <bp@alien8.de> Cc: Andreas Herrmann <Andreas.Herrmann3@amd.com> Cc: John Stultz <johnstul@us.ibm.com>
Diffstat (limited to 'arch')
-rw-r--r--arch/x86/kernel/hpet.c26
1 files changed, 16 insertions, 10 deletions
diff --git a/arch/x86/kernel/hpet.c b/arch/x86/kernel/hpet.c
index ae03cab4352e..4ff5968f12d2 100644
--- a/arch/x86/kernel/hpet.c
+++ b/arch/x86/kernel/hpet.c
@@ -27,6 +27,9 @@
27#define HPET_DEV_FSB_CAP 0x1000 27#define HPET_DEV_FSB_CAP 0x1000
28#define HPET_DEV_PERI_CAP 0x2000 28#define HPET_DEV_PERI_CAP 0x2000
29 29
30#define HPET_MIN_CYCLES 128
31#define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32
30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt) 33#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31 34
32/* 35/*
@@ -299,8 +302,9 @@ static void hpet_legacy_clockevent_register(void)
299 /* Calculate the min / max delta */ 302 /* Calculate the min / max delta */
300 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, 303 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
301 &hpet_clockevent); 304 &hpet_clockevent);
302 /* 5 usec minimum reprogramming delta. */ 305 /* Setup minimum reprogramming delta. */
303 hpet_clockevent.min_delta_ns = 5000; 306 hpet_clockevent.min_delta_ns = clockevent_delta2ns(HPET_MIN_PROG_DELTA,
307 &hpet_clockevent);
304 308
305 /* 309 /*
306 * Start hpet with the boot cpu mask and make it 310 * Start hpet with the boot cpu mask and make it
@@ -393,22 +397,24 @@ static int hpet_next_event(unsigned long delta,
393 * the wraparound into account) nor a simple count down event 397 * the wraparound into account) nor a simple count down event
394 * mode. Further the write to the comparator register is 398 * mode. Further the write to the comparator register is
395 * delayed internally up to two HPET clock cycles in certain 399 * delayed internally up to two HPET clock cycles in certain
396 * chipsets (ATI, ICH9,10). We worked around that by reading 400 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
397 * back the compare register, but that required another 401 * longer delays. We worked around that by reading back the
398 * workaround for ICH9,10 chips where the first readout after 402 * compare register, but that required another workaround for
399 * write can return the old stale value. We already have a 403 * ICH9,10 chips where the first readout after write can
400 * minimum delta of 5us enforced, but a NMI or SMI hitting 404 * return the old stale value. We already had a minimum
405 * programming delta of 5us enforced, but a NMI or SMI hitting
401 * between the counter readout and the comparator write can 406 * between the counter readout and the comparator write can
402 * move us behind that point easily. Now instead of reading 407 * move us behind that point easily. Now instead of reading
403 * the compare register back several times, we make the ETIME 408 * the compare register back several times, we make the ETIME
404 * decision based on the following: Return ETIME if the 409 * decision based on the following: Return ETIME if the
405 * counter value after the write is less than 8 HPET cycles 410 * counter value after the write is less than HPET_MIN_CYCLES
406 * away from the event or if the counter is already ahead of 411 * away from the event or if the counter is already ahead of
407 * the event. 412 * the event. The minimum programming delta for the generic
413 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
408 */ 414 */
409 res = (s32)(cnt - hpet_readl(HPET_COUNTER)); 415 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
410 416
411 return res < 8 ? -ETIME : 0; 417 return res < HPET_MIN_CYCLES ? -ETIME : 0;
412} 418}
413 419
414static void hpet_legacy_set_mode(enum clock_event_mode mode, 420static void hpet_legacy_set_mode(enum clock_event_mode mode,