diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/x86_64/mm/fault.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/x86_64/mm/fault.c')
-rw-r--r-- | arch/x86_64/mm/fault.c | 579 |
1 files changed, 579 insertions, 0 deletions
diff --git a/arch/x86_64/mm/fault.c b/arch/x86_64/mm/fault.c new file mode 100644 index 000000000000..5724370475cc --- /dev/null +++ b/arch/x86_64/mm/fault.c | |||
@@ -0,0 +1,579 @@ | |||
1 | /* | ||
2 | * linux/arch/x86-64/mm/fault.c | ||
3 | * | ||
4 | * Copyright (C) 1995 Linus Torvalds | ||
5 | * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. | ||
6 | */ | ||
7 | |||
8 | #include <linux/config.h> | ||
9 | #include <linux/signal.h> | ||
10 | #include <linux/sched.h> | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/errno.h> | ||
13 | #include <linux/string.h> | ||
14 | #include <linux/types.h> | ||
15 | #include <linux/ptrace.h> | ||
16 | #include <linux/mman.h> | ||
17 | #include <linux/mm.h> | ||
18 | #include <linux/smp.h> | ||
19 | #include <linux/smp_lock.h> | ||
20 | #include <linux/interrupt.h> | ||
21 | #include <linux/init.h> | ||
22 | #include <linux/tty.h> | ||
23 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
24 | #include <linux/compiler.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/kprobes.h> | ||
27 | |||
28 | #include <asm/system.h> | ||
29 | #include <asm/uaccess.h> | ||
30 | #include <asm/pgalloc.h> | ||
31 | #include <asm/smp.h> | ||
32 | #include <asm/tlbflush.h> | ||
33 | #include <asm/proto.h> | ||
34 | #include <asm/kdebug.h> | ||
35 | #include <asm-generic/sections.h> | ||
36 | #include <asm/kdebug.h> | ||
37 | |||
38 | void bust_spinlocks(int yes) | ||
39 | { | ||
40 | int loglevel_save = console_loglevel; | ||
41 | if (yes) { | ||
42 | oops_in_progress = 1; | ||
43 | } else { | ||
44 | #ifdef CONFIG_VT | ||
45 | unblank_screen(); | ||
46 | #endif | ||
47 | oops_in_progress = 0; | ||
48 | /* | ||
49 | * OK, the message is on the console. Now we call printk() | ||
50 | * without oops_in_progress set so that printk will give klogd | ||
51 | * a poke. Hold onto your hats... | ||
52 | */ | ||
53 | console_loglevel = 15; /* NMI oopser may have shut the console up */ | ||
54 | printk(" "); | ||
55 | console_loglevel = loglevel_save; | ||
56 | } | ||
57 | } | ||
58 | |||
59 | /* Sometimes the CPU reports invalid exceptions on prefetch. | ||
60 | Check that here and ignore. | ||
61 | Opcode checker based on code by Richard Brunner */ | ||
62 | static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr, | ||
63 | unsigned long error_code) | ||
64 | { | ||
65 | unsigned char *instr = (unsigned char *)(regs->rip); | ||
66 | int scan_more = 1; | ||
67 | int prefetch = 0; | ||
68 | unsigned char *max_instr = instr + 15; | ||
69 | |||
70 | /* If it was a exec fault ignore */ | ||
71 | if (error_code & (1<<4)) | ||
72 | return 0; | ||
73 | |||
74 | /* Code segments in LDT could have a non zero base. Don't check | ||
75 | when that's possible */ | ||
76 | if (regs->cs & (1<<2)) | ||
77 | return 0; | ||
78 | |||
79 | if ((regs->cs & 3) != 0 && regs->rip >= TASK_SIZE) | ||
80 | return 0; | ||
81 | |||
82 | while (scan_more && instr < max_instr) { | ||
83 | unsigned char opcode; | ||
84 | unsigned char instr_hi; | ||
85 | unsigned char instr_lo; | ||
86 | |||
87 | if (__get_user(opcode, instr)) | ||
88 | break; | ||
89 | |||
90 | instr_hi = opcode & 0xf0; | ||
91 | instr_lo = opcode & 0x0f; | ||
92 | instr++; | ||
93 | |||
94 | switch (instr_hi) { | ||
95 | case 0x20: | ||
96 | case 0x30: | ||
97 | /* Values 0x26,0x2E,0x36,0x3E are valid x86 | ||
98 | prefixes. In long mode, the CPU will signal | ||
99 | invalid opcode if some of these prefixes are | ||
100 | present so we will never get here anyway */ | ||
101 | scan_more = ((instr_lo & 7) == 0x6); | ||
102 | break; | ||
103 | |||
104 | case 0x40: | ||
105 | /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes | ||
106 | Need to figure out under what instruction mode the | ||
107 | instruction was issued ... */ | ||
108 | /* Could check the LDT for lm, but for now it's good | ||
109 | enough to assume that long mode only uses well known | ||
110 | segments or kernel. */ | ||
111 | scan_more = ((regs->cs & 3) == 0) || (regs->cs == __USER_CS); | ||
112 | break; | ||
113 | |||
114 | case 0x60: | ||
115 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
116 | scan_more = (instr_lo & 0xC) == 0x4; | ||
117 | break; | ||
118 | case 0xF0: | ||
119 | /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */ | ||
120 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
121 | break; | ||
122 | case 0x00: | ||
123 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
124 | scan_more = 0; | ||
125 | if (__get_user(opcode, instr)) | ||
126 | break; | ||
127 | prefetch = (instr_lo == 0xF) && | ||
128 | (opcode == 0x0D || opcode == 0x18); | ||
129 | break; | ||
130 | default: | ||
131 | scan_more = 0; | ||
132 | break; | ||
133 | } | ||
134 | } | ||
135 | return prefetch; | ||
136 | } | ||
137 | |||
138 | static int bad_address(void *p) | ||
139 | { | ||
140 | unsigned long dummy; | ||
141 | return __get_user(dummy, (unsigned long *)p); | ||
142 | } | ||
143 | |||
144 | void dump_pagetable(unsigned long address) | ||
145 | { | ||
146 | pgd_t *pgd; | ||
147 | pud_t *pud; | ||
148 | pmd_t *pmd; | ||
149 | pte_t *pte; | ||
150 | |||
151 | asm("movq %%cr3,%0" : "=r" (pgd)); | ||
152 | |||
153 | pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); | ||
154 | pgd += pgd_index(address); | ||
155 | printk("PGD %lx ", pgd_val(*pgd)); | ||
156 | if (bad_address(pgd)) goto bad; | ||
157 | if (!pgd_present(*pgd)) goto ret; | ||
158 | |||
159 | pud = __pud_offset_k((pud_t *)pgd_page(*pgd), address); | ||
160 | if (bad_address(pud)) goto bad; | ||
161 | printk("PUD %lx ", pud_val(*pud)); | ||
162 | if (!pud_present(*pud)) goto ret; | ||
163 | |||
164 | pmd = pmd_offset(pud, address); | ||
165 | if (bad_address(pmd)) goto bad; | ||
166 | printk("PMD %lx ", pmd_val(*pmd)); | ||
167 | if (!pmd_present(*pmd)) goto ret; | ||
168 | |||
169 | pte = pte_offset_kernel(pmd, address); | ||
170 | if (bad_address(pte)) goto bad; | ||
171 | printk("PTE %lx", pte_val(*pte)); | ||
172 | ret: | ||
173 | printk("\n"); | ||
174 | return; | ||
175 | bad: | ||
176 | printk("BAD\n"); | ||
177 | } | ||
178 | |||
179 | static const char errata93_warning[] = | ||
180 | KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | ||
181 | KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" | ||
182 | KERN_ERR "******* Please consider a BIOS update.\n" | ||
183 | KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; | ||
184 | |||
185 | /* Workaround for K8 erratum #93 & buggy BIOS. | ||
186 | BIOS SMM functions are required to use a specific workaround | ||
187 | to avoid corruption of the 64bit RIP register on C stepping K8. | ||
188 | A lot of BIOS that didn't get tested properly miss this. | ||
189 | The OS sees this as a page fault with the upper 32bits of RIP cleared. | ||
190 | Try to work around it here. | ||
191 | Note we only handle faults in kernel here. */ | ||
192 | |||
193 | static int is_errata93(struct pt_regs *regs, unsigned long address) | ||
194 | { | ||
195 | static int warned; | ||
196 | if (address != regs->rip) | ||
197 | return 0; | ||
198 | if ((address >> 32) != 0) | ||
199 | return 0; | ||
200 | address |= 0xffffffffUL << 32; | ||
201 | if ((address >= (u64)_stext && address <= (u64)_etext) || | ||
202 | (address >= MODULES_VADDR && address <= MODULES_END)) { | ||
203 | if (!warned) { | ||
204 | printk(errata93_warning); | ||
205 | warned = 1; | ||
206 | } | ||
207 | regs->rip = address; | ||
208 | return 1; | ||
209 | } | ||
210 | return 0; | ||
211 | } | ||
212 | |||
213 | int unhandled_signal(struct task_struct *tsk, int sig) | ||
214 | { | ||
215 | if (tsk->pid == 1) | ||
216 | return 1; | ||
217 | /* Warn for strace, but not for gdb */ | ||
218 | if (!test_ti_thread_flag(tsk->thread_info, TIF_SYSCALL_TRACE) && | ||
219 | (tsk->ptrace & PT_PTRACED)) | ||
220 | return 0; | ||
221 | return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) || | ||
222 | (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL); | ||
223 | } | ||
224 | |||
225 | static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, | ||
226 | unsigned long error_code) | ||
227 | { | ||
228 | oops_begin(); | ||
229 | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | ||
230 | current->comm, address); | ||
231 | dump_pagetable(address); | ||
232 | __die("Bad pagetable", regs, error_code); | ||
233 | oops_end(); | ||
234 | do_exit(SIGKILL); | ||
235 | } | ||
236 | |||
237 | /* | ||
238 | * Handle a fault on the vmalloc or module mapping area | ||
239 | */ | ||
240 | static int vmalloc_fault(unsigned long address) | ||
241 | { | ||
242 | pgd_t *pgd, *pgd_ref; | ||
243 | pud_t *pud, *pud_ref; | ||
244 | pmd_t *pmd, *pmd_ref; | ||
245 | pte_t *pte, *pte_ref; | ||
246 | |||
247 | /* Copy kernel mappings over when needed. This can also | ||
248 | happen within a race in page table update. In the later | ||
249 | case just flush. */ | ||
250 | |||
251 | pgd = pgd_offset(current->mm ?: &init_mm, address); | ||
252 | pgd_ref = pgd_offset_k(address); | ||
253 | if (pgd_none(*pgd_ref)) | ||
254 | return -1; | ||
255 | if (pgd_none(*pgd)) | ||
256 | set_pgd(pgd, *pgd_ref); | ||
257 | |||
258 | /* Below here mismatches are bugs because these lower tables | ||
259 | are shared */ | ||
260 | |||
261 | pud = pud_offset(pgd, address); | ||
262 | pud_ref = pud_offset(pgd_ref, address); | ||
263 | if (pud_none(*pud_ref)) | ||
264 | return -1; | ||
265 | if (pud_none(*pud) || pud_page(*pud) != pud_page(*pud_ref)) | ||
266 | BUG(); | ||
267 | pmd = pmd_offset(pud, address); | ||
268 | pmd_ref = pmd_offset(pud_ref, address); | ||
269 | if (pmd_none(*pmd_ref)) | ||
270 | return -1; | ||
271 | if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) | ||
272 | BUG(); | ||
273 | pte_ref = pte_offset_kernel(pmd_ref, address); | ||
274 | if (!pte_present(*pte_ref)) | ||
275 | return -1; | ||
276 | pte = pte_offset_kernel(pmd, address); | ||
277 | if (!pte_present(*pte) || pte_page(*pte) != pte_page(*pte_ref)) | ||
278 | BUG(); | ||
279 | __flush_tlb_all(); | ||
280 | return 0; | ||
281 | } | ||
282 | |||
283 | int page_fault_trace = 0; | ||
284 | int exception_trace = 1; | ||
285 | |||
286 | /* | ||
287 | * This routine handles page faults. It determines the address, | ||
288 | * and the problem, and then passes it off to one of the appropriate | ||
289 | * routines. | ||
290 | * | ||
291 | * error_code: | ||
292 | * bit 0 == 0 means no page found, 1 means protection fault | ||
293 | * bit 1 == 0 means read, 1 means write | ||
294 | * bit 2 == 0 means kernel, 1 means user-mode | ||
295 | * bit 3 == 1 means fault was an instruction fetch | ||
296 | */ | ||
297 | asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code) | ||
298 | { | ||
299 | struct task_struct *tsk; | ||
300 | struct mm_struct *mm; | ||
301 | struct vm_area_struct * vma; | ||
302 | unsigned long address; | ||
303 | const struct exception_table_entry *fixup; | ||
304 | int write; | ||
305 | siginfo_t info; | ||
306 | |||
307 | #ifdef CONFIG_CHECKING | ||
308 | { | ||
309 | unsigned long gs; | ||
310 | struct x8664_pda *pda = cpu_pda + stack_smp_processor_id(); | ||
311 | rdmsrl(MSR_GS_BASE, gs); | ||
312 | if (gs != (unsigned long)pda) { | ||
313 | wrmsrl(MSR_GS_BASE, pda); | ||
314 | printk("page_fault: wrong gs %lx expected %p\n", gs, pda); | ||
315 | } | ||
316 | } | ||
317 | #endif | ||
318 | |||
319 | /* get the address */ | ||
320 | __asm__("movq %%cr2,%0":"=r" (address)); | ||
321 | if (notify_die(DIE_PAGE_FAULT, "page fault", regs, error_code, 14, | ||
322 | SIGSEGV) == NOTIFY_STOP) | ||
323 | return; | ||
324 | |||
325 | if (likely(regs->eflags & X86_EFLAGS_IF)) | ||
326 | local_irq_enable(); | ||
327 | |||
328 | if (unlikely(page_fault_trace)) | ||
329 | printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n", | ||
330 | regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code); | ||
331 | |||
332 | tsk = current; | ||
333 | mm = tsk->mm; | ||
334 | info.si_code = SEGV_MAPERR; | ||
335 | |||
336 | |||
337 | /* | ||
338 | * We fault-in kernel-space virtual memory on-demand. The | ||
339 | * 'reference' page table is init_mm.pgd. | ||
340 | * | ||
341 | * NOTE! We MUST NOT take any locks for this case. We may | ||
342 | * be in an interrupt or a critical region, and should | ||
343 | * only copy the information from the master page table, | ||
344 | * nothing more. | ||
345 | * | ||
346 | * This verifies that the fault happens in kernel space | ||
347 | * (error_code & 4) == 0, and that the fault was not a | ||
348 | * protection error (error_code & 1) == 0. | ||
349 | */ | ||
350 | if (unlikely(address >= TASK_SIZE)) { | ||
351 | if (!(error_code & 5)) { | ||
352 | if (vmalloc_fault(address) < 0) | ||
353 | goto bad_area_nosemaphore; | ||
354 | return; | ||
355 | } | ||
356 | /* | ||
357 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
358 | * fault we could otherwise deadlock. | ||
359 | */ | ||
360 | goto bad_area_nosemaphore; | ||
361 | } | ||
362 | |||
363 | if (unlikely(error_code & (1 << 3))) | ||
364 | pgtable_bad(address, regs, error_code); | ||
365 | |||
366 | /* | ||
367 | * If we're in an interrupt or have no user | ||
368 | * context, we must not take the fault.. | ||
369 | */ | ||
370 | if (unlikely(in_atomic() || !mm)) | ||
371 | goto bad_area_nosemaphore; | ||
372 | |||
373 | again: | ||
374 | /* When running in the kernel we expect faults to occur only to | ||
375 | * addresses in user space. All other faults represent errors in the | ||
376 | * kernel and should generate an OOPS. Unfortunatly, in the case of an | ||
377 | * erroneous fault occuring in a code path which already holds mmap_sem | ||
378 | * we will deadlock attempting to validate the fault against the | ||
379 | * address space. Luckily the kernel only validly references user | ||
380 | * space from well defined areas of code, which are listed in the | ||
381 | * exceptions table. | ||
382 | * | ||
383 | * As the vast majority of faults will be valid we will only perform | ||
384 | * the source reference check when there is a possibilty of a deadlock. | ||
385 | * Attempt to lock the address space, if we cannot we then validate the | ||
386 | * source. If this is invalid we can skip the address space check, | ||
387 | * thus avoiding the deadlock. | ||
388 | */ | ||
389 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
390 | if ((error_code & 4) == 0 && | ||
391 | !search_exception_tables(regs->rip)) | ||
392 | goto bad_area_nosemaphore; | ||
393 | down_read(&mm->mmap_sem); | ||
394 | } | ||
395 | |||
396 | vma = find_vma(mm, address); | ||
397 | if (!vma) | ||
398 | goto bad_area; | ||
399 | if (likely(vma->vm_start <= address)) | ||
400 | goto good_area; | ||
401 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
402 | goto bad_area; | ||
403 | if (error_code & 4) { | ||
404 | // XXX: align red zone size with ABI | ||
405 | if (address + 128 < regs->rsp) | ||
406 | goto bad_area; | ||
407 | } | ||
408 | if (expand_stack(vma, address)) | ||
409 | goto bad_area; | ||
410 | /* | ||
411 | * Ok, we have a good vm_area for this memory access, so | ||
412 | * we can handle it.. | ||
413 | */ | ||
414 | good_area: | ||
415 | info.si_code = SEGV_ACCERR; | ||
416 | write = 0; | ||
417 | switch (error_code & 3) { | ||
418 | default: /* 3: write, present */ | ||
419 | /* fall through */ | ||
420 | case 2: /* write, not present */ | ||
421 | if (!(vma->vm_flags & VM_WRITE)) | ||
422 | goto bad_area; | ||
423 | write++; | ||
424 | break; | ||
425 | case 1: /* read, present */ | ||
426 | goto bad_area; | ||
427 | case 0: /* read, not present */ | ||
428 | if (!(vma->vm_flags & (VM_READ | VM_EXEC))) | ||
429 | goto bad_area; | ||
430 | } | ||
431 | |||
432 | /* | ||
433 | * If for any reason at all we couldn't handle the fault, | ||
434 | * make sure we exit gracefully rather than endlessly redo | ||
435 | * the fault. | ||
436 | */ | ||
437 | switch (handle_mm_fault(mm, vma, address, write)) { | ||
438 | case 1: | ||
439 | tsk->min_flt++; | ||
440 | break; | ||
441 | case 2: | ||
442 | tsk->maj_flt++; | ||
443 | break; | ||
444 | case 0: | ||
445 | goto do_sigbus; | ||
446 | default: | ||
447 | goto out_of_memory; | ||
448 | } | ||
449 | |||
450 | up_read(&mm->mmap_sem); | ||
451 | return; | ||
452 | |||
453 | /* | ||
454 | * Something tried to access memory that isn't in our memory map.. | ||
455 | * Fix it, but check if it's kernel or user first.. | ||
456 | */ | ||
457 | bad_area: | ||
458 | up_read(&mm->mmap_sem); | ||
459 | |||
460 | bad_area_nosemaphore: | ||
461 | |||
462 | #ifdef CONFIG_IA32_EMULATION | ||
463 | /* 32bit vsyscall. map on demand. */ | ||
464 | if (test_thread_flag(TIF_IA32) && | ||
465 | address >= VSYSCALL32_BASE && address < VSYSCALL32_END) { | ||
466 | if (map_syscall32(mm, address) < 0) | ||
467 | goto out_of_memory2; | ||
468 | return; | ||
469 | } | ||
470 | #endif | ||
471 | |||
472 | /* User mode accesses just cause a SIGSEGV */ | ||
473 | if (error_code & 4) { | ||
474 | if (is_prefetch(regs, address, error_code)) | ||
475 | return; | ||
476 | |||
477 | /* Work around K8 erratum #100 K8 in compat mode | ||
478 | occasionally jumps to illegal addresses >4GB. We | ||
479 | catch this here in the page fault handler because | ||
480 | these addresses are not reachable. Just detect this | ||
481 | case and return. Any code segment in LDT is | ||
482 | compatibility mode. */ | ||
483 | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && | ||
484 | (address >> 32)) | ||
485 | return; | ||
486 | |||
487 | if (exception_trace && unhandled_signal(tsk, SIGSEGV)) { | ||
488 | printk( | ||
489 | "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n", | ||
490 | tsk->pid > 1 ? KERN_INFO : KERN_EMERG, | ||
491 | tsk->comm, tsk->pid, address, regs->rip, | ||
492 | regs->rsp, error_code); | ||
493 | } | ||
494 | |||
495 | tsk->thread.cr2 = address; | ||
496 | /* Kernel addresses are always protection faults */ | ||
497 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
498 | tsk->thread.trap_no = 14; | ||
499 | info.si_signo = SIGSEGV; | ||
500 | info.si_errno = 0; | ||
501 | /* info.si_code has been set above */ | ||
502 | info.si_addr = (void __user *)address; | ||
503 | force_sig_info(SIGSEGV, &info, tsk); | ||
504 | return; | ||
505 | } | ||
506 | |||
507 | no_context: | ||
508 | |||
509 | /* Are we prepared to handle this kernel fault? */ | ||
510 | fixup = search_exception_tables(regs->rip); | ||
511 | if (fixup) { | ||
512 | regs->rip = fixup->fixup; | ||
513 | return; | ||
514 | } | ||
515 | |||
516 | /* | ||
517 | * Hall of shame of CPU/BIOS bugs. | ||
518 | */ | ||
519 | |||
520 | if (is_prefetch(regs, address, error_code)) | ||
521 | return; | ||
522 | |||
523 | if (is_errata93(regs, address)) | ||
524 | return; | ||
525 | |||
526 | /* | ||
527 | * Oops. The kernel tried to access some bad page. We'll have to | ||
528 | * terminate things with extreme prejudice. | ||
529 | */ | ||
530 | |||
531 | oops_begin(); | ||
532 | |||
533 | if (address < PAGE_SIZE) | ||
534 | printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); | ||
535 | else | ||
536 | printk(KERN_ALERT "Unable to handle kernel paging request"); | ||
537 | printk(" at %016lx RIP: \n" KERN_ALERT,address); | ||
538 | printk_address(regs->rip); | ||
539 | printk("\n"); | ||
540 | dump_pagetable(address); | ||
541 | __die("Oops", regs, error_code); | ||
542 | /* Executive summary in case the body of the oops scrolled away */ | ||
543 | printk(KERN_EMERG "CR2: %016lx\n", address); | ||
544 | oops_end(); | ||
545 | do_exit(SIGKILL); | ||
546 | |||
547 | /* | ||
548 | * We ran out of memory, or some other thing happened to us that made | ||
549 | * us unable to handle the page fault gracefully. | ||
550 | */ | ||
551 | out_of_memory: | ||
552 | up_read(&mm->mmap_sem); | ||
553 | out_of_memory2: | ||
554 | if (current->pid == 1) { | ||
555 | yield(); | ||
556 | goto again; | ||
557 | } | ||
558 | printk("VM: killing process %s\n", tsk->comm); | ||
559 | if (error_code & 4) | ||
560 | do_exit(SIGKILL); | ||
561 | goto no_context; | ||
562 | |||
563 | do_sigbus: | ||
564 | up_read(&mm->mmap_sem); | ||
565 | |||
566 | /* Kernel mode? Handle exceptions or die */ | ||
567 | if (!(error_code & 4)) | ||
568 | goto no_context; | ||
569 | |||
570 | tsk->thread.cr2 = address; | ||
571 | tsk->thread.error_code = error_code; | ||
572 | tsk->thread.trap_no = 14; | ||
573 | info.si_signo = SIGBUS; | ||
574 | info.si_errno = 0; | ||
575 | info.si_code = BUS_ADRERR; | ||
576 | info.si_addr = (void __user *)address; | ||
577 | force_sig_info(SIGBUS, &info, tsk); | ||
578 | return; | ||
579 | } | ||