diff options
author | Harvey Harrison <harvey.harrison@gmail.com> | 2008-01-30 07:34:11 -0500 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2008-01-30 07:34:11 -0500 |
commit | c61e211d9989e4c112d3d58db12ad58f9016a3c8 (patch) | |
tree | 17ac1e9220b9becda9bee059b4aa0bb129a56e1f /arch/x86 | |
parent | f8c2ee224d8397364835204c6c0130d08c2e644c (diff) |
x86: unify fault_32|64.c
Unify includes in moved fault.c.
Modify Makefiles to pick up unified file.
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'arch/x86')
-rw-r--r-- | arch/x86/mm/Makefile_32 | 2 | ||||
-rw-r--r-- | arch/x86/mm/Makefile_64 | 2 | ||||
-rw-r--r-- | arch/x86/mm/fault.c (renamed from arch/x86/mm/fault_64.c) | 21 | ||||
-rw-r--r-- | arch/x86/mm/fault_32.c | 949 |
4 files changed, 14 insertions, 960 deletions
diff --git a/arch/x86/mm/Makefile_32 b/arch/x86/mm/Makefile_32 index ffa6d46a1e73..c36ae88bb543 100644 --- a/arch/x86/mm/Makefile_32 +++ b/arch/x86/mm/Makefile_32 | |||
@@ -2,7 +2,7 @@ | |||
2 | # Makefile for the linux i386-specific parts of the memory manager. | 2 | # Makefile for the linux i386-specific parts of the memory manager. |
3 | # | 3 | # |
4 | 4 | ||
5 | obj-y := init_32.o pgtable_32.o fault_32.o ioremap.o extable.o pageattr.o mmap.o | 5 | obj-y := init_32.o pgtable_32.o fault.o ioremap.o extable.o pageattr.o mmap.o |
6 | 6 | ||
7 | obj-$(CONFIG_NUMA) += discontig_32.o | 7 | obj-$(CONFIG_NUMA) += discontig_32.o |
8 | obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o | 8 | obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o |
diff --git a/arch/x86/mm/Makefile_64 b/arch/x86/mm/Makefile_64 index 27a090c86e9b..688c8c28ac8f 100644 --- a/arch/x86/mm/Makefile_64 +++ b/arch/x86/mm/Makefile_64 | |||
@@ -2,7 +2,7 @@ | |||
2 | # Makefile for the linux x86_64-specific parts of the memory manager. | 2 | # Makefile for the linux x86_64-specific parts of the memory manager. |
3 | # | 3 | # |
4 | 4 | ||
5 | obj-y := init_64.o fault_64.o ioremap.o extable.o pageattr.o mmap.o | 5 | obj-y := init_64.o fault.o ioremap.o extable.o pageattr.o mmap.o |
6 | obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o | 6 | obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o |
7 | obj-$(CONFIG_NUMA) += numa_64.o | 7 | obj-$(CONFIG_NUMA) += numa_64.o |
8 | obj-$(CONFIG_K8_NUMA) += k8topology_64.o | 8 | obj-$(CONFIG_K8_NUMA) += k8topology_64.o |
diff --git a/arch/x86/mm/fault_64.c b/arch/x86/mm/fault.c index 0902719388bc..14a0c6e541de 100644 --- a/arch/x86/mm/fault_64.c +++ b/arch/x86/mm/fault.c | |||
@@ -18,6 +18,8 @@ | |||
18 | #include <linux/tty.h> | 18 | #include <linux/tty.h> |
19 | #include <linux/vt_kern.h> /* For unblank_screen() */ | 19 | #include <linux/vt_kern.h> /* For unblank_screen() */ |
20 | #include <linux/compiler.h> | 20 | #include <linux/compiler.h> |
21 | #include <linux/highmem.h> | ||
22 | #include <linux/bootmem.h> /* for max_low_pfn */ | ||
21 | #include <linux/vmalloc.h> | 23 | #include <linux/vmalloc.h> |
22 | #include <linux/module.h> | 24 | #include <linux/module.h> |
23 | #include <linux/kprobes.h> | 25 | #include <linux/kprobes.h> |
@@ -25,6 +27,8 @@ | |||
25 | #include <linux/kdebug.h> | 27 | #include <linux/kdebug.h> |
26 | 28 | ||
27 | #include <asm/system.h> | 29 | #include <asm/system.h> |
30 | #include <asm/desc.h> | ||
31 | #include <asm/segment.h> | ||
28 | #include <asm/pgalloc.h> | 32 | #include <asm/pgalloc.h> |
29 | #include <asm/smp.h> | 33 | #include <asm/smp.h> |
30 | #include <asm/tlbflush.h> | 34 | #include <asm/tlbflush.h> |
@@ -88,16 +92,15 @@ static int is_prefetch(struct pt_regs *regs, unsigned long addr, | |||
88 | unsigned char *max_instr; | 92 | unsigned char *max_instr; |
89 | 93 | ||
90 | #ifdef CONFIG_X86_32 | 94 | #ifdef CONFIG_X86_32 |
91 | if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | 95 | # ifdef CONFIG_X86_PAE |
92 | boot_cpu_data.x86 >= 6)) { | 96 | /* If it was a exec fault on NX page, ignore */ |
93 | /* Catch an obscure case of prefetch inside an NX page. */ | 97 | if (nx_enabled && (error_code & PF_INSTR)) |
94 | if (nx_enabled && (error_code & PF_INSTR)) | ||
95 | return 0; | ||
96 | } else { | ||
97 | return 0; | 98 | return 0; |
98 | } | 99 | # else |
99 | #else | 100 | return 0; |
100 | /* If it was a exec fault ignore */ | 101 | # endif |
102 | #else /* CONFIG_X86_64 */ | ||
103 | /* If it was a exec fault on NX page, ignore */ | ||
101 | if (error_code & PF_INSTR) | 104 | if (error_code & PF_INSTR) |
102 | return 0; | 105 | return 0; |
103 | #endif | 106 | #endif |
diff --git a/arch/x86/mm/fault_32.c b/arch/x86/mm/fault_32.c deleted file mode 100644 index 4da4625c6968..000000000000 --- a/arch/x86/mm/fault_32.c +++ /dev/null | |||
@@ -1,949 +0,0 @@ | |||
1 | /* | ||
2 | * Copyright (C) 1995 Linus Torvalds | ||
3 | */ | ||
4 | |||
5 | #include <linux/signal.h> | ||
6 | #include <linux/sched.h> | ||
7 | #include <linux/kernel.h> | ||
8 | #include <linux/errno.h> | ||
9 | #include <linux/string.h> | ||
10 | #include <linux/types.h> | ||
11 | #include <linux/ptrace.h> | ||
12 | #include <linux/mman.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/smp.h> | ||
15 | #include <linux/interrupt.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/tty.h> | ||
18 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
19 | #include <linux/highmem.h> | ||
20 | #include <linux/bootmem.h> /* for max_low_pfn */ | ||
21 | #include <linux/vmalloc.h> | ||
22 | #include <linux/module.h> | ||
23 | #include <linux/kprobes.h> | ||
24 | #include <linux/uaccess.h> | ||
25 | #include <linux/kdebug.h> | ||
26 | |||
27 | #include <asm/system.h> | ||
28 | #include <asm/desc.h> | ||
29 | #include <asm/segment.h> | ||
30 | |||
31 | /* | ||
32 | * Page fault error code bits | ||
33 | * bit 0 == 0 means no page found, 1 means protection fault | ||
34 | * bit 1 == 0 means read, 1 means write | ||
35 | * bit 2 == 0 means kernel, 1 means user-mode | ||
36 | * bit 3 == 1 means use of reserved bit detected | ||
37 | * bit 4 == 1 means fault was an instruction fetch | ||
38 | */ | ||
39 | #define PF_PROT (1<<0) | ||
40 | #define PF_WRITE (1<<1) | ||
41 | #define PF_USER (1<<2) | ||
42 | #define PF_RSVD (1<<3) | ||
43 | #define PF_INSTR (1<<4) | ||
44 | |||
45 | static inline int notify_page_fault(struct pt_regs *regs) | ||
46 | { | ||
47 | #ifdef CONFIG_KPROBES | ||
48 | int ret = 0; | ||
49 | |||
50 | /* kprobe_running() needs smp_processor_id() */ | ||
51 | #ifdef CONFIG_X86_32 | ||
52 | if (!user_mode_vm(regs)) { | ||
53 | #else | ||
54 | if (!user_mode(regs)) { | ||
55 | #endif | ||
56 | preempt_disable(); | ||
57 | if (kprobe_running() && kprobe_fault_handler(regs, 14)) | ||
58 | ret = 1; | ||
59 | preempt_enable(); | ||
60 | } | ||
61 | |||
62 | return ret; | ||
63 | #else | ||
64 | return 0; | ||
65 | #endif | ||
66 | } | ||
67 | |||
68 | /* | ||
69 | * X86_32 | ||
70 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | ||
71 | * Check that here and ignore it. | ||
72 | * | ||
73 | * X86_64 | ||
74 | * Sometimes the CPU reports invalid exceptions on prefetch. | ||
75 | * Check that here and ignore it. | ||
76 | * | ||
77 | * Opcode checker based on code by Richard Brunner | ||
78 | */ | ||
79 | static int is_prefetch(struct pt_regs *regs, unsigned long addr, | ||
80 | unsigned long error_code) | ||
81 | { | ||
82 | unsigned char *instr; | ||
83 | int scan_more = 1; | ||
84 | int prefetch = 0; | ||
85 | unsigned char *max_instr; | ||
86 | |||
87 | #ifdef CONFIG_X86_32 | ||
88 | if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | ||
89 | boot_cpu_data.x86 >= 6)) { | ||
90 | /* Catch an obscure case of prefetch inside an NX page. */ | ||
91 | if (nx_enabled && (error_code & PF_INSTR)) | ||
92 | return 0; | ||
93 | } else { | ||
94 | return 0; | ||
95 | } | ||
96 | #else | ||
97 | /* If it was a exec fault ignore */ | ||
98 | if (error_code & PF_INSTR) | ||
99 | return 0; | ||
100 | #endif | ||
101 | |||
102 | instr = (unsigned char *)convert_ip_to_linear(current, regs); | ||
103 | max_instr = instr + 15; | ||
104 | |||
105 | if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) | ||
106 | return 0; | ||
107 | |||
108 | while (scan_more && instr < max_instr) { | ||
109 | unsigned char opcode; | ||
110 | unsigned char instr_hi; | ||
111 | unsigned char instr_lo; | ||
112 | |||
113 | if (probe_kernel_address(instr, opcode)) | ||
114 | break; | ||
115 | |||
116 | instr_hi = opcode & 0xf0; | ||
117 | instr_lo = opcode & 0x0f; | ||
118 | instr++; | ||
119 | |||
120 | switch (instr_hi) { | ||
121 | case 0x20: | ||
122 | case 0x30: | ||
123 | /* | ||
124 | * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. | ||
125 | * In X86_64 long mode, the CPU will signal invalid | ||
126 | * opcode if some of these prefixes are present so | ||
127 | * X86_64 will never get here anyway | ||
128 | */ | ||
129 | scan_more = ((instr_lo & 7) == 0x6); | ||
130 | break; | ||
131 | #ifdef CONFIG_X86_64 | ||
132 | case 0x40: | ||
133 | /* | ||
134 | * In AMD64 long mode 0x40..0x4F are valid REX prefixes | ||
135 | * Need to figure out under what instruction mode the | ||
136 | * instruction was issued. Could check the LDT for lm, | ||
137 | * but for now it's good enough to assume that long | ||
138 | * mode only uses well known segments or kernel. | ||
139 | */ | ||
140 | scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS); | ||
141 | break; | ||
142 | #endif | ||
143 | case 0x60: | ||
144 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
145 | scan_more = (instr_lo & 0xC) == 0x4; | ||
146 | break; | ||
147 | case 0xF0: | ||
148 | /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ | ||
149 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
150 | break; | ||
151 | case 0x00: | ||
152 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
153 | scan_more = 0; | ||
154 | |||
155 | if (probe_kernel_address(instr, opcode)) | ||
156 | break; | ||
157 | prefetch = (instr_lo == 0xF) && | ||
158 | (opcode == 0x0D || opcode == 0x18); | ||
159 | break; | ||
160 | default: | ||
161 | scan_more = 0; | ||
162 | break; | ||
163 | } | ||
164 | } | ||
165 | return prefetch; | ||
166 | } | ||
167 | |||
168 | static void force_sig_info_fault(int si_signo, int si_code, | ||
169 | unsigned long address, struct task_struct *tsk) | ||
170 | { | ||
171 | siginfo_t info; | ||
172 | |||
173 | info.si_signo = si_signo; | ||
174 | info.si_errno = 0; | ||
175 | info.si_code = si_code; | ||
176 | info.si_addr = (void __user *)address; | ||
177 | force_sig_info(si_signo, &info, tsk); | ||
178 | } | ||
179 | |||
180 | #ifdef CONFIG_X86_64 | ||
181 | static int bad_address(void *p) | ||
182 | { | ||
183 | unsigned long dummy; | ||
184 | return probe_kernel_address((unsigned long *)p, dummy); | ||
185 | } | ||
186 | #endif | ||
187 | |||
188 | void dump_pagetable(unsigned long address) | ||
189 | { | ||
190 | #ifdef CONFIG_X86_32 | ||
191 | __typeof__(pte_val(__pte(0))) page; | ||
192 | |||
193 | page = read_cr3(); | ||
194 | page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; | ||
195 | #ifdef CONFIG_X86_PAE | ||
196 | printk("*pdpt = %016Lx ", page); | ||
197 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
198 | && page & _PAGE_PRESENT) { | ||
199 | page &= PAGE_MASK; | ||
200 | page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) | ||
201 | & (PTRS_PER_PMD - 1)]; | ||
202 | printk(KERN_CONT "*pde = %016Lx ", page); | ||
203 | page &= ~_PAGE_NX; | ||
204 | } | ||
205 | #else | ||
206 | printk("*pde = %08lx ", page); | ||
207 | #endif | ||
208 | |||
209 | /* | ||
210 | * We must not directly access the pte in the highpte | ||
211 | * case if the page table is located in highmem. | ||
212 | * And let's rather not kmap-atomic the pte, just in case | ||
213 | * it's allocated already. | ||
214 | */ | ||
215 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
216 | && (page & _PAGE_PRESENT) | ||
217 | && !(page & _PAGE_PSE)) { | ||
218 | page &= PAGE_MASK; | ||
219 | page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) | ||
220 | & (PTRS_PER_PTE - 1)]; | ||
221 | printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); | ||
222 | } | ||
223 | |||
224 | printk("\n"); | ||
225 | #else /* CONFIG_X86_64 */ | ||
226 | pgd_t *pgd; | ||
227 | pud_t *pud; | ||
228 | pmd_t *pmd; | ||
229 | pte_t *pte; | ||
230 | |||
231 | pgd = (pgd_t *)read_cr3(); | ||
232 | |||
233 | pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); | ||
234 | pgd += pgd_index(address); | ||
235 | if (bad_address(pgd)) goto bad; | ||
236 | printk("PGD %lx ", pgd_val(*pgd)); | ||
237 | if (!pgd_present(*pgd)) goto ret; | ||
238 | |||
239 | pud = pud_offset(pgd, address); | ||
240 | if (bad_address(pud)) goto bad; | ||
241 | printk("PUD %lx ", pud_val(*pud)); | ||
242 | if (!pud_present(*pud)) goto ret; | ||
243 | |||
244 | pmd = pmd_offset(pud, address); | ||
245 | if (bad_address(pmd)) goto bad; | ||
246 | printk("PMD %lx ", pmd_val(*pmd)); | ||
247 | if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret; | ||
248 | |||
249 | pte = pte_offset_kernel(pmd, address); | ||
250 | if (bad_address(pte)) goto bad; | ||
251 | printk("PTE %lx", pte_val(*pte)); | ||
252 | ret: | ||
253 | printk("\n"); | ||
254 | return; | ||
255 | bad: | ||
256 | printk("BAD\n"); | ||
257 | #endif | ||
258 | } | ||
259 | |||
260 | #ifdef CONFIG_X86_32 | ||
261 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | ||
262 | { | ||
263 | unsigned index = pgd_index(address); | ||
264 | pgd_t *pgd_k; | ||
265 | pud_t *pud, *pud_k; | ||
266 | pmd_t *pmd, *pmd_k; | ||
267 | |||
268 | pgd += index; | ||
269 | pgd_k = init_mm.pgd + index; | ||
270 | |||
271 | if (!pgd_present(*pgd_k)) | ||
272 | return NULL; | ||
273 | |||
274 | /* | ||
275 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | ||
276 | * and redundant with the set_pmd() on non-PAE. As would | ||
277 | * set_pud. | ||
278 | */ | ||
279 | |||
280 | pud = pud_offset(pgd, address); | ||
281 | pud_k = pud_offset(pgd_k, address); | ||
282 | if (!pud_present(*pud_k)) | ||
283 | return NULL; | ||
284 | |||
285 | pmd = pmd_offset(pud, address); | ||
286 | pmd_k = pmd_offset(pud_k, address); | ||
287 | if (!pmd_present(*pmd_k)) | ||
288 | return NULL; | ||
289 | if (!pmd_present(*pmd)) { | ||
290 | set_pmd(pmd, *pmd_k); | ||
291 | arch_flush_lazy_mmu_mode(); | ||
292 | } else | ||
293 | BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); | ||
294 | return pmd_k; | ||
295 | } | ||
296 | #endif | ||
297 | |||
298 | #ifdef CONFIG_X86_64 | ||
299 | static const char errata93_warning[] = | ||
300 | KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" | ||
301 | KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" | ||
302 | KERN_ERR "******* Please consider a BIOS update.\n" | ||
303 | KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; | ||
304 | #endif | ||
305 | |||
306 | /* Workaround for K8 erratum #93 & buggy BIOS. | ||
307 | BIOS SMM functions are required to use a specific workaround | ||
308 | to avoid corruption of the 64bit RIP register on C stepping K8. | ||
309 | A lot of BIOS that didn't get tested properly miss this. | ||
310 | The OS sees this as a page fault with the upper 32bits of RIP cleared. | ||
311 | Try to work around it here. | ||
312 | Note we only handle faults in kernel here. | ||
313 | Does nothing for X86_32 | ||
314 | */ | ||
315 | static int is_errata93(struct pt_regs *regs, unsigned long address) | ||
316 | { | ||
317 | #ifdef CONFIG_X86_64 | ||
318 | static int warned; | ||
319 | if (address != regs->ip) | ||
320 | return 0; | ||
321 | if ((address >> 32) != 0) | ||
322 | return 0; | ||
323 | address |= 0xffffffffUL << 32; | ||
324 | if ((address >= (u64)_stext && address <= (u64)_etext) || | ||
325 | (address >= MODULES_VADDR && address <= MODULES_END)) { | ||
326 | if (!warned) { | ||
327 | printk(errata93_warning); | ||
328 | warned = 1; | ||
329 | } | ||
330 | regs->ip = address; | ||
331 | return 1; | ||
332 | } | ||
333 | #endif | ||
334 | return 0; | ||
335 | } | ||
336 | |||
337 | /* | ||
338 | * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal | ||
339 | * addresses >4GB. We catch this in the page fault handler because these | ||
340 | * addresses are not reachable. Just detect this case and return. Any code | ||
341 | * segment in LDT is compatibility mode. | ||
342 | */ | ||
343 | static int is_errata100(struct pt_regs *regs, unsigned long address) | ||
344 | { | ||
345 | #ifdef CONFIG_X86_64 | ||
346 | if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && | ||
347 | (address >> 32)) | ||
348 | return 1; | ||
349 | #endif | ||
350 | return 0; | ||
351 | } | ||
352 | |||
353 | void do_invalid_op(struct pt_regs *, unsigned long); | ||
354 | |||
355 | static int is_f00f_bug(struct pt_regs *regs, unsigned long address) | ||
356 | { | ||
357 | #ifdef CONFIG_X86_F00F_BUG | ||
358 | unsigned long nr; | ||
359 | /* | ||
360 | * Pentium F0 0F C7 C8 bug workaround. | ||
361 | */ | ||
362 | if (boot_cpu_data.f00f_bug) { | ||
363 | nr = (address - idt_descr.address) >> 3; | ||
364 | |||
365 | if (nr == 6) { | ||
366 | do_invalid_op(regs, 0); | ||
367 | return 1; | ||
368 | } | ||
369 | } | ||
370 | #endif | ||
371 | return 0; | ||
372 | } | ||
373 | |||
374 | static void show_fault_oops(struct pt_regs *regs, unsigned long error_code, | ||
375 | unsigned long address) | ||
376 | { | ||
377 | #ifdef CONFIG_X86_32 | ||
378 | if (!oops_may_print()) | ||
379 | return; | ||
380 | |||
381 | #ifdef CONFIG_X86_PAE | ||
382 | if (error_code & PF_INSTR) { | ||
383 | int level; | ||
384 | pte_t *pte = lookup_address(address, &level); | ||
385 | |||
386 | if (pte && pte_present(*pte) && !pte_exec(*pte)) | ||
387 | printk(KERN_CRIT "kernel tried to execute " | ||
388 | "NX-protected page - exploit attempt? " | ||
389 | "(uid: %d)\n", current->uid); | ||
390 | } | ||
391 | #endif | ||
392 | printk(KERN_ALERT "BUG: unable to handle kernel "); | ||
393 | if (address < PAGE_SIZE) | ||
394 | printk(KERN_CONT "NULL pointer dereference"); | ||
395 | else | ||
396 | printk(KERN_CONT "paging request"); | ||
397 | printk(KERN_CONT " at %08lx\n", address); | ||
398 | |||
399 | printk(KERN_ALERT "IP:"); | ||
400 | printk_address(regs->ip, 1); | ||
401 | dump_pagetable(address); | ||
402 | #else /* CONFIG_X86_64 */ | ||
403 | printk(KERN_ALERT "BUG: unable to handle kernel "); | ||
404 | if (address < PAGE_SIZE) | ||
405 | printk(KERN_CONT "NULL pointer dereference"); | ||
406 | else | ||
407 | printk(KERN_CONT "paging request"); | ||
408 | printk(KERN_CONT " at %016lx\n", address); | ||
409 | |||
410 | printk(KERN_ALERT "IP:"); | ||
411 | printk_address(regs->ip, 1); | ||
412 | dump_pagetable(address); | ||
413 | #endif | ||
414 | } | ||
415 | |||
416 | #ifdef CONFIG_X86_64 | ||
417 | static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs, | ||
418 | unsigned long error_code) | ||
419 | { | ||
420 | unsigned long flags = oops_begin(); | ||
421 | struct task_struct *tsk; | ||
422 | |||
423 | printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", | ||
424 | current->comm, address); | ||
425 | dump_pagetable(address); | ||
426 | tsk = current; | ||
427 | tsk->thread.cr2 = address; | ||
428 | tsk->thread.trap_no = 14; | ||
429 | tsk->thread.error_code = error_code; | ||
430 | if (__die("Bad pagetable", regs, error_code)) | ||
431 | regs = NULL; | ||
432 | oops_end(flags, regs, SIGKILL); | ||
433 | } | ||
434 | #endif | ||
435 | |||
436 | /* | ||
437 | * X86_32 | ||
438 | * Handle a fault on the vmalloc or module mapping area | ||
439 | * | ||
440 | * X86_64 | ||
441 | * Handle a fault on the vmalloc area | ||
442 | * | ||
443 | * This assumes no large pages in there. | ||
444 | */ | ||
445 | static int vmalloc_fault(unsigned long address) | ||
446 | { | ||
447 | #ifdef CONFIG_X86_32 | ||
448 | unsigned long pgd_paddr; | ||
449 | pmd_t *pmd_k; | ||
450 | pte_t *pte_k; | ||
451 | /* | ||
452 | * Synchronize this task's top level page-table | ||
453 | * with the 'reference' page table. | ||
454 | * | ||
455 | * Do _not_ use "current" here. We might be inside | ||
456 | * an interrupt in the middle of a task switch.. | ||
457 | */ | ||
458 | pgd_paddr = read_cr3(); | ||
459 | pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | ||
460 | if (!pmd_k) | ||
461 | return -1; | ||
462 | pte_k = pte_offset_kernel(pmd_k, address); | ||
463 | if (!pte_present(*pte_k)) | ||
464 | return -1; | ||
465 | return 0; | ||
466 | #else | ||
467 | pgd_t *pgd, *pgd_ref; | ||
468 | pud_t *pud, *pud_ref; | ||
469 | pmd_t *pmd, *pmd_ref; | ||
470 | pte_t *pte, *pte_ref; | ||
471 | |||
472 | /* Copy kernel mappings over when needed. This can also | ||
473 | happen within a race in page table update. In the later | ||
474 | case just flush. */ | ||
475 | |||
476 | pgd = pgd_offset(current->mm ?: &init_mm, address); | ||
477 | pgd_ref = pgd_offset_k(address); | ||
478 | if (pgd_none(*pgd_ref)) | ||
479 | return -1; | ||
480 | if (pgd_none(*pgd)) | ||
481 | set_pgd(pgd, *pgd_ref); | ||
482 | else | ||
483 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
484 | |||
485 | /* Below here mismatches are bugs because these lower tables | ||
486 | are shared */ | ||
487 | |||
488 | pud = pud_offset(pgd, address); | ||
489 | pud_ref = pud_offset(pgd_ref, address); | ||
490 | if (pud_none(*pud_ref)) | ||
491 | return -1; | ||
492 | if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) | ||
493 | BUG(); | ||
494 | pmd = pmd_offset(pud, address); | ||
495 | pmd_ref = pmd_offset(pud_ref, address); | ||
496 | if (pmd_none(*pmd_ref)) | ||
497 | return -1; | ||
498 | if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) | ||
499 | BUG(); | ||
500 | pte_ref = pte_offset_kernel(pmd_ref, address); | ||
501 | if (!pte_present(*pte_ref)) | ||
502 | return -1; | ||
503 | pte = pte_offset_kernel(pmd, address); | ||
504 | /* Don't use pte_page here, because the mappings can point | ||
505 | outside mem_map, and the NUMA hash lookup cannot handle | ||
506 | that. */ | ||
507 | if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) | ||
508 | BUG(); | ||
509 | return 0; | ||
510 | #endif | ||
511 | } | ||
512 | |||
513 | int show_unhandled_signals = 1; | ||
514 | |||
515 | /* | ||
516 | * This routine handles page faults. It determines the address, | ||
517 | * and the problem, and then passes it off to one of the appropriate | ||
518 | * routines. | ||
519 | */ | ||
520 | #ifdef CONFIG_X86_64 | ||
521 | asmlinkage | ||
522 | #endif | ||
523 | void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code) | ||
524 | { | ||
525 | struct task_struct *tsk; | ||
526 | struct mm_struct *mm; | ||
527 | struct vm_area_struct *vma; | ||
528 | unsigned long address; | ||
529 | int write, si_code; | ||
530 | int fault; | ||
531 | #ifdef CONFIG_X86_64 | ||
532 | unsigned long flags; | ||
533 | #endif | ||
534 | |||
535 | /* | ||
536 | * We can fault from pretty much anywhere, with unknown IRQ state. | ||
537 | */ | ||
538 | trace_hardirqs_fixup(); | ||
539 | |||
540 | tsk = current; | ||
541 | mm = tsk->mm; | ||
542 | prefetchw(&mm->mmap_sem); | ||
543 | |||
544 | /* get the address */ | ||
545 | address = read_cr2(); | ||
546 | |||
547 | si_code = SEGV_MAPERR; | ||
548 | |||
549 | if (notify_page_fault(regs)) | ||
550 | return; | ||
551 | |||
552 | /* | ||
553 | * We fault-in kernel-space virtual memory on-demand. The | ||
554 | * 'reference' page table is init_mm.pgd. | ||
555 | * | ||
556 | * NOTE! We MUST NOT take any locks for this case. We may | ||
557 | * be in an interrupt or a critical region, and should | ||
558 | * only copy the information from the master page table, | ||
559 | * nothing more. | ||
560 | * | ||
561 | * This verifies that the fault happens in kernel space | ||
562 | * (error_code & 4) == 0, and that the fault was not a | ||
563 | * protection error (error_code & 9) == 0. | ||
564 | */ | ||
565 | #ifdef CONFIG_X86_32 | ||
566 | if (unlikely(address >= TASK_SIZE)) { | ||
567 | if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && | ||
568 | vmalloc_fault(address) >= 0) | ||
569 | return; | ||
570 | /* | ||
571 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
572 | * fault we could otherwise deadlock. | ||
573 | */ | ||
574 | goto bad_area_nosemaphore; | ||
575 | } | ||
576 | |||
577 | /* It's safe to allow irq's after cr2 has been saved and the vmalloc | ||
578 | fault has been handled. */ | ||
579 | if (regs->flags & (X86_EFLAGS_IF|VM_MASK)) | ||
580 | local_irq_enable(); | ||
581 | |||
582 | /* | ||
583 | * If we're in an interrupt, have no user context or are running in an | ||
584 | * atomic region then we must not take the fault. | ||
585 | */ | ||
586 | if (in_atomic() || !mm) | ||
587 | goto bad_area_nosemaphore; | ||
588 | #else /* CONFIG_X86_64 */ | ||
589 | if (unlikely(address >= TASK_SIZE64)) { | ||
590 | /* | ||
591 | * Don't check for the module range here: its PML4 | ||
592 | * is always initialized because it's shared with the main | ||
593 | * kernel text. Only vmalloc may need PML4 syncups. | ||
594 | */ | ||
595 | if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && | ||
596 | ((address >= VMALLOC_START && address < VMALLOC_END))) { | ||
597 | if (vmalloc_fault(address) >= 0) | ||
598 | return; | ||
599 | } | ||
600 | /* | ||
601 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
602 | * fault we could otherwise deadlock. | ||
603 | */ | ||
604 | goto bad_area_nosemaphore; | ||
605 | } | ||
606 | if (likely(regs->flags & X86_EFLAGS_IF)) | ||
607 | local_irq_enable(); | ||
608 | |||
609 | if (unlikely(error_code & PF_RSVD)) | ||
610 | pgtable_bad(address, regs, error_code); | ||
611 | |||
612 | /* | ||
613 | * If we're in an interrupt, have no user context or are running in an | ||
614 | * atomic region then we must not take the fault. | ||
615 | */ | ||
616 | if (unlikely(in_atomic() || !mm)) | ||
617 | goto bad_area_nosemaphore; | ||
618 | |||
619 | /* | ||
620 | * User-mode registers count as a user access even for any | ||
621 | * potential system fault or CPU buglet. | ||
622 | */ | ||
623 | if (user_mode_vm(regs)) | ||
624 | error_code |= PF_USER; | ||
625 | again: | ||
626 | #endif | ||
627 | /* When running in the kernel we expect faults to occur only to | ||
628 | * addresses in user space. All other faults represent errors in the | ||
629 | * kernel and should generate an OOPS. Unfortunately, in the case of an | ||
630 | * erroneous fault occurring in a code path which already holds mmap_sem | ||
631 | * we will deadlock attempting to validate the fault against the | ||
632 | * address space. Luckily the kernel only validly references user | ||
633 | * space from well defined areas of code, which are listed in the | ||
634 | * exceptions table. | ||
635 | * | ||
636 | * As the vast majority of faults will be valid we will only perform | ||
637 | * the source reference check when there is a possibility of a deadlock. | ||
638 | * Attempt to lock the address space, if we cannot we then validate the | ||
639 | * source. If this is invalid we can skip the address space check, | ||
640 | * thus avoiding the deadlock. | ||
641 | */ | ||
642 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
643 | if ((error_code & PF_USER) == 0 && | ||
644 | !search_exception_tables(regs->ip)) | ||
645 | goto bad_area_nosemaphore; | ||
646 | down_read(&mm->mmap_sem); | ||
647 | } | ||
648 | |||
649 | vma = find_vma(mm, address); | ||
650 | if (!vma) | ||
651 | goto bad_area; | ||
652 | #ifdef CONFIG_X86_32 | ||
653 | if (vma->vm_start <= address) | ||
654 | #else | ||
655 | if (likely(vma->vm_start <= address)) | ||
656 | #endif | ||
657 | goto good_area; | ||
658 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
659 | goto bad_area; | ||
660 | if (error_code & PF_USER) { | ||
661 | /* | ||
662 | * Accessing the stack below %sp is always a bug. | ||
663 | * The large cushion allows instructions like enter | ||
664 | * and pusha to work. ("enter $65535,$31" pushes | ||
665 | * 32 pointers and then decrements %sp by 65535.) | ||
666 | */ | ||
667 | if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp) | ||
668 | goto bad_area; | ||
669 | } | ||
670 | if (expand_stack(vma, address)) | ||
671 | goto bad_area; | ||
672 | /* | ||
673 | * Ok, we have a good vm_area for this memory access, so | ||
674 | * we can handle it.. | ||
675 | */ | ||
676 | good_area: | ||
677 | si_code = SEGV_ACCERR; | ||
678 | write = 0; | ||
679 | switch (error_code & (PF_PROT|PF_WRITE)) { | ||
680 | default: /* 3: write, present */ | ||
681 | /* fall through */ | ||
682 | case PF_WRITE: /* write, not present */ | ||
683 | if (!(vma->vm_flags & VM_WRITE)) | ||
684 | goto bad_area; | ||
685 | write++; | ||
686 | break; | ||
687 | case PF_PROT: /* read, present */ | ||
688 | goto bad_area; | ||
689 | case 0: /* read, not present */ | ||
690 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | ||
691 | goto bad_area; | ||
692 | } | ||
693 | |||
694 | #ifdef CONFIG_X86_32 | ||
695 | survive: | ||
696 | #endif | ||
697 | /* | ||
698 | * If for any reason at all we couldn't handle the fault, | ||
699 | * make sure we exit gracefully rather than endlessly redo | ||
700 | * the fault. | ||
701 | */ | ||
702 | fault = handle_mm_fault(mm, vma, address, write); | ||
703 | if (unlikely(fault & VM_FAULT_ERROR)) { | ||
704 | if (fault & VM_FAULT_OOM) | ||
705 | goto out_of_memory; | ||
706 | else if (fault & VM_FAULT_SIGBUS) | ||
707 | goto do_sigbus; | ||
708 | BUG(); | ||
709 | } | ||
710 | if (fault & VM_FAULT_MAJOR) | ||
711 | tsk->maj_flt++; | ||
712 | else | ||
713 | tsk->min_flt++; | ||
714 | |||
715 | #ifdef CONFIG_X86_32 | ||
716 | /* | ||
717 | * Did it hit the DOS screen memory VA from vm86 mode? | ||
718 | */ | ||
719 | if (v8086_mode(regs)) { | ||
720 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | ||
721 | if (bit < 32) | ||
722 | tsk->thread.screen_bitmap |= 1 << bit; | ||
723 | } | ||
724 | #endif | ||
725 | up_read(&mm->mmap_sem); | ||
726 | return; | ||
727 | |||
728 | /* | ||
729 | * Something tried to access memory that isn't in our memory map.. | ||
730 | * Fix it, but check if it's kernel or user first.. | ||
731 | */ | ||
732 | bad_area: | ||
733 | up_read(&mm->mmap_sem); | ||
734 | |||
735 | bad_area_nosemaphore: | ||
736 | /* User mode accesses just cause a SIGSEGV */ | ||
737 | if (error_code & PF_USER) { | ||
738 | /* | ||
739 | * It's possible to have interrupts off here. | ||
740 | */ | ||
741 | local_irq_enable(); | ||
742 | |||
743 | /* | ||
744 | * Valid to do another page fault here because this one came | ||
745 | * from user space. | ||
746 | */ | ||
747 | if (is_prefetch(regs, address, error_code)) | ||
748 | return; | ||
749 | |||
750 | if (is_errata100(regs, address)) | ||
751 | return; | ||
752 | |||
753 | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | ||
754 | printk_ratelimit()) { | ||
755 | printk( | ||
756 | #ifdef CONFIG_X86_32 | ||
757 | "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx", | ||
758 | #else | ||
759 | "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx", | ||
760 | #endif | ||
761 | task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, | ||
762 | tsk->comm, task_pid_nr(tsk), address, regs->ip, | ||
763 | regs->sp, error_code); | ||
764 | print_vma_addr(" in ", regs->ip); | ||
765 | printk("\n"); | ||
766 | } | ||
767 | |||
768 | tsk->thread.cr2 = address; | ||
769 | /* Kernel addresses are always protection faults */ | ||
770 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
771 | tsk->thread.trap_no = 14; | ||
772 | force_sig_info_fault(SIGSEGV, si_code, address, tsk); | ||
773 | return; | ||
774 | } | ||
775 | |||
776 | if (is_f00f_bug(regs, address)) | ||
777 | return; | ||
778 | |||
779 | no_context: | ||
780 | /* Are we prepared to handle this kernel fault? */ | ||
781 | if (fixup_exception(regs)) | ||
782 | return; | ||
783 | |||
784 | /* | ||
785 | * X86_32 | ||
786 | * Valid to do another page fault here, because if this fault | ||
787 | * had been triggered by is_prefetch fixup_exception would have | ||
788 | * handled it. | ||
789 | * | ||
790 | * X86_64 | ||
791 | * Hall of shame of CPU/BIOS bugs. | ||
792 | */ | ||
793 | if (is_prefetch(regs, address, error_code)) | ||
794 | return; | ||
795 | |||
796 | if (is_errata93(regs, address)) | ||
797 | return; | ||
798 | |||
799 | /* | ||
800 | * Oops. The kernel tried to access some bad page. We'll have to | ||
801 | * terminate things with extreme prejudice. | ||
802 | */ | ||
803 | #ifdef CONFIG_X86_32 | ||
804 | bust_spinlocks(1); | ||
805 | |||
806 | show_fault_oops(regs, error_code, address); | ||
807 | |||
808 | tsk->thread.cr2 = address; | ||
809 | tsk->thread.trap_no = 14; | ||
810 | tsk->thread.error_code = error_code; | ||
811 | die("Oops", regs, error_code); | ||
812 | bust_spinlocks(0); | ||
813 | do_exit(SIGKILL); | ||
814 | #else /* CONFIG_X86_64 */ | ||
815 | flags = oops_begin(); | ||
816 | |||
817 | show_fault_oops(regs, error_code, address); | ||
818 | |||
819 | tsk->thread.cr2 = address; | ||
820 | tsk->thread.trap_no = 14; | ||
821 | tsk->thread.error_code = error_code; | ||
822 | if (__die("Oops", regs, error_code)) | ||
823 | regs = NULL; | ||
824 | /* Executive summary in case the body of the oops scrolled away */ | ||
825 | printk(KERN_EMERG "CR2: %016lx\n", address); | ||
826 | oops_end(flags, regs, SIGKILL); | ||
827 | #endif | ||
828 | |||
829 | /* | ||
830 | * We ran out of memory, or some other thing happened to us that made | ||
831 | * us unable to handle the page fault gracefully. | ||
832 | */ | ||
833 | out_of_memory: | ||
834 | up_read(&mm->mmap_sem); | ||
835 | #ifdef CONFIG_X86_32 | ||
836 | if (is_global_init(tsk)) { | ||
837 | yield(); | ||
838 | down_read(&mm->mmap_sem); | ||
839 | goto survive; | ||
840 | } | ||
841 | #else | ||
842 | if (is_global_init(current)) { | ||
843 | yield(); | ||
844 | goto again; | ||
845 | } | ||
846 | #endif | ||
847 | printk("VM: killing process %s\n", tsk->comm); | ||
848 | if (error_code & PF_USER) | ||
849 | do_group_exit(SIGKILL); | ||
850 | goto no_context; | ||
851 | |||
852 | do_sigbus: | ||
853 | up_read(&mm->mmap_sem); | ||
854 | |||
855 | /* Kernel mode? Handle exceptions or die */ | ||
856 | if (!(error_code & PF_USER)) | ||
857 | goto no_context; | ||
858 | #ifdef CONFIG_X86_32 | ||
859 | /* User space => ok to do another page fault */ | ||
860 | if (is_prefetch(regs, address, error_code)) | ||
861 | return; | ||
862 | #endif | ||
863 | tsk->thread.cr2 = address; | ||
864 | tsk->thread.error_code = error_code; | ||
865 | tsk->thread.trap_no = 14; | ||
866 | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); | ||
867 | } | ||
868 | |||
869 | #ifdef CONFIG_X86_64 | ||
870 | DEFINE_SPINLOCK(pgd_lock); | ||
871 | LIST_HEAD(pgd_list); | ||
872 | #endif | ||
873 | |||
874 | void vmalloc_sync_all(void) | ||
875 | { | ||
876 | #ifdef CONFIG_X86_32 | ||
877 | /* | ||
878 | * Note that races in the updates of insync and start aren't | ||
879 | * problematic: insync can only get set bits added, and updates to | ||
880 | * start are only improving performance (without affecting correctness | ||
881 | * if undone). | ||
882 | */ | ||
883 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | ||
884 | static unsigned long start = TASK_SIZE; | ||
885 | unsigned long address; | ||
886 | |||
887 | if (SHARED_KERNEL_PMD) | ||
888 | return; | ||
889 | |||
890 | BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK); | ||
891 | for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) { | ||
892 | if (!test_bit(pgd_index(address), insync)) { | ||
893 | unsigned long flags; | ||
894 | struct page *page; | ||
895 | |||
896 | spin_lock_irqsave(&pgd_lock, flags); | ||
897 | for (page = pgd_list; page; page = | ||
898 | (struct page *)page->index) | ||
899 | if (!vmalloc_sync_one(page_address(page), | ||
900 | address)) { | ||
901 | BUG_ON(page != pgd_list); | ||
902 | break; | ||
903 | } | ||
904 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
905 | if (!page) | ||
906 | set_bit(pgd_index(address), insync); | ||
907 | } | ||
908 | if (address == start && test_bit(pgd_index(address), insync)) | ||
909 | start = address + PGDIR_SIZE; | ||
910 | } | ||
911 | #else /* CONFIG_X86_64 */ | ||
912 | /* | ||
913 | * Note that races in the updates of insync and start aren't | ||
914 | * problematic: insync can only get set bits added, and updates to | ||
915 | * start are only improving performance (without affecting correctness | ||
916 | * if undone). | ||
917 | */ | ||
918 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | ||
919 | static unsigned long start = VMALLOC_START & PGDIR_MASK; | ||
920 | unsigned long address; | ||
921 | |||
922 | for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) { | ||
923 | if (!test_bit(pgd_index(address), insync)) { | ||
924 | const pgd_t *pgd_ref = pgd_offset_k(address); | ||
925 | struct page *page; | ||
926 | |||
927 | if (pgd_none(*pgd_ref)) | ||
928 | continue; | ||
929 | spin_lock(&pgd_lock); | ||
930 | list_for_each_entry(page, &pgd_list, lru) { | ||
931 | pgd_t *pgd; | ||
932 | pgd = (pgd_t *)page_address(page) + pgd_index(address); | ||
933 | if (pgd_none(*pgd)) | ||
934 | set_pgd(pgd, *pgd_ref); | ||
935 | else | ||
936 | BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); | ||
937 | } | ||
938 | spin_unlock(&pgd_lock); | ||
939 | set_bit(pgd_index(address), insync); | ||
940 | } | ||
941 | if (address == start) | ||
942 | start = address + PGDIR_SIZE; | ||
943 | } | ||
944 | /* Check that there is no need to do the same for the modules area. */ | ||
945 | BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL)); | ||
946 | BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) == | ||
947 | (__START_KERNEL & PGDIR_MASK))); | ||
948 | #endif | ||
949 | } | ||