diff options
author | Dimitri Sivanich <sivanich@sgi.com> | 2009-03-04 13:59:18 -0500 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2009-03-04 14:25:38 -0500 |
commit | 5ab5ab34498f94d60884c4ccea890601e429042e (patch) | |
tree | 3ec74793d32450a2f77c8e3804d30256845651ad /arch/x86 | |
parent | 8661984f628c6f7d9cbaac6697f26d6b0be3ad3b (diff) |
x86: UV, SGI RTC: add UV RTC clocksource/clockevents
This patch provides a high resolution clock/timer source using the
SGI UV system-wide synchronized RTC clock/timer hardware.
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: john stultz <johnstul@us.ibm.com>
LKML-Reference: <20090304185918.GC24419@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86')
-rw-r--r-- | arch/x86/kernel/Makefile | 2 | ||||
-rw-r--r-- | arch/x86/kernel/uv_time.c | 391 |
2 files changed, 392 insertions, 1 deletions
diff --git a/arch/x86/kernel/Makefile b/arch/x86/kernel/Makefile index 95f216bbfaf1..339ce35648e6 100644 --- a/arch/x86/kernel/Makefile +++ b/arch/x86/kernel/Makefile | |||
@@ -111,7 +111,7 @@ obj-$(CONFIG_SWIOTLB) += pci-swiotlb_64.o # NB rename without _64 | |||
111 | ### | 111 | ### |
112 | # 64 bit specific files | 112 | # 64 bit specific files |
113 | ifeq ($(CONFIG_X86_64),y) | 113 | ifeq ($(CONFIG_X86_64),y) |
114 | obj-$(CONFIG_X86_UV) += tlb_uv.o bios_uv.o uv_irq.o uv_sysfs.o | 114 | obj-$(CONFIG_X86_UV) += tlb_uv.o bios_uv.o uv_irq.o uv_sysfs.o uv_time.o |
115 | obj-$(CONFIG_X86_PM_TIMER) += pmtimer_64.o | 115 | obj-$(CONFIG_X86_PM_TIMER) += pmtimer_64.o |
116 | obj-$(CONFIG_AUDIT) += audit_64.o | 116 | obj-$(CONFIG_AUDIT) += audit_64.o |
117 | 117 | ||
diff --git a/arch/x86/kernel/uv_time.c b/arch/x86/kernel/uv_time.c new file mode 100644 index 000000000000..6f8e3256ab2a --- /dev/null +++ b/arch/x86/kernel/uv_time.c | |||
@@ -0,0 +1,391 @@ | |||
1 | /* | ||
2 | * SGI RTC clock/timer routines. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | * | ||
18 | * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved. | ||
19 | * Copyright (c) Dimitri Sivanich | ||
20 | */ | ||
21 | #include <linux/clockchips.h> | ||
22 | |||
23 | #include <asm/uv/uv_mmrs.h> | ||
24 | #include <asm/uv/uv_hub.h> | ||
25 | #include <asm/uv/bios.h> | ||
26 | #include <asm/uv/uv.h> | ||
27 | |||
28 | #define RTC_NAME "sgi_rtc" | ||
29 | |||
30 | static cycle_t uv_read_rtc(void); | ||
31 | static int uv_rtc_next_event(unsigned long, struct clock_event_device *); | ||
32 | static void uv_rtc_timer_setup(enum clock_event_mode, | ||
33 | struct clock_event_device *); | ||
34 | |||
35 | static struct clocksource clocksource_uv = { | ||
36 | .name = RTC_NAME, | ||
37 | .rating = 400, | ||
38 | .read = uv_read_rtc, | ||
39 | .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK, | ||
40 | .shift = 10, | ||
41 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | ||
42 | }; | ||
43 | |||
44 | static struct clock_event_device clock_event_device_uv = { | ||
45 | .name = RTC_NAME, | ||
46 | .features = CLOCK_EVT_FEAT_ONESHOT, | ||
47 | .shift = 20, | ||
48 | .rating = 400, | ||
49 | .irq = -1, | ||
50 | .set_next_event = uv_rtc_next_event, | ||
51 | .set_mode = uv_rtc_timer_setup, | ||
52 | .event_handler = NULL, | ||
53 | }; | ||
54 | |||
55 | static DEFINE_PER_CPU(struct clock_event_device, cpu_ced); | ||
56 | |||
57 | /* There is one of these allocated per node */ | ||
58 | struct uv_rtc_timer_head { | ||
59 | spinlock_t lock; | ||
60 | /* next cpu waiting for timer, local node relative: */ | ||
61 | int next_cpu; | ||
62 | /* number of cpus on this node: */ | ||
63 | int ncpus; | ||
64 | struct { | ||
65 | int lcpu; /* systemwide logical cpu number */ | ||
66 | u64 expires; /* next timer expiration for this cpu */ | ||
67 | } cpu[1]; | ||
68 | }; | ||
69 | |||
70 | /* | ||
71 | * Access to uv_rtc_timer_head via blade id. | ||
72 | */ | ||
73 | static struct uv_rtc_timer_head **blade_info __read_mostly; | ||
74 | |||
75 | static int uv_rtc_enable; | ||
76 | |||
77 | /* | ||
78 | * Hardware interface routines | ||
79 | */ | ||
80 | |||
81 | /* Send IPIs to another node */ | ||
82 | static void uv_rtc_send_IPI(int cpu) | ||
83 | { | ||
84 | unsigned long apicid, val; | ||
85 | int pnode; | ||
86 | |||
87 | apicid = per_cpu(x86_cpu_to_apicid, cpu); | ||
88 | pnode = uv_apicid_to_pnode(apicid); | ||
89 | val = (1UL << UVH_IPI_INT_SEND_SHFT) | | ||
90 | (apicid << UVH_IPI_INT_APIC_ID_SHFT) | | ||
91 | (GENERIC_INTERRUPT_VECTOR << UVH_IPI_INT_VECTOR_SHFT); | ||
92 | |||
93 | uv_write_global_mmr64(pnode, UVH_IPI_INT, val); | ||
94 | } | ||
95 | |||
96 | /* Check for an RTC interrupt pending */ | ||
97 | static int uv_intr_pending(int pnode) | ||
98 | { | ||
99 | return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) & | ||
100 | UVH_EVENT_OCCURRED0_RTC1_MASK; | ||
101 | } | ||
102 | |||
103 | /* Setup interrupt and return non-zero if early expiration occurred. */ | ||
104 | static int uv_setup_intr(int cpu, u64 expires) | ||
105 | { | ||
106 | u64 val; | ||
107 | int pnode = uv_cpu_to_pnode(cpu); | ||
108 | |||
109 | uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, | ||
110 | UVH_RTC1_INT_CONFIG_M_MASK); | ||
111 | uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L); | ||
112 | |||
113 | uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS, | ||
114 | UVH_EVENT_OCCURRED0_RTC1_MASK); | ||
115 | |||
116 | val = (GENERIC_INTERRUPT_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) | | ||
117 | ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT); | ||
118 | |||
119 | /* Set configuration */ | ||
120 | uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val); | ||
121 | /* Initialize comparator value */ | ||
122 | uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires); | ||
123 | |||
124 | return (expires < uv_read_rtc() && !uv_intr_pending(pnode)); | ||
125 | } | ||
126 | |||
127 | /* | ||
128 | * Per-cpu timer tracking routines | ||
129 | */ | ||
130 | |||
131 | static __init void uv_rtc_deallocate_timers(void) | ||
132 | { | ||
133 | int bid; | ||
134 | |||
135 | for_each_possible_blade(bid) { | ||
136 | kfree(blade_info[bid]); | ||
137 | } | ||
138 | kfree(blade_info); | ||
139 | } | ||
140 | |||
141 | /* Allocate per-node list of cpu timer expiration times. */ | ||
142 | static __init int uv_rtc_allocate_timers(void) | ||
143 | { | ||
144 | int cpu; | ||
145 | |||
146 | blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL); | ||
147 | if (!blade_info) | ||
148 | return -ENOMEM; | ||
149 | memset(blade_info, 0, uv_possible_blades * sizeof(void *)); | ||
150 | |||
151 | for_each_present_cpu(cpu) { | ||
152 | int nid = cpu_to_node(cpu); | ||
153 | int bid = uv_cpu_to_blade_id(cpu); | ||
154 | int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; | ||
155 | struct uv_rtc_timer_head *head = blade_info[bid]; | ||
156 | |||
157 | if (!head) { | ||
158 | head = kmalloc_node(sizeof(struct uv_rtc_timer_head) + | ||
159 | (uv_blade_nr_possible_cpus(bid) * | ||
160 | 2 * sizeof(u64)), | ||
161 | GFP_KERNEL, nid); | ||
162 | if (!head) { | ||
163 | uv_rtc_deallocate_timers(); | ||
164 | return -ENOMEM; | ||
165 | } | ||
166 | spin_lock_init(&head->lock); | ||
167 | head->ncpus = uv_blade_nr_possible_cpus(bid); | ||
168 | head->next_cpu = -1; | ||
169 | blade_info[bid] = head; | ||
170 | } | ||
171 | |||
172 | head->cpu[bcpu].lcpu = cpu; | ||
173 | head->cpu[bcpu].expires = ULLONG_MAX; | ||
174 | } | ||
175 | |||
176 | return 0; | ||
177 | } | ||
178 | |||
179 | /* Find and set the next expiring timer. */ | ||
180 | static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode) | ||
181 | { | ||
182 | u64 lowest = ULLONG_MAX; | ||
183 | int c, bcpu = -1; | ||
184 | |||
185 | head->next_cpu = -1; | ||
186 | for (c = 0; c < head->ncpus; c++) { | ||
187 | u64 exp = head->cpu[c].expires; | ||
188 | if (exp < lowest) { | ||
189 | bcpu = c; | ||
190 | lowest = exp; | ||
191 | } | ||
192 | } | ||
193 | if (bcpu >= 0) { | ||
194 | head->next_cpu = bcpu; | ||
195 | c = head->cpu[bcpu].lcpu; | ||
196 | if (uv_setup_intr(c, lowest)) | ||
197 | /* If we didn't set it up in time, trigger */ | ||
198 | uv_rtc_send_IPI(c); | ||
199 | } else { | ||
200 | uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, | ||
201 | UVH_RTC1_INT_CONFIG_M_MASK); | ||
202 | } | ||
203 | } | ||
204 | |||
205 | /* | ||
206 | * Set expiration time for current cpu. | ||
207 | * | ||
208 | * Returns 1 if we missed the expiration time. | ||
209 | */ | ||
210 | static int uv_rtc_set_timer(int cpu, u64 expires) | ||
211 | { | ||
212 | int pnode = uv_cpu_to_pnode(cpu); | ||
213 | int bid = uv_cpu_to_blade_id(cpu); | ||
214 | struct uv_rtc_timer_head *head = blade_info[bid]; | ||
215 | int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; | ||
216 | u64 *t = &head->cpu[bcpu].expires; | ||
217 | unsigned long flags; | ||
218 | int next_cpu; | ||
219 | |||
220 | spin_lock_irqsave(&head->lock, flags); | ||
221 | |||
222 | next_cpu = head->next_cpu; | ||
223 | *t = expires; | ||
224 | /* Will this one be next to go off? */ | ||
225 | if (next_cpu < 0 || bcpu == next_cpu || | ||
226 | expires < head->cpu[next_cpu].expires) { | ||
227 | head->next_cpu = bcpu; | ||
228 | if (uv_setup_intr(cpu, expires)) { | ||
229 | *t = ULLONG_MAX; | ||
230 | uv_rtc_find_next_timer(head, pnode); | ||
231 | spin_unlock_irqrestore(&head->lock, flags); | ||
232 | return 1; | ||
233 | } | ||
234 | } | ||
235 | |||
236 | spin_unlock_irqrestore(&head->lock, flags); | ||
237 | return 0; | ||
238 | } | ||
239 | |||
240 | /* | ||
241 | * Unset expiration time for current cpu. | ||
242 | * | ||
243 | * Returns 1 if this timer was pending. | ||
244 | */ | ||
245 | static int uv_rtc_unset_timer(int cpu) | ||
246 | { | ||
247 | int pnode = uv_cpu_to_pnode(cpu); | ||
248 | int bid = uv_cpu_to_blade_id(cpu); | ||
249 | struct uv_rtc_timer_head *head = blade_info[bid]; | ||
250 | int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id; | ||
251 | u64 *t = &head->cpu[bcpu].expires; | ||
252 | unsigned long flags; | ||
253 | int rc = 0; | ||
254 | |||
255 | spin_lock_irqsave(&head->lock, flags); | ||
256 | |||
257 | if (head->next_cpu == bcpu && uv_read_rtc() >= *t) | ||
258 | rc = 1; | ||
259 | |||
260 | *t = ULLONG_MAX; | ||
261 | |||
262 | /* Was the hardware setup for this timer? */ | ||
263 | if (head->next_cpu == bcpu) | ||
264 | uv_rtc_find_next_timer(head, pnode); | ||
265 | |||
266 | spin_unlock_irqrestore(&head->lock, flags); | ||
267 | |||
268 | return rc; | ||
269 | } | ||
270 | |||
271 | |||
272 | /* | ||
273 | * Kernel interface routines. | ||
274 | */ | ||
275 | |||
276 | /* | ||
277 | * Read the RTC. | ||
278 | */ | ||
279 | static cycle_t uv_read_rtc(void) | ||
280 | { | ||
281 | return (cycle_t)uv_read_local_mmr(UVH_RTC); | ||
282 | } | ||
283 | |||
284 | /* | ||
285 | * Program the next event, relative to now | ||
286 | */ | ||
287 | static int uv_rtc_next_event(unsigned long delta, | ||
288 | struct clock_event_device *ced) | ||
289 | { | ||
290 | int ced_cpu = cpumask_first(ced->cpumask); | ||
291 | |||
292 | return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc()); | ||
293 | } | ||
294 | |||
295 | /* | ||
296 | * Setup the RTC timer in oneshot mode | ||
297 | */ | ||
298 | static void uv_rtc_timer_setup(enum clock_event_mode mode, | ||
299 | struct clock_event_device *evt) | ||
300 | { | ||
301 | int ced_cpu = cpumask_first(evt->cpumask); | ||
302 | |||
303 | switch (mode) { | ||
304 | case CLOCK_EVT_MODE_PERIODIC: | ||
305 | case CLOCK_EVT_MODE_ONESHOT: | ||
306 | case CLOCK_EVT_MODE_RESUME: | ||
307 | /* Nothing to do here yet */ | ||
308 | break; | ||
309 | case CLOCK_EVT_MODE_UNUSED: | ||
310 | case CLOCK_EVT_MODE_SHUTDOWN: | ||
311 | uv_rtc_unset_timer(ced_cpu); | ||
312 | break; | ||
313 | } | ||
314 | } | ||
315 | |||
316 | static void uv_rtc_interrupt(void) | ||
317 | { | ||
318 | struct clock_event_device *ced = &__get_cpu_var(cpu_ced); | ||
319 | int cpu = smp_processor_id(); | ||
320 | |||
321 | if (!ced || !ced->event_handler) | ||
322 | return; | ||
323 | |||
324 | if (uv_rtc_unset_timer(cpu) != 1) | ||
325 | return; | ||
326 | |||
327 | ced->event_handler(ced); | ||
328 | } | ||
329 | |||
330 | static int __init uv_enable_rtc(char *str) | ||
331 | { | ||
332 | uv_rtc_enable = 1; | ||
333 | |||
334 | return 1; | ||
335 | } | ||
336 | __setup("uvrtc", uv_enable_rtc); | ||
337 | |||
338 | static __init void uv_rtc_register_clockevents(struct work_struct *dummy) | ||
339 | { | ||
340 | struct clock_event_device *ced = &__get_cpu_var(cpu_ced); | ||
341 | |||
342 | *ced = clock_event_device_uv; | ||
343 | ced->cpumask = cpumask_of(smp_processor_id()); | ||
344 | clockevents_register_device(ced); | ||
345 | } | ||
346 | |||
347 | static __init int uv_rtc_setup_clock(void) | ||
348 | { | ||
349 | int rc; | ||
350 | |||
351 | if (!uv_rtc_enable || !is_uv_system() || generic_interrupt_extension) | ||
352 | return -ENODEV; | ||
353 | |||
354 | generic_interrupt_extension = uv_rtc_interrupt; | ||
355 | |||
356 | clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second, | ||
357 | clocksource_uv.shift); | ||
358 | |||
359 | rc = clocksource_register(&clocksource_uv); | ||
360 | if (rc) { | ||
361 | generic_interrupt_extension = NULL; | ||
362 | return rc; | ||
363 | } | ||
364 | |||
365 | /* Setup and register clockevents */ | ||
366 | rc = uv_rtc_allocate_timers(); | ||
367 | if (rc) { | ||
368 | clocksource_unregister(&clocksource_uv); | ||
369 | generic_interrupt_extension = NULL; | ||
370 | return rc; | ||
371 | } | ||
372 | |||
373 | clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second, | ||
374 | NSEC_PER_SEC, clock_event_device_uv.shift); | ||
375 | |||
376 | clock_event_device_uv.min_delta_ns = NSEC_PER_SEC / | ||
377 | sn_rtc_cycles_per_second; | ||
378 | |||
379 | clock_event_device_uv.max_delta_ns = clocksource_uv.mask * | ||
380 | (NSEC_PER_SEC / sn_rtc_cycles_per_second); | ||
381 | |||
382 | rc = schedule_on_each_cpu(uv_rtc_register_clockevents); | ||
383 | if (rc) { | ||
384 | clocksource_unregister(&clocksource_uv); | ||
385 | generic_interrupt_extension = NULL; | ||
386 | uv_rtc_deallocate_timers(); | ||
387 | } | ||
388 | |||
389 | return rc; | ||
390 | } | ||
391 | arch_initcall(uv_rtc_setup_clock); | ||