aboutsummaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
authorAbhishek Sagar <sagar.abhishek@gmail.com>2007-06-11 18:20:10 -0400
committerRussell King <rmk+kernel@arm.linux.org.uk>2008-01-26 10:25:16 -0500
commit24ba613c9d6cad315f484e658288db152f1dc447 (patch)
tree0a94ff96c77ccf7e0415bd2bc76ab400468c5e6e /arch
parent35aa1df4328340f38edc46f00837f08d33d49f63 (diff)
ARM kprobes: core code
This is a full implementation of Kprobes including Jprobes and Kretprobes support. This ARM implementation does not follow the usual kprobes double- exception model. The traditional model is where the initial kprobes breakpoint calls kprobe_handler(), which returns from exception to execute the instruction in its original context, then immediately re-enters after a second breakpoint (or single-stepping exception) into post_kprobe_handler(), each time the probe is hit.. The ARM implementation only executes one kprobes exception per hit, so no post_kprobe_handler() phase. All side-effects from the kprobe'd instruction are resolved before returning from the initial exception. As a result, all instructions are _always_ effectively boosted regardless of the type of instruction, and even regardless of whether or not there is a post-handler for the probe. Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com> Signed-off-by: Quentin Barnes <qbarnes@gmail.com> Signed-off-by: Nicolas Pitre <nico@marvell.com>
Diffstat (limited to 'arch')
-rw-r--r--arch/arm/kernel/Makefile2
-rw-r--r--arch/arm/kernel/kprobes.c453
2 files changed, 454 insertions, 1 deletions
diff --git a/arch/arm/kernel/Makefile b/arch/arm/kernel/Makefile
index 9e0eebacd3d9..faa761921153 100644
--- a/arch/arm/kernel/Makefile
+++ b/arch/arm/kernel/Makefile
@@ -19,7 +19,7 @@ obj-$(CONFIG_ISA_DMA) += dma-isa.o
19obj-$(CONFIG_PCI) += bios32.o isa.o 19obj-$(CONFIG_PCI) += bios32.o isa.o
20obj-$(CONFIG_SMP) += smp.o 20obj-$(CONFIG_SMP) += smp.o
21obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o 21obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o
22obj-$(CONFIG_KPROBES) += kprobes-decode.o 22obj-$(CONFIG_KPROBES) += kprobes.o kprobes-decode.o
23obj-$(CONFIG_OABI_COMPAT) += sys_oabi-compat.o 23obj-$(CONFIG_OABI_COMPAT) += sys_oabi-compat.o
24 24
25obj-$(CONFIG_CRUNCH) += crunch.o crunch-bits.o 25obj-$(CONFIG_CRUNCH) += crunch.o crunch-bits.o
diff --git a/arch/arm/kernel/kprobes.c b/arch/arm/kernel/kprobes.c
new file mode 100644
index 000000000000..a18a8458e99d
--- /dev/null
+++ b/arch/arm/kernel/kprobes.c
@@ -0,0 +1,453 @@
1/*
2 * arch/arm/kernel/kprobes.c
3 *
4 * Kprobes on ARM
5 *
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
8 *
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 */
21
22#include <linux/kernel.h>
23#include <linux/kprobes.h>
24#include <linux/module.h>
25#include <linux/stringify.h>
26#include <asm/traps.h>
27#include <asm/cacheflush.h>
28
29/*
30 * This undefined instruction must be unique and
31 * reserved solely for kprobes' use.
32 */
33#define KPROBE_BREAKPOINT_INSTRUCTION 0xe7f001f8
34
35#define MIN_STACK_SIZE(addr) \
36 min((unsigned long)MAX_STACK_SIZE, \
37 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
38
39#define flush_insns(addr, cnt) \
40 flush_icache_range((unsigned long)(addr), \
41 (unsigned long)(addr) + \
42 sizeof(kprobe_opcode_t) * (cnt))
43
44/* Used as a marker in ARM_pc to note when we're in a jprobe. */
45#define JPROBE_MAGIC_ADDR 0xffffffff
46
47DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
48DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
49
50
51int __kprobes arch_prepare_kprobe(struct kprobe *p)
52{
53 kprobe_opcode_t insn;
54 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
55 unsigned long addr = (unsigned long)p->addr;
56 int is;
57
58 if (addr & 0x3)
59 return -EINVAL;
60
61 insn = *p->addr;
62 p->opcode = insn;
63 p->ainsn.insn = tmp_insn;
64
65 switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
66 case INSN_REJECTED: /* not supported */
67 return -EINVAL;
68
69 case INSN_GOOD: /* instruction uses slot */
70 p->ainsn.insn = get_insn_slot();
71 if (!p->ainsn.insn)
72 return -ENOMEM;
73 for (is = 0; is < MAX_INSN_SIZE; ++is)
74 p->ainsn.insn[is] = tmp_insn[is];
75 flush_insns(&p->ainsn.insn, MAX_INSN_SIZE);
76 break;
77
78 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
79 p->ainsn.insn = NULL;
80 break;
81 }
82
83 return 0;
84}
85
86void __kprobes arch_arm_kprobe(struct kprobe *p)
87{
88 *p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
89 flush_insns(p->addr, 1);
90}
91
92void __kprobes arch_disarm_kprobe(struct kprobe *p)
93{
94 *p->addr = p->opcode;
95 flush_insns(p->addr, 1);
96}
97
98void __kprobes arch_remove_kprobe(struct kprobe *p)
99{
100 if (p->ainsn.insn) {
101 mutex_lock(&kprobe_mutex);
102 free_insn_slot(p->ainsn.insn, 0);
103 mutex_unlock(&kprobe_mutex);
104 p->ainsn.insn = NULL;
105 }
106}
107
108static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
109{
110 kcb->prev_kprobe.kp = kprobe_running();
111 kcb->prev_kprobe.status = kcb->kprobe_status;
112}
113
114static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
115{
116 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
117 kcb->kprobe_status = kcb->prev_kprobe.status;
118}
119
120static void __kprobes set_current_kprobe(struct kprobe *p)
121{
122 __get_cpu_var(current_kprobe) = p;
123}
124
125static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
126 struct kprobe_ctlblk *kcb)
127{
128 regs->ARM_pc += 4;
129 p->ainsn.insn_handler(p, regs);
130}
131
132/*
133 * Called with IRQs disabled. IRQs must remain disabled from that point
134 * all the way until processing this kprobe is complete. The current
135 * kprobes implementation cannot process more than one nested level of
136 * kprobe, and that level is reserved for user kprobe handlers, so we can't
137 * risk encountering a new kprobe in an interrupt handler.
138 */
139void __kprobes kprobe_handler(struct pt_regs *regs)
140{
141 struct kprobe *p, *cur;
142 struct kprobe_ctlblk *kcb;
143 kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
144
145 kcb = get_kprobe_ctlblk();
146 cur = kprobe_running();
147 p = get_kprobe(addr);
148
149 if (p) {
150 if (cur) {
151 /* Kprobe is pending, so we're recursing. */
152 switch (kcb->kprobe_status) {
153 case KPROBE_HIT_ACTIVE:
154 case KPROBE_HIT_SSDONE:
155 /* A pre- or post-handler probe got us here. */
156 kprobes_inc_nmissed_count(p);
157 save_previous_kprobe(kcb);
158 set_current_kprobe(p);
159 kcb->kprobe_status = KPROBE_REENTER;
160 singlestep(p, regs, kcb);
161 restore_previous_kprobe(kcb);
162 break;
163 default:
164 /* impossible cases */
165 BUG();
166 }
167 } else {
168 set_current_kprobe(p);
169 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
170
171 /*
172 * If we have no pre-handler or it returned 0, we
173 * continue with normal processing. If we have a
174 * pre-handler and it returned non-zero, it prepped
175 * for calling the break_handler below on re-entry,
176 * so get out doing nothing more here.
177 */
178 if (!p->pre_handler || !p->pre_handler(p, regs)) {
179 kcb->kprobe_status = KPROBE_HIT_SS;
180 singlestep(p, regs, kcb);
181 if (p->post_handler) {
182 kcb->kprobe_status = KPROBE_HIT_SSDONE;
183 p->post_handler(p, regs, 0);
184 }
185 reset_current_kprobe();
186 }
187 }
188 } else if (cur) {
189 /* We probably hit a jprobe. Call its break handler. */
190 if (cur->break_handler && cur->break_handler(cur, regs)) {
191 kcb->kprobe_status = KPROBE_HIT_SS;
192 singlestep(cur, regs, kcb);
193 if (cur->post_handler) {
194 kcb->kprobe_status = KPROBE_HIT_SSDONE;
195 cur->post_handler(cur, regs, 0);
196 }
197 }
198 reset_current_kprobe();
199 } else {
200 /*
201 * The probe was removed and a race is in progress.
202 * There is nothing we can do about it. Let's restart
203 * the instruction. By the time we can restart, the
204 * real instruction will be there.
205 */
206 }
207}
208
209static int kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
210{
211 kprobe_handler(regs);
212 return 0;
213}
214
215int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
216{
217 struct kprobe *cur = kprobe_running();
218 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
219
220 switch (kcb->kprobe_status) {
221 case KPROBE_HIT_SS:
222 case KPROBE_REENTER:
223 /*
224 * We are here because the instruction being single
225 * stepped caused a page fault. We reset the current
226 * kprobe and the PC to point back to the probe address
227 * and allow the page fault handler to continue as a
228 * normal page fault.
229 */
230 regs->ARM_pc = (long)cur->addr;
231 if (kcb->kprobe_status == KPROBE_REENTER) {
232 restore_previous_kprobe(kcb);
233 } else {
234 reset_current_kprobe();
235 }
236 break;
237
238 case KPROBE_HIT_ACTIVE:
239 case KPROBE_HIT_SSDONE:
240 /*
241 * We increment the nmissed count for accounting,
242 * we can also use npre/npostfault count for accounting
243 * these specific fault cases.
244 */
245 kprobes_inc_nmissed_count(cur);
246
247 /*
248 * We come here because instructions in the pre/post
249 * handler caused the page_fault, this could happen
250 * if handler tries to access user space by
251 * copy_from_user(), get_user() etc. Let the
252 * user-specified handler try to fix it.
253 */
254 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
255 return 1;
256 break;
257
258 default:
259 break;
260 }
261
262 return 0;
263}
264
265int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
266 unsigned long val, void *data)
267{
268 /*
269 * notify_die() is currently never called on ARM,
270 * so this callback is currently empty.
271 */
272 return NOTIFY_DONE;
273}
274
275/*
276 * When a retprobed function returns, trampoline_handler() is called,
277 * calling the kretprobe's handler. We construct a struct pt_regs to
278 * give a view of registers r0-r11 to the user return-handler. This is
279 * not a complete pt_regs structure, but that should be plenty sufficient
280 * for kretprobe handlers which should normally be interested in r0 only
281 * anyway.
282 */
283static void __attribute__((naked)) __kprobes kretprobe_trampoline(void)
284{
285 __asm__ __volatile__ (
286 "stmdb sp!, {r0 - r11} \n\t"
287 "mov r0, sp \n\t"
288 "bl trampoline_handler \n\t"
289 "mov lr, r0 \n\t"
290 "ldmia sp!, {r0 - r11} \n\t"
291 "mov pc, lr \n\t"
292 : : : "memory");
293}
294
295/* Called from kretprobe_trampoline */
296static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
297{
298 struct kretprobe_instance *ri = NULL;
299 struct hlist_head *head, empty_rp;
300 struct hlist_node *node, *tmp;
301 unsigned long flags, orig_ret_address = 0;
302 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
303
304 INIT_HLIST_HEAD(&empty_rp);
305 spin_lock_irqsave(&kretprobe_lock, flags);
306 head = kretprobe_inst_table_head(current);
307
308 /*
309 * It is possible to have multiple instances associated with a given
310 * task either because multiple functions in the call path have
311 * a return probe installed on them, and/or more than one return
312 * probe was registered for a target function.
313 *
314 * We can handle this because:
315 * - instances are always inserted at the head of the list
316 * - when multiple return probes are registered for the same
317 * function, the first instance's ret_addr will point to the
318 * real return address, and all the rest will point to
319 * kretprobe_trampoline
320 */
321 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
322 if (ri->task != current)
323 /* another task is sharing our hash bucket */
324 continue;
325
326 if (ri->rp && ri->rp->handler) {
327 __get_cpu_var(current_kprobe) = &ri->rp->kp;
328 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
329 ri->rp->handler(ri, regs);
330 __get_cpu_var(current_kprobe) = NULL;
331 }
332
333 orig_ret_address = (unsigned long)ri->ret_addr;
334 recycle_rp_inst(ri, &empty_rp);
335
336 if (orig_ret_address != trampoline_address)
337 /*
338 * This is the real return address. Any other
339 * instances associated with this task are for
340 * other calls deeper on the call stack
341 */
342 break;
343 }
344
345 kretprobe_assert(ri, orig_ret_address, trampoline_address);
346 spin_unlock_irqrestore(&kretprobe_lock, flags);
347
348 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
349 hlist_del(&ri->hlist);
350 kfree(ri);
351 }
352
353 return (void *)orig_ret_address;
354}
355
356/* Called with kretprobe_lock held. */
357void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
358 struct pt_regs *regs)
359{
360 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
361
362 /* Replace the return addr with trampoline addr. */
363 regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
364}
365
366int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
367{
368 struct jprobe *jp = container_of(p, struct jprobe, kp);
369 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
370 long sp_addr = regs->ARM_sp;
371
372 kcb->jprobe_saved_regs = *regs;
373 memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
374 regs->ARM_pc = (long)jp->entry;
375 regs->ARM_cpsr |= PSR_I_BIT;
376 preempt_disable();
377 return 1;
378}
379
380void __kprobes jprobe_return(void)
381{
382 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383
384 __asm__ __volatile__ (
385 /*
386 * Setup an empty pt_regs. Fill SP and PC fields as
387 * they're needed by longjmp_break_handler.
388 */
389 "sub sp, %0, %1 \n\t"
390 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
391 "str %0, [sp, %2] \n\t"
392 "str r0, [sp, %3] \n\t"
393 "mov r0, sp \n\t"
394 "bl kprobe_handler \n\t"
395
396 /*
397 * Return to the context saved by setjmp_pre_handler
398 * and restored by longjmp_break_handler.
399 */
400 "ldr r0, [sp, %4] \n\t"
401 "msr cpsr_cxsf, r0 \n\t"
402 "ldmia sp, {r0 - pc} \n\t"
403 :
404 : "r" (kcb->jprobe_saved_regs.ARM_sp),
405 "I" (sizeof(struct pt_regs)),
406 "J" (offsetof(struct pt_regs, ARM_sp)),
407 "J" (offsetof(struct pt_regs, ARM_pc)),
408 "J" (offsetof(struct pt_regs, ARM_cpsr))
409 : "memory", "cc");
410}
411
412int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
413{
414 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
415 long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
416 long orig_sp = regs->ARM_sp;
417 struct jprobe *jp = container_of(p, struct jprobe, kp);
418
419 if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
420 if (orig_sp != stack_addr) {
421 struct pt_regs *saved_regs =
422 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
423 printk("current sp %lx does not match saved sp %lx\n",
424 orig_sp, stack_addr);
425 printk("Saved registers for jprobe %p\n", jp);
426 show_regs(saved_regs);
427 printk("Current registers\n");
428 show_regs(regs);
429 BUG();
430 }
431 *regs = kcb->jprobe_saved_regs;
432 memcpy((void *)stack_addr, kcb->jprobes_stack,
433 MIN_STACK_SIZE(stack_addr));
434 preempt_enable_no_resched();
435 return 1;
436 }
437 return 0;
438}
439
440static struct undef_hook kprobes_break_hook = {
441 .instr_mask = 0xffffffff,
442 .instr_val = KPROBE_BREAKPOINT_INSTRUCTION,
443 .cpsr_mask = MODE_MASK,
444 .cpsr_val = SVC_MODE,
445 .fn = kprobe_trap_handler,
446};
447
448int __init arch_init_kprobes()
449{
450 arm_kprobe_decode_init();
451 register_undef_hook(&kprobes_break_hook);
452 return 0;
453}