aboutsummaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
authorJoerg Roedel <joerg.roedel@amd.com>2009-05-12 04:56:44 -0400
committerJoerg Roedel <joerg.roedel@amd.com>2009-05-28 12:12:52 -0400
commitc3239567a20e90e3026ac5453d5267506ef7b030 (patch)
tree403aea58ec7d0e4d0f1233c4b4d472885ffe738d /arch
parent41fb454ebe6024f5c1e3b3cbc0abc0da762e7b51 (diff)
amd-iommu: introduce aperture_range structure
This is a preperation for extended address allocator. Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Diffstat (limited to 'arch')
-rw-r--r--arch/x86/include/asm/amd_iommu_types.h32
-rw-r--r--arch/x86/kernel/amd_iommu.c46
2 files changed, 43 insertions, 35 deletions
diff --git a/arch/x86/include/asm/amd_iommu_types.h b/arch/x86/include/asm/amd_iommu_types.h
index 95c8cd9d22b5..4c64c9bc6839 100644
--- a/arch/x86/include/asm/amd_iommu_types.h
+++ b/arch/x86/include/asm/amd_iommu_types.h
@@ -195,6 +195,8 @@
195#define PD_DEFAULT_MASK (1UL << 1) /* domain is a default dma_ops 195#define PD_DEFAULT_MASK (1UL << 1) /* domain is a default dma_ops
196 domain for an IOMMU */ 196 domain for an IOMMU */
197 197
198#define APERTURE_RANGE_SIZE (128 * 1024 * 1024)
199
198/* 200/*
199 * This structure contains generic data for IOMMU protection domains 201 * This structure contains generic data for IOMMU protection domains
200 * independent of their use. 202 * independent of their use.
@@ -210,6 +212,24 @@ struct protection_domain {
210}; 212};
211 213
212/* 214/*
215 * For dynamic growth the aperture size is split into ranges of 128MB of
216 * DMA address space each. This struct represents one such range.
217 */
218struct aperture_range {
219
220 /* address allocation bitmap */
221 unsigned long *bitmap;
222
223 /*
224 * Array of PTE pages for the aperture. In this array we save all the
225 * leaf pages of the domain page table used for the aperture. This way
226 * we don't need to walk the page table to find a specific PTE. We can
227 * just calculate its address in constant time.
228 */
229 u64 *pte_pages[64];
230};
231
232/*
213 * Data container for a dma_ops specific protection domain 233 * Data container for a dma_ops specific protection domain
214 */ 234 */
215struct dma_ops_domain { 235struct dma_ops_domain {
@@ -224,16 +244,8 @@ struct dma_ops_domain {
224 /* address we start to search for free addresses */ 244 /* address we start to search for free addresses */
225 unsigned long next_bit; 245 unsigned long next_bit;
226 246
227 /* address allocation bitmap */ 247 /* address space relevant data */
228 unsigned long *bitmap; 248 struct aperture_range aperture;
229
230 /*
231 * Array of PTE pages for the aperture. In this array we save all the
232 * leaf pages of the domain page table used for the aperture. This way
233 * we don't need to walk the page table to find a specific PTE. We can
234 * just calculate its address in constant time.
235 */
236 u64 **pte_pages;
237 249
238 /* This will be set to true when TLB needs to be flushed */ 250 /* This will be set to true when TLB needs to be flushed */
239 bool need_flush; 251 bool need_flush;
diff --git a/arch/x86/kernel/amd_iommu.c b/arch/x86/kernel/amd_iommu.c
index a97db99dad52..62acd09cd19f 100644
--- a/arch/x86/kernel/amd_iommu.c
+++ b/arch/x86/kernel/amd_iommu.c
@@ -595,7 +595,8 @@ static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
595 * as allocated in the aperture 595 * as allocated in the aperture
596 */ 596 */
597 if (addr < dma_dom->aperture_size) 597 if (addr < dma_dom->aperture_size)
598 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap); 598 __set_bit(addr >> PAGE_SHIFT,
599 dma_dom->aperture.bitmap);
599 } 600 }
600 601
601 return 0; 602 return 0;
@@ -656,11 +657,12 @@ static unsigned long dma_ops_alloc_addresses(struct device *dev,
656 dom->need_flush = true; 657 dom->need_flush = true;
657 } 658 }
658 659
659 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages, 660 address = iommu_area_alloc(dom->aperture.bitmap, limit, dom->next_bit,
660 0 , boundary_size, align_mask); 661 pages, 0 , boundary_size, align_mask);
661 if (address == -1) { 662 if (address == -1) {
662 address = iommu_area_alloc(dom->bitmap, limit, 0, pages, 663 address = iommu_area_alloc(dom->aperture.bitmap, limit, 0,
663 0, boundary_size, align_mask); 664 pages, 0, boundary_size,
665 align_mask);
664 dom->need_flush = true; 666 dom->need_flush = true;
665 } 667 }
666 668
@@ -685,7 +687,7 @@ static void dma_ops_free_addresses(struct dma_ops_domain *dom,
685 unsigned int pages) 687 unsigned int pages)
686{ 688{
687 address >>= PAGE_SHIFT; 689 address >>= PAGE_SHIFT;
688 iommu_area_free(dom->bitmap, address, pages); 690 iommu_area_free(dom->aperture.bitmap, address, pages);
689 691
690 if (address >= dom->next_bit) 692 if (address >= dom->next_bit)
691 dom->need_flush = true; 693 dom->need_flush = true;
@@ -741,7 +743,7 @@ static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
741 if (start_page + pages > last_page) 743 if (start_page + pages > last_page)
742 pages = last_page - start_page; 744 pages = last_page - start_page;
743 745
744 iommu_area_reserve(dom->bitmap, start_page, pages); 746 iommu_area_reserve(dom->aperture.bitmap, start_page, pages);
745} 747}
746 748
747static void free_pagetable(struct protection_domain *domain) 749static void free_pagetable(struct protection_domain *domain)
@@ -785,9 +787,7 @@ static void dma_ops_domain_free(struct dma_ops_domain *dom)
785 787
786 free_pagetable(&dom->domain); 788 free_pagetable(&dom->domain);
787 789
788 kfree(dom->pte_pages); 790 free_page((unsigned long)dom->aperture.bitmap);
789
790 kfree(dom->bitmap);
791 791
792 kfree(dom); 792 kfree(dom);
793} 793}
@@ -826,16 +826,15 @@ static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
826 dma_dom->domain.priv = dma_dom; 826 dma_dom->domain.priv = dma_dom;
827 if (!dma_dom->domain.pt_root) 827 if (!dma_dom->domain.pt_root)
828 goto free_dma_dom; 828 goto free_dma_dom;
829 dma_dom->aperture_size = (1ULL << order); 829 dma_dom->aperture_size = APERTURE_RANGE_SIZE;
830 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8), 830 dma_dom->aperture.bitmap = (void *)get_zeroed_page(GFP_KERNEL);
831 GFP_KERNEL); 831 if (!dma_dom->aperture.bitmap)
832 if (!dma_dom->bitmap)
833 goto free_dma_dom; 832 goto free_dma_dom;
834 /* 833 /*
835 * mark the first page as allocated so we never return 0 as 834 * mark the first page as allocated so we never return 0 as
836 * a valid dma-address. So we can use 0 as error value 835 * a valid dma-address. So we can use 0 as error value
837 */ 836 */
838 dma_dom->bitmap[0] = 1; 837 dma_dom->aperture.bitmap[0] = 1;
839 dma_dom->next_bit = 0; 838 dma_dom->next_bit = 0;
840 839
841 dma_dom->need_flush = false; 840 dma_dom->need_flush = false;
@@ -854,13 +853,9 @@ static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
854 /* 853 /*
855 * At the last step, build the page tables so we don't need to 854 * At the last step, build the page tables so we don't need to
856 * allocate page table pages in the dma_ops mapping/unmapping 855 * allocate page table pages in the dma_ops mapping/unmapping
857 * path. 856 * path for the first 128MB of dma address space.
858 */ 857 */
859 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512); 858 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
860 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
861 GFP_KERNEL);
862 if (!dma_dom->pte_pages)
863 goto free_dma_dom;
864 859
865 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL); 860 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
866 if (l2_pde == NULL) 861 if (l2_pde == NULL)
@@ -869,10 +864,11 @@ static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
869 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde)); 864 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
870 865
871 for (i = 0; i < num_pte_pages; ++i) { 866 for (i = 0; i < num_pte_pages; ++i) {
872 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL); 867 u64 **pte_page = &dma_dom->aperture.pte_pages[i];
873 if (!dma_dom->pte_pages[i]) 868 *pte_page = (u64 *)get_zeroed_page(GFP_KERNEL);
869 if (!*pte_page)
874 goto free_dma_dom; 870 goto free_dma_dom;
875 address = virt_to_phys(dma_dom->pte_pages[i]); 871 address = virt_to_phys(*pte_page);
876 l2_pde[i] = IOMMU_L1_PDE(address); 872 l2_pde[i] = IOMMU_L1_PDE(address);
877 } 873 }
878 874
@@ -1159,7 +1155,7 @@ static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1159 1155
1160 paddr &= PAGE_MASK; 1156 paddr &= PAGE_MASK;
1161 1157
1162 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)]; 1158 pte = dom->aperture.pte_pages[IOMMU_PTE_L1_INDEX(address)];
1163 pte += IOMMU_PTE_L0_INDEX(address); 1159 pte += IOMMU_PTE_L0_INDEX(address);
1164 1160
1165 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; 1161 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
@@ -1192,7 +1188,7 @@ static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1192 1188
1193 WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size); 1189 WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
1194 1190
1195 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)]; 1191 pte = dom->aperture.pte_pages[IOMMU_PTE_L1_INDEX(address)];
1196 pte += IOMMU_PTE_L0_INDEX(address); 1192 pte += IOMMU_PTE_L0_INDEX(address);
1197 1193
1198 WARN_ON(!*pte); 1194 WARN_ON(!*pte);