aboutsummaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
authorJussi Kivilinna <jussi.kivilinna@iki.fi>2013-04-13 06:47:00 -0400
committerHerbert Xu <herbert@gondor.apana.org.au>2013-04-25 09:09:07 -0400
commitf3f935a76aa0eee68da2b273a08d84ba8ffc7a73 (patch)
treec33db3ca826852d1f5b66ec48e08a08b0e273b78 /arch
parent56d76c96a9f3e39ab733c5643b3ce5a1d4be242a (diff)
crypto: camellia - add AVX2/AES-NI/x86_64 assembler implementation of camellia cipher
Patch adds AVX2/AES-NI/x86-64 implementation of Camellia cipher, requiring 32 parallel blocks for input (512 bytes). Compared to AVX implementation, this version is extended to use the 256-bit wide YMM registers. For AES-NI instructions data is split to two 128-bit registers and merged afterwards. Even with this additional handling, performance should be higher compared to the AES-NI/AVX implementation. Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'arch')
-rw-r--r--arch/x86/crypto/Makefile2
-rw-r--r--arch/x86/crypto/camellia-aesni-avx2-asm_64.S1368
-rw-r--r--arch/x86/crypto/camellia_aesni_avx2_glue.c586
-rw-r--r--arch/x86/crypto/camellia_aesni_avx_glue.c17
-rw-r--r--arch/x86/include/asm/crypto/camellia.h19
5 files changed, 1989 insertions, 3 deletions
diff --git a/arch/x86/crypto/Makefile b/arch/x86/crypto/Makefile
index a21af593ab8d..a3a0ed80f17c 100644
--- a/arch/x86/crypto/Makefile
+++ b/arch/x86/crypto/Makefile
@@ -43,6 +43,7 @@ endif
43# These modules require assembler to support AVX2. 43# These modules require assembler to support AVX2.
44ifeq ($(avx2_supported),yes) 44ifeq ($(avx2_supported),yes)
45 obj-$(CONFIG_CRYPTO_BLOWFISH_AVX2_X86_64) += blowfish-avx2.o 45 obj-$(CONFIG_CRYPTO_BLOWFISH_AVX2_X86_64) += blowfish-avx2.o
46 obj-$(CONFIG_CRYPTO_CAMELLIA_AESNI_AVX2_X86_64) += camellia-aesni-avx2.o
46 obj-$(CONFIG_CRYPTO_SERPENT_AVX2_X86_64) += serpent-avx2.o 47 obj-$(CONFIG_CRYPTO_SERPENT_AVX2_X86_64) += serpent-avx2.o
47 obj-$(CONFIG_CRYPTO_TWOFISH_AVX2_X86_64) += twofish-avx2.o 48 obj-$(CONFIG_CRYPTO_TWOFISH_AVX2_X86_64) += twofish-avx2.o
48endif 49endif
@@ -73,6 +74,7 @@ endif
73 74
74ifeq ($(avx2_supported),yes) 75ifeq ($(avx2_supported),yes)
75 blowfish-avx2-y := blowfish-avx2-asm_64.o blowfish_avx2_glue.o 76 blowfish-avx2-y := blowfish-avx2-asm_64.o blowfish_avx2_glue.o
77 camellia-aesni-avx2-y := camellia-aesni-avx2-asm_64.o camellia_aesni_avx2_glue.o
76 serpent-avx2-y := serpent-avx2-asm_64.o serpent_avx2_glue.o 78 serpent-avx2-y := serpent-avx2-asm_64.o serpent_avx2_glue.o
77 twofish-avx2-y := twofish-avx2-asm_64.o twofish_avx2_glue.o 79 twofish-avx2-y := twofish-avx2-asm_64.o twofish_avx2_glue.o
78endif 80endif
diff --git a/arch/x86/crypto/camellia-aesni-avx2-asm_64.S b/arch/x86/crypto/camellia-aesni-avx2-asm_64.S
new file mode 100644
index 000000000000..91a1878fcc3e
--- /dev/null
+++ b/arch/x86/crypto/camellia-aesni-avx2-asm_64.S
@@ -0,0 +1,1368 @@
1/*
2 * x86_64/AVX2/AES-NI assembler implementation of Camellia
3 *
4 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13#include <linux/linkage.h>
14
15#define CAMELLIA_TABLE_BYTE_LEN 272
16
17/* struct camellia_ctx: */
18#define key_table 0
19#define key_length CAMELLIA_TABLE_BYTE_LEN
20
21/* register macros */
22#define CTX %rdi
23#define RIO %r8
24
25/**********************************************************************
26 helper macros
27 **********************************************************************/
28#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
29 vpand x, mask4bit, tmp0; \
30 vpandn x, mask4bit, x; \
31 vpsrld $4, x, x; \
32 \
33 vpshufb tmp0, lo_t, tmp0; \
34 vpshufb x, hi_t, x; \
35 vpxor tmp0, x, x;
36
37#define ymm0_x xmm0
38#define ymm1_x xmm1
39#define ymm2_x xmm2
40#define ymm3_x xmm3
41#define ymm4_x xmm4
42#define ymm5_x xmm5
43#define ymm6_x xmm6
44#define ymm7_x xmm7
45#define ymm8_x xmm8
46#define ymm9_x xmm9
47#define ymm10_x xmm10
48#define ymm11_x xmm11
49#define ymm12_x xmm12
50#define ymm13_x xmm13
51#define ymm14_x xmm14
52#define ymm15_x xmm15
53
54/*
55 * AES-NI instructions do not support ymmX registers, so we need splitting and
56 * merging.
57 */
58#define vaesenclast256(zero, yreg, tmp) \
59 vextracti128 $1, yreg, tmp##_x; \
60 vaesenclast zero##_x, yreg##_x, yreg##_x; \
61 vaesenclast zero##_x, tmp##_x, tmp##_x; \
62 vinserti128 $1, tmp##_x, yreg, yreg;
63
64/**********************************************************************
65 32-way camellia
66 **********************************************************************/
67
68/*
69 * IN:
70 * x0..x7: byte-sliced AB state
71 * mem_cd: register pointer storing CD state
72 * key: index for key material
73 * OUT:
74 * x0..x7: new byte-sliced CD state
75 */
76#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
77 t7, mem_cd, key) \
78 /* \
79 * S-function with AES subbytes \
80 */ \
81 vbroadcasti128 .Linv_shift_row, t4; \
82 vpbroadcastb .L0f0f0f0f, t7; \
83 vbroadcasti128 .Lpre_tf_lo_s1, t0; \
84 vbroadcasti128 .Lpre_tf_hi_s1, t1; \
85 \
86 /* AES inverse shift rows */ \
87 vpshufb t4, x0, x0; \
88 vpshufb t4, x7, x7; \
89 vpshufb t4, x1, x1; \
90 vpshufb t4, x4, x4; \
91 vpshufb t4, x2, x2; \
92 vpshufb t4, x5, x5; \
93 vpshufb t4, x3, x3; \
94 vpshufb t4, x6, x6; \
95 \
96 /* prefilter sboxes 1, 2 and 3 */ \
97 vbroadcasti128 .Lpre_tf_lo_s4, t2; \
98 vbroadcasti128 .Lpre_tf_hi_s4, t3; \
99 filter_8bit(x0, t0, t1, t7, t6); \
100 filter_8bit(x7, t0, t1, t7, t6); \
101 filter_8bit(x1, t0, t1, t7, t6); \
102 filter_8bit(x4, t0, t1, t7, t6); \
103 filter_8bit(x2, t0, t1, t7, t6); \
104 filter_8bit(x5, t0, t1, t7, t6); \
105 \
106 /* prefilter sbox 4 */ \
107 vpxor t4##_x, t4##_x, t4##_x; \
108 filter_8bit(x3, t2, t3, t7, t6); \
109 filter_8bit(x6, t2, t3, t7, t6); \
110 \
111 /* AES subbytes + AES shift rows */ \
112 vbroadcasti128 .Lpost_tf_lo_s1, t0; \
113 vbroadcasti128 .Lpost_tf_hi_s1, t1; \
114 vaesenclast256(t4, x0, t5); \
115 vaesenclast256(t4, x7, t5); \
116 vaesenclast256(t4, x1, t5); \
117 vaesenclast256(t4, x4, t5); \
118 vaesenclast256(t4, x2, t5); \
119 vaesenclast256(t4, x5, t5); \
120 vaesenclast256(t4, x3, t5); \
121 vaesenclast256(t4, x6, t5); \
122 \
123 /* postfilter sboxes 1 and 4 */ \
124 vbroadcasti128 .Lpost_tf_lo_s3, t2; \
125 vbroadcasti128 .Lpost_tf_hi_s3, t3; \
126 filter_8bit(x0, t0, t1, t7, t6); \
127 filter_8bit(x7, t0, t1, t7, t6); \
128 filter_8bit(x3, t0, t1, t7, t6); \
129 filter_8bit(x6, t0, t1, t7, t6); \
130 \
131 /* postfilter sbox 3 */ \
132 vbroadcasti128 .Lpost_tf_lo_s2, t4; \
133 vbroadcasti128 .Lpost_tf_hi_s2, t5; \
134 filter_8bit(x2, t2, t3, t7, t6); \
135 filter_8bit(x5, t2, t3, t7, t6); \
136 \
137 vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
138 \
139 /* postfilter sbox 2 */ \
140 filter_8bit(x1, t4, t5, t7, t2); \
141 filter_8bit(x4, t4, t5, t7, t2); \
142 \
143 vpsrldq $1, t0, t1; \
144 vpsrldq $2, t0, t2; \
145 vpsrldq $3, t0, t3; \
146 vpsrldq $4, t0, t4; \
147 vpsrldq $5, t0, t5; \
148 vpsrldq $6, t0, t6; \
149 vpsrldq $7, t0, t7; \
150 vpbroadcastb t0##_x, t0; \
151 vpbroadcastb t1##_x, t1; \
152 vpbroadcastb t2##_x, t2; \
153 vpbroadcastb t3##_x, t3; \
154 vpbroadcastb t4##_x, t4; \
155 vpbroadcastb t6##_x, t6; \
156 vpbroadcastb t5##_x, t5; \
157 vpbroadcastb t7##_x, t7; \
158 \
159 /* P-function */ \
160 vpxor x5, x0, x0; \
161 vpxor x6, x1, x1; \
162 vpxor x7, x2, x2; \
163 vpxor x4, x3, x3; \
164 \
165 vpxor x2, x4, x4; \
166 vpxor x3, x5, x5; \
167 vpxor x0, x6, x6; \
168 vpxor x1, x7, x7; \
169 \
170 vpxor x7, x0, x0; \
171 vpxor x4, x1, x1; \
172 vpxor x5, x2, x2; \
173 vpxor x6, x3, x3; \
174 \
175 vpxor x3, x4, x4; \
176 vpxor x0, x5, x5; \
177 vpxor x1, x6, x6; \
178 vpxor x2, x7, x7; /* note: high and low parts swapped */ \
179 \
180 /* Add key material and result to CD (x becomes new CD) */ \
181 \
182 vpxor t7, x0, x0; \
183 vpxor 4 * 32(mem_cd), x0, x0; \
184 \
185 vpxor t6, x1, x1; \
186 vpxor 5 * 32(mem_cd), x1, x1; \
187 \
188 vpxor t5, x2, x2; \
189 vpxor 6 * 32(mem_cd), x2, x2; \
190 \
191 vpxor t4, x3, x3; \
192 vpxor 7 * 32(mem_cd), x3, x3; \
193 \
194 vpxor t3, x4, x4; \
195 vpxor 0 * 32(mem_cd), x4, x4; \
196 \
197 vpxor t2, x5, x5; \
198 vpxor 1 * 32(mem_cd), x5, x5; \
199 \
200 vpxor t1, x6, x6; \
201 vpxor 2 * 32(mem_cd), x6, x6; \
202 \
203 vpxor t0, x7, x7; \
204 vpxor 3 * 32(mem_cd), x7, x7;
205
206/*
207 * Size optimization... with inlined roundsm16 binary would be over 5 times
208 * larger and would only marginally faster.
209 */
210.align 8
211roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
212 roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
213 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
214 %rcx, (%r9));
215 ret;
216ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
217
218.align 8
219roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
220 roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
221 %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
222 %rax, (%r9));
223 ret;
224ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
225
226/*
227 * IN/OUT:
228 * x0..x7: byte-sliced AB state preloaded
229 * mem_ab: byte-sliced AB state in memory
230 * mem_cb: byte-sliced CD state in memory
231 */
232#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
233 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
234 leaq (key_table + (i) * 8)(CTX), %r9; \
235 call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
236 \
237 vmovdqu x0, 4 * 32(mem_cd); \
238 vmovdqu x1, 5 * 32(mem_cd); \
239 vmovdqu x2, 6 * 32(mem_cd); \
240 vmovdqu x3, 7 * 32(mem_cd); \
241 vmovdqu x4, 0 * 32(mem_cd); \
242 vmovdqu x5, 1 * 32(mem_cd); \
243 vmovdqu x6, 2 * 32(mem_cd); \
244 vmovdqu x7, 3 * 32(mem_cd); \
245 \
246 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
247 call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
248 \
249 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
250
251#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
252
253#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
254 /* Store new AB state */ \
255 vmovdqu x4, 4 * 32(mem_ab); \
256 vmovdqu x5, 5 * 32(mem_ab); \
257 vmovdqu x6, 6 * 32(mem_ab); \
258 vmovdqu x7, 7 * 32(mem_ab); \
259 vmovdqu x0, 0 * 32(mem_ab); \
260 vmovdqu x1, 1 * 32(mem_ab); \
261 vmovdqu x2, 2 * 32(mem_ab); \
262 vmovdqu x3, 3 * 32(mem_ab);
263
264#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
265 y6, y7, mem_ab, mem_cd, i) \
266 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
267 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
268 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
269 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
270 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
271 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
272
273#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
274 y6, y7, mem_ab, mem_cd, i) \
275 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
276 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
277 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
278 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
279 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
280 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
281
282/*
283 * IN:
284 * v0..3: byte-sliced 32-bit integers
285 * OUT:
286 * v0..3: (IN <<< 1)
287 */
288#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
289 vpcmpgtb v0, zero, t0; \
290 vpaddb v0, v0, v0; \
291 vpabsb t0, t0; \
292 \
293 vpcmpgtb v1, zero, t1; \
294 vpaddb v1, v1, v1; \
295 vpabsb t1, t1; \
296 \
297 vpcmpgtb v2, zero, t2; \
298 vpaddb v2, v2, v2; \
299 vpabsb t2, t2; \
300 \
301 vpor t0, v1, v1; \
302 \
303 vpcmpgtb v3, zero, t0; \
304 vpaddb v3, v3, v3; \
305 vpabsb t0, t0; \
306 \
307 vpor t1, v2, v2; \
308 vpor t2, v3, v3; \
309 vpor t0, v0, v0;
310
311/*
312 * IN:
313 * r: byte-sliced AB state in memory
314 * l: byte-sliced CD state in memory
315 * OUT:
316 * x0..x7: new byte-sliced CD state
317 */
318#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
319 tt1, tt2, tt3, kll, klr, krl, krr) \
320 /* \
321 * t0 = kll; \
322 * t0 &= ll; \
323 * lr ^= rol32(t0, 1); \
324 */ \
325 vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
326 vpxor tt0, tt0, tt0; \
327 vpbroadcastb t0##_x, t3; \
328 vpsrldq $1, t0, t0; \
329 vpbroadcastb t0##_x, t2; \
330 vpsrldq $1, t0, t0; \
331 vpbroadcastb t0##_x, t1; \
332 vpsrldq $1, t0, t0; \
333 vpbroadcastb t0##_x, t0; \
334 \
335 vpand l0, t0, t0; \
336 vpand l1, t1, t1; \
337 vpand l2, t2, t2; \
338 vpand l3, t3, t3; \
339 \
340 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
341 \
342 vpxor l4, t0, l4; \
343 vmovdqu l4, 4 * 32(l); \
344 vpxor l5, t1, l5; \
345 vmovdqu l5, 5 * 32(l); \
346 vpxor l6, t2, l6; \
347 vmovdqu l6, 6 * 32(l); \
348 vpxor l7, t3, l7; \
349 vmovdqu l7, 7 * 32(l); \
350 \
351 /* \
352 * t2 = krr; \
353 * t2 |= rr; \
354 * rl ^= t2; \
355 */ \
356 \
357 vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
358 vpbroadcastb t0##_x, t3; \
359 vpsrldq $1, t0, t0; \
360 vpbroadcastb t0##_x, t2; \
361 vpsrldq $1, t0, t0; \
362 vpbroadcastb t0##_x, t1; \
363 vpsrldq $1, t0, t0; \
364 vpbroadcastb t0##_x, t0; \
365 \
366 vpor 4 * 32(r), t0, t0; \
367 vpor 5 * 32(r), t1, t1; \
368 vpor 6 * 32(r), t2, t2; \
369 vpor 7 * 32(r), t3, t3; \
370 \
371 vpxor 0 * 32(r), t0, t0; \
372 vpxor 1 * 32(r), t1, t1; \
373 vpxor 2 * 32(r), t2, t2; \
374 vpxor 3 * 32(r), t3, t3; \
375 vmovdqu t0, 0 * 32(r); \
376 vmovdqu t1, 1 * 32(r); \
377 vmovdqu t2, 2 * 32(r); \
378 vmovdqu t3, 3 * 32(r); \
379 \
380 /* \
381 * t2 = krl; \
382 * t2 &= rl; \
383 * rr ^= rol32(t2, 1); \
384 */ \
385 vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
386 vpbroadcastb t0##_x, t3; \
387 vpsrldq $1, t0, t0; \
388 vpbroadcastb t0##_x, t2; \
389 vpsrldq $1, t0, t0; \
390 vpbroadcastb t0##_x, t1; \
391 vpsrldq $1, t0, t0; \
392 vpbroadcastb t0##_x, t0; \
393 \
394 vpand 0 * 32(r), t0, t0; \
395 vpand 1 * 32(r), t1, t1; \
396 vpand 2 * 32(r), t2, t2; \
397 vpand 3 * 32(r), t3, t3; \
398 \
399 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
400 \
401 vpxor 4 * 32(r), t0, t0; \
402 vpxor 5 * 32(r), t1, t1; \
403 vpxor 6 * 32(r), t2, t2; \
404 vpxor 7 * 32(r), t3, t3; \
405 vmovdqu t0, 4 * 32(r); \
406 vmovdqu t1, 5 * 32(r); \
407 vmovdqu t2, 6 * 32(r); \
408 vmovdqu t3, 7 * 32(r); \
409 \
410 /* \
411 * t0 = klr; \
412 * t0 |= lr; \
413 * ll ^= t0; \
414 */ \
415 \
416 vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
417 vpbroadcastb t0##_x, t3; \
418 vpsrldq $1, t0, t0; \
419 vpbroadcastb t0##_x, t2; \
420 vpsrldq $1, t0, t0; \
421 vpbroadcastb t0##_x, t1; \
422 vpsrldq $1, t0, t0; \
423 vpbroadcastb t0##_x, t0; \
424 \
425 vpor l4, t0, t0; \
426 vpor l5, t1, t1; \
427 vpor l6, t2, t2; \
428 vpor l7, t3, t3; \
429 \
430 vpxor l0, t0, l0; \
431 vmovdqu l0, 0 * 32(l); \
432 vpxor l1, t1, l1; \
433 vmovdqu l1, 1 * 32(l); \
434 vpxor l2, t2, l2; \
435 vmovdqu l2, 2 * 32(l); \
436 vpxor l3, t3, l3; \
437 vmovdqu l3, 3 * 32(l);
438
439#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
440 vpunpckhdq x1, x0, t2; \
441 vpunpckldq x1, x0, x0; \
442 \
443 vpunpckldq x3, x2, t1; \
444 vpunpckhdq x3, x2, x2; \
445 \
446 vpunpckhqdq t1, x0, x1; \
447 vpunpcklqdq t1, x0, x0; \
448 \
449 vpunpckhqdq x2, t2, x3; \
450 vpunpcklqdq x2, t2, x2;
451
452#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
453 a3, b3, c3, d3, st0, st1) \
454 vmovdqu d2, st0; \
455 vmovdqu d3, st1; \
456 transpose_4x4(a0, a1, a2, a3, d2, d3); \
457 transpose_4x4(b0, b1, b2, b3, d2, d3); \
458 vmovdqu st0, d2; \
459 vmovdqu st1, d3; \
460 \
461 vmovdqu a0, st0; \
462 vmovdqu a1, st1; \
463 transpose_4x4(c0, c1, c2, c3, a0, a1); \
464 transpose_4x4(d0, d1, d2, d3, a0, a1); \
465 \
466 vbroadcasti128 .Lshufb_16x16b, a0; \
467 vmovdqu st1, a1; \
468 vpshufb a0, a2, a2; \
469 vpshufb a0, a3, a3; \
470 vpshufb a0, b0, b0; \
471 vpshufb a0, b1, b1; \
472 vpshufb a0, b2, b2; \
473 vpshufb a0, b3, b3; \
474 vpshufb a0, a1, a1; \
475 vpshufb a0, c0, c0; \
476 vpshufb a0, c1, c1; \
477 vpshufb a0, c2, c2; \
478 vpshufb a0, c3, c3; \
479 vpshufb a0, d0, d0; \
480 vpshufb a0, d1, d1; \
481 vpshufb a0, d2, d2; \
482 vpshufb a0, d3, d3; \
483 vmovdqu d3, st1; \
484 vmovdqu st0, d3; \
485 vpshufb a0, d3, a0; \
486 vmovdqu d2, st0; \
487 \
488 transpose_4x4(a0, b0, c0, d0, d2, d3); \
489 transpose_4x4(a1, b1, c1, d1, d2, d3); \
490 vmovdqu st0, d2; \
491 vmovdqu st1, d3; \
492 \
493 vmovdqu b0, st0; \
494 vmovdqu b1, st1; \
495 transpose_4x4(a2, b2, c2, d2, b0, b1); \
496 transpose_4x4(a3, b3, c3, d3, b0, b1); \
497 vmovdqu st0, b0; \
498 vmovdqu st1, b1; \
499 /* does not adjust output bytes inside vectors */
500
501/* load blocks to registers and apply pre-whitening */
502#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
503 y6, y7, rio, key) \
504 vpbroadcastq key, x0; \
505 vpshufb .Lpack_bswap, x0, x0; \
506 \
507 vpxor 0 * 32(rio), x0, y7; \
508 vpxor 1 * 32(rio), x0, y6; \
509 vpxor 2 * 32(rio), x0, y5; \
510 vpxor 3 * 32(rio), x0, y4; \
511 vpxor 4 * 32(rio), x0, y3; \
512 vpxor 5 * 32(rio), x0, y2; \
513 vpxor 6 * 32(rio), x0, y1; \
514 vpxor 7 * 32(rio), x0, y0; \
515 vpxor 8 * 32(rio), x0, x7; \
516 vpxor 9 * 32(rio), x0, x6; \
517 vpxor 10 * 32(rio), x0, x5; \
518 vpxor 11 * 32(rio), x0, x4; \
519 vpxor 12 * 32(rio), x0, x3; \
520 vpxor 13 * 32(rio), x0, x2; \
521 vpxor 14 * 32(rio), x0, x1; \
522 vpxor 15 * 32(rio), x0, x0;
523
524/* byteslice pre-whitened blocks and store to temporary memory */
525#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
526 y6, y7, mem_ab, mem_cd) \
527 byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
528 y4, y5, y6, y7, (mem_ab), (mem_cd)); \
529 \
530 vmovdqu x0, 0 * 32(mem_ab); \
531 vmovdqu x1, 1 * 32(mem_ab); \
532 vmovdqu x2, 2 * 32(mem_ab); \
533 vmovdqu x3, 3 * 32(mem_ab); \
534 vmovdqu x4, 4 * 32(mem_ab); \
535 vmovdqu x5, 5 * 32(mem_ab); \
536 vmovdqu x6, 6 * 32(mem_ab); \
537 vmovdqu x7, 7 * 32(mem_ab); \
538 vmovdqu y0, 0 * 32(mem_cd); \
539 vmovdqu y1, 1 * 32(mem_cd); \
540 vmovdqu y2, 2 * 32(mem_cd); \
541 vmovdqu y3, 3 * 32(mem_cd); \
542 vmovdqu y4, 4 * 32(mem_cd); \
543 vmovdqu y5, 5 * 32(mem_cd); \
544 vmovdqu y6, 6 * 32(mem_cd); \
545 vmovdqu y7, 7 * 32(mem_cd);
546
547/* de-byteslice, apply post-whitening and store blocks */
548#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
549 y5, y6, y7, key, stack_tmp0, stack_tmp1) \
550 byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
551 y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
552 \
553 vmovdqu x0, stack_tmp0; \
554 \
555 vpbroadcastq key, x0; \
556 vpshufb .Lpack_bswap, x0, x0; \
557 \
558 vpxor x0, y7, y7; \
559 vpxor x0, y6, y6; \
560 vpxor x0, y5, y5; \
561 vpxor x0, y4, y4; \
562 vpxor x0, y3, y3; \
563 vpxor x0, y2, y2; \
564 vpxor x0, y1, y1; \
565 vpxor x0, y0, y0; \
566 vpxor x0, x7, x7; \
567 vpxor x0, x6, x6; \
568 vpxor x0, x5, x5; \
569 vpxor x0, x4, x4; \
570 vpxor x0, x3, x3; \
571 vpxor x0, x2, x2; \
572 vpxor x0, x1, x1; \
573 vpxor stack_tmp0, x0, x0;
574
575#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
576 y6, y7, rio) \
577 vmovdqu x0, 0 * 32(rio); \
578 vmovdqu x1, 1 * 32(rio); \
579 vmovdqu x2, 2 * 32(rio); \
580 vmovdqu x3, 3 * 32(rio); \
581 vmovdqu x4, 4 * 32(rio); \
582 vmovdqu x5, 5 * 32(rio); \
583 vmovdqu x6, 6 * 32(rio); \
584 vmovdqu x7, 7 * 32(rio); \
585 vmovdqu y0, 8 * 32(rio); \
586 vmovdqu y1, 9 * 32(rio); \
587 vmovdqu y2, 10 * 32(rio); \
588 vmovdqu y3, 11 * 32(rio); \
589 vmovdqu y4, 12 * 32(rio); \
590 vmovdqu y5, 13 * 32(rio); \
591 vmovdqu y6, 14 * 32(rio); \
592 vmovdqu y7, 15 * 32(rio);
593
594.data
595.align 32
596
597#define SHUFB_BYTES(idx) \
598 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
599
600.Lshufb_16x16b:
601 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
602 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
603
604.Lpack_bswap:
605 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
606 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
607
608/* For CTR-mode IV byteswap */
609.Lbswap128_mask:
610 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
611
612/* For XTS mode */
613.Lxts_gf128mul_and_shl1_mask_0:
614 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
615.Lxts_gf128mul_and_shl1_mask_1:
616 .byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
617
618/*
619 * pre-SubByte transform
620 *
621 * pre-lookup for sbox1, sbox2, sbox3:
622 * swap_bitendianness(
623 * isom_map_camellia_to_aes(
624 * camellia_f(
625 * swap_bitendianess(in)
626 * )
627 * )
628 * )
629 *
630 * (note: '⊕ 0xc5' inside camellia_f())
631 */
632.Lpre_tf_lo_s1:
633 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
634 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
635.Lpre_tf_hi_s1:
636 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
637 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
638
639/*
640 * pre-SubByte transform
641 *
642 * pre-lookup for sbox4:
643 * swap_bitendianness(
644 * isom_map_camellia_to_aes(
645 * camellia_f(
646 * swap_bitendianess(in <<< 1)
647 * )
648 * )
649 * )
650 *
651 * (note: '⊕ 0xc5' inside camellia_f())
652 */
653.Lpre_tf_lo_s4:
654 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
655 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
656.Lpre_tf_hi_s4:
657 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
658 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
659
660/*
661 * post-SubByte transform
662 *
663 * post-lookup for sbox1, sbox4:
664 * swap_bitendianness(
665 * camellia_h(
666 * isom_map_aes_to_camellia(
667 * swap_bitendianness(
668 * aes_inverse_affine_transform(in)
669 * )
670 * )
671 * )
672 * )
673 *
674 * (note: '⊕ 0x6e' inside camellia_h())
675 */
676.Lpost_tf_lo_s1:
677 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
678 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
679.Lpost_tf_hi_s1:
680 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
681 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
682
683/*
684 * post-SubByte transform
685 *
686 * post-lookup for sbox2:
687 * swap_bitendianness(
688 * camellia_h(
689 * isom_map_aes_to_camellia(
690 * swap_bitendianness(
691 * aes_inverse_affine_transform(in)
692 * )
693 * )
694 * )
695 * ) <<< 1
696 *
697 * (note: '⊕ 0x6e' inside camellia_h())
698 */
699.Lpost_tf_lo_s2:
700 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
701 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
702.Lpost_tf_hi_s2:
703 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
704 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
705
706/*
707 * post-SubByte transform
708 *
709 * post-lookup for sbox3:
710 * swap_bitendianness(
711 * camellia_h(
712 * isom_map_aes_to_camellia(
713 * swap_bitendianness(
714 * aes_inverse_affine_transform(in)
715 * )
716 * )
717 * )
718 * ) >>> 1
719 *
720 * (note: '⊕ 0x6e' inside camellia_h())
721 */
722.Lpost_tf_lo_s3:
723 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
724 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
725.Lpost_tf_hi_s3:
726 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
727 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
728
729/* For isolating SubBytes from AESENCLAST, inverse shift row */
730.Linv_shift_row:
731 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
732 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
733
734.align 4
735/* 4-bit mask */
736.L0f0f0f0f:
737 .long 0x0f0f0f0f
738
739.text
740
741.align 8
742__camellia_enc_blk32:
743 /* input:
744 * %rdi: ctx, CTX
745 * %rax: temporary storage, 512 bytes
746 * %ymm0..%ymm15: 32 plaintext blocks
747 * output:
748 * %ymm0..%ymm15: 32 encrypted blocks, order swapped:
749 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
750 */
751
752 leaq 8 * 32(%rax), %rcx;
753
754 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
755 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
756 %ymm15, %rax, %rcx);
757
758 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
759 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
760 %ymm15, %rax, %rcx, 0);
761
762 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
763 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
764 %ymm15,
765 ((key_table + (8) * 8) + 0)(CTX),
766 ((key_table + (8) * 8) + 4)(CTX),
767 ((key_table + (8) * 8) + 8)(CTX),
768 ((key_table + (8) * 8) + 12)(CTX));
769
770 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
771 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
772 %ymm15, %rax, %rcx, 8);
773
774 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
775 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
776 %ymm15,
777 ((key_table + (16) * 8) + 0)(CTX),
778 ((key_table + (16) * 8) + 4)(CTX),
779 ((key_table + (16) * 8) + 8)(CTX),
780 ((key_table + (16) * 8) + 12)(CTX));
781
782 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
783 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
784 %ymm15, %rax, %rcx, 16);
785
786 movl $24, %r8d;
787 cmpl $16, key_length(CTX);
788 jne .Lenc_max32;
789
790.Lenc_done:
791 /* load CD for output */
792 vmovdqu 0 * 32(%rcx), %ymm8;
793 vmovdqu 1 * 32(%rcx), %ymm9;
794 vmovdqu 2 * 32(%rcx), %ymm10;
795 vmovdqu 3 * 32(%rcx), %ymm11;
796 vmovdqu 4 * 32(%rcx), %ymm12;
797 vmovdqu 5 * 32(%rcx), %ymm13;
798 vmovdqu 6 * 32(%rcx), %ymm14;
799 vmovdqu 7 * 32(%rcx), %ymm15;
800
801 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
802 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
803 %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
804
805 ret;
806
807.align 8
808.Lenc_max32:
809 movl $32, %r8d;
810
811 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
812 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
813 %ymm15,
814 ((key_table + (24) * 8) + 0)(CTX),
815 ((key_table + (24) * 8) + 4)(CTX),
816 ((key_table + (24) * 8) + 8)(CTX),
817 ((key_table + (24) * 8) + 12)(CTX));
818
819 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
820 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
821 %ymm15, %rax, %rcx, 24);
822
823 jmp .Lenc_done;
824ENDPROC(__camellia_enc_blk32)
825
826.align 8
827__camellia_dec_blk32:
828 /* input:
829 * %rdi: ctx, CTX
830 * %rax: temporary storage, 512 bytes
831 * %r8d: 24 for 16 byte key, 32 for larger
832 * %ymm0..%ymm15: 16 encrypted blocks
833 * output:
834 * %ymm0..%ymm15: 16 plaintext blocks, order swapped:
835 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
836 */
837
838 leaq 8 * 32(%rax), %rcx;
839
840 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
841 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
842 %ymm15, %rax, %rcx);
843
844 cmpl $32, %r8d;
845 je .Ldec_max32;
846
847.Ldec_max24:
848 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
849 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
850 %ymm15, %rax, %rcx, 16);
851
852 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
853 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
854 %ymm15,
855 ((key_table + (16) * 8) + 8)(CTX),
856 ((key_table + (16) * 8) + 12)(CTX),
857 ((key_table + (16) * 8) + 0)(CTX),
858 ((key_table + (16) * 8) + 4)(CTX));
859
860 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
861 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
862 %ymm15, %rax, %rcx, 8);
863
864 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
865 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
866 %ymm15,
867 ((key_table + (8) * 8) + 8)(CTX),
868 ((key_table + (8) * 8) + 12)(CTX),
869 ((key_table + (8) * 8) + 0)(CTX),
870 ((key_table + (8) * 8) + 4)(CTX));
871
872 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
873 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
874 %ymm15, %rax, %rcx, 0);
875
876 /* load CD for output */
877 vmovdqu 0 * 32(%rcx), %ymm8;
878 vmovdqu 1 * 32(%rcx), %ymm9;
879 vmovdqu 2 * 32(%rcx), %ymm10;
880 vmovdqu 3 * 32(%rcx), %ymm11;
881 vmovdqu 4 * 32(%rcx), %ymm12;
882 vmovdqu 5 * 32(%rcx), %ymm13;
883 vmovdqu 6 * 32(%rcx), %ymm14;
884 vmovdqu 7 * 32(%rcx), %ymm15;
885
886 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
887 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
888 %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
889
890 ret;
891
892.align 8
893.Ldec_max32:
894 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
895 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
896 %ymm15, %rax, %rcx, 24);
897
898 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
899 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
900 %ymm15,
901 ((key_table + (24) * 8) + 8)(CTX),
902 ((key_table + (24) * 8) + 12)(CTX),
903 ((key_table + (24) * 8) + 0)(CTX),
904 ((key_table + (24) * 8) + 4)(CTX));
905
906 jmp .Ldec_max24;
907ENDPROC(__camellia_dec_blk32)
908
909ENTRY(camellia_ecb_enc_32way)
910 /* input:
911 * %rdi: ctx, CTX
912 * %rsi: dst (32 blocks)
913 * %rdx: src (32 blocks)
914 */
915
916 vzeroupper;
917
918 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
919 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
920 %ymm15, %rdx, (key_table)(CTX));
921
922 /* now dst can be used as temporary buffer (even in src == dst case) */
923 movq %rsi, %rax;
924
925 call __camellia_enc_blk32;
926
927 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
928 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
929 %ymm8, %rsi);
930
931 vzeroupper;
932
933 ret;
934ENDPROC(camellia_ecb_enc_32way)
935
936ENTRY(camellia_ecb_dec_32way)
937 /* input:
938 * %rdi: ctx, CTX
939 * %rsi: dst (32 blocks)
940 * %rdx: src (32 blocks)
941 */
942
943 vzeroupper;
944
945 cmpl $16, key_length(CTX);
946 movl $32, %r8d;
947 movl $24, %eax;
948 cmovel %eax, %r8d; /* max */
949
950 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
951 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
952 %ymm15, %rdx, (key_table)(CTX, %r8, 8));
953
954 /* now dst can be used as temporary buffer (even in src == dst case) */
955 movq %rsi, %rax;
956
957 call __camellia_dec_blk32;
958
959 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
960 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
961 %ymm8, %rsi);
962
963 vzeroupper;
964
965 ret;
966ENDPROC(camellia_ecb_dec_32way)
967
968ENTRY(camellia_cbc_dec_32way)
969 /* input:
970 * %rdi: ctx, CTX
971 * %rsi: dst (32 blocks)
972 * %rdx: src (32 blocks)
973 */
974
975 vzeroupper;
976
977 cmpl $16, key_length(CTX);
978 movl $32, %r8d;
979 movl $24, %eax;
980 cmovel %eax, %r8d; /* max */
981
982 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
983 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
984 %ymm15, %rdx, (key_table)(CTX, %r8, 8));
985
986 movq %rsp, %r10;
987 cmpq %rsi, %rdx;
988 je .Lcbc_dec_use_stack;
989
990 /* dst can be used as temporary storage, src is not overwritten. */
991 movq %rsi, %rax;
992 jmp .Lcbc_dec_continue;
993
994.Lcbc_dec_use_stack:
995 /*
996 * dst still in-use (because dst == src), so use stack for temporary
997 * storage.
998 */
999 subq $(16 * 32), %rsp;
1000 movq %rsp, %rax;
1001
1002.Lcbc_dec_continue:
1003 call __camellia_dec_blk32;
1004
1005 vmovdqu %ymm7, (%rax);
1006 vpxor %ymm7, %ymm7, %ymm7;
1007 vinserti128 $1, (%rdx), %ymm7, %ymm7;
1008 vpxor (%rax), %ymm7, %ymm7;
1009 movq %r10, %rsp;
1010 vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1011 vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1012 vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1013 vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1014 vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1015 vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1016 vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1017 vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1018 vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1019 vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1020 vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1021 vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1022 vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1023 vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1024 vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1025 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1026 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1027 %ymm8, %rsi);
1028
1029 vzeroupper;
1030
1031 ret;
1032ENDPROC(camellia_cbc_dec_32way)
1033
1034#define inc_le128(x, minus_one, tmp) \
1035 vpcmpeqq minus_one, x, tmp; \
1036 vpsubq minus_one, x, x; \
1037 vpslldq $8, tmp, tmp; \
1038 vpsubq tmp, x, x;
1039
1040#define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
1041 vpcmpeqq minus_one, x, tmp1; \
1042 vpcmpeqq minus_two, x, tmp2; \
1043 vpsubq minus_two, x, x; \
1044 vpor tmp2, tmp1, tmp1; \
1045 vpslldq $8, tmp1, tmp1; \
1046 vpsubq tmp1, x, x;
1047
1048ENTRY(camellia_ctr_32way)
1049 /* input:
1050 * %rdi: ctx, CTX
1051 * %rsi: dst (32 blocks)
1052 * %rdx: src (32 blocks)
1053 * %rcx: iv (little endian, 128bit)
1054 */
1055
1056 vzeroupper;
1057
1058 movq %rsp, %r10;
1059 cmpq %rsi, %rdx;
1060 je .Lctr_use_stack;
1061
1062 /* dst can be used as temporary storage, src is not overwritten. */
1063 movq %rsi, %rax;
1064 jmp .Lctr_continue;
1065
1066.Lctr_use_stack:
1067 subq $(16 * 32), %rsp;
1068 movq %rsp, %rax;
1069
1070.Lctr_continue:
1071 vpcmpeqd %ymm15, %ymm15, %ymm15;
1072 vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
1073 vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
1074
1075 /* load IV and byteswap */
1076 vmovdqu (%rcx), %xmm0;
1077 vmovdqa %xmm0, %xmm1;
1078 inc_le128(%xmm0, %xmm15, %xmm14);
1079 vbroadcasti128 .Lbswap128_mask, %ymm14;
1080 vinserti128 $1, %xmm0, %ymm1, %ymm0;
1081 vpshufb %ymm14, %ymm0, %ymm13;
1082 vmovdqu %ymm13, 15 * 32(%rax);
1083
1084 /* construct IVs */
1085 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
1086 vpshufb %ymm14, %ymm0, %ymm13;
1087 vmovdqu %ymm13, 14 * 32(%rax);
1088 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1089 vpshufb %ymm14, %ymm0, %ymm13;
1090 vmovdqu %ymm13, 13 * 32(%rax);
1091 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1092 vpshufb %ymm14, %ymm0, %ymm13;
1093 vmovdqu %ymm13, 12 * 32(%rax);
1094 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1095 vpshufb %ymm14, %ymm0, %ymm13;
1096 vmovdqu %ymm13, 11 * 32(%rax);
1097 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1098 vpshufb %ymm14, %ymm0, %ymm10;
1099 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1100 vpshufb %ymm14, %ymm0, %ymm9;
1101 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1102 vpshufb %ymm14, %ymm0, %ymm8;
1103 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1104 vpshufb %ymm14, %ymm0, %ymm7;
1105 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1106 vpshufb %ymm14, %ymm0, %ymm6;
1107 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1108 vpshufb %ymm14, %ymm0, %ymm5;
1109 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1110 vpshufb %ymm14, %ymm0, %ymm4;
1111 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1112 vpshufb %ymm14, %ymm0, %ymm3;
1113 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1114 vpshufb %ymm14, %ymm0, %ymm2;
1115 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1116 vpshufb %ymm14, %ymm0, %ymm1;
1117 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1118 vextracti128 $1, %ymm0, %xmm13;
1119 vpshufb %ymm14, %ymm0, %ymm0;
1120 inc_le128(%xmm13, %xmm15, %xmm14);
1121 vmovdqu %xmm13, (%rcx);
1122
1123 /* inpack32_pre: */
1124 vpbroadcastq (key_table)(CTX), %ymm15;
1125 vpshufb .Lpack_bswap, %ymm15, %ymm15;
1126 vpxor %ymm0, %ymm15, %ymm0;
1127 vpxor %ymm1, %ymm15, %ymm1;
1128 vpxor %ymm2, %ymm15, %ymm2;
1129 vpxor %ymm3, %ymm15, %ymm3;
1130 vpxor %ymm4, %ymm15, %ymm4;
1131 vpxor %ymm5, %ymm15, %ymm5;
1132 vpxor %ymm6, %ymm15, %ymm6;
1133 vpxor %ymm7, %ymm15, %ymm7;
1134 vpxor %ymm8, %ymm15, %ymm8;
1135 vpxor %ymm9, %ymm15, %ymm9;
1136 vpxor %ymm10, %ymm15, %ymm10;
1137 vpxor 11 * 32(%rax), %ymm15, %ymm11;
1138 vpxor 12 * 32(%rax), %ymm15, %ymm12;
1139 vpxor 13 * 32(%rax), %ymm15, %ymm13;
1140 vpxor 14 * 32(%rax), %ymm15, %ymm14;
1141 vpxor 15 * 32(%rax), %ymm15, %ymm15;
1142
1143 call __camellia_enc_blk32;
1144
1145 movq %r10, %rsp;
1146
1147 vpxor 0 * 32(%rdx), %ymm7, %ymm7;
1148 vpxor 1 * 32(%rdx), %ymm6, %ymm6;
1149 vpxor 2 * 32(%rdx), %ymm5, %ymm5;
1150 vpxor 3 * 32(%rdx), %ymm4, %ymm4;
1151 vpxor 4 * 32(%rdx), %ymm3, %ymm3;
1152 vpxor 5 * 32(%rdx), %ymm2, %ymm2;
1153 vpxor 6 * 32(%rdx), %ymm1, %ymm1;
1154 vpxor 7 * 32(%rdx), %ymm0, %ymm0;
1155 vpxor 8 * 32(%rdx), %ymm15, %ymm15;
1156 vpxor 9 * 32(%rdx), %ymm14, %ymm14;
1157 vpxor 10 * 32(%rdx), %ymm13, %ymm13;
1158 vpxor 11 * 32(%rdx), %ymm12, %ymm12;
1159 vpxor 12 * 32(%rdx), %ymm11, %ymm11;
1160 vpxor 13 * 32(%rdx), %ymm10, %ymm10;
1161 vpxor 14 * 32(%rdx), %ymm9, %ymm9;
1162 vpxor 15 * 32(%rdx), %ymm8, %ymm8;
1163 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1164 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1165 %ymm8, %rsi);
1166
1167 vzeroupper;
1168
1169 ret;
1170ENDPROC(camellia_ctr_32way)
1171
1172#define gf128mul_x_ble(iv, mask, tmp) \
1173 vpsrad $31, iv, tmp; \
1174 vpaddq iv, iv, iv; \
1175 vpshufd $0x13, tmp, tmp; \
1176 vpand mask, tmp, tmp; \
1177 vpxor tmp, iv, iv;
1178
1179#define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
1180 vpsrad $31, iv, tmp0; \
1181 vpaddq iv, iv, tmp1; \
1182 vpsllq $2, iv, iv; \
1183 vpshufd $0x13, tmp0, tmp0; \
1184 vpsrad $31, tmp1, tmp1; \
1185 vpand mask2, tmp0, tmp0; \
1186 vpshufd $0x13, tmp1, tmp1; \
1187 vpxor tmp0, iv, iv; \
1188 vpand mask1, tmp1, tmp1; \
1189 vpxor tmp1, iv, iv;
1190
1191.align 8
1192camellia_xts_crypt_32way:
1193 /* input:
1194 * %rdi: ctx, CTX
1195 * %rsi: dst (32 blocks)
1196 * %rdx: src (32 blocks)
1197 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1198 * %r8: index for input whitening key
1199 * %r9: pointer to __camellia_enc_blk32 or __camellia_dec_blk32
1200 */
1201
1202 vzeroupper;
1203
1204 subq $(16 * 32), %rsp;
1205 movq %rsp, %rax;
1206
1207 vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
1208
1209 /* load IV and construct second IV */
1210 vmovdqu (%rcx), %xmm0;
1211 vmovdqa %xmm0, %xmm15;
1212 gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
1213 vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
1214 vinserti128 $1, %xmm0, %ymm15, %ymm0;
1215 vpxor 0 * 32(%rdx), %ymm0, %ymm15;
1216 vmovdqu %ymm15, 15 * 32(%rax);
1217 vmovdqu %ymm0, 0 * 32(%rsi);
1218
1219 /* construct IVs */
1220 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1221 vpxor 1 * 32(%rdx), %ymm0, %ymm15;
1222 vmovdqu %ymm15, 14 * 32(%rax);
1223 vmovdqu %ymm0, 1 * 32(%rsi);
1224
1225 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1226 vpxor 2 * 32(%rdx), %ymm0, %ymm15;
1227 vmovdqu %ymm15, 13 * 32(%rax);
1228 vmovdqu %ymm0, 2 * 32(%rsi);
1229
1230 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1231 vpxor 3 * 32(%rdx), %ymm0, %ymm15;
1232 vmovdqu %ymm15, 12 * 32(%rax);
1233 vmovdqu %ymm0, 3 * 32(%rsi);
1234
1235 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1236 vpxor 4 * 32(%rdx), %ymm0, %ymm11;
1237 vmovdqu %ymm0, 4 * 32(%rsi);
1238
1239 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1240 vpxor 5 * 32(%rdx), %ymm0, %ymm10;
1241 vmovdqu %ymm0, 5 * 32(%rsi);
1242
1243 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1244 vpxor 6 * 32(%rdx), %ymm0, %ymm9;
1245 vmovdqu %ymm0, 6 * 32(%rsi);
1246
1247 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1248 vpxor 7 * 32(%rdx), %ymm0, %ymm8;
1249 vmovdqu %ymm0, 7 * 32(%rsi);
1250
1251 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1252 vpxor 8 * 32(%rdx), %ymm0, %ymm7;
1253 vmovdqu %ymm0, 8 * 32(%rsi);
1254
1255 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1256 vpxor 9 * 32(%rdx), %ymm0, %ymm6;
1257 vmovdqu %ymm0, 9 * 32(%rsi);
1258
1259 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1260 vpxor 10 * 32(%rdx), %ymm0, %ymm5;
1261 vmovdqu %ymm0, 10 * 32(%rsi);
1262
1263 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1264 vpxor 11 * 32(%rdx), %ymm0, %ymm4;
1265 vmovdqu %ymm0, 11 * 32(%rsi);
1266
1267 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1268 vpxor 12 * 32(%rdx), %ymm0, %ymm3;
1269 vmovdqu %ymm0, 12 * 32(%rsi);
1270
1271 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1272 vpxor 13 * 32(%rdx), %ymm0, %ymm2;
1273 vmovdqu %ymm0, 13 * 32(%rsi);
1274
1275 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1276 vpxor 14 * 32(%rdx), %ymm0, %ymm1;
1277 vmovdqu %ymm0, 14 * 32(%rsi);
1278
1279 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1280 vpxor 15 * 32(%rdx), %ymm0, %ymm15;
1281 vmovdqu %ymm15, 0 * 32(%rax);
1282 vmovdqu %ymm0, 15 * 32(%rsi);
1283
1284 vextracti128 $1, %ymm0, %xmm0;
1285 gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
1286 vmovdqu %xmm0, (%rcx);
1287
1288 /* inpack32_pre: */
1289 vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
1290 vpshufb .Lpack_bswap, %ymm15, %ymm15;
1291 vpxor 0 * 32(%rax), %ymm15, %ymm0;
1292 vpxor %ymm1, %ymm15, %ymm1;
1293 vpxor %ymm2, %ymm15, %ymm2;
1294 vpxor %ymm3, %ymm15, %ymm3;
1295 vpxor %ymm4, %ymm15, %ymm4;
1296 vpxor %ymm5, %ymm15, %ymm5;
1297 vpxor %ymm6, %ymm15, %ymm6;
1298 vpxor %ymm7, %ymm15, %ymm7;
1299 vpxor %ymm8, %ymm15, %ymm8;
1300 vpxor %ymm9, %ymm15, %ymm9;
1301 vpxor %ymm10, %ymm15, %ymm10;
1302 vpxor %ymm11, %ymm15, %ymm11;
1303 vpxor 12 * 32(%rax), %ymm15, %ymm12;
1304 vpxor 13 * 32(%rax), %ymm15, %ymm13;
1305 vpxor 14 * 32(%rax), %ymm15, %ymm14;
1306 vpxor 15 * 32(%rax), %ymm15, %ymm15;
1307
1308 call *%r9;
1309
1310 addq $(16 * 32), %rsp;
1311
1312 vpxor 0 * 32(%rsi), %ymm7, %ymm7;
1313 vpxor 1 * 32(%rsi), %ymm6, %ymm6;
1314 vpxor 2 * 32(%rsi), %ymm5, %ymm5;
1315 vpxor 3 * 32(%rsi), %ymm4, %ymm4;
1316 vpxor 4 * 32(%rsi), %ymm3, %ymm3;
1317 vpxor 5 * 32(%rsi), %ymm2, %ymm2;
1318 vpxor 6 * 32(%rsi), %ymm1, %ymm1;
1319 vpxor 7 * 32(%rsi), %ymm0, %ymm0;
1320 vpxor 8 * 32(%rsi), %ymm15, %ymm15;
1321 vpxor 9 * 32(%rsi), %ymm14, %ymm14;
1322 vpxor 10 * 32(%rsi), %ymm13, %ymm13;
1323 vpxor 11 * 32(%rsi), %ymm12, %ymm12;
1324 vpxor 12 * 32(%rsi), %ymm11, %ymm11;
1325 vpxor 13 * 32(%rsi), %ymm10, %ymm10;
1326 vpxor 14 * 32(%rsi), %ymm9, %ymm9;
1327 vpxor 15 * 32(%rsi), %ymm8, %ymm8;
1328 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1329 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1330 %ymm8, %rsi);
1331
1332 vzeroupper;
1333
1334 ret;
1335ENDPROC(camellia_xts_crypt_32way)
1336
1337ENTRY(camellia_xts_enc_32way)
1338 /* input:
1339 * %rdi: ctx, CTX
1340 * %rsi: dst (32 blocks)
1341 * %rdx: src (32 blocks)
1342 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1343 */
1344
1345 xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1346
1347 leaq __camellia_enc_blk32, %r9;
1348
1349 jmp camellia_xts_crypt_32way;
1350ENDPROC(camellia_xts_enc_32way)
1351
1352ENTRY(camellia_xts_dec_32way)
1353 /* input:
1354 * %rdi: ctx, CTX
1355 * %rsi: dst (32 blocks)
1356 * %rdx: src (32 blocks)
1357 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1358 */
1359
1360 cmpl $16, key_length(CTX);
1361 movl $32, %r8d;
1362 movl $24, %eax;
1363 cmovel %eax, %r8d; /* input whitening key, last for dec */
1364
1365 leaq __camellia_dec_blk32, %r9;
1366
1367 jmp camellia_xts_crypt_32way;
1368ENDPROC(camellia_xts_dec_32way)
diff --git a/arch/x86/crypto/camellia_aesni_avx2_glue.c b/arch/x86/crypto/camellia_aesni_avx2_glue.c
new file mode 100644
index 000000000000..414fe5d7946b
--- /dev/null
+++ b/arch/x86/crypto/camellia_aesni_avx2_glue.c
@@ -0,0 +1,586 @@
1/*
2 * Glue Code for x86_64/AVX2/AES-NI assembler optimized version of Camellia
3 *
4 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13#include <linux/module.h>
14#include <linux/types.h>
15#include <linux/crypto.h>
16#include <linux/err.h>
17#include <crypto/algapi.h>
18#include <crypto/ctr.h>
19#include <crypto/lrw.h>
20#include <crypto/xts.h>
21#include <asm/xcr.h>
22#include <asm/xsave.h>
23#include <asm/crypto/camellia.h>
24#include <asm/crypto/ablk_helper.h>
25#include <asm/crypto/glue_helper.h>
26
27#define CAMELLIA_AESNI_PARALLEL_BLOCKS 16
28#define CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS 32
29
30/* 32-way AVX2/AES-NI parallel cipher functions */
31asmlinkage void camellia_ecb_enc_32way(struct camellia_ctx *ctx, u8 *dst,
32 const u8 *src);
33asmlinkage void camellia_ecb_dec_32way(struct camellia_ctx *ctx, u8 *dst,
34 const u8 *src);
35
36asmlinkage void camellia_cbc_dec_32way(struct camellia_ctx *ctx, u8 *dst,
37 const u8 *src);
38asmlinkage void camellia_ctr_32way(struct camellia_ctx *ctx, u8 *dst,
39 const u8 *src, le128 *iv);
40
41asmlinkage void camellia_xts_enc_32way(struct camellia_ctx *ctx, u8 *dst,
42 const u8 *src, le128 *iv);
43asmlinkage void camellia_xts_dec_32way(struct camellia_ctx *ctx, u8 *dst,
44 const u8 *src, le128 *iv);
45
46static const struct common_glue_ctx camellia_enc = {
47 .num_funcs = 4,
48 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
49
50 .funcs = { {
51 .num_blocks = CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS,
52 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_ecb_enc_32way) }
53 }, {
54 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
55 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_ecb_enc_16way) }
56 }, {
57 .num_blocks = 2,
58 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_enc_blk_2way) }
59 }, {
60 .num_blocks = 1,
61 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_enc_blk) }
62 } }
63};
64
65static const struct common_glue_ctx camellia_ctr = {
66 .num_funcs = 4,
67 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
68
69 .funcs = { {
70 .num_blocks = CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS,
71 .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(camellia_ctr_32way) }
72 }, {
73 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
74 .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(camellia_ctr_16way) }
75 }, {
76 .num_blocks = 2,
77 .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(camellia_crypt_ctr_2way) }
78 }, {
79 .num_blocks = 1,
80 .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(camellia_crypt_ctr) }
81 } }
82};
83
84static const struct common_glue_ctx camellia_enc_xts = {
85 .num_funcs = 3,
86 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
87
88 .funcs = { {
89 .num_blocks = CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS,
90 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(camellia_xts_enc_32way) }
91 }, {
92 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
93 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(camellia_xts_enc_16way) }
94 }, {
95 .num_blocks = 1,
96 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(camellia_xts_enc) }
97 } }
98};
99
100static const struct common_glue_ctx camellia_dec = {
101 .num_funcs = 4,
102 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
103
104 .funcs = { {
105 .num_blocks = CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS,
106 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_ecb_dec_32way) }
107 }, {
108 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
109 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_ecb_dec_16way) }
110 }, {
111 .num_blocks = 2,
112 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_dec_blk_2way) }
113 }, {
114 .num_blocks = 1,
115 .fn_u = { .ecb = GLUE_FUNC_CAST(camellia_dec_blk) }
116 } }
117};
118
119static const struct common_glue_ctx camellia_dec_cbc = {
120 .num_funcs = 4,
121 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
122
123 .funcs = { {
124 .num_blocks = CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS,
125 .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(camellia_cbc_dec_32way) }
126 }, {
127 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
128 .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(camellia_cbc_dec_16way) }
129 }, {
130 .num_blocks = 2,
131 .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(camellia_decrypt_cbc_2way) }
132 }, {
133 .num_blocks = 1,
134 .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(camellia_dec_blk) }
135 } }
136};
137
138static const struct common_glue_ctx camellia_dec_xts = {
139 .num_funcs = 3,
140 .fpu_blocks_limit = CAMELLIA_AESNI_PARALLEL_BLOCKS,
141
142 .funcs = { {
143 .num_blocks = CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS,
144 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(camellia_xts_dec_32way) }
145 }, {
146 .num_blocks = CAMELLIA_AESNI_PARALLEL_BLOCKS,
147 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(camellia_xts_dec_16way) }
148 }, {
149 .num_blocks = 1,
150 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(camellia_xts_dec) }
151 } }
152};
153
154static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
155 struct scatterlist *src, unsigned int nbytes)
156{
157 return glue_ecb_crypt_128bit(&camellia_enc, desc, dst, src, nbytes);
158}
159
160static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
161 struct scatterlist *src, unsigned int nbytes)
162{
163 return glue_ecb_crypt_128bit(&camellia_dec, desc, dst, src, nbytes);
164}
165
166static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
167 struct scatterlist *src, unsigned int nbytes)
168{
169 return glue_cbc_encrypt_128bit(GLUE_FUNC_CAST(camellia_enc_blk), desc,
170 dst, src, nbytes);
171}
172
173static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
174 struct scatterlist *src, unsigned int nbytes)
175{
176 return glue_cbc_decrypt_128bit(&camellia_dec_cbc, desc, dst, src,
177 nbytes);
178}
179
180static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
181 struct scatterlist *src, unsigned int nbytes)
182{
183 return glue_ctr_crypt_128bit(&camellia_ctr, desc, dst, src, nbytes);
184}
185
186static inline bool camellia_fpu_begin(bool fpu_enabled, unsigned int nbytes)
187{
188 return glue_fpu_begin(CAMELLIA_BLOCK_SIZE,
189 CAMELLIA_AESNI_PARALLEL_BLOCKS, NULL, fpu_enabled,
190 nbytes);
191}
192
193static inline void camellia_fpu_end(bool fpu_enabled)
194{
195 glue_fpu_end(fpu_enabled);
196}
197
198static int camellia_setkey(struct crypto_tfm *tfm, const u8 *in_key,
199 unsigned int key_len)
200{
201 return __camellia_setkey(crypto_tfm_ctx(tfm), in_key, key_len,
202 &tfm->crt_flags);
203}
204
205struct crypt_priv {
206 struct camellia_ctx *ctx;
207 bool fpu_enabled;
208};
209
210static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
211{
212 const unsigned int bsize = CAMELLIA_BLOCK_SIZE;
213 struct crypt_priv *ctx = priv;
214 int i;
215
216 ctx->fpu_enabled = camellia_fpu_begin(ctx->fpu_enabled, nbytes);
217
218 if (nbytes >= CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS * bsize) {
219 camellia_ecb_enc_32way(ctx->ctx, srcdst, srcdst);
220 srcdst += bsize * CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS;
221 nbytes -= bsize * CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS;
222 }
223
224 if (nbytes >= CAMELLIA_AESNI_PARALLEL_BLOCKS * bsize) {
225 camellia_ecb_enc_16way(ctx->ctx, srcdst, srcdst);
226 srcdst += bsize * CAMELLIA_AESNI_PARALLEL_BLOCKS;
227 nbytes -= bsize * CAMELLIA_AESNI_PARALLEL_BLOCKS;
228 }
229
230 while (nbytes >= CAMELLIA_PARALLEL_BLOCKS * bsize) {
231 camellia_enc_blk_2way(ctx->ctx, srcdst, srcdst);
232 srcdst += bsize * CAMELLIA_PARALLEL_BLOCKS;
233 nbytes -= bsize * CAMELLIA_PARALLEL_BLOCKS;
234 }
235
236 for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
237 camellia_enc_blk(ctx->ctx, srcdst, srcdst);
238}
239
240static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
241{
242 const unsigned int bsize = CAMELLIA_BLOCK_SIZE;
243 struct crypt_priv *ctx = priv;
244 int i;
245
246 ctx->fpu_enabled = camellia_fpu_begin(ctx->fpu_enabled, nbytes);
247
248 if (nbytes >= CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS * bsize) {
249 camellia_ecb_dec_32way(ctx->ctx, srcdst, srcdst);
250 srcdst += bsize * CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS;
251 nbytes -= bsize * CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS;
252 }
253
254 if (nbytes >= CAMELLIA_AESNI_PARALLEL_BLOCKS * bsize) {
255 camellia_ecb_dec_16way(ctx->ctx, srcdst, srcdst);
256 srcdst += bsize * CAMELLIA_AESNI_PARALLEL_BLOCKS;
257 nbytes -= bsize * CAMELLIA_AESNI_PARALLEL_BLOCKS;
258 }
259
260 while (nbytes >= CAMELLIA_PARALLEL_BLOCKS * bsize) {
261 camellia_dec_blk_2way(ctx->ctx, srcdst, srcdst);
262 srcdst += bsize * CAMELLIA_PARALLEL_BLOCKS;
263 nbytes -= bsize * CAMELLIA_PARALLEL_BLOCKS;
264 }
265
266 for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
267 camellia_dec_blk(ctx->ctx, srcdst, srcdst);
268}
269
270static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
271 struct scatterlist *src, unsigned int nbytes)
272{
273 struct camellia_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
274 be128 buf[CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS];
275 struct crypt_priv crypt_ctx = {
276 .ctx = &ctx->camellia_ctx,
277 .fpu_enabled = false,
278 };
279 struct lrw_crypt_req req = {
280 .tbuf = buf,
281 .tbuflen = sizeof(buf),
282
283 .table_ctx = &ctx->lrw_table,
284 .crypt_ctx = &crypt_ctx,
285 .crypt_fn = encrypt_callback,
286 };
287 int ret;
288
289 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
290 ret = lrw_crypt(desc, dst, src, nbytes, &req);
291 camellia_fpu_end(crypt_ctx.fpu_enabled);
292
293 return ret;
294}
295
296static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
297 struct scatterlist *src, unsigned int nbytes)
298{
299 struct camellia_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
300 be128 buf[CAMELLIA_AESNI_AVX2_PARALLEL_BLOCKS];
301 struct crypt_priv crypt_ctx = {
302 .ctx = &ctx->camellia_ctx,
303 .fpu_enabled = false,
304 };
305 struct lrw_crypt_req req = {
306 .tbuf = buf,
307 .tbuflen = sizeof(buf),
308
309 .table_ctx = &ctx->lrw_table,
310 .crypt_ctx = &crypt_ctx,
311 .crypt_fn = decrypt_callback,
312 };
313 int ret;
314
315 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
316 ret = lrw_crypt(desc, dst, src, nbytes, &req);
317 camellia_fpu_end(crypt_ctx.fpu_enabled);
318
319 return ret;
320}
321
322static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
323 struct scatterlist *src, unsigned int nbytes)
324{
325 struct camellia_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
326
327 return glue_xts_crypt_128bit(&camellia_enc_xts, desc, dst, src, nbytes,
328 XTS_TWEAK_CAST(camellia_enc_blk),
329 &ctx->tweak_ctx, &ctx->crypt_ctx);
330}
331
332static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
333 struct scatterlist *src, unsigned int nbytes)
334{
335 struct camellia_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
336
337 return glue_xts_crypt_128bit(&camellia_dec_xts, desc, dst, src, nbytes,
338 XTS_TWEAK_CAST(camellia_enc_blk),
339 &ctx->tweak_ctx, &ctx->crypt_ctx);
340}
341
342static struct crypto_alg cmll_algs[10] = { {
343 .cra_name = "__ecb-camellia-aesni-avx2",
344 .cra_driver_name = "__driver-ecb-camellia-aesni-avx2",
345 .cra_priority = 0,
346 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
347 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
348 .cra_ctxsize = sizeof(struct camellia_ctx),
349 .cra_alignmask = 0,
350 .cra_type = &crypto_blkcipher_type,
351 .cra_module = THIS_MODULE,
352 .cra_u = {
353 .blkcipher = {
354 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
355 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
356 .setkey = camellia_setkey,
357 .encrypt = ecb_encrypt,
358 .decrypt = ecb_decrypt,
359 },
360 },
361}, {
362 .cra_name = "__cbc-camellia-aesni-avx2",
363 .cra_driver_name = "__driver-cbc-camellia-aesni-avx2",
364 .cra_priority = 0,
365 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
366 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
367 .cra_ctxsize = sizeof(struct camellia_ctx),
368 .cra_alignmask = 0,
369 .cra_type = &crypto_blkcipher_type,
370 .cra_module = THIS_MODULE,
371 .cra_u = {
372 .blkcipher = {
373 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
374 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
375 .setkey = camellia_setkey,
376 .encrypt = cbc_encrypt,
377 .decrypt = cbc_decrypt,
378 },
379 },
380}, {
381 .cra_name = "__ctr-camellia-aesni-avx2",
382 .cra_driver_name = "__driver-ctr-camellia-aesni-avx2",
383 .cra_priority = 0,
384 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
385 .cra_blocksize = 1,
386 .cra_ctxsize = sizeof(struct camellia_ctx),
387 .cra_alignmask = 0,
388 .cra_type = &crypto_blkcipher_type,
389 .cra_module = THIS_MODULE,
390 .cra_u = {
391 .blkcipher = {
392 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
393 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
394 .ivsize = CAMELLIA_BLOCK_SIZE,
395 .setkey = camellia_setkey,
396 .encrypt = ctr_crypt,
397 .decrypt = ctr_crypt,
398 },
399 },
400}, {
401 .cra_name = "__lrw-camellia-aesni-avx2",
402 .cra_driver_name = "__driver-lrw-camellia-aesni-avx2",
403 .cra_priority = 0,
404 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
405 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
406 .cra_ctxsize = sizeof(struct camellia_lrw_ctx),
407 .cra_alignmask = 0,
408 .cra_type = &crypto_blkcipher_type,
409 .cra_module = THIS_MODULE,
410 .cra_exit = lrw_camellia_exit_tfm,
411 .cra_u = {
412 .blkcipher = {
413 .min_keysize = CAMELLIA_MIN_KEY_SIZE +
414 CAMELLIA_BLOCK_SIZE,
415 .max_keysize = CAMELLIA_MAX_KEY_SIZE +
416 CAMELLIA_BLOCK_SIZE,
417 .ivsize = CAMELLIA_BLOCK_SIZE,
418 .setkey = lrw_camellia_setkey,
419 .encrypt = lrw_encrypt,
420 .decrypt = lrw_decrypt,
421 },
422 },
423}, {
424 .cra_name = "__xts-camellia-aesni-avx2",
425 .cra_driver_name = "__driver-xts-camellia-aesni-avx2",
426 .cra_priority = 0,
427 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
428 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
429 .cra_ctxsize = sizeof(struct camellia_xts_ctx),
430 .cra_alignmask = 0,
431 .cra_type = &crypto_blkcipher_type,
432 .cra_module = THIS_MODULE,
433 .cra_u = {
434 .blkcipher = {
435 .min_keysize = CAMELLIA_MIN_KEY_SIZE * 2,
436 .max_keysize = CAMELLIA_MAX_KEY_SIZE * 2,
437 .ivsize = CAMELLIA_BLOCK_SIZE,
438 .setkey = xts_camellia_setkey,
439 .encrypt = xts_encrypt,
440 .decrypt = xts_decrypt,
441 },
442 },
443}, {
444 .cra_name = "ecb(camellia)",
445 .cra_driver_name = "ecb-camellia-aesni-avx2",
446 .cra_priority = 500,
447 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
448 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
449 .cra_ctxsize = sizeof(struct async_helper_ctx),
450 .cra_alignmask = 0,
451 .cra_type = &crypto_ablkcipher_type,
452 .cra_module = THIS_MODULE,
453 .cra_init = ablk_init,
454 .cra_exit = ablk_exit,
455 .cra_u = {
456 .ablkcipher = {
457 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
458 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
459 .setkey = ablk_set_key,
460 .encrypt = ablk_encrypt,
461 .decrypt = ablk_decrypt,
462 },
463 },
464}, {
465 .cra_name = "cbc(camellia)",
466 .cra_driver_name = "cbc-camellia-aesni-avx2",
467 .cra_priority = 500,
468 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
469 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
470 .cra_ctxsize = sizeof(struct async_helper_ctx),
471 .cra_alignmask = 0,
472 .cra_type = &crypto_ablkcipher_type,
473 .cra_module = THIS_MODULE,
474 .cra_init = ablk_init,
475 .cra_exit = ablk_exit,
476 .cra_u = {
477 .ablkcipher = {
478 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
479 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
480 .ivsize = CAMELLIA_BLOCK_SIZE,
481 .setkey = ablk_set_key,
482 .encrypt = __ablk_encrypt,
483 .decrypt = ablk_decrypt,
484 },
485 },
486}, {
487 .cra_name = "ctr(camellia)",
488 .cra_driver_name = "ctr-camellia-aesni-avx2",
489 .cra_priority = 500,
490 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
491 .cra_blocksize = 1,
492 .cra_ctxsize = sizeof(struct async_helper_ctx),
493 .cra_alignmask = 0,
494 .cra_type = &crypto_ablkcipher_type,
495 .cra_module = THIS_MODULE,
496 .cra_init = ablk_init,
497 .cra_exit = ablk_exit,
498 .cra_u = {
499 .ablkcipher = {
500 .min_keysize = CAMELLIA_MIN_KEY_SIZE,
501 .max_keysize = CAMELLIA_MAX_KEY_SIZE,
502 .ivsize = CAMELLIA_BLOCK_SIZE,
503 .setkey = ablk_set_key,
504 .encrypt = ablk_encrypt,
505 .decrypt = ablk_encrypt,
506 .geniv = "chainiv",
507 },
508 },
509}, {
510 .cra_name = "lrw(camellia)",
511 .cra_driver_name = "lrw-camellia-aesni-avx2",
512 .cra_priority = 500,
513 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
514 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
515 .cra_ctxsize = sizeof(struct async_helper_ctx),
516 .cra_alignmask = 0,
517 .cra_type = &crypto_ablkcipher_type,
518 .cra_module = THIS_MODULE,
519 .cra_init = ablk_init,
520 .cra_exit = ablk_exit,
521 .cra_u = {
522 .ablkcipher = {
523 .min_keysize = CAMELLIA_MIN_KEY_SIZE +
524 CAMELLIA_BLOCK_SIZE,
525 .max_keysize = CAMELLIA_MAX_KEY_SIZE +
526 CAMELLIA_BLOCK_SIZE,
527 .ivsize = CAMELLIA_BLOCK_SIZE,
528 .setkey = ablk_set_key,
529 .encrypt = ablk_encrypt,
530 .decrypt = ablk_decrypt,
531 },
532 },
533}, {
534 .cra_name = "xts(camellia)",
535 .cra_driver_name = "xts-camellia-aesni-avx2",
536 .cra_priority = 500,
537 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
538 .cra_blocksize = CAMELLIA_BLOCK_SIZE,
539 .cra_ctxsize = sizeof(struct async_helper_ctx),
540 .cra_alignmask = 0,
541 .cra_type = &crypto_ablkcipher_type,
542 .cra_module = THIS_MODULE,
543 .cra_init = ablk_init,
544 .cra_exit = ablk_exit,
545 .cra_u = {
546 .ablkcipher = {
547 .min_keysize = CAMELLIA_MIN_KEY_SIZE * 2,
548 .max_keysize = CAMELLIA_MAX_KEY_SIZE * 2,
549 .ivsize = CAMELLIA_BLOCK_SIZE,
550 .setkey = ablk_set_key,
551 .encrypt = ablk_encrypt,
552 .decrypt = ablk_decrypt,
553 },
554 },
555} };
556
557static int __init camellia_aesni_init(void)
558{
559 u64 xcr0;
560
561 if (!cpu_has_avx2 || !cpu_has_avx || !cpu_has_aes || !cpu_has_osxsave) {
562 pr_info("AVX2 or AES-NI instructions are not detected.\n");
563 return -ENODEV;
564 }
565
566 xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
567 if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) {
568 pr_info("AVX2 detected but unusable.\n");
569 return -ENODEV;
570 }
571
572 return crypto_register_algs(cmll_algs, ARRAY_SIZE(cmll_algs));
573}
574
575static void __exit camellia_aesni_fini(void)
576{
577 crypto_unregister_algs(cmll_algs, ARRAY_SIZE(cmll_algs));
578}
579
580module_init(camellia_aesni_init);
581module_exit(camellia_aesni_fini);
582
583MODULE_LICENSE("GPL");
584MODULE_DESCRIPTION("Camellia Cipher Algorithm, AES-NI/AVX2 optimized");
585MODULE_ALIAS("camellia");
586MODULE_ALIAS("camellia-asm");
diff --git a/arch/x86/crypto/camellia_aesni_avx_glue.c b/arch/x86/crypto/camellia_aesni_avx_glue.c
index 4ff7ed47b3db..37fd0c0a81ea 100644
--- a/arch/x86/crypto/camellia_aesni_avx_glue.c
+++ b/arch/x86/crypto/camellia_aesni_avx_glue.c
@@ -26,33 +26,44 @@
26 26
27#define CAMELLIA_AESNI_PARALLEL_BLOCKS 16 27#define CAMELLIA_AESNI_PARALLEL_BLOCKS 16
28 28
29/* 16-way AES-NI parallel cipher functions */ 29/* 16-way parallel cipher functions (avx/aes-ni) */
30asmlinkage void camellia_ecb_enc_16way(struct camellia_ctx *ctx, u8 *dst, 30asmlinkage void camellia_ecb_enc_16way(struct camellia_ctx *ctx, u8 *dst,
31 const u8 *src); 31 const u8 *src);
32EXPORT_SYMBOL_GPL(camellia_ecb_enc_16way);
33
32asmlinkage void camellia_ecb_dec_16way(struct camellia_ctx *ctx, u8 *dst, 34asmlinkage void camellia_ecb_dec_16way(struct camellia_ctx *ctx, u8 *dst,
33 const u8 *src); 35 const u8 *src);
36EXPORT_SYMBOL_GPL(camellia_ecb_dec_16way);
34 37
35asmlinkage void camellia_cbc_dec_16way(struct camellia_ctx *ctx, u8 *dst, 38asmlinkage void camellia_cbc_dec_16way(struct camellia_ctx *ctx, u8 *dst,
36 const u8 *src); 39 const u8 *src);
40EXPORT_SYMBOL_GPL(camellia_cbc_dec_16way);
41
37asmlinkage void camellia_ctr_16way(struct camellia_ctx *ctx, u8 *dst, 42asmlinkage void camellia_ctr_16way(struct camellia_ctx *ctx, u8 *dst,
38 const u8 *src, le128 *iv); 43 const u8 *src, le128 *iv);
44EXPORT_SYMBOL_GPL(camellia_ctr_16way);
39 45
40asmlinkage void camellia_xts_enc_16way(struct camellia_ctx *ctx, u8 *dst, 46asmlinkage void camellia_xts_enc_16way(struct camellia_ctx *ctx, u8 *dst,
41 const u8 *src, le128 *iv); 47 const u8 *src, le128 *iv);
48EXPORT_SYMBOL_GPL(camellia_xts_enc_16way);
49
42asmlinkage void camellia_xts_dec_16way(struct camellia_ctx *ctx, u8 *dst, 50asmlinkage void camellia_xts_dec_16way(struct camellia_ctx *ctx, u8 *dst,
43 const u8 *src, le128 *iv); 51 const u8 *src, le128 *iv);
52EXPORT_SYMBOL_GPL(camellia_xts_dec_16way);
44 53
45static void camellia_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv) 54void camellia_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
46{ 55{
47 glue_xts_crypt_128bit_one(ctx, dst, src, iv, 56 glue_xts_crypt_128bit_one(ctx, dst, src, iv,
48 GLUE_FUNC_CAST(camellia_enc_blk)); 57 GLUE_FUNC_CAST(camellia_enc_blk));
49} 58}
59EXPORT_SYMBOL_GPL(camellia_xts_enc);
50 60
51static void camellia_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv) 61void camellia_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
52{ 62{
53 glue_xts_crypt_128bit_one(ctx, dst, src, iv, 63 glue_xts_crypt_128bit_one(ctx, dst, src, iv,
54 GLUE_FUNC_CAST(camellia_dec_blk)); 64 GLUE_FUNC_CAST(camellia_dec_blk));
55} 65}
66EXPORT_SYMBOL_GPL(camellia_xts_dec);
56 67
57static const struct common_glue_ctx camellia_enc = { 68static const struct common_glue_ctx camellia_enc = {
58 .num_funcs = 3, 69 .num_funcs = 3,
diff --git a/arch/x86/include/asm/crypto/camellia.h b/arch/x86/include/asm/crypto/camellia.h
index 98038add801e..bb93333d9200 100644
--- a/arch/x86/include/asm/crypto/camellia.h
+++ b/arch/x86/include/asm/crypto/camellia.h
@@ -48,6 +48,22 @@ asmlinkage void __camellia_enc_blk_2way(struct camellia_ctx *ctx, u8 *dst,
48asmlinkage void camellia_dec_blk_2way(struct camellia_ctx *ctx, u8 *dst, 48asmlinkage void camellia_dec_blk_2way(struct camellia_ctx *ctx, u8 *dst,
49 const u8 *src); 49 const u8 *src);
50 50
51/* 16-way parallel cipher functions (avx/aes-ni) */
52asmlinkage void camellia_ecb_enc_16way(struct camellia_ctx *ctx, u8 *dst,
53 const u8 *src);
54asmlinkage void camellia_ecb_dec_16way(struct camellia_ctx *ctx, u8 *dst,
55 const u8 *src);
56
57asmlinkage void camellia_cbc_dec_16way(struct camellia_ctx *ctx, u8 *dst,
58 const u8 *src);
59asmlinkage void camellia_ctr_16way(struct camellia_ctx *ctx, u8 *dst,
60 const u8 *src, le128 *iv);
61
62asmlinkage void camellia_xts_enc_16way(struct camellia_ctx *ctx, u8 *dst,
63 const u8 *src, le128 *iv);
64asmlinkage void camellia_xts_dec_16way(struct camellia_ctx *ctx, u8 *dst,
65 const u8 *src, le128 *iv);
66
51static inline void camellia_enc_blk(struct camellia_ctx *ctx, u8 *dst, 67static inline void camellia_enc_blk(struct camellia_ctx *ctx, u8 *dst,
52 const u8 *src) 68 const u8 *src)
53{ 69{
@@ -79,4 +95,7 @@ extern void camellia_crypt_ctr(void *ctx, u128 *dst, const u128 *src,
79extern void camellia_crypt_ctr_2way(void *ctx, u128 *dst, const u128 *src, 95extern void camellia_crypt_ctr_2way(void *ctx, u128 *dst, const u128 *src,
80 le128 *iv); 96 le128 *iv);
81 97
98extern void camellia_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv);
99extern void camellia_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv);
100
82#endif /* ASM_X86_CAMELLIA_H */ 101#endif /* ASM_X86_CAMELLIA_H */