aboutsummaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
authorDmitry Baryshkov <dbaryshkov@gmail.com>2008-07-18 05:30:31 -0400
committerIngo Molnar <mingo@elte.hu>2008-07-18 15:14:02 -0400
commit9de90ac27d752bc0177baf2699ab483888de0743 (patch)
tree9b368663c57849aec3d182b662ff467956a83a77 /arch
parent1fe532685a1984dc9f2603ed20bd5e630ba79709 (diff)
Sh: use generic per-device coherent dma allocator
Signed-off-by: Dmitry Baryshkov <dbaryshkov@gmail.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch')
-rw-r--r--arch/sh/Kconfig1
-rw-r--r--arch/sh/mm/consistent.c98
2 files changed, 4 insertions, 95 deletions
diff --git a/arch/sh/Kconfig b/arch/sh/Kconfig
index 3e7384f4619c..81894f0985aa 100644
--- a/arch/sh/Kconfig
+++ b/arch/sh/Kconfig
@@ -10,6 +10,7 @@ config SUPERH
10 select EMBEDDED 10 select EMBEDDED
11 select HAVE_IDE 11 select HAVE_IDE
12 select HAVE_OPROFILE 12 select HAVE_OPROFILE
13 select HAVE_GENERIC_DMA_COHERENT
13 help 14 help
14 The SuperH is a RISC processor targeted for use in embedded systems 15 The SuperH is a RISC processor targeted for use in embedded systems
15 and consumer electronics; it was also used in the Sega Dreamcast 16 and consumer electronics; it was also used in the Sega Dreamcast
diff --git a/arch/sh/mm/consistent.c b/arch/sh/mm/consistent.c
index d3c33fc5b1c2..3095d9581475 100644
--- a/arch/sh/mm/consistent.c
+++ b/arch/sh/mm/consistent.c
@@ -27,21 +27,10 @@ void *dma_alloc_coherent(struct device *dev, size_t size,
27 dma_addr_t *dma_handle, gfp_t gfp) 27 dma_addr_t *dma_handle, gfp_t gfp)
28{ 28{
29 void *ret, *ret_nocache; 29 void *ret, *ret_nocache;
30 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
31 int order = get_order(size); 30 int order = get_order(size);
32 31
33 if (mem) { 32 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
34 int page = bitmap_find_free_region(mem->bitmap, mem->size, 33 return ret;
35 order);
36 if (page >= 0) {
37 *dma_handle = mem->device_base + (page << PAGE_SHIFT);
38 ret = mem->virt_base + (page << PAGE_SHIFT);
39 memset(ret, 0, size);
40 return ret;
41 }
42 if (mem->flags & DMA_MEMORY_EXCLUSIVE)
43 return NULL;
44 }
45 34
46 ret = (void *)__get_free_pages(gfp, order); 35 ret = (void *)__get_free_pages(gfp, order);
47 if (!ret) 36 if (!ret)
@@ -71,11 +60,7 @@ void dma_free_coherent(struct device *dev, size_t size,
71 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL; 60 struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
72 int order = get_order(size); 61 int order = get_order(size);
73 62
74 if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) { 63 if (!dma_release_from_coherent(dev, order, vaddr)) {
75 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
76
77 bitmap_release_region(mem->bitmap, page, order);
78 } else {
79 WARN_ON(irqs_disabled()); /* for portability */ 64 WARN_ON(irqs_disabled()); /* for portability */
80 BUG_ON(mem && mem->flags & DMA_MEMORY_EXCLUSIVE); 65 BUG_ON(mem && mem->flags & DMA_MEMORY_EXCLUSIVE);
81 free_pages((unsigned long)phys_to_virt(dma_handle), order); 66 free_pages((unsigned long)phys_to_virt(dma_handle), order);
@@ -84,83 +69,6 @@ void dma_free_coherent(struct device *dev, size_t size,
84} 69}
85EXPORT_SYMBOL(dma_free_coherent); 70EXPORT_SYMBOL(dma_free_coherent);
86 71
87int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
88 dma_addr_t device_addr, size_t size, int flags)
89{
90 void __iomem *mem_base = NULL;
91 int pages = size >> PAGE_SHIFT;
92 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
93
94 if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
95 goto out;
96 if (!size)
97 goto out;
98 if (dev->dma_mem)
99 goto out;
100
101 /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
102
103 mem_base = ioremap_nocache(bus_addr, size);
104 if (!mem_base)
105 goto out;
106
107 dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
108 if (!dev->dma_mem)
109 goto out;
110 dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
111 if (!dev->dma_mem->bitmap)
112 goto free1_out;
113
114 dev->dma_mem->virt_base = mem_base;
115 dev->dma_mem->device_base = device_addr;
116 dev->dma_mem->size = pages;
117 dev->dma_mem->flags = flags;
118
119 if (flags & DMA_MEMORY_MAP)
120 return DMA_MEMORY_MAP;
121
122 return DMA_MEMORY_IO;
123
124 free1_out:
125 kfree(dev->dma_mem);
126 out:
127 if (mem_base)
128 iounmap(mem_base);
129 return 0;
130}
131EXPORT_SYMBOL(dma_declare_coherent_memory);
132
133void dma_release_declared_memory(struct device *dev)
134{
135 struct dma_coherent_mem *mem = dev->dma_mem;
136
137 if (!mem)
138 return;
139 dev->dma_mem = NULL;
140 iounmap(mem->virt_base);
141 kfree(mem->bitmap);
142 kfree(mem);
143}
144EXPORT_SYMBOL(dma_release_declared_memory);
145
146void *dma_mark_declared_memory_occupied(struct device *dev,
147 dma_addr_t device_addr, size_t size)
148{
149 struct dma_coherent_mem *mem = dev->dma_mem;
150 int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
151 int pos, err;
152
153 if (!mem)
154 return ERR_PTR(-EINVAL);
155
156 pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
157 err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages));
158 if (err != 0)
159 return ERR_PTR(err);
160 return mem->virt_base + (pos << PAGE_SHIFT);
161}
162EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
163
164void dma_cache_sync(struct device *dev, void *vaddr, size_t size, 72void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
165 enum dma_data_direction direction) 73 enum dma_data_direction direction)
166{ 74{