aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86_64/lib
diff options
context:
space:
mode:
authorAlexandre Oliva <aoliva@redhat.com>2005-10-31 15:29:36 -0500
committerLinus Torvalds <torvalds@g5.osdl.org>2005-11-02 22:41:32 -0500
commit06024f217d607369f0ee0071034ebb03071d5fb2 (patch)
treed38a20395a0619976543cfb68ea925aebc545575 /arch/x86_64/lib
parentcfa024f4e45562c50b9eccb23649ab103578037b (diff)
[PATCH] x86-64: bitops fix for -Os
This fixes the x86-64 find_[first|next]_zero_bit() function for the end-of-range case. It didn't test for a zero size, and the "rep scas" would do entirely the wrong thing. Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'arch/x86_64/lib')
-rw-r--r--arch/x86_64/lib/bitops.c66
1 files changed, 50 insertions, 16 deletions
diff --git a/arch/x86_64/lib/bitops.c b/arch/x86_64/lib/bitops.c
index a29fb75b33ac..95b6d9639fba 100644
--- a/arch/x86_64/lib/bitops.c
+++ b/arch/x86_64/lib/bitops.c
@@ -5,19 +5,23 @@
5#undef find_first_bit 5#undef find_first_bit
6#undef find_next_bit 6#undef find_next_bit
7 7
8/** 8static inline long
9 * find_first_zero_bit - find the first zero bit in a memory region 9__find_first_zero_bit(const unsigned long * addr, unsigned long size)
10 * @addr: The address to start the search at
11 * @size: The maximum size to search
12 *
13 * Returns the bit-number of the first zero bit, not the number of the byte
14 * containing a bit.
15 */
16inline long find_first_zero_bit(const unsigned long * addr, unsigned long size)
17{ 10{
18 long d0, d1, d2; 11 long d0, d1, d2;
19 long res; 12 long res;
20 13
14 /*
15 * We must test the size in words, not in bits, because
16 * otherwise incoming sizes in the range -63..-1 will not run
17 * any scasq instructions, and then the flags used by the je
18 * instruction will have whatever random value was in place
19 * before. Nobody should call us like that, but
20 * find_next_zero_bit() does when offset and size are at the
21 * same word and it fails to find a zero itself.
22 */
23 size += 63;
24 size >>= 6;
21 if (!size) 25 if (!size)
22 return 0; 26 return 0;
23 asm volatile( 27 asm volatile(
@@ -30,12 +34,30 @@ inline long find_first_zero_bit(const unsigned long * addr, unsigned long size)
30 " shlq $3,%%rdi\n" 34 " shlq $3,%%rdi\n"
31 " addq %%rdi,%%rdx" 35 " addq %%rdi,%%rdx"
32 :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2) 36 :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
33 :"0" (0ULL), "1" ((size + 63) >> 6), "2" (addr), "3" (-1ULL), 37 :"0" (0ULL), "1" (size), "2" (addr), "3" (-1ULL),
34 [addr] "r" (addr) : "memory"); 38 [addr] "S" (addr) : "memory");
39 /*
40 * Any register would do for [addr] above, but GCC tends to
41 * prefer rbx over rsi, even though rsi is readily available
42 * and doesn't have to be saved.
43 */
35 return res; 44 return res;
36} 45}
37 46
38/** 47/**
48 * find_first_zero_bit - find the first zero bit in a memory region
49 * @addr: The address to start the search at
50 * @size: The maximum size to search
51 *
52 * Returns the bit-number of the first zero bit, not the number of the byte
53 * containing a bit.
54 */
55long find_first_zero_bit(const unsigned long * addr, unsigned long size)
56{
57 return __find_first_zero_bit (addr, size);
58}
59
60/**
39 * find_next_zero_bit - find the first zero bit in a memory region 61 * find_next_zero_bit - find the first zero bit in a memory region
40 * @addr: The address to base the search on 62 * @addr: The address to base the search on
41 * @offset: The bitnumber to start searching at 63 * @offset: The bitnumber to start searching at
@@ -43,7 +65,7 @@ inline long find_first_zero_bit(const unsigned long * addr, unsigned long size)
43 */ 65 */
44long find_next_zero_bit (const unsigned long * addr, long size, long offset) 66long find_next_zero_bit (const unsigned long * addr, long size, long offset)
45{ 67{
46 unsigned long * p = ((unsigned long *) addr) + (offset >> 6); 68 const unsigned long * p = addr + (offset >> 6);
47 unsigned long set = 0; 69 unsigned long set = 0;
48 unsigned long res, bit = offset&63; 70 unsigned long res, bit = offset&63;
49 71
@@ -63,8 +85,8 @@ long find_next_zero_bit (const unsigned long * addr, long size, long offset)
63 /* 85 /*
64 * No zero yet, search remaining full words for a zero 86 * No zero yet, search remaining full words for a zero
65 */ 87 */
66 res = find_first_zero_bit ((const unsigned long *)p, 88 res = __find_first_zero_bit (p, size - 64 * (p - addr));
67 size - 64 * (p - (unsigned long *) addr)); 89
68 return (offset + set + res); 90 return (offset + set + res);
69} 91}
70 92
@@ -74,6 +96,19 @@ __find_first_bit(const unsigned long * addr, unsigned long size)
74 long d0, d1; 96 long d0, d1;
75 long res; 97 long res;
76 98
99 /*
100 * We must test the size in words, not in bits, because
101 * otherwise incoming sizes in the range -63..-1 will not run
102 * any scasq instructions, and then the flags used by the jz
103 * instruction will have whatever random value was in place
104 * before. Nobody should call us like that, but
105 * find_next_bit() does when offset and size are at the same
106 * word and it fails to find a one itself.
107 */
108 size += 63;
109 size >>= 6;
110 if (!size)
111 return 0;
77 asm volatile( 112 asm volatile(
78 " repe; scasq\n" 113 " repe; scasq\n"
79 " jz 1f\n" 114 " jz 1f\n"
@@ -83,8 +118,7 @@ __find_first_bit(const unsigned long * addr, unsigned long size)
83 " shlq $3,%%rdi\n" 118 " shlq $3,%%rdi\n"
84 " addq %%rdi,%%rax" 119 " addq %%rdi,%%rax"
85 :"=a" (res), "=&c" (d0), "=&D" (d1) 120 :"=a" (res), "=&c" (d0), "=&D" (d1)
86 :"0" (0ULL), 121 :"0" (0ULL), "1" (size), "2" (addr),
87 "1" ((size + 63) >> 6), "2" (addr),
88 [addr] "r" (addr) : "memory"); 122 [addr] "r" (addr) : "memory");
89 return res; 123 return res;
90} 124}