diff options
author | Dave Jones <davej@redhat.com> | 2011-05-19 18:51:07 -0400 |
---|---|---|
committer | Dave Jones <davej@redhat.com> | 2011-05-19 18:51:07 -0400 |
commit | bb0a56ecc4ba2a3db1b6ea6949c309886e3447d3 (patch) | |
tree | 680b1307d7d9c1a188b7483875f7a3287d8b51a0 /arch/x86 | |
parent | 1a8e1463a49aaa452da1cefe184a00d4df47f1ef (diff) |
[CPUFREQ] Move x86 drivers to drivers/cpufreq/
Signed-off-by: Dave Jones <davej@redhat.com>
Diffstat (limited to 'arch/x86')
27 files changed, 1 insertions, 10551 deletions
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig index cc6c53a95bfd..e7f94a52a5d3 100644 --- a/arch/x86/Kconfig +++ b/arch/x86/Kconfig | |||
@@ -1848,7 +1848,7 @@ config APM_ALLOW_INTS | |||
1848 | 1848 | ||
1849 | endif # APM | 1849 | endif # APM |
1850 | 1850 | ||
1851 | source "arch/x86/kernel/cpu/cpufreq/Kconfig" | 1851 | source "drivers/cpufreq/Kconfig" |
1852 | 1852 | ||
1853 | source "drivers/cpuidle/Kconfig" | 1853 | source "drivers/cpuidle/Kconfig" |
1854 | 1854 | ||
diff --git a/arch/x86/kernel/cpu/Makefile b/arch/x86/kernel/cpu/Makefile index 3f0ebe429a01..6042981d0309 100644 --- a/arch/x86/kernel/cpu/Makefile +++ b/arch/x86/kernel/cpu/Makefile | |||
@@ -30,7 +30,6 @@ obj-$(CONFIG_PERF_EVENTS) += perf_event.o | |||
30 | 30 | ||
31 | obj-$(CONFIG_X86_MCE) += mcheck/ | 31 | obj-$(CONFIG_X86_MCE) += mcheck/ |
32 | obj-$(CONFIG_MTRR) += mtrr/ | 32 | obj-$(CONFIG_MTRR) += mtrr/ |
33 | obj-$(CONFIG_CPU_FREQ) += cpufreq/ | ||
34 | 33 | ||
35 | obj-$(CONFIG_X86_LOCAL_APIC) += perfctr-watchdog.o | 34 | obj-$(CONFIG_X86_LOCAL_APIC) += perfctr-watchdog.o |
36 | 35 | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/Kconfig b/arch/x86/kernel/cpu/cpufreq/Kconfig deleted file mode 100644 index 870e6cc6ad28..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/Kconfig +++ /dev/null | |||
@@ -1,266 +0,0 @@ | |||
1 | # | ||
2 | # CPU Frequency scaling | ||
3 | # | ||
4 | |||
5 | menu "CPU Frequency scaling" | ||
6 | |||
7 | source "drivers/cpufreq/Kconfig" | ||
8 | |||
9 | if CPU_FREQ | ||
10 | |||
11 | comment "CPUFreq processor drivers" | ||
12 | |||
13 | config X86_PCC_CPUFREQ | ||
14 | tristate "Processor Clocking Control interface driver" | ||
15 | depends on ACPI && ACPI_PROCESSOR | ||
16 | help | ||
17 | This driver adds support for the PCC interface. | ||
18 | |||
19 | For details, take a look at: | ||
20 | <file:Documentation/cpu-freq/pcc-cpufreq.txt>. | ||
21 | |||
22 | To compile this driver as a module, choose M here: the | ||
23 | module will be called pcc-cpufreq. | ||
24 | |||
25 | If in doubt, say N. | ||
26 | |||
27 | config X86_ACPI_CPUFREQ | ||
28 | tristate "ACPI Processor P-States driver" | ||
29 | select CPU_FREQ_TABLE | ||
30 | depends on ACPI_PROCESSOR | ||
31 | help | ||
32 | This driver adds a CPUFreq driver which utilizes the ACPI | ||
33 | Processor Performance States. | ||
34 | This driver also supports Intel Enhanced Speedstep. | ||
35 | |||
36 | To compile this driver as a module, choose M here: the | ||
37 | module will be called acpi-cpufreq. | ||
38 | |||
39 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
40 | |||
41 | If in doubt, say N. | ||
42 | |||
43 | config ELAN_CPUFREQ | ||
44 | tristate "AMD Elan SC400 and SC410" | ||
45 | select CPU_FREQ_TABLE | ||
46 | depends on X86_ELAN | ||
47 | ---help--- | ||
48 | This adds the CPUFreq driver for AMD Elan SC400 and SC410 | ||
49 | processors. | ||
50 | |||
51 | You need to specify the processor maximum speed as boot | ||
52 | parameter: elanfreq=maxspeed (in kHz) or as module | ||
53 | parameter "max_freq". | ||
54 | |||
55 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
56 | |||
57 | If in doubt, say N. | ||
58 | |||
59 | config SC520_CPUFREQ | ||
60 | tristate "AMD Elan SC520" | ||
61 | select CPU_FREQ_TABLE | ||
62 | depends on X86_ELAN | ||
63 | ---help--- | ||
64 | This adds the CPUFreq driver for AMD Elan SC520 processor. | ||
65 | |||
66 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
67 | |||
68 | If in doubt, say N. | ||
69 | |||
70 | |||
71 | config X86_POWERNOW_K6 | ||
72 | tristate "AMD Mobile K6-2/K6-3 PowerNow!" | ||
73 | select CPU_FREQ_TABLE | ||
74 | depends on X86_32 | ||
75 | help | ||
76 | This adds the CPUFreq driver for mobile AMD K6-2+ and mobile | ||
77 | AMD K6-3+ processors. | ||
78 | |||
79 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
80 | |||
81 | If in doubt, say N. | ||
82 | |||
83 | config X86_POWERNOW_K7 | ||
84 | tristate "AMD Mobile Athlon/Duron PowerNow!" | ||
85 | select CPU_FREQ_TABLE | ||
86 | depends on X86_32 | ||
87 | help | ||
88 | This adds the CPUFreq driver for mobile AMD K7 mobile processors. | ||
89 | |||
90 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
91 | |||
92 | If in doubt, say N. | ||
93 | |||
94 | config X86_POWERNOW_K7_ACPI | ||
95 | bool | ||
96 | depends on X86_POWERNOW_K7 && ACPI_PROCESSOR | ||
97 | depends on !(X86_POWERNOW_K7 = y && ACPI_PROCESSOR = m) | ||
98 | depends on X86_32 | ||
99 | default y | ||
100 | |||
101 | config X86_POWERNOW_K8 | ||
102 | tristate "AMD Opteron/Athlon64 PowerNow!" | ||
103 | select CPU_FREQ_TABLE | ||
104 | depends on ACPI && ACPI_PROCESSOR | ||
105 | help | ||
106 | This adds the CPUFreq driver for K8/K10 Opteron/Athlon64 processors. | ||
107 | |||
108 | To compile this driver as a module, choose M here: the | ||
109 | module will be called powernow-k8. | ||
110 | |||
111 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
112 | |||
113 | config X86_GX_SUSPMOD | ||
114 | tristate "Cyrix MediaGX/NatSemi Geode Suspend Modulation" | ||
115 | depends on X86_32 && PCI | ||
116 | help | ||
117 | This add the CPUFreq driver for NatSemi Geode processors which | ||
118 | support suspend modulation. | ||
119 | |||
120 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
121 | |||
122 | If in doubt, say N. | ||
123 | |||
124 | config X86_SPEEDSTEP_CENTRINO | ||
125 | tristate "Intel Enhanced SpeedStep (deprecated)" | ||
126 | select CPU_FREQ_TABLE | ||
127 | select X86_SPEEDSTEP_CENTRINO_TABLE if X86_32 | ||
128 | depends on X86_32 || (X86_64 && ACPI_PROCESSOR) | ||
129 | help | ||
130 | This is deprecated and this functionality is now merged into | ||
131 | acpi_cpufreq (X86_ACPI_CPUFREQ). Use that driver instead of | ||
132 | speedstep_centrino. | ||
133 | This adds the CPUFreq driver for Enhanced SpeedStep enabled | ||
134 | mobile CPUs. This means Intel Pentium M (Centrino) CPUs | ||
135 | or 64bit enabled Intel Xeons. | ||
136 | |||
137 | To compile this driver as a module, choose M here: the | ||
138 | module will be called speedstep-centrino. | ||
139 | |||
140 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
141 | |||
142 | If in doubt, say N. | ||
143 | |||
144 | config X86_SPEEDSTEP_CENTRINO_TABLE | ||
145 | bool "Built-in tables for Banias CPUs" | ||
146 | depends on X86_32 && X86_SPEEDSTEP_CENTRINO | ||
147 | default y | ||
148 | help | ||
149 | Use built-in tables for Banias CPUs if ACPI encoding | ||
150 | is not available. | ||
151 | |||
152 | If in doubt, say N. | ||
153 | |||
154 | config X86_SPEEDSTEP_ICH | ||
155 | tristate "Intel Speedstep on ICH-M chipsets (ioport interface)" | ||
156 | select CPU_FREQ_TABLE | ||
157 | depends on X86_32 | ||
158 | help | ||
159 | This adds the CPUFreq driver for certain mobile Intel Pentium III | ||
160 | (Coppermine), all mobile Intel Pentium III-M (Tualatin) and all | ||
161 | mobile Intel Pentium 4 P4-M on systems which have an Intel ICH2, | ||
162 | ICH3 or ICH4 southbridge. | ||
163 | |||
164 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
165 | |||
166 | If in doubt, say N. | ||
167 | |||
168 | config X86_SPEEDSTEP_SMI | ||
169 | tristate "Intel SpeedStep on 440BX/ZX/MX chipsets (SMI interface)" | ||
170 | select CPU_FREQ_TABLE | ||
171 | depends on X86_32 && EXPERIMENTAL | ||
172 | help | ||
173 | This adds the CPUFreq driver for certain mobile Intel Pentium III | ||
174 | (Coppermine), all mobile Intel Pentium III-M (Tualatin) | ||
175 | on systems which have an Intel 440BX/ZX/MX southbridge. | ||
176 | |||
177 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
178 | |||
179 | If in doubt, say N. | ||
180 | |||
181 | config X86_P4_CLOCKMOD | ||
182 | tristate "Intel Pentium 4 clock modulation" | ||
183 | select CPU_FREQ_TABLE | ||
184 | help | ||
185 | This adds the CPUFreq driver for Intel Pentium 4 / XEON | ||
186 | processors. When enabled it will lower CPU temperature by skipping | ||
187 | clocks. | ||
188 | |||
189 | This driver should be only used in exceptional | ||
190 | circumstances when very low power is needed because it causes severe | ||
191 | slowdowns and noticeable latencies. Normally Speedstep should be used | ||
192 | instead. | ||
193 | |||
194 | To compile this driver as a module, choose M here: the | ||
195 | module will be called p4-clockmod. | ||
196 | |||
197 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
198 | |||
199 | Unless you are absolutely sure say N. | ||
200 | |||
201 | config X86_CPUFREQ_NFORCE2 | ||
202 | tristate "nVidia nForce2 FSB changing" | ||
203 | depends on X86_32 && EXPERIMENTAL | ||
204 | help | ||
205 | This adds the CPUFreq driver for FSB changing on nVidia nForce2 | ||
206 | platforms. | ||
207 | |||
208 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
209 | |||
210 | If in doubt, say N. | ||
211 | |||
212 | config X86_LONGRUN | ||
213 | tristate "Transmeta LongRun" | ||
214 | depends on X86_32 | ||
215 | help | ||
216 | This adds the CPUFreq driver for Transmeta Crusoe and Efficeon processors | ||
217 | which support LongRun. | ||
218 | |||
219 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
220 | |||
221 | If in doubt, say N. | ||
222 | |||
223 | config X86_LONGHAUL | ||
224 | tristate "VIA Cyrix III Longhaul" | ||
225 | select CPU_FREQ_TABLE | ||
226 | depends on X86_32 && ACPI_PROCESSOR | ||
227 | help | ||
228 | This adds the CPUFreq driver for VIA Samuel/CyrixIII, | ||
229 | VIA Cyrix Samuel/C3, VIA Cyrix Ezra and VIA Cyrix Ezra-T | ||
230 | processors. | ||
231 | |||
232 | For details, take a look at <file:Documentation/cpu-freq/>. | ||
233 | |||
234 | If in doubt, say N. | ||
235 | |||
236 | config X86_E_POWERSAVER | ||
237 | tristate "VIA C7 Enhanced PowerSaver (DANGEROUS)" | ||
238 | select CPU_FREQ_TABLE | ||
239 | depends on X86_32 && EXPERIMENTAL | ||
240 | help | ||
241 | This adds the CPUFreq driver for VIA C7 processors. However, this driver | ||
242 | does not have any safeguards to prevent operating the CPU out of spec | ||
243 | and is thus considered dangerous. Please use the regular ACPI cpufreq | ||
244 | driver, enabled by CONFIG_X86_ACPI_CPUFREQ. | ||
245 | |||
246 | If in doubt, say N. | ||
247 | |||
248 | comment "shared options" | ||
249 | |||
250 | config X86_SPEEDSTEP_LIB | ||
251 | tristate | ||
252 | default (X86_SPEEDSTEP_ICH || X86_SPEEDSTEP_SMI || X86_P4_CLOCKMOD) | ||
253 | |||
254 | config X86_SPEEDSTEP_RELAXED_CAP_CHECK | ||
255 | bool "Relaxed speedstep capability checks" | ||
256 | depends on X86_32 && (X86_SPEEDSTEP_SMI || X86_SPEEDSTEP_ICH) | ||
257 | help | ||
258 | Don't perform all checks for a speedstep capable system which would | ||
259 | normally be done. Some ancient or strange systems, though speedstep | ||
260 | capable, don't always indicate that they are speedstep capable. This | ||
261 | option lets the probing code bypass some of those checks if the | ||
262 | parameter "relaxed_check=1" is passed to the module. | ||
263 | |||
264 | endif # CPU_FREQ | ||
265 | |||
266 | endmenu | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/Makefile b/arch/x86/kernel/cpu/cpufreq/Makefile deleted file mode 100644 index bd54bf67e6fb..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/Makefile +++ /dev/null | |||
@@ -1,21 +0,0 @@ | |||
1 | # Link order matters. K8 is preferred to ACPI because of firmware bugs in early | ||
2 | # K8 systems. ACPI is preferred to all other hardware-specific drivers. | ||
3 | # speedstep-* is preferred over p4-clockmod. | ||
4 | |||
5 | obj-$(CONFIG_X86_POWERNOW_K8) += powernow-k8.o mperf.o | ||
6 | obj-$(CONFIG_X86_ACPI_CPUFREQ) += acpi-cpufreq.o mperf.o | ||
7 | obj-$(CONFIG_X86_PCC_CPUFREQ) += pcc-cpufreq.o | ||
8 | obj-$(CONFIG_X86_POWERNOW_K6) += powernow-k6.o | ||
9 | obj-$(CONFIG_X86_POWERNOW_K7) += powernow-k7.o | ||
10 | obj-$(CONFIG_X86_LONGHAUL) += longhaul.o | ||
11 | obj-$(CONFIG_X86_E_POWERSAVER) += e_powersaver.o | ||
12 | obj-$(CONFIG_ELAN_CPUFREQ) += elanfreq.o | ||
13 | obj-$(CONFIG_SC520_CPUFREQ) += sc520_freq.o | ||
14 | obj-$(CONFIG_X86_LONGRUN) += longrun.o | ||
15 | obj-$(CONFIG_X86_GX_SUSPMOD) += gx-suspmod.o | ||
16 | obj-$(CONFIG_X86_SPEEDSTEP_ICH) += speedstep-ich.o | ||
17 | obj-$(CONFIG_X86_SPEEDSTEP_LIB) += speedstep-lib.o | ||
18 | obj-$(CONFIG_X86_SPEEDSTEP_SMI) += speedstep-smi.o | ||
19 | obj-$(CONFIG_X86_SPEEDSTEP_CENTRINO) += speedstep-centrino.o | ||
20 | obj-$(CONFIG_X86_P4_CLOCKMOD) += p4-clockmod.o | ||
21 | obj-$(CONFIG_X86_CPUFREQ_NFORCE2) += cpufreq-nforce2.o | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c b/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c deleted file mode 100644 index 4e04e1274388..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c +++ /dev/null | |||
@@ -1,773 +0,0 @@ | |||
1 | /* | ||
2 | * acpi-cpufreq.c - ACPI Processor P-States Driver | ||
3 | * | ||
4 | * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> | ||
5 | * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> | ||
6 | * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> | ||
7 | * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> | ||
8 | * | ||
9 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
10 | * | ||
11 | * This program is free software; you can redistribute it and/or modify | ||
12 | * it under the terms of the GNU General Public License as published by | ||
13 | * the Free Software Foundation; either version 2 of the License, or (at | ||
14 | * your option) any later version. | ||
15 | * | ||
16 | * This program is distributed in the hope that it will be useful, but | ||
17 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
19 | * General Public License for more details. | ||
20 | * | ||
21 | * You should have received a copy of the GNU General Public License along | ||
22 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
23 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. | ||
24 | * | ||
25 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
26 | */ | ||
27 | |||
28 | #include <linux/kernel.h> | ||
29 | #include <linux/module.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/smp.h> | ||
32 | #include <linux/sched.h> | ||
33 | #include <linux/cpufreq.h> | ||
34 | #include <linux/compiler.h> | ||
35 | #include <linux/dmi.h> | ||
36 | #include <linux/slab.h> | ||
37 | |||
38 | #include <linux/acpi.h> | ||
39 | #include <linux/io.h> | ||
40 | #include <linux/delay.h> | ||
41 | #include <linux/uaccess.h> | ||
42 | |||
43 | #include <acpi/processor.h> | ||
44 | |||
45 | #include <asm/msr.h> | ||
46 | #include <asm/processor.h> | ||
47 | #include <asm/cpufeature.h> | ||
48 | #include "mperf.h" | ||
49 | |||
50 | MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); | ||
51 | MODULE_DESCRIPTION("ACPI Processor P-States Driver"); | ||
52 | MODULE_LICENSE("GPL"); | ||
53 | |||
54 | enum { | ||
55 | UNDEFINED_CAPABLE = 0, | ||
56 | SYSTEM_INTEL_MSR_CAPABLE, | ||
57 | SYSTEM_IO_CAPABLE, | ||
58 | }; | ||
59 | |||
60 | #define INTEL_MSR_RANGE (0xffff) | ||
61 | |||
62 | struct acpi_cpufreq_data { | ||
63 | struct acpi_processor_performance *acpi_data; | ||
64 | struct cpufreq_frequency_table *freq_table; | ||
65 | unsigned int resume; | ||
66 | unsigned int cpu_feature; | ||
67 | }; | ||
68 | |||
69 | static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data); | ||
70 | |||
71 | /* acpi_perf_data is a pointer to percpu data. */ | ||
72 | static struct acpi_processor_performance __percpu *acpi_perf_data; | ||
73 | |||
74 | static struct cpufreq_driver acpi_cpufreq_driver; | ||
75 | |||
76 | static unsigned int acpi_pstate_strict; | ||
77 | |||
78 | static int check_est_cpu(unsigned int cpuid) | ||
79 | { | ||
80 | struct cpuinfo_x86 *cpu = &cpu_data(cpuid); | ||
81 | |||
82 | return cpu_has(cpu, X86_FEATURE_EST); | ||
83 | } | ||
84 | |||
85 | static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data) | ||
86 | { | ||
87 | struct acpi_processor_performance *perf; | ||
88 | int i; | ||
89 | |||
90 | perf = data->acpi_data; | ||
91 | |||
92 | for (i = 0; i < perf->state_count; i++) { | ||
93 | if (value == perf->states[i].status) | ||
94 | return data->freq_table[i].frequency; | ||
95 | } | ||
96 | return 0; | ||
97 | } | ||
98 | |||
99 | static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data) | ||
100 | { | ||
101 | int i; | ||
102 | struct acpi_processor_performance *perf; | ||
103 | |||
104 | msr &= INTEL_MSR_RANGE; | ||
105 | perf = data->acpi_data; | ||
106 | |||
107 | for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { | ||
108 | if (msr == perf->states[data->freq_table[i].index].status) | ||
109 | return data->freq_table[i].frequency; | ||
110 | } | ||
111 | return data->freq_table[0].frequency; | ||
112 | } | ||
113 | |||
114 | static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data) | ||
115 | { | ||
116 | switch (data->cpu_feature) { | ||
117 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
118 | return extract_msr(val, data); | ||
119 | case SYSTEM_IO_CAPABLE: | ||
120 | return extract_io(val, data); | ||
121 | default: | ||
122 | return 0; | ||
123 | } | ||
124 | } | ||
125 | |||
126 | struct msr_addr { | ||
127 | u32 reg; | ||
128 | }; | ||
129 | |||
130 | struct io_addr { | ||
131 | u16 port; | ||
132 | u8 bit_width; | ||
133 | }; | ||
134 | |||
135 | struct drv_cmd { | ||
136 | unsigned int type; | ||
137 | const struct cpumask *mask; | ||
138 | union { | ||
139 | struct msr_addr msr; | ||
140 | struct io_addr io; | ||
141 | } addr; | ||
142 | u32 val; | ||
143 | }; | ||
144 | |||
145 | /* Called via smp_call_function_single(), on the target CPU */ | ||
146 | static void do_drv_read(void *_cmd) | ||
147 | { | ||
148 | struct drv_cmd *cmd = _cmd; | ||
149 | u32 h; | ||
150 | |||
151 | switch (cmd->type) { | ||
152 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
153 | rdmsr(cmd->addr.msr.reg, cmd->val, h); | ||
154 | break; | ||
155 | case SYSTEM_IO_CAPABLE: | ||
156 | acpi_os_read_port((acpi_io_address)cmd->addr.io.port, | ||
157 | &cmd->val, | ||
158 | (u32)cmd->addr.io.bit_width); | ||
159 | break; | ||
160 | default: | ||
161 | break; | ||
162 | } | ||
163 | } | ||
164 | |||
165 | /* Called via smp_call_function_many(), on the target CPUs */ | ||
166 | static void do_drv_write(void *_cmd) | ||
167 | { | ||
168 | struct drv_cmd *cmd = _cmd; | ||
169 | u32 lo, hi; | ||
170 | |||
171 | switch (cmd->type) { | ||
172 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
173 | rdmsr(cmd->addr.msr.reg, lo, hi); | ||
174 | lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE); | ||
175 | wrmsr(cmd->addr.msr.reg, lo, hi); | ||
176 | break; | ||
177 | case SYSTEM_IO_CAPABLE: | ||
178 | acpi_os_write_port((acpi_io_address)cmd->addr.io.port, | ||
179 | cmd->val, | ||
180 | (u32)cmd->addr.io.bit_width); | ||
181 | break; | ||
182 | default: | ||
183 | break; | ||
184 | } | ||
185 | } | ||
186 | |||
187 | static void drv_read(struct drv_cmd *cmd) | ||
188 | { | ||
189 | int err; | ||
190 | cmd->val = 0; | ||
191 | |||
192 | err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1); | ||
193 | WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ | ||
194 | } | ||
195 | |||
196 | static void drv_write(struct drv_cmd *cmd) | ||
197 | { | ||
198 | int this_cpu; | ||
199 | |||
200 | this_cpu = get_cpu(); | ||
201 | if (cpumask_test_cpu(this_cpu, cmd->mask)) | ||
202 | do_drv_write(cmd); | ||
203 | smp_call_function_many(cmd->mask, do_drv_write, cmd, 1); | ||
204 | put_cpu(); | ||
205 | } | ||
206 | |||
207 | static u32 get_cur_val(const struct cpumask *mask) | ||
208 | { | ||
209 | struct acpi_processor_performance *perf; | ||
210 | struct drv_cmd cmd; | ||
211 | |||
212 | if (unlikely(cpumask_empty(mask))) | ||
213 | return 0; | ||
214 | |||
215 | switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) { | ||
216 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
217 | cmd.type = SYSTEM_INTEL_MSR_CAPABLE; | ||
218 | cmd.addr.msr.reg = MSR_IA32_PERF_STATUS; | ||
219 | break; | ||
220 | case SYSTEM_IO_CAPABLE: | ||
221 | cmd.type = SYSTEM_IO_CAPABLE; | ||
222 | perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data; | ||
223 | cmd.addr.io.port = perf->control_register.address; | ||
224 | cmd.addr.io.bit_width = perf->control_register.bit_width; | ||
225 | break; | ||
226 | default: | ||
227 | return 0; | ||
228 | } | ||
229 | |||
230 | cmd.mask = mask; | ||
231 | drv_read(&cmd); | ||
232 | |||
233 | pr_debug("get_cur_val = %u\n", cmd.val); | ||
234 | |||
235 | return cmd.val; | ||
236 | } | ||
237 | |||
238 | static unsigned int get_cur_freq_on_cpu(unsigned int cpu) | ||
239 | { | ||
240 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu); | ||
241 | unsigned int freq; | ||
242 | unsigned int cached_freq; | ||
243 | |||
244 | pr_debug("get_cur_freq_on_cpu (%d)\n", cpu); | ||
245 | |||
246 | if (unlikely(data == NULL || | ||
247 | data->acpi_data == NULL || data->freq_table == NULL)) { | ||
248 | return 0; | ||
249 | } | ||
250 | |||
251 | cached_freq = data->freq_table[data->acpi_data->state].frequency; | ||
252 | freq = extract_freq(get_cur_val(cpumask_of(cpu)), data); | ||
253 | if (freq != cached_freq) { | ||
254 | /* | ||
255 | * The dreaded BIOS frequency change behind our back. | ||
256 | * Force set the frequency on next target call. | ||
257 | */ | ||
258 | data->resume = 1; | ||
259 | } | ||
260 | |||
261 | pr_debug("cur freq = %u\n", freq); | ||
262 | |||
263 | return freq; | ||
264 | } | ||
265 | |||
266 | static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq, | ||
267 | struct acpi_cpufreq_data *data) | ||
268 | { | ||
269 | unsigned int cur_freq; | ||
270 | unsigned int i; | ||
271 | |||
272 | for (i = 0; i < 100; i++) { | ||
273 | cur_freq = extract_freq(get_cur_val(mask), data); | ||
274 | if (cur_freq == freq) | ||
275 | return 1; | ||
276 | udelay(10); | ||
277 | } | ||
278 | return 0; | ||
279 | } | ||
280 | |||
281 | static int acpi_cpufreq_target(struct cpufreq_policy *policy, | ||
282 | unsigned int target_freq, unsigned int relation) | ||
283 | { | ||
284 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); | ||
285 | struct acpi_processor_performance *perf; | ||
286 | struct cpufreq_freqs freqs; | ||
287 | struct drv_cmd cmd; | ||
288 | unsigned int next_state = 0; /* Index into freq_table */ | ||
289 | unsigned int next_perf_state = 0; /* Index into perf table */ | ||
290 | unsigned int i; | ||
291 | int result = 0; | ||
292 | |||
293 | pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu); | ||
294 | |||
295 | if (unlikely(data == NULL || | ||
296 | data->acpi_data == NULL || data->freq_table == NULL)) { | ||
297 | return -ENODEV; | ||
298 | } | ||
299 | |||
300 | perf = data->acpi_data; | ||
301 | result = cpufreq_frequency_table_target(policy, | ||
302 | data->freq_table, | ||
303 | target_freq, | ||
304 | relation, &next_state); | ||
305 | if (unlikely(result)) { | ||
306 | result = -ENODEV; | ||
307 | goto out; | ||
308 | } | ||
309 | |||
310 | next_perf_state = data->freq_table[next_state].index; | ||
311 | if (perf->state == next_perf_state) { | ||
312 | if (unlikely(data->resume)) { | ||
313 | pr_debug("Called after resume, resetting to P%d\n", | ||
314 | next_perf_state); | ||
315 | data->resume = 0; | ||
316 | } else { | ||
317 | pr_debug("Already at target state (P%d)\n", | ||
318 | next_perf_state); | ||
319 | goto out; | ||
320 | } | ||
321 | } | ||
322 | |||
323 | switch (data->cpu_feature) { | ||
324 | case SYSTEM_INTEL_MSR_CAPABLE: | ||
325 | cmd.type = SYSTEM_INTEL_MSR_CAPABLE; | ||
326 | cmd.addr.msr.reg = MSR_IA32_PERF_CTL; | ||
327 | cmd.val = (u32) perf->states[next_perf_state].control; | ||
328 | break; | ||
329 | case SYSTEM_IO_CAPABLE: | ||
330 | cmd.type = SYSTEM_IO_CAPABLE; | ||
331 | cmd.addr.io.port = perf->control_register.address; | ||
332 | cmd.addr.io.bit_width = perf->control_register.bit_width; | ||
333 | cmd.val = (u32) perf->states[next_perf_state].control; | ||
334 | break; | ||
335 | default: | ||
336 | result = -ENODEV; | ||
337 | goto out; | ||
338 | } | ||
339 | |||
340 | /* cpufreq holds the hotplug lock, so we are safe from here on */ | ||
341 | if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY) | ||
342 | cmd.mask = policy->cpus; | ||
343 | else | ||
344 | cmd.mask = cpumask_of(policy->cpu); | ||
345 | |||
346 | freqs.old = perf->states[perf->state].core_frequency * 1000; | ||
347 | freqs.new = data->freq_table[next_state].frequency; | ||
348 | for_each_cpu(i, policy->cpus) { | ||
349 | freqs.cpu = i; | ||
350 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
351 | } | ||
352 | |||
353 | drv_write(&cmd); | ||
354 | |||
355 | if (acpi_pstate_strict) { | ||
356 | if (!check_freqs(cmd.mask, freqs.new, data)) { | ||
357 | pr_debug("acpi_cpufreq_target failed (%d)\n", | ||
358 | policy->cpu); | ||
359 | result = -EAGAIN; | ||
360 | goto out; | ||
361 | } | ||
362 | } | ||
363 | |||
364 | for_each_cpu(i, policy->cpus) { | ||
365 | freqs.cpu = i; | ||
366 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
367 | } | ||
368 | perf->state = next_perf_state; | ||
369 | |||
370 | out: | ||
371 | return result; | ||
372 | } | ||
373 | |||
374 | static int acpi_cpufreq_verify(struct cpufreq_policy *policy) | ||
375 | { | ||
376 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); | ||
377 | |||
378 | pr_debug("acpi_cpufreq_verify\n"); | ||
379 | |||
380 | return cpufreq_frequency_table_verify(policy, data->freq_table); | ||
381 | } | ||
382 | |||
383 | static unsigned long | ||
384 | acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) | ||
385 | { | ||
386 | struct acpi_processor_performance *perf = data->acpi_data; | ||
387 | |||
388 | if (cpu_khz) { | ||
389 | /* search the closest match to cpu_khz */ | ||
390 | unsigned int i; | ||
391 | unsigned long freq; | ||
392 | unsigned long freqn = perf->states[0].core_frequency * 1000; | ||
393 | |||
394 | for (i = 0; i < (perf->state_count-1); i++) { | ||
395 | freq = freqn; | ||
396 | freqn = perf->states[i+1].core_frequency * 1000; | ||
397 | if ((2 * cpu_khz) > (freqn + freq)) { | ||
398 | perf->state = i; | ||
399 | return freq; | ||
400 | } | ||
401 | } | ||
402 | perf->state = perf->state_count-1; | ||
403 | return freqn; | ||
404 | } else { | ||
405 | /* assume CPU is at P0... */ | ||
406 | perf->state = 0; | ||
407 | return perf->states[0].core_frequency * 1000; | ||
408 | } | ||
409 | } | ||
410 | |||
411 | static void free_acpi_perf_data(void) | ||
412 | { | ||
413 | unsigned int i; | ||
414 | |||
415 | /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ | ||
416 | for_each_possible_cpu(i) | ||
417 | free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) | ||
418 | ->shared_cpu_map); | ||
419 | free_percpu(acpi_perf_data); | ||
420 | } | ||
421 | |||
422 | /* | ||
423 | * acpi_cpufreq_early_init - initialize ACPI P-States library | ||
424 | * | ||
425 | * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) | ||
426 | * in order to determine correct frequency and voltage pairings. We can | ||
427 | * do _PDC and _PSD and find out the processor dependency for the | ||
428 | * actual init that will happen later... | ||
429 | */ | ||
430 | static int __init acpi_cpufreq_early_init(void) | ||
431 | { | ||
432 | unsigned int i; | ||
433 | pr_debug("acpi_cpufreq_early_init\n"); | ||
434 | |||
435 | acpi_perf_data = alloc_percpu(struct acpi_processor_performance); | ||
436 | if (!acpi_perf_data) { | ||
437 | pr_debug("Memory allocation error for acpi_perf_data.\n"); | ||
438 | return -ENOMEM; | ||
439 | } | ||
440 | for_each_possible_cpu(i) { | ||
441 | if (!zalloc_cpumask_var_node( | ||
442 | &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, | ||
443 | GFP_KERNEL, cpu_to_node(i))) { | ||
444 | |||
445 | /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ | ||
446 | free_acpi_perf_data(); | ||
447 | return -ENOMEM; | ||
448 | } | ||
449 | } | ||
450 | |||
451 | /* Do initialization in ACPI core */ | ||
452 | acpi_processor_preregister_performance(acpi_perf_data); | ||
453 | return 0; | ||
454 | } | ||
455 | |||
456 | #ifdef CONFIG_SMP | ||
457 | /* | ||
458 | * Some BIOSes do SW_ANY coordination internally, either set it up in hw | ||
459 | * or do it in BIOS firmware and won't inform about it to OS. If not | ||
460 | * detected, this has a side effect of making CPU run at a different speed | ||
461 | * than OS intended it to run at. Detect it and handle it cleanly. | ||
462 | */ | ||
463 | static int bios_with_sw_any_bug; | ||
464 | |||
465 | static int sw_any_bug_found(const struct dmi_system_id *d) | ||
466 | { | ||
467 | bios_with_sw_any_bug = 1; | ||
468 | return 0; | ||
469 | } | ||
470 | |||
471 | static const struct dmi_system_id sw_any_bug_dmi_table[] = { | ||
472 | { | ||
473 | .callback = sw_any_bug_found, | ||
474 | .ident = "Supermicro Server X6DLP", | ||
475 | .matches = { | ||
476 | DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), | ||
477 | DMI_MATCH(DMI_BIOS_VERSION, "080010"), | ||
478 | DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), | ||
479 | }, | ||
480 | }, | ||
481 | { } | ||
482 | }; | ||
483 | |||
484 | static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) | ||
485 | { | ||
486 | /* Intel Xeon Processor 7100 Series Specification Update | ||
487 | * http://www.intel.com/Assets/PDF/specupdate/314554.pdf | ||
488 | * AL30: A Machine Check Exception (MCE) Occurring during an | ||
489 | * Enhanced Intel SpeedStep Technology Ratio Change May Cause | ||
490 | * Both Processor Cores to Lock Up. */ | ||
491 | if (c->x86_vendor == X86_VENDOR_INTEL) { | ||
492 | if ((c->x86 == 15) && | ||
493 | (c->x86_model == 6) && | ||
494 | (c->x86_mask == 8)) { | ||
495 | printk(KERN_INFO "acpi-cpufreq: Intel(R) " | ||
496 | "Xeon(R) 7100 Errata AL30, processors may " | ||
497 | "lock up on frequency changes: disabling " | ||
498 | "acpi-cpufreq.\n"); | ||
499 | return -ENODEV; | ||
500 | } | ||
501 | } | ||
502 | return 0; | ||
503 | } | ||
504 | #endif | ||
505 | |||
506 | static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) | ||
507 | { | ||
508 | unsigned int i; | ||
509 | unsigned int valid_states = 0; | ||
510 | unsigned int cpu = policy->cpu; | ||
511 | struct acpi_cpufreq_data *data; | ||
512 | unsigned int result = 0; | ||
513 | struct cpuinfo_x86 *c = &cpu_data(policy->cpu); | ||
514 | struct acpi_processor_performance *perf; | ||
515 | #ifdef CONFIG_SMP | ||
516 | static int blacklisted; | ||
517 | #endif | ||
518 | |||
519 | pr_debug("acpi_cpufreq_cpu_init\n"); | ||
520 | |||
521 | #ifdef CONFIG_SMP | ||
522 | if (blacklisted) | ||
523 | return blacklisted; | ||
524 | blacklisted = acpi_cpufreq_blacklist(c); | ||
525 | if (blacklisted) | ||
526 | return blacklisted; | ||
527 | #endif | ||
528 | |||
529 | data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL); | ||
530 | if (!data) | ||
531 | return -ENOMEM; | ||
532 | |||
533 | data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu); | ||
534 | per_cpu(acfreq_data, cpu) = data; | ||
535 | |||
536 | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) | ||
537 | acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
538 | |||
539 | result = acpi_processor_register_performance(data->acpi_data, cpu); | ||
540 | if (result) | ||
541 | goto err_free; | ||
542 | |||
543 | perf = data->acpi_data; | ||
544 | policy->shared_type = perf->shared_type; | ||
545 | |||
546 | /* | ||
547 | * Will let policy->cpus know about dependency only when software | ||
548 | * coordination is required. | ||
549 | */ | ||
550 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || | ||
551 | policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { | ||
552 | cpumask_copy(policy->cpus, perf->shared_cpu_map); | ||
553 | } | ||
554 | cpumask_copy(policy->related_cpus, perf->shared_cpu_map); | ||
555 | |||
556 | #ifdef CONFIG_SMP | ||
557 | dmi_check_system(sw_any_bug_dmi_table); | ||
558 | if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) { | ||
559 | policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; | ||
560 | cpumask_copy(policy->cpus, cpu_core_mask(cpu)); | ||
561 | } | ||
562 | #endif | ||
563 | |||
564 | /* capability check */ | ||
565 | if (perf->state_count <= 1) { | ||
566 | pr_debug("No P-States\n"); | ||
567 | result = -ENODEV; | ||
568 | goto err_unreg; | ||
569 | } | ||
570 | |||
571 | if (perf->control_register.space_id != perf->status_register.space_id) { | ||
572 | result = -ENODEV; | ||
573 | goto err_unreg; | ||
574 | } | ||
575 | |||
576 | switch (perf->control_register.space_id) { | ||
577 | case ACPI_ADR_SPACE_SYSTEM_IO: | ||
578 | pr_debug("SYSTEM IO addr space\n"); | ||
579 | data->cpu_feature = SYSTEM_IO_CAPABLE; | ||
580 | break; | ||
581 | case ACPI_ADR_SPACE_FIXED_HARDWARE: | ||
582 | pr_debug("HARDWARE addr space\n"); | ||
583 | if (!check_est_cpu(cpu)) { | ||
584 | result = -ENODEV; | ||
585 | goto err_unreg; | ||
586 | } | ||
587 | data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; | ||
588 | break; | ||
589 | default: | ||
590 | pr_debug("Unknown addr space %d\n", | ||
591 | (u32) (perf->control_register.space_id)); | ||
592 | result = -ENODEV; | ||
593 | goto err_unreg; | ||
594 | } | ||
595 | |||
596 | data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * | ||
597 | (perf->state_count+1), GFP_KERNEL); | ||
598 | if (!data->freq_table) { | ||
599 | result = -ENOMEM; | ||
600 | goto err_unreg; | ||
601 | } | ||
602 | |||
603 | /* detect transition latency */ | ||
604 | policy->cpuinfo.transition_latency = 0; | ||
605 | for (i = 0; i < perf->state_count; i++) { | ||
606 | if ((perf->states[i].transition_latency * 1000) > | ||
607 | policy->cpuinfo.transition_latency) | ||
608 | policy->cpuinfo.transition_latency = | ||
609 | perf->states[i].transition_latency * 1000; | ||
610 | } | ||
611 | |||
612 | /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ | ||
613 | if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && | ||
614 | policy->cpuinfo.transition_latency > 20 * 1000) { | ||
615 | policy->cpuinfo.transition_latency = 20 * 1000; | ||
616 | printk_once(KERN_INFO | ||
617 | "P-state transition latency capped at 20 uS\n"); | ||
618 | } | ||
619 | |||
620 | /* table init */ | ||
621 | for (i = 0; i < perf->state_count; i++) { | ||
622 | if (i > 0 && perf->states[i].core_frequency >= | ||
623 | data->freq_table[valid_states-1].frequency / 1000) | ||
624 | continue; | ||
625 | |||
626 | data->freq_table[valid_states].index = i; | ||
627 | data->freq_table[valid_states].frequency = | ||
628 | perf->states[i].core_frequency * 1000; | ||
629 | valid_states++; | ||
630 | } | ||
631 | data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END; | ||
632 | perf->state = 0; | ||
633 | |||
634 | result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); | ||
635 | if (result) | ||
636 | goto err_freqfree; | ||
637 | |||
638 | if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq) | ||
639 | printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n"); | ||
640 | |||
641 | switch (perf->control_register.space_id) { | ||
642 | case ACPI_ADR_SPACE_SYSTEM_IO: | ||
643 | /* Current speed is unknown and not detectable by IO port */ | ||
644 | policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); | ||
645 | break; | ||
646 | case ACPI_ADR_SPACE_FIXED_HARDWARE: | ||
647 | acpi_cpufreq_driver.get = get_cur_freq_on_cpu; | ||
648 | policy->cur = get_cur_freq_on_cpu(cpu); | ||
649 | break; | ||
650 | default: | ||
651 | break; | ||
652 | } | ||
653 | |||
654 | /* notify BIOS that we exist */ | ||
655 | acpi_processor_notify_smm(THIS_MODULE); | ||
656 | |||
657 | /* Check for APERF/MPERF support in hardware */ | ||
658 | if (cpu_has(c, X86_FEATURE_APERFMPERF)) | ||
659 | acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf; | ||
660 | |||
661 | pr_debug("CPU%u - ACPI performance management activated.\n", cpu); | ||
662 | for (i = 0; i < perf->state_count; i++) | ||
663 | pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", | ||
664 | (i == perf->state ? '*' : ' '), i, | ||
665 | (u32) perf->states[i].core_frequency, | ||
666 | (u32) perf->states[i].power, | ||
667 | (u32) perf->states[i].transition_latency); | ||
668 | |||
669 | cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); | ||
670 | |||
671 | /* | ||
672 | * the first call to ->target() should result in us actually | ||
673 | * writing something to the appropriate registers. | ||
674 | */ | ||
675 | data->resume = 1; | ||
676 | |||
677 | return result; | ||
678 | |||
679 | err_freqfree: | ||
680 | kfree(data->freq_table); | ||
681 | err_unreg: | ||
682 | acpi_processor_unregister_performance(perf, cpu); | ||
683 | err_free: | ||
684 | kfree(data); | ||
685 | per_cpu(acfreq_data, cpu) = NULL; | ||
686 | |||
687 | return result; | ||
688 | } | ||
689 | |||
690 | static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) | ||
691 | { | ||
692 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); | ||
693 | |||
694 | pr_debug("acpi_cpufreq_cpu_exit\n"); | ||
695 | |||
696 | if (data) { | ||
697 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
698 | per_cpu(acfreq_data, policy->cpu) = NULL; | ||
699 | acpi_processor_unregister_performance(data->acpi_data, | ||
700 | policy->cpu); | ||
701 | kfree(data->freq_table); | ||
702 | kfree(data); | ||
703 | } | ||
704 | |||
705 | return 0; | ||
706 | } | ||
707 | |||
708 | static int acpi_cpufreq_resume(struct cpufreq_policy *policy) | ||
709 | { | ||
710 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); | ||
711 | |||
712 | pr_debug("acpi_cpufreq_resume\n"); | ||
713 | |||
714 | data->resume = 1; | ||
715 | |||
716 | return 0; | ||
717 | } | ||
718 | |||
719 | static struct freq_attr *acpi_cpufreq_attr[] = { | ||
720 | &cpufreq_freq_attr_scaling_available_freqs, | ||
721 | NULL, | ||
722 | }; | ||
723 | |||
724 | static struct cpufreq_driver acpi_cpufreq_driver = { | ||
725 | .verify = acpi_cpufreq_verify, | ||
726 | .target = acpi_cpufreq_target, | ||
727 | .bios_limit = acpi_processor_get_bios_limit, | ||
728 | .init = acpi_cpufreq_cpu_init, | ||
729 | .exit = acpi_cpufreq_cpu_exit, | ||
730 | .resume = acpi_cpufreq_resume, | ||
731 | .name = "acpi-cpufreq", | ||
732 | .owner = THIS_MODULE, | ||
733 | .attr = acpi_cpufreq_attr, | ||
734 | }; | ||
735 | |||
736 | static int __init acpi_cpufreq_init(void) | ||
737 | { | ||
738 | int ret; | ||
739 | |||
740 | if (acpi_disabled) | ||
741 | return 0; | ||
742 | |||
743 | pr_debug("acpi_cpufreq_init\n"); | ||
744 | |||
745 | ret = acpi_cpufreq_early_init(); | ||
746 | if (ret) | ||
747 | return ret; | ||
748 | |||
749 | ret = cpufreq_register_driver(&acpi_cpufreq_driver); | ||
750 | if (ret) | ||
751 | free_acpi_perf_data(); | ||
752 | |||
753 | return ret; | ||
754 | } | ||
755 | |||
756 | static void __exit acpi_cpufreq_exit(void) | ||
757 | { | ||
758 | pr_debug("acpi_cpufreq_exit\n"); | ||
759 | |||
760 | cpufreq_unregister_driver(&acpi_cpufreq_driver); | ||
761 | |||
762 | free_percpu(acpi_perf_data); | ||
763 | } | ||
764 | |||
765 | module_param(acpi_pstate_strict, uint, 0644); | ||
766 | MODULE_PARM_DESC(acpi_pstate_strict, | ||
767 | "value 0 or non-zero. non-zero -> strict ACPI checks are " | ||
768 | "performed during frequency changes."); | ||
769 | |||
770 | late_initcall(acpi_cpufreq_init); | ||
771 | module_exit(acpi_cpufreq_exit); | ||
772 | |||
773 | MODULE_ALIAS("acpi"); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/cpufreq-nforce2.c b/arch/x86/kernel/cpu/cpufreq/cpufreq-nforce2.c deleted file mode 100644 index 7bac808804f3..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/cpufreq-nforce2.c +++ /dev/null | |||
@@ -1,444 +0,0 @@ | |||
1 | /* | ||
2 | * (C) 2004-2006 Sebastian Witt <se.witt@gmx.net> | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * Based upon reverse engineered information | ||
6 | * | ||
7 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
8 | */ | ||
9 | |||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/module.h> | ||
12 | #include <linux/moduleparam.h> | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/cpufreq.h> | ||
15 | #include <linux/pci.h> | ||
16 | #include <linux/delay.h> | ||
17 | |||
18 | #define NFORCE2_XTAL 25 | ||
19 | #define NFORCE2_BOOTFSB 0x48 | ||
20 | #define NFORCE2_PLLENABLE 0xa8 | ||
21 | #define NFORCE2_PLLREG 0xa4 | ||
22 | #define NFORCE2_PLLADR 0xa0 | ||
23 | #define NFORCE2_PLL(mul, div) (0x100000 | (mul << 8) | div) | ||
24 | |||
25 | #define NFORCE2_MIN_FSB 50 | ||
26 | #define NFORCE2_SAFE_DISTANCE 50 | ||
27 | |||
28 | /* Delay in ms between FSB changes */ | ||
29 | /* #define NFORCE2_DELAY 10 */ | ||
30 | |||
31 | /* | ||
32 | * nforce2_chipset: | ||
33 | * FSB is changed using the chipset | ||
34 | */ | ||
35 | static struct pci_dev *nforce2_dev; | ||
36 | |||
37 | /* fid: | ||
38 | * multiplier * 10 | ||
39 | */ | ||
40 | static int fid; | ||
41 | |||
42 | /* min_fsb, max_fsb: | ||
43 | * minimum and maximum FSB (= FSB at boot time) | ||
44 | */ | ||
45 | static int min_fsb; | ||
46 | static int max_fsb; | ||
47 | |||
48 | MODULE_AUTHOR("Sebastian Witt <se.witt@gmx.net>"); | ||
49 | MODULE_DESCRIPTION("nForce2 FSB changing cpufreq driver"); | ||
50 | MODULE_LICENSE("GPL"); | ||
51 | |||
52 | module_param(fid, int, 0444); | ||
53 | module_param(min_fsb, int, 0444); | ||
54 | |||
55 | MODULE_PARM_DESC(fid, "CPU multiplier to use (11.5 = 115)"); | ||
56 | MODULE_PARM_DESC(min_fsb, | ||
57 | "Minimum FSB to use, if not defined: current FSB - 50"); | ||
58 | |||
59 | #define PFX "cpufreq-nforce2: " | ||
60 | |||
61 | /** | ||
62 | * nforce2_calc_fsb - calculate FSB | ||
63 | * @pll: PLL value | ||
64 | * | ||
65 | * Calculates FSB from PLL value | ||
66 | */ | ||
67 | static int nforce2_calc_fsb(int pll) | ||
68 | { | ||
69 | unsigned char mul, div; | ||
70 | |||
71 | mul = (pll >> 8) & 0xff; | ||
72 | div = pll & 0xff; | ||
73 | |||
74 | if (div > 0) | ||
75 | return NFORCE2_XTAL * mul / div; | ||
76 | |||
77 | return 0; | ||
78 | } | ||
79 | |||
80 | /** | ||
81 | * nforce2_calc_pll - calculate PLL value | ||
82 | * @fsb: FSB | ||
83 | * | ||
84 | * Calculate PLL value for given FSB | ||
85 | */ | ||
86 | static int nforce2_calc_pll(unsigned int fsb) | ||
87 | { | ||
88 | unsigned char xmul, xdiv; | ||
89 | unsigned char mul = 0, div = 0; | ||
90 | int tried = 0; | ||
91 | |||
92 | /* Try to calculate multiplier and divider up to 4 times */ | ||
93 | while (((mul == 0) || (div == 0)) && (tried <= 3)) { | ||
94 | for (xdiv = 2; xdiv <= 0x80; xdiv++) | ||
95 | for (xmul = 1; xmul <= 0xfe; xmul++) | ||
96 | if (nforce2_calc_fsb(NFORCE2_PLL(xmul, xdiv)) == | ||
97 | fsb + tried) { | ||
98 | mul = xmul; | ||
99 | div = xdiv; | ||
100 | } | ||
101 | tried++; | ||
102 | } | ||
103 | |||
104 | if ((mul == 0) || (div == 0)) | ||
105 | return -1; | ||
106 | |||
107 | return NFORCE2_PLL(mul, div); | ||
108 | } | ||
109 | |||
110 | /** | ||
111 | * nforce2_write_pll - write PLL value to chipset | ||
112 | * @pll: PLL value | ||
113 | * | ||
114 | * Writes new FSB PLL value to chipset | ||
115 | */ | ||
116 | static void nforce2_write_pll(int pll) | ||
117 | { | ||
118 | int temp; | ||
119 | |||
120 | /* Set the pll addr. to 0x00 */ | ||
121 | pci_write_config_dword(nforce2_dev, NFORCE2_PLLADR, 0); | ||
122 | |||
123 | /* Now write the value in all 64 registers */ | ||
124 | for (temp = 0; temp <= 0x3f; temp++) | ||
125 | pci_write_config_dword(nforce2_dev, NFORCE2_PLLREG, pll); | ||
126 | |||
127 | return; | ||
128 | } | ||
129 | |||
130 | /** | ||
131 | * nforce2_fsb_read - Read FSB | ||
132 | * | ||
133 | * Read FSB from chipset | ||
134 | * If bootfsb != 0, return FSB at boot-time | ||
135 | */ | ||
136 | static unsigned int nforce2_fsb_read(int bootfsb) | ||
137 | { | ||
138 | struct pci_dev *nforce2_sub5; | ||
139 | u32 fsb, temp = 0; | ||
140 | |||
141 | /* Get chipset boot FSB from subdevice 5 (FSB at boot-time) */ | ||
142 | nforce2_sub5 = pci_get_subsys(PCI_VENDOR_ID_NVIDIA, 0x01EF, | ||
143 | PCI_ANY_ID, PCI_ANY_ID, NULL); | ||
144 | if (!nforce2_sub5) | ||
145 | return 0; | ||
146 | |||
147 | pci_read_config_dword(nforce2_sub5, NFORCE2_BOOTFSB, &fsb); | ||
148 | fsb /= 1000000; | ||
149 | |||
150 | /* Check if PLL register is already set */ | ||
151 | pci_read_config_byte(nforce2_dev, NFORCE2_PLLENABLE, (u8 *)&temp); | ||
152 | |||
153 | if (bootfsb || !temp) | ||
154 | return fsb; | ||
155 | |||
156 | /* Use PLL register FSB value */ | ||
157 | pci_read_config_dword(nforce2_dev, NFORCE2_PLLREG, &temp); | ||
158 | fsb = nforce2_calc_fsb(temp); | ||
159 | |||
160 | return fsb; | ||
161 | } | ||
162 | |||
163 | /** | ||
164 | * nforce2_set_fsb - set new FSB | ||
165 | * @fsb: New FSB | ||
166 | * | ||
167 | * Sets new FSB | ||
168 | */ | ||
169 | static int nforce2_set_fsb(unsigned int fsb) | ||
170 | { | ||
171 | u32 temp = 0; | ||
172 | unsigned int tfsb; | ||
173 | int diff; | ||
174 | int pll = 0; | ||
175 | |||
176 | if ((fsb > max_fsb) || (fsb < NFORCE2_MIN_FSB)) { | ||
177 | printk(KERN_ERR PFX "FSB %d is out of range!\n", fsb); | ||
178 | return -EINVAL; | ||
179 | } | ||
180 | |||
181 | tfsb = nforce2_fsb_read(0); | ||
182 | if (!tfsb) { | ||
183 | printk(KERN_ERR PFX "Error while reading the FSB\n"); | ||
184 | return -EINVAL; | ||
185 | } | ||
186 | |||
187 | /* First write? Then set actual value */ | ||
188 | pci_read_config_byte(nforce2_dev, NFORCE2_PLLENABLE, (u8 *)&temp); | ||
189 | if (!temp) { | ||
190 | pll = nforce2_calc_pll(tfsb); | ||
191 | |||
192 | if (pll < 0) | ||
193 | return -EINVAL; | ||
194 | |||
195 | nforce2_write_pll(pll); | ||
196 | } | ||
197 | |||
198 | /* Enable write access */ | ||
199 | temp = 0x01; | ||
200 | pci_write_config_byte(nforce2_dev, NFORCE2_PLLENABLE, (u8)temp); | ||
201 | |||
202 | diff = tfsb - fsb; | ||
203 | |||
204 | if (!diff) | ||
205 | return 0; | ||
206 | |||
207 | while ((tfsb != fsb) && (tfsb <= max_fsb) && (tfsb >= min_fsb)) { | ||
208 | if (diff < 0) | ||
209 | tfsb++; | ||
210 | else | ||
211 | tfsb--; | ||
212 | |||
213 | /* Calculate the PLL reg. value */ | ||
214 | pll = nforce2_calc_pll(tfsb); | ||
215 | if (pll == -1) | ||
216 | return -EINVAL; | ||
217 | |||
218 | nforce2_write_pll(pll); | ||
219 | #ifdef NFORCE2_DELAY | ||
220 | mdelay(NFORCE2_DELAY); | ||
221 | #endif | ||
222 | } | ||
223 | |||
224 | temp = 0x40; | ||
225 | pci_write_config_byte(nforce2_dev, NFORCE2_PLLADR, (u8)temp); | ||
226 | |||
227 | return 0; | ||
228 | } | ||
229 | |||
230 | /** | ||
231 | * nforce2_get - get the CPU frequency | ||
232 | * @cpu: CPU number | ||
233 | * | ||
234 | * Returns the CPU frequency | ||
235 | */ | ||
236 | static unsigned int nforce2_get(unsigned int cpu) | ||
237 | { | ||
238 | if (cpu) | ||
239 | return 0; | ||
240 | return nforce2_fsb_read(0) * fid * 100; | ||
241 | } | ||
242 | |||
243 | /** | ||
244 | * nforce2_target - set a new CPUFreq policy | ||
245 | * @policy: new policy | ||
246 | * @target_freq: the target frequency | ||
247 | * @relation: how that frequency relates to achieved frequency | ||
248 | * (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H) | ||
249 | * | ||
250 | * Sets a new CPUFreq policy. | ||
251 | */ | ||
252 | static int nforce2_target(struct cpufreq_policy *policy, | ||
253 | unsigned int target_freq, unsigned int relation) | ||
254 | { | ||
255 | /* unsigned long flags; */ | ||
256 | struct cpufreq_freqs freqs; | ||
257 | unsigned int target_fsb; | ||
258 | |||
259 | if ((target_freq > policy->max) || (target_freq < policy->min)) | ||
260 | return -EINVAL; | ||
261 | |||
262 | target_fsb = target_freq / (fid * 100); | ||
263 | |||
264 | freqs.old = nforce2_get(policy->cpu); | ||
265 | freqs.new = target_fsb * fid * 100; | ||
266 | freqs.cpu = 0; /* Only one CPU on nForce2 platforms */ | ||
267 | |||
268 | if (freqs.old == freqs.new) | ||
269 | return 0; | ||
270 | |||
271 | pr_debug("Old CPU frequency %d kHz, new %d kHz\n", | ||
272 | freqs.old, freqs.new); | ||
273 | |||
274 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
275 | |||
276 | /* Disable IRQs */ | ||
277 | /* local_irq_save(flags); */ | ||
278 | |||
279 | if (nforce2_set_fsb(target_fsb) < 0) | ||
280 | printk(KERN_ERR PFX "Changing FSB to %d failed\n", | ||
281 | target_fsb); | ||
282 | else | ||
283 | pr_debug("Changed FSB successfully to %d\n", | ||
284 | target_fsb); | ||
285 | |||
286 | /* Enable IRQs */ | ||
287 | /* local_irq_restore(flags); */ | ||
288 | |||
289 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
290 | |||
291 | return 0; | ||
292 | } | ||
293 | |||
294 | /** | ||
295 | * nforce2_verify - verifies a new CPUFreq policy | ||
296 | * @policy: new policy | ||
297 | */ | ||
298 | static int nforce2_verify(struct cpufreq_policy *policy) | ||
299 | { | ||
300 | unsigned int fsb_pol_max; | ||
301 | |||
302 | fsb_pol_max = policy->max / (fid * 100); | ||
303 | |||
304 | if (policy->min < (fsb_pol_max * fid * 100)) | ||
305 | policy->max = (fsb_pol_max + 1) * fid * 100; | ||
306 | |||
307 | cpufreq_verify_within_limits(policy, | ||
308 | policy->cpuinfo.min_freq, | ||
309 | policy->cpuinfo.max_freq); | ||
310 | return 0; | ||
311 | } | ||
312 | |||
313 | static int nforce2_cpu_init(struct cpufreq_policy *policy) | ||
314 | { | ||
315 | unsigned int fsb; | ||
316 | unsigned int rfid; | ||
317 | |||
318 | /* capability check */ | ||
319 | if (policy->cpu != 0) | ||
320 | return -ENODEV; | ||
321 | |||
322 | /* Get current FSB */ | ||
323 | fsb = nforce2_fsb_read(0); | ||
324 | |||
325 | if (!fsb) | ||
326 | return -EIO; | ||
327 | |||
328 | /* FIX: Get FID from CPU */ | ||
329 | if (!fid) { | ||
330 | if (!cpu_khz) { | ||
331 | printk(KERN_WARNING PFX | ||
332 | "cpu_khz not set, can't calculate multiplier!\n"); | ||
333 | return -ENODEV; | ||
334 | } | ||
335 | |||
336 | fid = cpu_khz / (fsb * 100); | ||
337 | rfid = fid % 5; | ||
338 | |||
339 | if (rfid) { | ||
340 | if (rfid > 2) | ||
341 | fid += 5 - rfid; | ||
342 | else | ||
343 | fid -= rfid; | ||
344 | } | ||
345 | } | ||
346 | |||
347 | printk(KERN_INFO PFX "FSB currently at %i MHz, FID %d.%d\n", fsb, | ||
348 | fid / 10, fid % 10); | ||
349 | |||
350 | /* Set maximum FSB to FSB at boot time */ | ||
351 | max_fsb = nforce2_fsb_read(1); | ||
352 | |||
353 | if (!max_fsb) | ||
354 | return -EIO; | ||
355 | |||
356 | if (!min_fsb) | ||
357 | min_fsb = max_fsb - NFORCE2_SAFE_DISTANCE; | ||
358 | |||
359 | if (min_fsb < NFORCE2_MIN_FSB) | ||
360 | min_fsb = NFORCE2_MIN_FSB; | ||
361 | |||
362 | /* cpuinfo and default policy values */ | ||
363 | policy->cpuinfo.min_freq = min_fsb * fid * 100; | ||
364 | policy->cpuinfo.max_freq = max_fsb * fid * 100; | ||
365 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
366 | policy->cur = nforce2_get(policy->cpu); | ||
367 | policy->min = policy->cpuinfo.min_freq; | ||
368 | policy->max = policy->cpuinfo.max_freq; | ||
369 | |||
370 | return 0; | ||
371 | } | ||
372 | |||
373 | static int nforce2_cpu_exit(struct cpufreq_policy *policy) | ||
374 | { | ||
375 | return 0; | ||
376 | } | ||
377 | |||
378 | static struct cpufreq_driver nforce2_driver = { | ||
379 | .name = "nforce2", | ||
380 | .verify = nforce2_verify, | ||
381 | .target = nforce2_target, | ||
382 | .get = nforce2_get, | ||
383 | .init = nforce2_cpu_init, | ||
384 | .exit = nforce2_cpu_exit, | ||
385 | .owner = THIS_MODULE, | ||
386 | }; | ||
387 | |||
388 | /** | ||
389 | * nforce2_detect_chipset - detect the Southbridge which contains FSB PLL logic | ||
390 | * | ||
391 | * Detects nForce2 A2 and C1 stepping | ||
392 | * | ||
393 | */ | ||
394 | static int nforce2_detect_chipset(void) | ||
395 | { | ||
396 | nforce2_dev = pci_get_subsys(PCI_VENDOR_ID_NVIDIA, | ||
397 | PCI_DEVICE_ID_NVIDIA_NFORCE2, | ||
398 | PCI_ANY_ID, PCI_ANY_ID, NULL); | ||
399 | |||
400 | if (nforce2_dev == NULL) | ||
401 | return -ENODEV; | ||
402 | |||
403 | printk(KERN_INFO PFX "Detected nForce2 chipset revision %X\n", | ||
404 | nforce2_dev->revision); | ||
405 | printk(KERN_INFO PFX | ||
406 | "FSB changing is maybe unstable and can lead to " | ||
407 | "crashes and data loss.\n"); | ||
408 | |||
409 | return 0; | ||
410 | } | ||
411 | |||
412 | /** | ||
413 | * nforce2_init - initializes the nForce2 CPUFreq driver | ||
414 | * | ||
415 | * Initializes the nForce2 FSB support. Returns -ENODEV on unsupported | ||
416 | * devices, -EINVAL on problems during initiatization, and zero on | ||
417 | * success. | ||
418 | */ | ||
419 | static int __init nforce2_init(void) | ||
420 | { | ||
421 | /* TODO: do we need to detect the processor? */ | ||
422 | |||
423 | /* detect chipset */ | ||
424 | if (nforce2_detect_chipset()) { | ||
425 | printk(KERN_INFO PFX "No nForce2 chipset.\n"); | ||
426 | return -ENODEV; | ||
427 | } | ||
428 | |||
429 | return cpufreq_register_driver(&nforce2_driver); | ||
430 | } | ||
431 | |||
432 | /** | ||
433 | * nforce2_exit - unregisters cpufreq module | ||
434 | * | ||
435 | * Unregisters nForce2 FSB change support. | ||
436 | */ | ||
437 | static void __exit nforce2_exit(void) | ||
438 | { | ||
439 | cpufreq_unregister_driver(&nforce2_driver); | ||
440 | } | ||
441 | |||
442 | module_init(nforce2_init); | ||
443 | module_exit(nforce2_exit); | ||
444 | |||
diff --git a/arch/x86/kernel/cpu/cpufreq/e_powersaver.c b/arch/x86/kernel/cpu/cpufreq/e_powersaver.c deleted file mode 100644 index 35a257dd4bb7..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/e_powersaver.c +++ /dev/null | |||
@@ -1,367 +0,0 @@ | |||
1 | /* | ||
2 | * Based on documentation provided by Dave Jones. Thanks! | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * | ||
6 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
7 | */ | ||
8 | |||
9 | #include <linux/kernel.h> | ||
10 | #include <linux/module.h> | ||
11 | #include <linux/init.h> | ||
12 | #include <linux/cpufreq.h> | ||
13 | #include <linux/ioport.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <linux/timex.h> | ||
16 | #include <linux/io.h> | ||
17 | #include <linux/delay.h> | ||
18 | |||
19 | #include <asm/msr.h> | ||
20 | #include <asm/tsc.h> | ||
21 | |||
22 | #define EPS_BRAND_C7M 0 | ||
23 | #define EPS_BRAND_C7 1 | ||
24 | #define EPS_BRAND_EDEN 2 | ||
25 | #define EPS_BRAND_C3 3 | ||
26 | #define EPS_BRAND_C7D 4 | ||
27 | |||
28 | struct eps_cpu_data { | ||
29 | u32 fsb; | ||
30 | struct cpufreq_frequency_table freq_table[]; | ||
31 | }; | ||
32 | |||
33 | static struct eps_cpu_data *eps_cpu[NR_CPUS]; | ||
34 | |||
35 | |||
36 | static unsigned int eps_get(unsigned int cpu) | ||
37 | { | ||
38 | struct eps_cpu_data *centaur; | ||
39 | u32 lo, hi; | ||
40 | |||
41 | if (cpu) | ||
42 | return 0; | ||
43 | centaur = eps_cpu[cpu]; | ||
44 | if (centaur == NULL) | ||
45 | return 0; | ||
46 | |||
47 | /* Return current frequency */ | ||
48 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); | ||
49 | return centaur->fsb * ((lo >> 8) & 0xff); | ||
50 | } | ||
51 | |||
52 | static int eps_set_state(struct eps_cpu_data *centaur, | ||
53 | unsigned int cpu, | ||
54 | u32 dest_state) | ||
55 | { | ||
56 | struct cpufreq_freqs freqs; | ||
57 | u32 lo, hi; | ||
58 | int err = 0; | ||
59 | int i; | ||
60 | |||
61 | freqs.old = eps_get(cpu); | ||
62 | freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff); | ||
63 | freqs.cpu = cpu; | ||
64 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
65 | |||
66 | /* Wait while CPU is busy */ | ||
67 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); | ||
68 | i = 0; | ||
69 | while (lo & ((1 << 16) | (1 << 17))) { | ||
70 | udelay(16); | ||
71 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); | ||
72 | i++; | ||
73 | if (unlikely(i > 64)) { | ||
74 | err = -ENODEV; | ||
75 | goto postchange; | ||
76 | } | ||
77 | } | ||
78 | /* Set new multiplier and voltage */ | ||
79 | wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0); | ||
80 | /* Wait until transition end */ | ||
81 | i = 0; | ||
82 | do { | ||
83 | udelay(16); | ||
84 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); | ||
85 | i++; | ||
86 | if (unlikely(i > 64)) { | ||
87 | err = -ENODEV; | ||
88 | goto postchange; | ||
89 | } | ||
90 | } while (lo & ((1 << 16) | (1 << 17))); | ||
91 | |||
92 | /* Return current frequency */ | ||
93 | postchange: | ||
94 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); | ||
95 | freqs.new = centaur->fsb * ((lo >> 8) & 0xff); | ||
96 | |||
97 | #ifdef DEBUG | ||
98 | { | ||
99 | u8 current_multiplier, current_voltage; | ||
100 | |||
101 | /* Print voltage and multiplier */ | ||
102 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); | ||
103 | current_voltage = lo & 0xff; | ||
104 | printk(KERN_INFO "eps: Current voltage = %dmV\n", | ||
105 | current_voltage * 16 + 700); | ||
106 | current_multiplier = (lo >> 8) & 0xff; | ||
107 | printk(KERN_INFO "eps: Current multiplier = %d\n", | ||
108 | current_multiplier); | ||
109 | } | ||
110 | #endif | ||
111 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
112 | return err; | ||
113 | } | ||
114 | |||
115 | static int eps_target(struct cpufreq_policy *policy, | ||
116 | unsigned int target_freq, | ||
117 | unsigned int relation) | ||
118 | { | ||
119 | struct eps_cpu_data *centaur; | ||
120 | unsigned int newstate = 0; | ||
121 | unsigned int cpu = policy->cpu; | ||
122 | unsigned int dest_state; | ||
123 | int ret; | ||
124 | |||
125 | if (unlikely(eps_cpu[cpu] == NULL)) | ||
126 | return -ENODEV; | ||
127 | centaur = eps_cpu[cpu]; | ||
128 | |||
129 | if (unlikely(cpufreq_frequency_table_target(policy, | ||
130 | &eps_cpu[cpu]->freq_table[0], | ||
131 | target_freq, | ||
132 | relation, | ||
133 | &newstate))) { | ||
134 | return -EINVAL; | ||
135 | } | ||
136 | |||
137 | /* Make frequency transition */ | ||
138 | dest_state = centaur->freq_table[newstate].index & 0xffff; | ||
139 | ret = eps_set_state(centaur, cpu, dest_state); | ||
140 | if (ret) | ||
141 | printk(KERN_ERR "eps: Timeout!\n"); | ||
142 | return ret; | ||
143 | } | ||
144 | |||
145 | static int eps_verify(struct cpufreq_policy *policy) | ||
146 | { | ||
147 | return cpufreq_frequency_table_verify(policy, | ||
148 | &eps_cpu[policy->cpu]->freq_table[0]); | ||
149 | } | ||
150 | |||
151 | static int eps_cpu_init(struct cpufreq_policy *policy) | ||
152 | { | ||
153 | unsigned int i; | ||
154 | u32 lo, hi; | ||
155 | u64 val; | ||
156 | u8 current_multiplier, current_voltage; | ||
157 | u8 max_multiplier, max_voltage; | ||
158 | u8 min_multiplier, min_voltage; | ||
159 | u8 brand = 0; | ||
160 | u32 fsb; | ||
161 | struct eps_cpu_data *centaur; | ||
162 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
163 | struct cpufreq_frequency_table *f_table; | ||
164 | int k, step, voltage; | ||
165 | int ret; | ||
166 | int states; | ||
167 | |||
168 | if (policy->cpu != 0) | ||
169 | return -ENODEV; | ||
170 | |||
171 | /* Check brand */ | ||
172 | printk(KERN_INFO "eps: Detected VIA "); | ||
173 | |||
174 | switch (c->x86_model) { | ||
175 | case 10: | ||
176 | rdmsr(0x1153, lo, hi); | ||
177 | brand = (((lo >> 2) ^ lo) >> 18) & 3; | ||
178 | printk(KERN_CONT "Model A "); | ||
179 | break; | ||
180 | case 13: | ||
181 | rdmsr(0x1154, lo, hi); | ||
182 | brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff; | ||
183 | printk(KERN_CONT "Model D "); | ||
184 | break; | ||
185 | } | ||
186 | |||
187 | switch (brand) { | ||
188 | case EPS_BRAND_C7M: | ||
189 | printk(KERN_CONT "C7-M\n"); | ||
190 | break; | ||
191 | case EPS_BRAND_C7: | ||
192 | printk(KERN_CONT "C7\n"); | ||
193 | break; | ||
194 | case EPS_BRAND_EDEN: | ||
195 | printk(KERN_CONT "Eden\n"); | ||
196 | break; | ||
197 | case EPS_BRAND_C7D: | ||
198 | printk(KERN_CONT "C7-D\n"); | ||
199 | break; | ||
200 | case EPS_BRAND_C3: | ||
201 | printk(KERN_CONT "C3\n"); | ||
202 | return -ENODEV; | ||
203 | break; | ||
204 | } | ||
205 | /* Enable Enhanced PowerSaver */ | ||
206 | rdmsrl(MSR_IA32_MISC_ENABLE, val); | ||
207 | if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) { | ||
208 | val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP; | ||
209 | wrmsrl(MSR_IA32_MISC_ENABLE, val); | ||
210 | /* Can be locked at 0 */ | ||
211 | rdmsrl(MSR_IA32_MISC_ENABLE, val); | ||
212 | if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) { | ||
213 | printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n"); | ||
214 | return -ENODEV; | ||
215 | } | ||
216 | } | ||
217 | |||
218 | /* Print voltage and multiplier */ | ||
219 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); | ||
220 | current_voltage = lo & 0xff; | ||
221 | printk(KERN_INFO "eps: Current voltage = %dmV\n", | ||
222 | current_voltage * 16 + 700); | ||
223 | current_multiplier = (lo >> 8) & 0xff; | ||
224 | printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier); | ||
225 | |||
226 | /* Print limits */ | ||
227 | max_voltage = hi & 0xff; | ||
228 | printk(KERN_INFO "eps: Highest voltage = %dmV\n", | ||
229 | max_voltage * 16 + 700); | ||
230 | max_multiplier = (hi >> 8) & 0xff; | ||
231 | printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier); | ||
232 | min_voltage = (hi >> 16) & 0xff; | ||
233 | printk(KERN_INFO "eps: Lowest voltage = %dmV\n", | ||
234 | min_voltage * 16 + 700); | ||
235 | min_multiplier = (hi >> 24) & 0xff; | ||
236 | printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier); | ||
237 | |||
238 | /* Sanity checks */ | ||
239 | if (current_multiplier == 0 || max_multiplier == 0 | ||
240 | || min_multiplier == 0) | ||
241 | return -EINVAL; | ||
242 | if (current_multiplier > max_multiplier | ||
243 | || max_multiplier <= min_multiplier) | ||
244 | return -EINVAL; | ||
245 | if (current_voltage > 0x1f || max_voltage > 0x1f) | ||
246 | return -EINVAL; | ||
247 | if (max_voltage < min_voltage) | ||
248 | return -EINVAL; | ||
249 | |||
250 | /* Calc FSB speed */ | ||
251 | fsb = cpu_khz / current_multiplier; | ||
252 | /* Calc number of p-states supported */ | ||
253 | if (brand == EPS_BRAND_C7M) | ||
254 | states = max_multiplier - min_multiplier + 1; | ||
255 | else | ||
256 | states = 2; | ||
257 | |||
258 | /* Allocate private data and frequency table for current cpu */ | ||
259 | centaur = kzalloc(sizeof(struct eps_cpu_data) | ||
260 | + (states + 1) * sizeof(struct cpufreq_frequency_table), | ||
261 | GFP_KERNEL); | ||
262 | if (!centaur) | ||
263 | return -ENOMEM; | ||
264 | eps_cpu[0] = centaur; | ||
265 | |||
266 | /* Copy basic values */ | ||
267 | centaur->fsb = fsb; | ||
268 | |||
269 | /* Fill frequency and MSR value table */ | ||
270 | f_table = ¢aur->freq_table[0]; | ||
271 | if (brand != EPS_BRAND_C7M) { | ||
272 | f_table[0].frequency = fsb * min_multiplier; | ||
273 | f_table[0].index = (min_multiplier << 8) | min_voltage; | ||
274 | f_table[1].frequency = fsb * max_multiplier; | ||
275 | f_table[1].index = (max_multiplier << 8) | max_voltage; | ||
276 | f_table[2].frequency = CPUFREQ_TABLE_END; | ||
277 | } else { | ||
278 | k = 0; | ||
279 | step = ((max_voltage - min_voltage) * 256) | ||
280 | / (max_multiplier - min_multiplier); | ||
281 | for (i = min_multiplier; i <= max_multiplier; i++) { | ||
282 | voltage = (k * step) / 256 + min_voltage; | ||
283 | f_table[k].frequency = fsb * i; | ||
284 | f_table[k].index = (i << 8) | voltage; | ||
285 | k++; | ||
286 | } | ||
287 | f_table[k].frequency = CPUFREQ_TABLE_END; | ||
288 | } | ||
289 | |||
290 | policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */ | ||
291 | policy->cur = fsb * current_multiplier; | ||
292 | |||
293 | ret = cpufreq_frequency_table_cpuinfo(policy, ¢aur->freq_table[0]); | ||
294 | if (ret) { | ||
295 | kfree(centaur); | ||
296 | return ret; | ||
297 | } | ||
298 | |||
299 | cpufreq_frequency_table_get_attr(¢aur->freq_table[0], policy->cpu); | ||
300 | return 0; | ||
301 | } | ||
302 | |||
303 | static int eps_cpu_exit(struct cpufreq_policy *policy) | ||
304 | { | ||
305 | unsigned int cpu = policy->cpu; | ||
306 | struct eps_cpu_data *centaur; | ||
307 | u32 lo, hi; | ||
308 | |||
309 | if (eps_cpu[cpu] == NULL) | ||
310 | return -ENODEV; | ||
311 | centaur = eps_cpu[cpu]; | ||
312 | |||
313 | /* Get max frequency */ | ||
314 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); | ||
315 | /* Set max frequency */ | ||
316 | eps_set_state(centaur, cpu, hi & 0xffff); | ||
317 | /* Bye */ | ||
318 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
319 | kfree(eps_cpu[cpu]); | ||
320 | eps_cpu[cpu] = NULL; | ||
321 | return 0; | ||
322 | } | ||
323 | |||
324 | static struct freq_attr *eps_attr[] = { | ||
325 | &cpufreq_freq_attr_scaling_available_freqs, | ||
326 | NULL, | ||
327 | }; | ||
328 | |||
329 | static struct cpufreq_driver eps_driver = { | ||
330 | .verify = eps_verify, | ||
331 | .target = eps_target, | ||
332 | .init = eps_cpu_init, | ||
333 | .exit = eps_cpu_exit, | ||
334 | .get = eps_get, | ||
335 | .name = "e_powersaver", | ||
336 | .owner = THIS_MODULE, | ||
337 | .attr = eps_attr, | ||
338 | }; | ||
339 | |||
340 | static int __init eps_init(void) | ||
341 | { | ||
342 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
343 | |||
344 | /* This driver will work only on Centaur C7 processors with | ||
345 | * Enhanced SpeedStep/PowerSaver registers */ | ||
346 | if (c->x86_vendor != X86_VENDOR_CENTAUR | ||
347 | || c->x86 != 6 || c->x86_model < 10) | ||
348 | return -ENODEV; | ||
349 | if (!cpu_has(c, X86_FEATURE_EST)) | ||
350 | return -ENODEV; | ||
351 | |||
352 | if (cpufreq_register_driver(&eps_driver)) | ||
353 | return -EINVAL; | ||
354 | return 0; | ||
355 | } | ||
356 | |||
357 | static void __exit eps_exit(void) | ||
358 | { | ||
359 | cpufreq_unregister_driver(&eps_driver); | ||
360 | } | ||
361 | |||
362 | MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>"); | ||
363 | MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's."); | ||
364 | MODULE_LICENSE("GPL"); | ||
365 | |||
366 | module_init(eps_init); | ||
367 | module_exit(eps_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/elanfreq.c b/arch/x86/kernel/cpu/cpufreq/elanfreq.c deleted file mode 100644 index c587db472a75..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/elanfreq.c +++ /dev/null | |||
@@ -1,309 +0,0 @@ | |||
1 | /* | ||
2 | * elanfreq: cpufreq driver for the AMD ELAN family | ||
3 | * | ||
4 | * (c) Copyright 2002 Robert Schwebel <r.schwebel@pengutronix.de> | ||
5 | * | ||
6 | * Parts of this code are (c) Sven Geggus <sven@geggus.net> | ||
7 | * | ||
8 | * All Rights Reserved. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or | ||
11 | * modify it under the terms of the GNU General Public License | ||
12 | * as published by the Free Software Foundation; either version | ||
13 | * 2 of the License, or (at your option) any later version. | ||
14 | * | ||
15 | * 2002-02-13: - initial revision for 2.4.18-pre9 by Robert Schwebel | ||
16 | * | ||
17 | */ | ||
18 | |||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/module.h> | ||
21 | #include <linux/init.h> | ||
22 | |||
23 | #include <linux/delay.h> | ||
24 | #include <linux/cpufreq.h> | ||
25 | |||
26 | #include <asm/msr.h> | ||
27 | #include <linux/timex.h> | ||
28 | #include <linux/io.h> | ||
29 | |||
30 | #define REG_CSCIR 0x22 /* Chip Setup and Control Index Register */ | ||
31 | #define REG_CSCDR 0x23 /* Chip Setup and Control Data Register */ | ||
32 | |||
33 | /* Module parameter */ | ||
34 | static int max_freq; | ||
35 | |||
36 | struct s_elan_multiplier { | ||
37 | int clock; /* frequency in kHz */ | ||
38 | int val40h; /* PMU Force Mode register */ | ||
39 | int val80h; /* CPU Clock Speed Register */ | ||
40 | }; | ||
41 | |||
42 | /* | ||
43 | * It is important that the frequencies | ||
44 | * are listed in ascending order here! | ||
45 | */ | ||
46 | static struct s_elan_multiplier elan_multiplier[] = { | ||
47 | {1000, 0x02, 0x18}, | ||
48 | {2000, 0x02, 0x10}, | ||
49 | {4000, 0x02, 0x08}, | ||
50 | {8000, 0x00, 0x00}, | ||
51 | {16000, 0x00, 0x02}, | ||
52 | {33000, 0x00, 0x04}, | ||
53 | {66000, 0x01, 0x04}, | ||
54 | {99000, 0x01, 0x05} | ||
55 | }; | ||
56 | |||
57 | static struct cpufreq_frequency_table elanfreq_table[] = { | ||
58 | {0, 1000}, | ||
59 | {1, 2000}, | ||
60 | {2, 4000}, | ||
61 | {3, 8000}, | ||
62 | {4, 16000}, | ||
63 | {5, 33000}, | ||
64 | {6, 66000}, | ||
65 | {7, 99000}, | ||
66 | {0, CPUFREQ_TABLE_END}, | ||
67 | }; | ||
68 | |||
69 | |||
70 | /** | ||
71 | * elanfreq_get_cpu_frequency: determine current cpu speed | ||
72 | * | ||
73 | * Finds out at which frequency the CPU of the Elan SOC runs | ||
74 | * at the moment. Frequencies from 1 to 33 MHz are generated | ||
75 | * the normal way, 66 and 99 MHz are called "Hyperspeed Mode" | ||
76 | * and have the rest of the chip running with 33 MHz. | ||
77 | */ | ||
78 | |||
79 | static unsigned int elanfreq_get_cpu_frequency(unsigned int cpu) | ||
80 | { | ||
81 | u8 clockspeed_reg; /* Clock Speed Register */ | ||
82 | |||
83 | local_irq_disable(); | ||
84 | outb_p(0x80, REG_CSCIR); | ||
85 | clockspeed_reg = inb_p(REG_CSCDR); | ||
86 | local_irq_enable(); | ||
87 | |||
88 | if ((clockspeed_reg & 0xE0) == 0xE0) | ||
89 | return 0; | ||
90 | |||
91 | /* Are we in CPU clock multiplied mode (66/99 MHz)? */ | ||
92 | if ((clockspeed_reg & 0xE0) == 0xC0) { | ||
93 | if ((clockspeed_reg & 0x01) == 0) | ||
94 | return 66000; | ||
95 | else | ||
96 | return 99000; | ||
97 | } | ||
98 | |||
99 | /* 33 MHz is not 32 MHz... */ | ||
100 | if ((clockspeed_reg & 0xE0) == 0xA0) | ||
101 | return 33000; | ||
102 | |||
103 | return (1<<((clockspeed_reg & 0xE0) >> 5)) * 1000; | ||
104 | } | ||
105 | |||
106 | |||
107 | /** | ||
108 | * elanfreq_set_cpu_frequency: Change the CPU core frequency | ||
109 | * @cpu: cpu number | ||
110 | * @freq: frequency in kHz | ||
111 | * | ||
112 | * This function takes a frequency value and changes the CPU frequency | ||
113 | * according to this. Note that the frequency has to be checked by | ||
114 | * elanfreq_validatespeed() for correctness! | ||
115 | * | ||
116 | * There is no return value. | ||
117 | */ | ||
118 | |||
119 | static void elanfreq_set_cpu_state(unsigned int state) | ||
120 | { | ||
121 | struct cpufreq_freqs freqs; | ||
122 | |||
123 | freqs.old = elanfreq_get_cpu_frequency(0); | ||
124 | freqs.new = elan_multiplier[state].clock; | ||
125 | freqs.cpu = 0; /* elanfreq.c is UP only driver */ | ||
126 | |||
127 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
128 | |||
129 | printk(KERN_INFO "elanfreq: attempting to set frequency to %i kHz\n", | ||
130 | elan_multiplier[state].clock); | ||
131 | |||
132 | |||
133 | /* | ||
134 | * Access to the Elan's internal registers is indexed via | ||
135 | * 0x22: Chip Setup & Control Register Index Register (CSCI) | ||
136 | * 0x23: Chip Setup & Control Register Data Register (CSCD) | ||
137 | * | ||
138 | */ | ||
139 | |||
140 | /* | ||
141 | * 0x40 is the Power Management Unit's Force Mode Register. | ||
142 | * Bit 6 enables Hyperspeed Mode (66/100 MHz core frequency) | ||
143 | */ | ||
144 | |||
145 | local_irq_disable(); | ||
146 | outb_p(0x40, REG_CSCIR); /* Disable hyperspeed mode */ | ||
147 | outb_p(0x00, REG_CSCDR); | ||
148 | local_irq_enable(); /* wait till internal pipelines and */ | ||
149 | udelay(1000); /* buffers have cleaned up */ | ||
150 | |||
151 | local_irq_disable(); | ||
152 | |||
153 | /* now, set the CPU clock speed register (0x80) */ | ||
154 | outb_p(0x80, REG_CSCIR); | ||
155 | outb_p(elan_multiplier[state].val80h, REG_CSCDR); | ||
156 | |||
157 | /* now, the hyperspeed bit in PMU Force Mode Register (0x40) */ | ||
158 | outb_p(0x40, REG_CSCIR); | ||
159 | outb_p(elan_multiplier[state].val40h, REG_CSCDR); | ||
160 | udelay(10000); | ||
161 | local_irq_enable(); | ||
162 | |||
163 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
164 | }; | ||
165 | |||
166 | |||
167 | /** | ||
168 | * elanfreq_validatespeed: test if frequency range is valid | ||
169 | * @policy: the policy to validate | ||
170 | * | ||
171 | * This function checks if a given frequency range in kHz is valid | ||
172 | * for the hardware supported by the driver. | ||
173 | */ | ||
174 | |||
175 | static int elanfreq_verify(struct cpufreq_policy *policy) | ||
176 | { | ||
177 | return cpufreq_frequency_table_verify(policy, &elanfreq_table[0]); | ||
178 | } | ||
179 | |||
180 | static int elanfreq_target(struct cpufreq_policy *policy, | ||
181 | unsigned int target_freq, | ||
182 | unsigned int relation) | ||
183 | { | ||
184 | unsigned int newstate = 0; | ||
185 | |||
186 | if (cpufreq_frequency_table_target(policy, &elanfreq_table[0], | ||
187 | target_freq, relation, &newstate)) | ||
188 | return -EINVAL; | ||
189 | |||
190 | elanfreq_set_cpu_state(newstate); | ||
191 | |||
192 | return 0; | ||
193 | } | ||
194 | |||
195 | |||
196 | /* | ||
197 | * Module init and exit code | ||
198 | */ | ||
199 | |||
200 | static int elanfreq_cpu_init(struct cpufreq_policy *policy) | ||
201 | { | ||
202 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
203 | unsigned int i; | ||
204 | int result; | ||
205 | |||
206 | /* capability check */ | ||
207 | if ((c->x86_vendor != X86_VENDOR_AMD) || | ||
208 | (c->x86 != 4) || (c->x86_model != 10)) | ||
209 | return -ENODEV; | ||
210 | |||
211 | /* max freq */ | ||
212 | if (!max_freq) | ||
213 | max_freq = elanfreq_get_cpu_frequency(0); | ||
214 | |||
215 | /* table init */ | ||
216 | for (i = 0; (elanfreq_table[i].frequency != CPUFREQ_TABLE_END); i++) { | ||
217 | if (elanfreq_table[i].frequency > max_freq) | ||
218 | elanfreq_table[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
219 | } | ||
220 | |||
221 | /* cpuinfo and default policy values */ | ||
222 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
223 | policy->cur = elanfreq_get_cpu_frequency(0); | ||
224 | |||
225 | result = cpufreq_frequency_table_cpuinfo(policy, elanfreq_table); | ||
226 | if (result) | ||
227 | return result; | ||
228 | |||
229 | cpufreq_frequency_table_get_attr(elanfreq_table, policy->cpu); | ||
230 | return 0; | ||
231 | } | ||
232 | |||
233 | |||
234 | static int elanfreq_cpu_exit(struct cpufreq_policy *policy) | ||
235 | { | ||
236 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
237 | return 0; | ||
238 | } | ||
239 | |||
240 | |||
241 | #ifndef MODULE | ||
242 | /** | ||
243 | * elanfreq_setup - elanfreq command line parameter parsing | ||
244 | * | ||
245 | * elanfreq command line parameter. Use: | ||
246 | * elanfreq=66000 | ||
247 | * to set the maximum CPU frequency to 66 MHz. Note that in | ||
248 | * case you do not give this boot parameter, the maximum | ||
249 | * frequency will fall back to _current_ CPU frequency which | ||
250 | * might be lower. If you build this as a module, use the | ||
251 | * max_freq module parameter instead. | ||
252 | */ | ||
253 | static int __init elanfreq_setup(char *str) | ||
254 | { | ||
255 | max_freq = simple_strtoul(str, &str, 0); | ||
256 | printk(KERN_WARNING "You're using the deprecated elanfreq command line option. Use elanfreq.max_freq instead, please!\n"); | ||
257 | return 1; | ||
258 | } | ||
259 | __setup("elanfreq=", elanfreq_setup); | ||
260 | #endif | ||
261 | |||
262 | |||
263 | static struct freq_attr *elanfreq_attr[] = { | ||
264 | &cpufreq_freq_attr_scaling_available_freqs, | ||
265 | NULL, | ||
266 | }; | ||
267 | |||
268 | |||
269 | static struct cpufreq_driver elanfreq_driver = { | ||
270 | .get = elanfreq_get_cpu_frequency, | ||
271 | .verify = elanfreq_verify, | ||
272 | .target = elanfreq_target, | ||
273 | .init = elanfreq_cpu_init, | ||
274 | .exit = elanfreq_cpu_exit, | ||
275 | .name = "elanfreq", | ||
276 | .owner = THIS_MODULE, | ||
277 | .attr = elanfreq_attr, | ||
278 | }; | ||
279 | |||
280 | |||
281 | static int __init elanfreq_init(void) | ||
282 | { | ||
283 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
284 | |||
285 | /* Test if we have the right hardware */ | ||
286 | if ((c->x86_vendor != X86_VENDOR_AMD) || | ||
287 | (c->x86 != 4) || (c->x86_model != 10)) { | ||
288 | printk(KERN_INFO "elanfreq: error: no Elan processor found!\n"); | ||
289 | return -ENODEV; | ||
290 | } | ||
291 | return cpufreq_register_driver(&elanfreq_driver); | ||
292 | } | ||
293 | |||
294 | |||
295 | static void __exit elanfreq_exit(void) | ||
296 | { | ||
297 | cpufreq_unregister_driver(&elanfreq_driver); | ||
298 | } | ||
299 | |||
300 | |||
301 | module_param(max_freq, int, 0444); | ||
302 | |||
303 | MODULE_LICENSE("GPL"); | ||
304 | MODULE_AUTHOR("Robert Schwebel <r.schwebel@pengutronix.de>, " | ||
305 | "Sven Geggus <sven@geggus.net>"); | ||
306 | MODULE_DESCRIPTION("cpufreq driver for AMD's Elan CPUs"); | ||
307 | |||
308 | module_init(elanfreq_init); | ||
309 | module_exit(elanfreq_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/gx-suspmod.c b/arch/x86/kernel/cpu/cpufreq/gx-suspmod.c deleted file mode 100644 index ffe1f2c92ed3..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/gx-suspmod.c +++ /dev/null | |||
@@ -1,514 +0,0 @@ | |||
1 | /* | ||
2 | * Cyrix MediaGX and NatSemi Geode Suspend Modulation | ||
3 | * (C) 2002 Zwane Mwaikambo <zwane@commfireservices.com> | ||
4 | * (C) 2002 Hiroshi Miura <miura@da-cha.org> | ||
5 | * All Rights Reserved | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or | ||
8 | * modify it under the terms of the GNU General Public License | ||
9 | * version 2 as published by the Free Software Foundation | ||
10 | * | ||
11 | * The author(s) of this software shall not be held liable for damages | ||
12 | * of any nature resulting due to the use of this software. This | ||
13 | * software is provided AS-IS with no warranties. | ||
14 | * | ||
15 | * Theoretical note: | ||
16 | * | ||
17 | * (see Geode(tm) CS5530 manual (rev.4.1) page.56) | ||
18 | * | ||
19 | * CPU frequency control on NatSemi Geode GX1/GXLV processor and CS55x0 | ||
20 | * are based on Suspend Modulation. | ||
21 | * | ||
22 | * Suspend Modulation works by asserting and de-asserting the SUSP# pin | ||
23 | * to CPU(GX1/GXLV) for configurable durations. When asserting SUSP# | ||
24 | * the CPU enters an idle state. GX1 stops its core clock when SUSP# is | ||
25 | * asserted then power consumption is reduced. | ||
26 | * | ||
27 | * Suspend Modulation's OFF/ON duration are configurable | ||
28 | * with 'Suspend Modulation OFF Count Register' | ||
29 | * and 'Suspend Modulation ON Count Register'. | ||
30 | * These registers are 8bit counters that represent the number of | ||
31 | * 32us intervals which the SUSP# pin is asserted(ON)/de-asserted(OFF) | ||
32 | * to the processor. | ||
33 | * | ||
34 | * These counters define a ratio which is the effective frequency | ||
35 | * of operation of the system. | ||
36 | * | ||
37 | * OFF Count | ||
38 | * F_eff = Fgx * ---------------------- | ||
39 | * OFF Count + ON Count | ||
40 | * | ||
41 | * 0 <= On Count, Off Count <= 255 | ||
42 | * | ||
43 | * From these limits, we can get register values | ||
44 | * | ||
45 | * off_duration + on_duration <= MAX_DURATION | ||
46 | * on_duration = off_duration * (stock_freq - freq) / freq | ||
47 | * | ||
48 | * off_duration = (freq * DURATION) / stock_freq | ||
49 | * on_duration = DURATION - off_duration | ||
50 | * | ||
51 | * | ||
52 | *--------------------------------------------------------------------------- | ||
53 | * | ||
54 | * ChangeLog: | ||
55 | * Dec. 12, 2003 Hiroshi Miura <miura@da-cha.org> | ||
56 | * - fix on/off register mistake | ||
57 | * - fix cpu_khz calc when it stops cpu modulation. | ||
58 | * | ||
59 | * Dec. 11, 2002 Hiroshi Miura <miura@da-cha.org> | ||
60 | * - rewrite for Cyrix MediaGX Cx5510/5520 and | ||
61 | * NatSemi Geode Cs5530(A). | ||
62 | * | ||
63 | * Jul. ??, 2002 Zwane Mwaikambo <zwane@commfireservices.com> | ||
64 | * - cs5530_mod patch for 2.4.19-rc1. | ||
65 | * | ||
66 | *--------------------------------------------------------------------------- | ||
67 | * | ||
68 | * Todo | ||
69 | * Test on machines with 5510, 5530, 5530A | ||
70 | */ | ||
71 | |||
72 | /************************************************************************ | ||
73 | * Suspend Modulation - Definitions * | ||
74 | ************************************************************************/ | ||
75 | |||
76 | #include <linux/kernel.h> | ||
77 | #include <linux/module.h> | ||
78 | #include <linux/init.h> | ||
79 | #include <linux/smp.h> | ||
80 | #include <linux/cpufreq.h> | ||
81 | #include <linux/pci.h> | ||
82 | #include <linux/errno.h> | ||
83 | #include <linux/slab.h> | ||
84 | |||
85 | #include <asm/processor-cyrix.h> | ||
86 | |||
87 | /* PCI config registers, all at F0 */ | ||
88 | #define PCI_PMER1 0x80 /* power management enable register 1 */ | ||
89 | #define PCI_PMER2 0x81 /* power management enable register 2 */ | ||
90 | #define PCI_PMER3 0x82 /* power management enable register 3 */ | ||
91 | #define PCI_IRQTC 0x8c /* irq speedup timer counter register:typical 2 to 4ms */ | ||
92 | #define PCI_VIDTC 0x8d /* video speedup timer counter register: typical 50 to 100ms */ | ||
93 | #define PCI_MODOFF 0x94 /* suspend modulation OFF counter register, 1 = 32us */ | ||
94 | #define PCI_MODON 0x95 /* suspend modulation ON counter register */ | ||
95 | #define PCI_SUSCFG 0x96 /* suspend configuration register */ | ||
96 | |||
97 | /* PMER1 bits */ | ||
98 | #define GPM (1<<0) /* global power management */ | ||
99 | #define GIT (1<<1) /* globally enable PM device idle timers */ | ||
100 | #define GTR (1<<2) /* globally enable IO traps */ | ||
101 | #define IRQ_SPDUP (1<<3) /* disable clock throttle during interrupt handling */ | ||
102 | #define VID_SPDUP (1<<4) /* disable clock throttle during vga video handling */ | ||
103 | |||
104 | /* SUSCFG bits */ | ||
105 | #define SUSMOD (1<<0) /* enable/disable suspend modulation */ | ||
106 | /* the below is supported only with cs5530 (after rev.1.2)/cs5530A */ | ||
107 | #define SMISPDUP (1<<1) /* select how SMI re-enable suspend modulation: */ | ||
108 | /* IRQTC timer or read SMI speedup disable reg.(F1BAR[08-09h]) */ | ||
109 | #define SUSCFG (1<<2) /* enable powering down a GXLV processor. "Special 3Volt Suspend" mode */ | ||
110 | /* the below is supported only with cs5530A */ | ||
111 | #define PWRSVE_ISA (1<<3) /* stop ISA clock */ | ||
112 | #define PWRSVE (1<<4) /* active idle */ | ||
113 | |||
114 | struct gxfreq_params { | ||
115 | u8 on_duration; | ||
116 | u8 off_duration; | ||
117 | u8 pci_suscfg; | ||
118 | u8 pci_pmer1; | ||
119 | u8 pci_pmer2; | ||
120 | struct pci_dev *cs55x0; | ||
121 | }; | ||
122 | |||
123 | static struct gxfreq_params *gx_params; | ||
124 | static int stock_freq; | ||
125 | |||
126 | /* PCI bus clock - defaults to 30.000 if cpu_khz is not available */ | ||
127 | static int pci_busclk; | ||
128 | module_param(pci_busclk, int, 0444); | ||
129 | |||
130 | /* maximum duration for which the cpu may be suspended | ||
131 | * (32us * MAX_DURATION). If no parameter is given, this defaults | ||
132 | * to 255. | ||
133 | * Note that this leads to a maximum of 8 ms(!) where the CPU clock | ||
134 | * is suspended -- processing power is just 0.39% of what it used to be, | ||
135 | * though. 781.25 kHz(!) for a 200 MHz processor -- wow. */ | ||
136 | static int max_duration = 255; | ||
137 | module_param(max_duration, int, 0444); | ||
138 | |||
139 | /* For the default policy, we want at least some processing power | ||
140 | * - let's say 5%. (min = maxfreq / POLICY_MIN_DIV) | ||
141 | */ | ||
142 | #define POLICY_MIN_DIV 20 | ||
143 | |||
144 | |||
145 | /** | ||
146 | * we can detect a core multipiler from dir0_lsb | ||
147 | * from GX1 datasheet p.56, | ||
148 | * MULT[3:0]: | ||
149 | * 0000 = SYSCLK multiplied by 4 (test only) | ||
150 | * 0001 = SYSCLK multiplied by 10 | ||
151 | * 0010 = SYSCLK multiplied by 4 | ||
152 | * 0011 = SYSCLK multiplied by 6 | ||
153 | * 0100 = SYSCLK multiplied by 9 | ||
154 | * 0101 = SYSCLK multiplied by 5 | ||
155 | * 0110 = SYSCLK multiplied by 7 | ||
156 | * 0111 = SYSCLK multiplied by 8 | ||
157 | * of 33.3MHz | ||
158 | **/ | ||
159 | static int gx_freq_mult[16] = { | ||
160 | 4, 10, 4, 6, 9, 5, 7, 8, | ||
161 | 0, 0, 0, 0, 0, 0, 0, 0 | ||
162 | }; | ||
163 | |||
164 | |||
165 | /**************************************************************** | ||
166 | * Low Level chipset interface * | ||
167 | ****************************************************************/ | ||
168 | static struct pci_device_id gx_chipset_tbl[] __initdata = { | ||
169 | { PCI_VDEVICE(CYRIX, PCI_DEVICE_ID_CYRIX_5530_LEGACY), }, | ||
170 | { PCI_VDEVICE(CYRIX, PCI_DEVICE_ID_CYRIX_5520), }, | ||
171 | { PCI_VDEVICE(CYRIX, PCI_DEVICE_ID_CYRIX_5510), }, | ||
172 | { 0, }, | ||
173 | }; | ||
174 | |||
175 | static void gx_write_byte(int reg, int value) | ||
176 | { | ||
177 | pci_write_config_byte(gx_params->cs55x0, reg, value); | ||
178 | } | ||
179 | |||
180 | /** | ||
181 | * gx_detect_chipset: | ||
182 | * | ||
183 | **/ | ||
184 | static __init struct pci_dev *gx_detect_chipset(void) | ||
185 | { | ||
186 | struct pci_dev *gx_pci = NULL; | ||
187 | |||
188 | /* check if CPU is a MediaGX or a Geode. */ | ||
189 | if ((boot_cpu_data.x86_vendor != X86_VENDOR_NSC) && | ||
190 | (boot_cpu_data.x86_vendor != X86_VENDOR_CYRIX)) { | ||
191 | pr_debug("error: no MediaGX/Geode processor found!\n"); | ||
192 | return NULL; | ||
193 | } | ||
194 | |||
195 | /* detect which companion chip is used */ | ||
196 | for_each_pci_dev(gx_pci) { | ||
197 | if ((pci_match_id(gx_chipset_tbl, gx_pci)) != NULL) | ||
198 | return gx_pci; | ||
199 | } | ||
200 | |||
201 | pr_debug("error: no supported chipset found!\n"); | ||
202 | return NULL; | ||
203 | } | ||
204 | |||
205 | /** | ||
206 | * gx_get_cpuspeed: | ||
207 | * | ||
208 | * Finds out at which efficient frequency the Cyrix MediaGX/NatSemi | ||
209 | * Geode CPU runs. | ||
210 | */ | ||
211 | static unsigned int gx_get_cpuspeed(unsigned int cpu) | ||
212 | { | ||
213 | if ((gx_params->pci_suscfg & SUSMOD) == 0) | ||
214 | return stock_freq; | ||
215 | |||
216 | return (stock_freq * gx_params->off_duration) | ||
217 | / (gx_params->on_duration + gx_params->off_duration); | ||
218 | } | ||
219 | |||
220 | /** | ||
221 | * gx_validate_speed: | ||
222 | * determine current cpu speed | ||
223 | * | ||
224 | **/ | ||
225 | |||
226 | static unsigned int gx_validate_speed(unsigned int khz, u8 *on_duration, | ||
227 | u8 *off_duration) | ||
228 | { | ||
229 | unsigned int i; | ||
230 | u8 tmp_on, tmp_off; | ||
231 | int old_tmp_freq = stock_freq; | ||
232 | int tmp_freq; | ||
233 | |||
234 | *off_duration = 1; | ||
235 | *on_duration = 0; | ||
236 | |||
237 | for (i = max_duration; i > 0; i--) { | ||
238 | tmp_off = ((khz * i) / stock_freq) & 0xff; | ||
239 | tmp_on = i - tmp_off; | ||
240 | tmp_freq = (stock_freq * tmp_off) / i; | ||
241 | /* if this relation is closer to khz, use this. If it's equal, | ||
242 | * prefer it, too - lower latency */ | ||
243 | if (abs(tmp_freq - khz) <= abs(old_tmp_freq - khz)) { | ||
244 | *on_duration = tmp_on; | ||
245 | *off_duration = tmp_off; | ||
246 | old_tmp_freq = tmp_freq; | ||
247 | } | ||
248 | } | ||
249 | |||
250 | return old_tmp_freq; | ||
251 | } | ||
252 | |||
253 | |||
254 | /** | ||
255 | * gx_set_cpuspeed: | ||
256 | * set cpu speed in khz. | ||
257 | **/ | ||
258 | |||
259 | static void gx_set_cpuspeed(unsigned int khz) | ||
260 | { | ||
261 | u8 suscfg, pmer1; | ||
262 | unsigned int new_khz; | ||
263 | unsigned long flags; | ||
264 | struct cpufreq_freqs freqs; | ||
265 | |||
266 | freqs.cpu = 0; | ||
267 | freqs.old = gx_get_cpuspeed(0); | ||
268 | |||
269 | new_khz = gx_validate_speed(khz, &gx_params->on_duration, | ||
270 | &gx_params->off_duration); | ||
271 | |||
272 | freqs.new = new_khz; | ||
273 | |||
274 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
275 | local_irq_save(flags); | ||
276 | |||
277 | |||
278 | |||
279 | if (new_khz != stock_freq) { | ||
280 | /* if new khz == 100% of CPU speed, it is special case */ | ||
281 | switch (gx_params->cs55x0->device) { | ||
282 | case PCI_DEVICE_ID_CYRIX_5530_LEGACY: | ||
283 | pmer1 = gx_params->pci_pmer1 | IRQ_SPDUP | VID_SPDUP; | ||
284 | /* FIXME: need to test other values -- Zwane,Miura */ | ||
285 | /* typical 2 to 4ms */ | ||
286 | gx_write_byte(PCI_IRQTC, 4); | ||
287 | /* typical 50 to 100ms */ | ||
288 | gx_write_byte(PCI_VIDTC, 100); | ||
289 | gx_write_byte(PCI_PMER1, pmer1); | ||
290 | |||
291 | if (gx_params->cs55x0->revision < 0x10) { | ||
292 | /* CS5530(rev 1.2, 1.3) */ | ||
293 | suscfg = gx_params->pci_suscfg|SUSMOD; | ||
294 | } else { | ||
295 | /* CS5530A,B.. */ | ||
296 | suscfg = gx_params->pci_suscfg|SUSMOD|PWRSVE; | ||
297 | } | ||
298 | break; | ||
299 | case PCI_DEVICE_ID_CYRIX_5520: | ||
300 | case PCI_DEVICE_ID_CYRIX_5510: | ||
301 | suscfg = gx_params->pci_suscfg | SUSMOD; | ||
302 | break; | ||
303 | default: | ||
304 | local_irq_restore(flags); | ||
305 | pr_debug("fatal: try to set unknown chipset.\n"); | ||
306 | return; | ||
307 | } | ||
308 | } else { | ||
309 | suscfg = gx_params->pci_suscfg & ~(SUSMOD); | ||
310 | gx_params->off_duration = 0; | ||
311 | gx_params->on_duration = 0; | ||
312 | pr_debug("suspend modulation disabled: cpu runs 100%% speed.\n"); | ||
313 | } | ||
314 | |||
315 | gx_write_byte(PCI_MODOFF, gx_params->off_duration); | ||
316 | gx_write_byte(PCI_MODON, gx_params->on_duration); | ||
317 | |||
318 | gx_write_byte(PCI_SUSCFG, suscfg); | ||
319 | pci_read_config_byte(gx_params->cs55x0, PCI_SUSCFG, &suscfg); | ||
320 | |||
321 | local_irq_restore(flags); | ||
322 | |||
323 | gx_params->pci_suscfg = suscfg; | ||
324 | |||
325 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
326 | |||
327 | pr_debug("suspend modulation w/ duration of ON:%d us, OFF:%d us\n", | ||
328 | gx_params->on_duration * 32, gx_params->off_duration * 32); | ||
329 | pr_debug("suspend modulation w/ clock speed: %d kHz.\n", freqs.new); | ||
330 | } | ||
331 | |||
332 | /**************************************************************** | ||
333 | * High level functions * | ||
334 | ****************************************************************/ | ||
335 | |||
336 | /* | ||
337 | * cpufreq_gx_verify: test if frequency range is valid | ||
338 | * | ||
339 | * This function checks if a given frequency range in kHz is valid | ||
340 | * for the hardware supported by the driver. | ||
341 | */ | ||
342 | |||
343 | static int cpufreq_gx_verify(struct cpufreq_policy *policy) | ||
344 | { | ||
345 | unsigned int tmp_freq = 0; | ||
346 | u8 tmp1, tmp2; | ||
347 | |||
348 | if (!stock_freq || !policy) | ||
349 | return -EINVAL; | ||
350 | |||
351 | policy->cpu = 0; | ||
352 | cpufreq_verify_within_limits(policy, (stock_freq / max_duration), | ||
353 | stock_freq); | ||
354 | |||
355 | /* it needs to be assured that at least one supported frequency is | ||
356 | * within policy->min and policy->max. If it is not, policy->max | ||
357 | * needs to be increased until one freuqency is supported. | ||
358 | * policy->min may not be decreased, though. This way we guarantee a | ||
359 | * specific processing capacity. | ||
360 | */ | ||
361 | tmp_freq = gx_validate_speed(policy->min, &tmp1, &tmp2); | ||
362 | if (tmp_freq < policy->min) | ||
363 | tmp_freq += stock_freq / max_duration; | ||
364 | policy->min = tmp_freq; | ||
365 | if (policy->min > policy->max) | ||
366 | policy->max = tmp_freq; | ||
367 | tmp_freq = gx_validate_speed(policy->max, &tmp1, &tmp2); | ||
368 | if (tmp_freq > policy->max) | ||
369 | tmp_freq -= stock_freq / max_duration; | ||
370 | policy->max = tmp_freq; | ||
371 | if (policy->max < policy->min) | ||
372 | policy->max = policy->min; | ||
373 | cpufreq_verify_within_limits(policy, (stock_freq / max_duration), | ||
374 | stock_freq); | ||
375 | |||
376 | return 0; | ||
377 | } | ||
378 | |||
379 | /* | ||
380 | * cpufreq_gx_target: | ||
381 | * | ||
382 | */ | ||
383 | static int cpufreq_gx_target(struct cpufreq_policy *policy, | ||
384 | unsigned int target_freq, | ||
385 | unsigned int relation) | ||
386 | { | ||
387 | u8 tmp1, tmp2; | ||
388 | unsigned int tmp_freq; | ||
389 | |||
390 | if (!stock_freq || !policy) | ||
391 | return -EINVAL; | ||
392 | |||
393 | policy->cpu = 0; | ||
394 | |||
395 | tmp_freq = gx_validate_speed(target_freq, &tmp1, &tmp2); | ||
396 | while (tmp_freq < policy->min) { | ||
397 | tmp_freq += stock_freq / max_duration; | ||
398 | tmp_freq = gx_validate_speed(tmp_freq, &tmp1, &tmp2); | ||
399 | } | ||
400 | while (tmp_freq > policy->max) { | ||
401 | tmp_freq -= stock_freq / max_duration; | ||
402 | tmp_freq = gx_validate_speed(tmp_freq, &tmp1, &tmp2); | ||
403 | } | ||
404 | |||
405 | gx_set_cpuspeed(tmp_freq); | ||
406 | |||
407 | return 0; | ||
408 | } | ||
409 | |||
410 | static int cpufreq_gx_cpu_init(struct cpufreq_policy *policy) | ||
411 | { | ||
412 | unsigned int maxfreq, curfreq; | ||
413 | |||
414 | if (!policy || policy->cpu != 0) | ||
415 | return -ENODEV; | ||
416 | |||
417 | /* determine maximum frequency */ | ||
418 | if (pci_busclk) | ||
419 | maxfreq = pci_busclk * gx_freq_mult[getCx86(CX86_DIR1) & 0x0f]; | ||
420 | else if (cpu_khz) | ||
421 | maxfreq = cpu_khz; | ||
422 | else | ||
423 | maxfreq = 30000 * gx_freq_mult[getCx86(CX86_DIR1) & 0x0f]; | ||
424 | |||
425 | stock_freq = maxfreq; | ||
426 | curfreq = gx_get_cpuspeed(0); | ||
427 | |||
428 | pr_debug("cpu max frequency is %d.\n", maxfreq); | ||
429 | pr_debug("cpu current frequency is %dkHz.\n", curfreq); | ||
430 | |||
431 | /* setup basic struct for cpufreq API */ | ||
432 | policy->cpu = 0; | ||
433 | |||
434 | if (max_duration < POLICY_MIN_DIV) | ||
435 | policy->min = maxfreq / max_duration; | ||
436 | else | ||
437 | policy->min = maxfreq / POLICY_MIN_DIV; | ||
438 | policy->max = maxfreq; | ||
439 | policy->cur = curfreq; | ||
440 | policy->cpuinfo.min_freq = maxfreq / max_duration; | ||
441 | policy->cpuinfo.max_freq = maxfreq; | ||
442 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
443 | |||
444 | return 0; | ||
445 | } | ||
446 | |||
447 | /* | ||
448 | * cpufreq_gx_init: | ||
449 | * MediaGX/Geode GX initialize cpufreq driver | ||
450 | */ | ||
451 | static struct cpufreq_driver gx_suspmod_driver = { | ||
452 | .get = gx_get_cpuspeed, | ||
453 | .verify = cpufreq_gx_verify, | ||
454 | .target = cpufreq_gx_target, | ||
455 | .init = cpufreq_gx_cpu_init, | ||
456 | .name = "gx-suspmod", | ||
457 | .owner = THIS_MODULE, | ||
458 | }; | ||
459 | |||
460 | static int __init cpufreq_gx_init(void) | ||
461 | { | ||
462 | int ret; | ||
463 | struct gxfreq_params *params; | ||
464 | struct pci_dev *gx_pci; | ||
465 | |||
466 | /* Test if we have the right hardware */ | ||
467 | gx_pci = gx_detect_chipset(); | ||
468 | if (gx_pci == NULL) | ||
469 | return -ENODEV; | ||
470 | |||
471 | /* check whether module parameters are sane */ | ||
472 | if (max_duration > 0xff) | ||
473 | max_duration = 0xff; | ||
474 | |||
475 | pr_debug("geode suspend modulation available.\n"); | ||
476 | |||
477 | params = kzalloc(sizeof(struct gxfreq_params), GFP_KERNEL); | ||
478 | if (params == NULL) | ||
479 | return -ENOMEM; | ||
480 | |||
481 | params->cs55x0 = gx_pci; | ||
482 | gx_params = params; | ||
483 | |||
484 | /* keep cs55x0 configurations */ | ||
485 | pci_read_config_byte(params->cs55x0, PCI_SUSCFG, &(params->pci_suscfg)); | ||
486 | pci_read_config_byte(params->cs55x0, PCI_PMER1, &(params->pci_pmer1)); | ||
487 | pci_read_config_byte(params->cs55x0, PCI_PMER2, &(params->pci_pmer2)); | ||
488 | pci_read_config_byte(params->cs55x0, PCI_MODON, &(params->on_duration)); | ||
489 | pci_read_config_byte(params->cs55x0, PCI_MODOFF, | ||
490 | &(params->off_duration)); | ||
491 | |||
492 | ret = cpufreq_register_driver(&gx_suspmod_driver); | ||
493 | if (ret) { | ||
494 | kfree(params); | ||
495 | return ret; /* register error! */ | ||
496 | } | ||
497 | |||
498 | return 0; | ||
499 | } | ||
500 | |||
501 | static void __exit cpufreq_gx_exit(void) | ||
502 | { | ||
503 | cpufreq_unregister_driver(&gx_suspmod_driver); | ||
504 | pci_dev_put(gx_params->cs55x0); | ||
505 | kfree(gx_params); | ||
506 | } | ||
507 | |||
508 | MODULE_AUTHOR("Hiroshi Miura <miura@da-cha.org>"); | ||
509 | MODULE_DESCRIPTION("Cpufreq driver for Cyrix MediaGX and NatSemi Geode"); | ||
510 | MODULE_LICENSE("GPL"); | ||
511 | |||
512 | module_init(cpufreq_gx_init); | ||
513 | module_exit(cpufreq_gx_exit); | ||
514 | |||
diff --git a/arch/x86/kernel/cpu/cpufreq/longhaul.c b/arch/x86/kernel/cpu/cpufreq/longhaul.c deleted file mode 100644 index f47d26e2a135..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/longhaul.c +++ /dev/null | |||
@@ -1,1024 +0,0 @@ | |||
1 | /* | ||
2 | * (C) 2001-2004 Dave Jones. <davej@redhat.com> | ||
3 | * (C) 2002 Padraig Brady. <padraig@antefacto.com> | ||
4 | * | ||
5 | * Licensed under the terms of the GNU GPL License version 2. | ||
6 | * Based upon datasheets & sample CPUs kindly provided by VIA. | ||
7 | * | ||
8 | * VIA have currently 3 different versions of Longhaul. | ||
9 | * Version 1 (Longhaul) uses the BCR2 MSR at 0x1147. | ||
10 | * It is present only in Samuel 1 (C5A), Samuel 2 (C5B) stepping 0. | ||
11 | * Version 2 of longhaul is backward compatible with v1, but adds | ||
12 | * LONGHAUL MSR for purpose of both frequency and voltage scaling. | ||
13 | * Present in Samuel 2 (steppings 1-7 only) (C5B), and Ezra (C5C). | ||
14 | * Version 3 of longhaul got renamed to Powersaver and redesigned | ||
15 | * to use only the POWERSAVER MSR at 0x110a. | ||
16 | * It is present in Ezra-T (C5M), Nehemiah (C5X) and above. | ||
17 | * It's pretty much the same feature wise to longhaul v2, though | ||
18 | * there is provision for scaling FSB too, but this doesn't work | ||
19 | * too well in practice so we don't even try to use this. | ||
20 | * | ||
21 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
22 | */ | ||
23 | |||
24 | #include <linux/kernel.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/moduleparam.h> | ||
27 | #include <linux/init.h> | ||
28 | #include <linux/cpufreq.h> | ||
29 | #include <linux/pci.h> | ||
30 | #include <linux/slab.h> | ||
31 | #include <linux/string.h> | ||
32 | #include <linux/delay.h> | ||
33 | #include <linux/timex.h> | ||
34 | #include <linux/io.h> | ||
35 | #include <linux/acpi.h> | ||
36 | |||
37 | #include <asm/msr.h> | ||
38 | #include <acpi/processor.h> | ||
39 | |||
40 | #include "longhaul.h" | ||
41 | |||
42 | #define PFX "longhaul: " | ||
43 | |||
44 | #define TYPE_LONGHAUL_V1 1 | ||
45 | #define TYPE_LONGHAUL_V2 2 | ||
46 | #define TYPE_POWERSAVER 3 | ||
47 | |||
48 | #define CPU_SAMUEL 1 | ||
49 | #define CPU_SAMUEL2 2 | ||
50 | #define CPU_EZRA 3 | ||
51 | #define CPU_EZRA_T 4 | ||
52 | #define CPU_NEHEMIAH 5 | ||
53 | #define CPU_NEHEMIAH_C 6 | ||
54 | |||
55 | /* Flags */ | ||
56 | #define USE_ACPI_C3 (1 << 1) | ||
57 | #define USE_NORTHBRIDGE (1 << 2) | ||
58 | |||
59 | static int cpu_model; | ||
60 | static unsigned int numscales = 16; | ||
61 | static unsigned int fsb; | ||
62 | |||
63 | static const struct mV_pos *vrm_mV_table; | ||
64 | static const unsigned char *mV_vrm_table; | ||
65 | |||
66 | static unsigned int highest_speed, lowest_speed; /* kHz */ | ||
67 | static unsigned int minmult, maxmult; | ||
68 | static int can_scale_voltage; | ||
69 | static struct acpi_processor *pr; | ||
70 | static struct acpi_processor_cx *cx; | ||
71 | static u32 acpi_regs_addr; | ||
72 | static u8 longhaul_flags; | ||
73 | static unsigned int longhaul_index; | ||
74 | |||
75 | /* Module parameters */ | ||
76 | static int scale_voltage; | ||
77 | static int disable_acpi_c3; | ||
78 | static int revid_errata; | ||
79 | |||
80 | |||
81 | /* Clock ratios multiplied by 10 */ | ||
82 | static int mults[32]; | ||
83 | static int eblcr[32]; | ||
84 | static int longhaul_version; | ||
85 | static struct cpufreq_frequency_table *longhaul_table; | ||
86 | |||
87 | static char speedbuffer[8]; | ||
88 | |||
89 | static char *print_speed(int speed) | ||
90 | { | ||
91 | if (speed < 1000) { | ||
92 | snprintf(speedbuffer, sizeof(speedbuffer), "%dMHz", speed); | ||
93 | return speedbuffer; | ||
94 | } | ||
95 | |||
96 | if (speed%1000 == 0) | ||
97 | snprintf(speedbuffer, sizeof(speedbuffer), | ||
98 | "%dGHz", speed/1000); | ||
99 | else | ||
100 | snprintf(speedbuffer, sizeof(speedbuffer), | ||
101 | "%d.%dGHz", speed/1000, (speed%1000)/100); | ||
102 | |||
103 | return speedbuffer; | ||
104 | } | ||
105 | |||
106 | |||
107 | static unsigned int calc_speed(int mult) | ||
108 | { | ||
109 | int khz; | ||
110 | khz = (mult/10)*fsb; | ||
111 | if (mult%10) | ||
112 | khz += fsb/2; | ||
113 | khz *= 1000; | ||
114 | return khz; | ||
115 | } | ||
116 | |||
117 | |||
118 | static int longhaul_get_cpu_mult(void) | ||
119 | { | ||
120 | unsigned long invalue = 0, lo, hi; | ||
121 | |||
122 | rdmsr(MSR_IA32_EBL_CR_POWERON, lo, hi); | ||
123 | invalue = (lo & (1<<22|1<<23|1<<24|1<<25))>>22; | ||
124 | if (longhaul_version == TYPE_LONGHAUL_V2 || | ||
125 | longhaul_version == TYPE_POWERSAVER) { | ||
126 | if (lo & (1<<27)) | ||
127 | invalue += 16; | ||
128 | } | ||
129 | return eblcr[invalue]; | ||
130 | } | ||
131 | |||
132 | /* For processor with BCR2 MSR */ | ||
133 | |||
134 | static void do_longhaul1(unsigned int mults_index) | ||
135 | { | ||
136 | union msr_bcr2 bcr2; | ||
137 | |||
138 | rdmsrl(MSR_VIA_BCR2, bcr2.val); | ||
139 | /* Enable software clock multiplier */ | ||
140 | bcr2.bits.ESOFTBF = 1; | ||
141 | bcr2.bits.CLOCKMUL = mults_index & 0xff; | ||
142 | |||
143 | /* Sync to timer tick */ | ||
144 | safe_halt(); | ||
145 | /* Change frequency on next halt or sleep */ | ||
146 | wrmsrl(MSR_VIA_BCR2, bcr2.val); | ||
147 | /* Invoke transition */ | ||
148 | ACPI_FLUSH_CPU_CACHE(); | ||
149 | halt(); | ||
150 | |||
151 | /* Disable software clock multiplier */ | ||
152 | local_irq_disable(); | ||
153 | rdmsrl(MSR_VIA_BCR2, bcr2.val); | ||
154 | bcr2.bits.ESOFTBF = 0; | ||
155 | wrmsrl(MSR_VIA_BCR2, bcr2.val); | ||
156 | } | ||
157 | |||
158 | /* For processor with Longhaul MSR */ | ||
159 | |||
160 | static void do_powersaver(int cx_address, unsigned int mults_index, | ||
161 | unsigned int dir) | ||
162 | { | ||
163 | union msr_longhaul longhaul; | ||
164 | u32 t; | ||
165 | |||
166 | rdmsrl(MSR_VIA_LONGHAUL, longhaul.val); | ||
167 | /* Setup new frequency */ | ||
168 | if (!revid_errata) | ||
169 | longhaul.bits.RevisionKey = longhaul.bits.RevisionID; | ||
170 | else | ||
171 | longhaul.bits.RevisionKey = 0; | ||
172 | longhaul.bits.SoftBusRatio = mults_index & 0xf; | ||
173 | longhaul.bits.SoftBusRatio4 = (mults_index & 0x10) >> 4; | ||
174 | /* Setup new voltage */ | ||
175 | if (can_scale_voltage) | ||
176 | longhaul.bits.SoftVID = (mults_index >> 8) & 0x1f; | ||
177 | /* Sync to timer tick */ | ||
178 | safe_halt(); | ||
179 | /* Raise voltage if necessary */ | ||
180 | if (can_scale_voltage && dir) { | ||
181 | longhaul.bits.EnableSoftVID = 1; | ||
182 | wrmsrl(MSR_VIA_LONGHAUL, longhaul.val); | ||
183 | /* Change voltage */ | ||
184 | if (!cx_address) { | ||
185 | ACPI_FLUSH_CPU_CACHE(); | ||
186 | halt(); | ||
187 | } else { | ||
188 | ACPI_FLUSH_CPU_CACHE(); | ||
189 | /* Invoke C3 */ | ||
190 | inb(cx_address); | ||
191 | /* Dummy op - must do something useless after P_LVL3 | ||
192 | * read */ | ||
193 | t = inl(acpi_gbl_FADT.xpm_timer_block.address); | ||
194 | } | ||
195 | longhaul.bits.EnableSoftVID = 0; | ||
196 | wrmsrl(MSR_VIA_LONGHAUL, longhaul.val); | ||
197 | } | ||
198 | |||
199 | /* Change frequency on next halt or sleep */ | ||
200 | longhaul.bits.EnableSoftBusRatio = 1; | ||
201 | wrmsrl(MSR_VIA_LONGHAUL, longhaul.val); | ||
202 | if (!cx_address) { | ||
203 | ACPI_FLUSH_CPU_CACHE(); | ||
204 | halt(); | ||
205 | } else { | ||
206 | ACPI_FLUSH_CPU_CACHE(); | ||
207 | /* Invoke C3 */ | ||
208 | inb(cx_address); | ||
209 | /* Dummy op - must do something useless after P_LVL3 read */ | ||
210 | t = inl(acpi_gbl_FADT.xpm_timer_block.address); | ||
211 | } | ||
212 | /* Disable bus ratio bit */ | ||
213 | longhaul.bits.EnableSoftBusRatio = 0; | ||
214 | wrmsrl(MSR_VIA_LONGHAUL, longhaul.val); | ||
215 | |||
216 | /* Reduce voltage if necessary */ | ||
217 | if (can_scale_voltage && !dir) { | ||
218 | longhaul.bits.EnableSoftVID = 1; | ||
219 | wrmsrl(MSR_VIA_LONGHAUL, longhaul.val); | ||
220 | /* Change voltage */ | ||
221 | if (!cx_address) { | ||
222 | ACPI_FLUSH_CPU_CACHE(); | ||
223 | halt(); | ||
224 | } else { | ||
225 | ACPI_FLUSH_CPU_CACHE(); | ||
226 | /* Invoke C3 */ | ||
227 | inb(cx_address); | ||
228 | /* Dummy op - must do something useless after P_LVL3 | ||
229 | * read */ | ||
230 | t = inl(acpi_gbl_FADT.xpm_timer_block.address); | ||
231 | } | ||
232 | longhaul.bits.EnableSoftVID = 0; | ||
233 | wrmsrl(MSR_VIA_LONGHAUL, longhaul.val); | ||
234 | } | ||
235 | } | ||
236 | |||
237 | /** | ||
238 | * longhaul_set_cpu_frequency() | ||
239 | * @mults_index : bitpattern of the new multiplier. | ||
240 | * | ||
241 | * Sets a new clock ratio. | ||
242 | */ | ||
243 | |||
244 | static void longhaul_setstate(unsigned int table_index) | ||
245 | { | ||
246 | unsigned int mults_index; | ||
247 | int speed, mult; | ||
248 | struct cpufreq_freqs freqs; | ||
249 | unsigned long flags; | ||
250 | unsigned int pic1_mask, pic2_mask; | ||
251 | u16 bm_status = 0; | ||
252 | u32 bm_timeout = 1000; | ||
253 | unsigned int dir = 0; | ||
254 | |||
255 | mults_index = longhaul_table[table_index].index; | ||
256 | /* Safety precautions */ | ||
257 | mult = mults[mults_index & 0x1f]; | ||
258 | if (mult == -1) | ||
259 | return; | ||
260 | speed = calc_speed(mult); | ||
261 | if ((speed > highest_speed) || (speed < lowest_speed)) | ||
262 | return; | ||
263 | /* Voltage transition before frequency transition? */ | ||
264 | if (can_scale_voltage && longhaul_index < table_index) | ||
265 | dir = 1; | ||
266 | |||
267 | freqs.old = calc_speed(longhaul_get_cpu_mult()); | ||
268 | freqs.new = speed; | ||
269 | freqs.cpu = 0; /* longhaul.c is UP only driver */ | ||
270 | |||
271 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
272 | |||
273 | pr_debug("Setting to FSB:%dMHz Mult:%d.%dx (%s)\n", | ||
274 | fsb, mult/10, mult%10, print_speed(speed/1000)); | ||
275 | retry_loop: | ||
276 | preempt_disable(); | ||
277 | local_irq_save(flags); | ||
278 | |||
279 | pic2_mask = inb(0xA1); | ||
280 | pic1_mask = inb(0x21); /* works on C3. save mask. */ | ||
281 | outb(0xFF, 0xA1); /* Overkill */ | ||
282 | outb(0xFE, 0x21); /* TMR0 only */ | ||
283 | |||
284 | /* Wait while PCI bus is busy. */ | ||
285 | if (acpi_regs_addr && (longhaul_flags & USE_NORTHBRIDGE | ||
286 | || ((pr != NULL) && pr->flags.bm_control))) { | ||
287 | bm_status = inw(acpi_regs_addr); | ||
288 | bm_status &= 1 << 4; | ||
289 | while (bm_status && bm_timeout) { | ||
290 | outw(1 << 4, acpi_regs_addr); | ||
291 | bm_timeout--; | ||
292 | bm_status = inw(acpi_regs_addr); | ||
293 | bm_status &= 1 << 4; | ||
294 | } | ||
295 | } | ||
296 | |||
297 | if (longhaul_flags & USE_NORTHBRIDGE) { | ||
298 | /* Disable AGP and PCI arbiters */ | ||
299 | outb(3, 0x22); | ||
300 | } else if ((pr != NULL) && pr->flags.bm_control) { | ||
301 | /* Disable bus master arbitration */ | ||
302 | acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); | ||
303 | } | ||
304 | switch (longhaul_version) { | ||
305 | |||
306 | /* | ||
307 | * Longhaul v1. (Samuel[C5A] and Samuel2 stepping 0[C5B]) | ||
308 | * Software controlled multipliers only. | ||
309 | */ | ||
310 | case TYPE_LONGHAUL_V1: | ||
311 | do_longhaul1(mults_index); | ||
312 | break; | ||
313 | |||
314 | /* | ||
315 | * Longhaul v2 appears in Samuel2 Steppings 1->7 [C5B] and Ezra [C5C] | ||
316 | * | ||
317 | * Longhaul v3 (aka Powersaver). (Ezra-T [C5M] & Nehemiah [C5N]) | ||
318 | * Nehemiah can do FSB scaling too, but this has never been proven | ||
319 | * to work in practice. | ||
320 | */ | ||
321 | case TYPE_LONGHAUL_V2: | ||
322 | case TYPE_POWERSAVER: | ||
323 | if (longhaul_flags & USE_ACPI_C3) { | ||
324 | /* Don't allow wakeup */ | ||
325 | acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 0); | ||
326 | do_powersaver(cx->address, mults_index, dir); | ||
327 | } else { | ||
328 | do_powersaver(0, mults_index, dir); | ||
329 | } | ||
330 | break; | ||
331 | } | ||
332 | |||
333 | if (longhaul_flags & USE_NORTHBRIDGE) { | ||
334 | /* Enable arbiters */ | ||
335 | outb(0, 0x22); | ||
336 | } else if ((pr != NULL) && pr->flags.bm_control) { | ||
337 | /* Enable bus master arbitration */ | ||
338 | acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); | ||
339 | } | ||
340 | outb(pic2_mask, 0xA1); /* restore mask */ | ||
341 | outb(pic1_mask, 0x21); | ||
342 | |||
343 | local_irq_restore(flags); | ||
344 | preempt_enable(); | ||
345 | |||
346 | freqs.new = calc_speed(longhaul_get_cpu_mult()); | ||
347 | /* Check if requested frequency is set. */ | ||
348 | if (unlikely(freqs.new != speed)) { | ||
349 | printk(KERN_INFO PFX "Failed to set requested frequency!\n"); | ||
350 | /* Revision ID = 1 but processor is expecting revision key | ||
351 | * equal to 0. Jumpers at the bottom of processor will change | ||
352 | * multiplier and FSB, but will not change bits in Longhaul | ||
353 | * MSR nor enable voltage scaling. */ | ||
354 | if (!revid_errata) { | ||
355 | printk(KERN_INFO PFX "Enabling \"Ignore Revision ID\" " | ||
356 | "option.\n"); | ||
357 | revid_errata = 1; | ||
358 | msleep(200); | ||
359 | goto retry_loop; | ||
360 | } | ||
361 | /* Why ACPI C3 sometimes doesn't work is a mystery for me. | ||
362 | * But it does happen. Processor is entering ACPI C3 state, | ||
363 | * but it doesn't change frequency. I tried poking various | ||
364 | * bits in northbridge registers, but without success. */ | ||
365 | if (longhaul_flags & USE_ACPI_C3) { | ||
366 | printk(KERN_INFO PFX "Disabling ACPI C3 support.\n"); | ||
367 | longhaul_flags &= ~USE_ACPI_C3; | ||
368 | if (revid_errata) { | ||
369 | printk(KERN_INFO PFX "Disabling \"Ignore " | ||
370 | "Revision ID\" option.\n"); | ||
371 | revid_errata = 0; | ||
372 | } | ||
373 | msleep(200); | ||
374 | goto retry_loop; | ||
375 | } | ||
376 | /* This shouldn't happen. Longhaul ver. 2 was reported not | ||
377 | * working on processors without voltage scaling, but with | ||
378 | * RevID = 1. RevID errata will make things right. Just | ||
379 | * to be 100% sure. */ | ||
380 | if (longhaul_version == TYPE_LONGHAUL_V2) { | ||
381 | printk(KERN_INFO PFX "Switching to Longhaul ver. 1\n"); | ||
382 | longhaul_version = TYPE_LONGHAUL_V1; | ||
383 | msleep(200); | ||
384 | goto retry_loop; | ||
385 | } | ||
386 | } | ||
387 | /* Report true CPU frequency */ | ||
388 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
389 | |||
390 | if (!bm_timeout) | ||
391 | printk(KERN_INFO PFX "Warning: Timeout while waiting for " | ||
392 | "idle PCI bus.\n"); | ||
393 | } | ||
394 | |||
395 | /* | ||
396 | * Centaur decided to make life a little more tricky. | ||
397 | * Only longhaul v1 is allowed to read EBLCR BSEL[0:1]. | ||
398 | * Samuel2 and above have to try and guess what the FSB is. | ||
399 | * We do this by assuming we booted at maximum multiplier, and interpolate | ||
400 | * between that value multiplied by possible FSBs and cpu_mhz which | ||
401 | * was calculated at boot time. Really ugly, but no other way to do this. | ||
402 | */ | ||
403 | |||
404 | #define ROUNDING 0xf | ||
405 | |||
406 | static int guess_fsb(int mult) | ||
407 | { | ||
408 | int speed = cpu_khz / 1000; | ||
409 | int i; | ||
410 | int speeds[] = { 666, 1000, 1333, 2000 }; | ||
411 | int f_max, f_min; | ||
412 | |||
413 | for (i = 0; i < 4; i++) { | ||
414 | f_max = ((speeds[i] * mult) + 50) / 100; | ||
415 | f_max += (ROUNDING / 2); | ||
416 | f_min = f_max - ROUNDING; | ||
417 | if ((speed <= f_max) && (speed >= f_min)) | ||
418 | return speeds[i] / 10; | ||
419 | } | ||
420 | return 0; | ||
421 | } | ||
422 | |||
423 | |||
424 | static int __cpuinit longhaul_get_ranges(void) | ||
425 | { | ||
426 | unsigned int i, j, k = 0; | ||
427 | unsigned int ratio; | ||
428 | int mult; | ||
429 | |||
430 | /* Get current frequency */ | ||
431 | mult = longhaul_get_cpu_mult(); | ||
432 | if (mult == -1) { | ||
433 | printk(KERN_INFO PFX "Invalid (reserved) multiplier!\n"); | ||
434 | return -EINVAL; | ||
435 | } | ||
436 | fsb = guess_fsb(mult); | ||
437 | if (fsb == 0) { | ||
438 | printk(KERN_INFO PFX "Invalid (reserved) FSB!\n"); | ||
439 | return -EINVAL; | ||
440 | } | ||
441 | /* Get max multiplier - as we always did. | ||
442 | * Longhaul MSR is useful only when voltage scaling is enabled. | ||
443 | * C3 is booting at max anyway. */ | ||
444 | maxmult = mult; | ||
445 | /* Get min multiplier */ | ||
446 | switch (cpu_model) { | ||
447 | case CPU_NEHEMIAH: | ||
448 | minmult = 50; | ||
449 | break; | ||
450 | case CPU_NEHEMIAH_C: | ||
451 | minmult = 40; | ||
452 | break; | ||
453 | default: | ||
454 | minmult = 30; | ||
455 | break; | ||
456 | } | ||
457 | |||
458 | pr_debug("MinMult:%d.%dx MaxMult:%d.%dx\n", | ||
459 | minmult/10, minmult%10, maxmult/10, maxmult%10); | ||
460 | |||
461 | highest_speed = calc_speed(maxmult); | ||
462 | lowest_speed = calc_speed(minmult); | ||
463 | pr_debug("FSB:%dMHz Lowest speed: %s Highest speed:%s\n", fsb, | ||
464 | print_speed(lowest_speed/1000), | ||
465 | print_speed(highest_speed/1000)); | ||
466 | |||
467 | if (lowest_speed == highest_speed) { | ||
468 | printk(KERN_INFO PFX "highestspeed == lowest, aborting.\n"); | ||
469 | return -EINVAL; | ||
470 | } | ||
471 | if (lowest_speed > highest_speed) { | ||
472 | printk(KERN_INFO PFX "nonsense! lowest (%d > %d) !\n", | ||
473 | lowest_speed, highest_speed); | ||
474 | return -EINVAL; | ||
475 | } | ||
476 | |||
477 | longhaul_table = kmalloc((numscales + 1) * sizeof(*longhaul_table), | ||
478 | GFP_KERNEL); | ||
479 | if (!longhaul_table) | ||
480 | return -ENOMEM; | ||
481 | |||
482 | for (j = 0; j < numscales; j++) { | ||
483 | ratio = mults[j]; | ||
484 | if (ratio == -1) | ||
485 | continue; | ||
486 | if (ratio > maxmult || ratio < minmult) | ||
487 | continue; | ||
488 | longhaul_table[k].frequency = calc_speed(ratio); | ||
489 | longhaul_table[k].index = j; | ||
490 | k++; | ||
491 | } | ||
492 | if (k <= 1) { | ||
493 | kfree(longhaul_table); | ||
494 | return -ENODEV; | ||
495 | } | ||
496 | /* Sort */ | ||
497 | for (j = 0; j < k - 1; j++) { | ||
498 | unsigned int min_f, min_i; | ||
499 | min_f = longhaul_table[j].frequency; | ||
500 | min_i = j; | ||
501 | for (i = j + 1; i < k; i++) { | ||
502 | if (longhaul_table[i].frequency < min_f) { | ||
503 | min_f = longhaul_table[i].frequency; | ||
504 | min_i = i; | ||
505 | } | ||
506 | } | ||
507 | if (min_i != j) { | ||
508 | swap(longhaul_table[j].frequency, | ||
509 | longhaul_table[min_i].frequency); | ||
510 | swap(longhaul_table[j].index, | ||
511 | longhaul_table[min_i].index); | ||
512 | } | ||
513 | } | ||
514 | |||
515 | longhaul_table[k].frequency = CPUFREQ_TABLE_END; | ||
516 | |||
517 | /* Find index we are running on */ | ||
518 | for (j = 0; j < k; j++) { | ||
519 | if (mults[longhaul_table[j].index & 0x1f] == mult) { | ||
520 | longhaul_index = j; | ||
521 | break; | ||
522 | } | ||
523 | } | ||
524 | return 0; | ||
525 | } | ||
526 | |||
527 | |||
528 | static void __cpuinit longhaul_setup_voltagescaling(void) | ||
529 | { | ||
530 | union msr_longhaul longhaul; | ||
531 | struct mV_pos minvid, maxvid, vid; | ||
532 | unsigned int j, speed, pos, kHz_step, numvscales; | ||
533 | int min_vid_speed; | ||
534 | |||
535 | rdmsrl(MSR_VIA_LONGHAUL, longhaul.val); | ||
536 | if (!(longhaul.bits.RevisionID & 1)) { | ||
537 | printk(KERN_INFO PFX "Voltage scaling not supported by CPU.\n"); | ||
538 | return; | ||
539 | } | ||
540 | |||
541 | if (!longhaul.bits.VRMRev) { | ||
542 | printk(KERN_INFO PFX "VRM 8.5\n"); | ||
543 | vrm_mV_table = &vrm85_mV[0]; | ||
544 | mV_vrm_table = &mV_vrm85[0]; | ||
545 | } else { | ||
546 | printk(KERN_INFO PFX "Mobile VRM\n"); | ||
547 | if (cpu_model < CPU_NEHEMIAH) | ||
548 | return; | ||
549 | vrm_mV_table = &mobilevrm_mV[0]; | ||
550 | mV_vrm_table = &mV_mobilevrm[0]; | ||
551 | } | ||
552 | |||
553 | minvid = vrm_mV_table[longhaul.bits.MinimumVID]; | ||
554 | maxvid = vrm_mV_table[longhaul.bits.MaximumVID]; | ||
555 | |||
556 | if (minvid.mV == 0 || maxvid.mV == 0 || minvid.mV > maxvid.mV) { | ||
557 | printk(KERN_INFO PFX "Bogus values Min:%d.%03d Max:%d.%03d. " | ||
558 | "Voltage scaling disabled.\n", | ||
559 | minvid.mV/1000, minvid.mV%1000, | ||
560 | maxvid.mV/1000, maxvid.mV%1000); | ||
561 | return; | ||
562 | } | ||
563 | |||
564 | if (minvid.mV == maxvid.mV) { | ||
565 | printk(KERN_INFO PFX "Claims to support voltage scaling but " | ||
566 | "min & max are both %d.%03d. " | ||
567 | "Voltage scaling disabled\n", | ||
568 | maxvid.mV/1000, maxvid.mV%1000); | ||
569 | return; | ||
570 | } | ||
571 | |||
572 | /* How many voltage steps*/ | ||
573 | numvscales = maxvid.pos - minvid.pos + 1; | ||
574 | printk(KERN_INFO PFX | ||
575 | "Max VID=%d.%03d " | ||
576 | "Min VID=%d.%03d, " | ||
577 | "%d possible voltage scales\n", | ||
578 | maxvid.mV/1000, maxvid.mV%1000, | ||
579 | minvid.mV/1000, minvid.mV%1000, | ||
580 | numvscales); | ||
581 | |||
582 | /* Calculate max frequency at min voltage */ | ||
583 | j = longhaul.bits.MinMHzBR; | ||
584 | if (longhaul.bits.MinMHzBR4) | ||
585 | j += 16; | ||
586 | min_vid_speed = eblcr[j]; | ||
587 | if (min_vid_speed == -1) | ||
588 | return; | ||
589 | switch (longhaul.bits.MinMHzFSB) { | ||
590 | case 0: | ||
591 | min_vid_speed *= 13333; | ||
592 | break; | ||
593 | case 1: | ||
594 | min_vid_speed *= 10000; | ||
595 | break; | ||
596 | case 3: | ||
597 | min_vid_speed *= 6666; | ||
598 | break; | ||
599 | default: | ||
600 | return; | ||
601 | break; | ||
602 | } | ||
603 | if (min_vid_speed >= highest_speed) | ||
604 | return; | ||
605 | /* Calculate kHz for one voltage step */ | ||
606 | kHz_step = (highest_speed - min_vid_speed) / numvscales; | ||
607 | |||
608 | j = 0; | ||
609 | while (longhaul_table[j].frequency != CPUFREQ_TABLE_END) { | ||
610 | speed = longhaul_table[j].frequency; | ||
611 | if (speed > min_vid_speed) | ||
612 | pos = (speed - min_vid_speed) / kHz_step + minvid.pos; | ||
613 | else | ||
614 | pos = minvid.pos; | ||
615 | longhaul_table[j].index |= mV_vrm_table[pos] << 8; | ||
616 | vid = vrm_mV_table[mV_vrm_table[pos]]; | ||
617 | printk(KERN_INFO PFX "f: %d kHz, index: %d, vid: %d mV\n", | ||
618 | speed, j, vid.mV); | ||
619 | j++; | ||
620 | } | ||
621 | |||
622 | can_scale_voltage = 1; | ||
623 | printk(KERN_INFO PFX "Voltage scaling enabled.\n"); | ||
624 | } | ||
625 | |||
626 | |||
627 | static int longhaul_verify(struct cpufreq_policy *policy) | ||
628 | { | ||
629 | return cpufreq_frequency_table_verify(policy, longhaul_table); | ||
630 | } | ||
631 | |||
632 | |||
633 | static int longhaul_target(struct cpufreq_policy *policy, | ||
634 | unsigned int target_freq, unsigned int relation) | ||
635 | { | ||
636 | unsigned int table_index = 0; | ||
637 | unsigned int i; | ||
638 | unsigned int dir = 0; | ||
639 | u8 vid, current_vid; | ||
640 | |||
641 | if (cpufreq_frequency_table_target(policy, longhaul_table, target_freq, | ||
642 | relation, &table_index)) | ||
643 | return -EINVAL; | ||
644 | |||
645 | /* Don't set same frequency again */ | ||
646 | if (longhaul_index == table_index) | ||
647 | return 0; | ||
648 | |||
649 | if (!can_scale_voltage) | ||
650 | longhaul_setstate(table_index); | ||
651 | else { | ||
652 | /* On test system voltage transitions exceeding single | ||
653 | * step up or down were turning motherboard off. Both | ||
654 | * "ondemand" and "userspace" are unsafe. C7 is doing | ||
655 | * this in hardware, C3 is old and we need to do this | ||
656 | * in software. */ | ||
657 | i = longhaul_index; | ||
658 | current_vid = (longhaul_table[longhaul_index].index >> 8); | ||
659 | current_vid &= 0x1f; | ||
660 | if (table_index > longhaul_index) | ||
661 | dir = 1; | ||
662 | while (i != table_index) { | ||
663 | vid = (longhaul_table[i].index >> 8) & 0x1f; | ||
664 | if (vid != current_vid) { | ||
665 | longhaul_setstate(i); | ||
666 | current_vid = vid; | ||
667 | msleep(200); | ||
668 | } | ||
669 | if (dir) | ||
670 | i++; | ||
671 | else | ||
672 | i--; | ||
673 | } | ||
674 | longhaul_setstate(table_index); | ||
675 | } | ||
676 | longhaul_index = table_index; | ||
677 | return 0; | ||
678 | } | ||
679 | |||
680 | |||
681 | static unsigned int longhaul_get(unsigned int cpu) | ||
682 | { | ||
683 | if (cpu) | ||
684 | return 0; | ||
685 | return calc_speed(longhaul_get_cpu_mult()); | ||
686 | } | ||
687 | |||
688 | static acpi_status longhaul_walk_callback(acpi_handle obj_handle, | ||
689 | u32 nesting_level, | ||
690 | void *context, void **return_value) | ||
691 | { | ||
692 | struct acpi_device *d; | ||
693 | |||
694 | if (acpi_bus_get_device(obj_handle, &d)) | ||
695 | return 0; | ||
696 | |||
697 | *return_value = acpi_driver_data(d); | ||
698 | return 1; | ||
699 | } | ||
700 | |||
701 | /* VIA don't support PM2 reg, but have something similar */ | ||
702 | static int enable_arbiter_disable(void) | ||
703 | { | ||
704 | struct pci_dev *dev; | ||
705 | int status = 1; | ||
706 | int reg; | ||
707 | u8 pci_cmd; | ||
708 | |||
709 | /* Find PLE133 host bridge */ | ||
710 | reg = 0x78; | ||
711 | dev = pci_get_device(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8601_0, | ||
712 | NULL); | ||
713 | /* Find PM133/VT8605 host bridge */ | ||
714 | if (dev == NULL) | ||
715 | dev = pci_get_device(PCI_VENDOR_ID_VIA, | ||
716 | PCI_DEVICE_ID_VIA_8605_0, NULL); | ||
717 | /* Find CLE266 host bridge */ | ||
718 | if (dev == NULL) { | ||
719 | reg = 0x76; | ||
720 | dev = pci_get_device(PCI_VENDOR_ID_VIA, | ||
721 | PCI_DEVICE_ID_VIA_862X_0, NULL); | ||
722 | /* Find CN400 V-Link host bridge */ | ||
723 | if (dev == NULL) | ||
724 | dev = pci_get_device(PCI_VENDOR_ID_VIA, 0x7259, NULL); | ||
725 | } | ||
726 | if (dev != NULL) { | ||
727 | /* Enable access to port 0x22 */ | ||
728 | pci_read_config_byte(dev, reg, &pci_cmd); | ||
729 | if (!(pci_cmd & 1<<7)) { | ||
730 | pci_cmd |= 1<<7; | ||
731 | pci_write_config_byte(dev, reg, pci_cmd); | ||
732 | pci_read_config_byte(dev, reg, &pci_cmd); | ||
733 | if (!(pci_cmd & 1<<7)) { | ||
734 | printk(KERN_ERR PFX | ||
735 | "Can't enable access to port 0x22.\n"); | ||
736 | status = 0; | ||
737 | } | ||
738 | } | ||
739 | pci_dev_put(dev); | ||
740 | return status; | ||
741 | } | ||
742 | return 0; | ||
743 | } | ||
744 | |||
745 | static int longhaul_setup_southbridge(void) | ||
746 | { | ||
747 | struct pci_dev *dev; | ||
748 | u8 pci_cmd; | ||
749 | |||
750 | /* Find VT8235 southbridge */ | ||
751 | dev = pci_get_device(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8235, NULL); | ||
752 | if (dev == NULL) | ||
753 | /* Find VT8237 southbridge */ | ||
754 | dev = pci_get_device(PCI_VENDOR_ID_VIA, | ||
755 | PCI_DEVICE_ID_VIA_8237, NULL); | ||
756 | if (dev != NULL) { | ||
757 | /* Set transition time to max */ | ||
758 | pci_read_config_byte(dev, 0xec, &pci_cmd); | ||
759 | pci_cmd &= ~(1 << 2); | ||
760 | pci_write_config_byte(dev, 0xec, pci_cmd); | ||
761 | pci_read_config_byte(dev, 0xe4, &pci_cmd); | ||
762 | pci_cmd &= ~(1 << 7); | ||
763 | pci_write_config_byte(dev, 0xe4, pci_cmd); | ||
764 | pci_read_config_byte(dev, 0xe5, &pci_cmd); | ||
765 | pci_cmd |= 1 << 7; | ||
766 | pci_write_config_byte(dev, 0xe5, pci_cmd); | ||
767 | /* Get address of ACPI registers block*/ | ||
768 | pci_read_config_byte(dev, 0x81, &pci_cmd); | ||
769 | if (pci_cmd & 1 << 7) { | ||
770 | pci_read_config_dword(dev, 0x88, &acpi_regs_addr); | ||
771 | acpi_regs_addr &= 0xff00; | ||
772 | printk(KERN_INFO PFX "ACPI I/O at 0x%x\n", | ||
773 | acpi_regs_addr); | ||
774 | } | ||
775 | |||
776 | pci_dev_put(dev); | ||
777 | return 1; | ||
778 | } | ||
779 | return 0; | ||
780 | } | ||
781 | |||
782 | static int __cpuinit longhaul_cpu_init(struct cpufreq_policy *policy) | ||
783 | { | ||
784 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
785 | char *cpuname = NULL; | ||
786 | int ret; | ||
787 | u32 lo, hi; | ||
788 | |||
789 | /* Check what we have on this motherboard */ | ||
790 | switch (c->x86_model) { | ||
791 | case 6: | ||
792 | cpu_model = CPU_SAMUEL; | ||
793 | cpuname = "C3 'Samuel' [C5A]"; | ||
794 | longhaul_version = TYPE_LONGHAUL_V1; | ||
795 | memcpy(mults, samuel1_mults, sizeof(samuel1_mults)); | ||
796 | memcpy(eblcr, samuel1_eblcr, sizeof(samuel1_eblcr)); | ||
797 | break; | ||
798 | |||
799 | case 7: | ||
800 | switch (c->x86_mask) { | ||
801 | case 0: | ||
802 | longhaul_version = TYPE_LONGHAUL_V1; | ||
803 | cpu_model = CPU_SAMUEL2; | ||
804 | cpuname = "C3 'Samuel 2' [C5B]"; | ||
805 | /* Note, this is not a typo, early Samuel2's had | ||
806 | * Samuel1 ratios. */ | ||
807 | memcpy(mults, samuel1_mults, sizeof(samuel1_mults)); | ||
808 | memcpy(eblcr, samuel2_eblcr, sizeof(samuel2_eblcr)); | ||
809 | break; | ||
810 | case 1 ... 15: | ||
811 | longhaul_version = TYPE_LONGHAUL_V2; | ||
812 | if (c->x86_mask < 8) { | ||
813 | cpu_model = CPU_SAMUEL2; | ||
814 | cpuname = "C3 'Samuel 2' [C5B]"; | ||
815 | } else { | ||
816 | cpu_model = CPU_EZRA; | ||
817 | cpuname = "C3 'Ezra' [C5C]"; | ||
818 | } | ||
819 | memcpy(mults, ezra_mults, sizeof(ezra_mults)); | ||
820 | memcpy(eblcr, ezra_eblcr, sizeof(ezra_eblcr)); | ||
821 | break; | ||
822 | } | ||
823 | break; | ||
824 | |||
825 | case 8: | ||
826 | cpu_model = CPU_EZRA_T; | ||
827 | cpuname = "C3 'Ezra-T' [C5M]"; | ||
828 | longhaul_version = TYPE_POWERSAVER; | ||
829 | numscales = 32; | ||
830 | memcpy(mults, ezrat_mults, sizeof(ezrat_mults)); | ||
831 | memcpy(eblcr, ezrat_eblcr, sizeof(ezrat_eblcr)); | ||
832 | break; | ||
833 | |||
834 | case 9: | ||
835 | longhaul_version = TYPE_POWERSAVER; | ||
836 | numscales = 32; | ||
837 | memcpy(mults, nehemiah_mults, sizeof(nehemiah_mults)); | ||
838 | memcpy(eblcr, nehemiah_eblcr, sizeof(nehemiah_eblcr)); | ||
839 | switch (c->x86_mask) { | ||
840 | case 0 ... 1: | ||
841 | cpu_model = CPU_NEHEMIAH; | ||
842 | cpuname = "C3 'Nehemiah A' [C5XLOE]"; | ||
843 | break; | ||
844 | case 2 ... 4: | ||
845 | cpu_model = CPU_NEHEMIAH; | ||
846 | cpuname = "C3 'Nehemiah B' [C5XLOH]"; | ||
847 | break; | ||
848 | case 5 ... 15: | ||
849 | cpu_model = CPU_NEHEMIAH_C; | ||
850 | cpuname = "C3 'Nehemiah C' [C5P]"; | ||
851 | break; | ||
852 | } | ||
853 | break; | ||
854 | |||
855 | default: | ||
856 | cpuname = "Unknown"; | ||
857 | break; | ||
858 | } | ||
859 | /* Check Longhaul ver. 2 */ | ||
860 | if (longhaul_version == TYPE_LONGHAUL_V2) { | ||
861 | rdmsr(MSR_VIA_LONGHAUL, lo, hi); | ||
862 | if (lo == 0 && hi == 0) | ||
863 | /* Looks like MSR isn't present */ | ||
864 | longhaul_version = TYPE_LONGHAUL_V1; | ||
865 | } | ||
866 | |||
867 | printk(KERN_INFO PFX "VIA %s CPU detected. ", cpuname); | ||
868 | switch (longhaul_version) { | ||
869 | case TYPE_LONGHAUL_V1: | ||
870 | case TYPE_LONGHAUL_V2: | ||
871 | printk(KERN_CONT "Longhaul v%d supported.\n", longhaul_version); | ||
872 | break; | ||
873 | case TYPE_POWERSAVER: | ||
874 | printk(KERN_CONT "Powersaver supported.\n"); | ||
875 | break; | ||
876 | }; | ||
877 | |||
878 | /* Doesn't hurt */ | ||
879 | longhaul_setup_southbridge(); | ||
880 | |||
881 | /* Find ACPI data for processor */ | ||
882 | acpi_walk_namespace(ACPI_TYPE_PROCESSOR, ACPI_ROOT_OBJECT, | ||
883 | ACPI_UINT32_MAX, &longhaul_walk_callback, NULL, | ||
884 | NULL, (void *)&pr); | ||
885 | |||
886 | /* Check ACPI support for C3 state */ | ||
887 | if (pr != NULL && longhaul_version == TYPE_POWERSAVER) { | ||
888 | cx = &pr->power.states[ACPI_STATE_C3]; | ||
889 | if (cx->address > 0 && cx->latency <= 1000) | ||
890 | longhaul_flags |= USE_ACPI_C3; | ||
891 | } | ||
892 | /* Disable if it isn't working */ | ||
893 | if (disable_acpi_c3) | ||
894 | longhaul_flags &= ~USE_ACPI_C3; | ||
895 | /* Check if northbridge is friendly */ | ||
896 | if (enable_arbiter_disable()) | ||
897 | longhaul_flags |= USE_NORTHBRIDGE; | ||
898 | |||
899 | /* Check ACPI support for bus master arbiter disable */ | ||
900 | if (!(longhaul_flags & USE_ACPI_C3 | ||
901 | || longhaul_flags & USE_NORTHBRIDGE) | ||
902 | && ((pr == NULL) || !(pr->flags.bm_control))) { | ||
903 | printk(KERN_ERR PFX | ||
904 | "No ACPI support. Unsupported northbridge.\n"); | ||
905 | return -ENODEV; | ||
906 | } | ||
907 | |||
908 | if (longhaul_flags & USE_NORTHBRIDGE) | ||
909 | printk(KERN_INFO PFX "Using northbridge support.\n"); | ||
910 | if (longhaul_flags & USE_ACPI_C3) | ||
911 | printk(KERN_INFO PFX "Using ACPI support.\n"); | ||
912 | |||
913 | ret = longhaul_get_ranges(); | ||
914 | if (ret != 0) | ||
915 | return ret; | ||
916 | |||
917 | if ((longhaul_version != TYPE_LONGHAUL_V1) && (scale_voltage != 0)) | ||
918 | longhaul_setup_voltagescaling(); | ||
919 | |||
920 | policy->cpuinfo.transition_latency = 200000; /* nsec */ | ||
921 | policy->cur = calc_speed(longhaul_get_cpu_mult()); | ||
922 | |||
923 | ret = cpufreq_frequency_table_cpuinfo(policy, longhaul_table); | ||
924 | if (ret) | ||
925 | return ret; | ||
926 | |||
927 | cpufreq_frequency_table_get_attr(longhaul_table, policy->cpu); | ||
928 | |||
929 | return 0; | ||
930 | } | ||
931 | |||
932 | static int __devexit longhaul_cpu_exit(struct cpufreq_policy *policy) | ||
933 | { | ||
934 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
935 | return 0; | ||
936 | } | ||
937 | |||
938 | static struct freq_attr *longhaul_attr[] = { | ||
939 | &cpufreq_freq_attr_scaling_available_freqs, | ||
940 | NULL, | ||
941 | }; | ||
942 | |||
943 | static struct cpufreq_driver longhaul_driver = { | ||
944 | .verify = longhaul_verify, | ||
945 | .target = longhaul_target, | ||
946 | .get = longhaul_get, | ||
947 | .init = longhaul_cpu_init, | ||
948 | .exit = __devexit_p(longhaul_cpu_exit), | ||
949 | .name = "longhaul", | ||
950 | .owner = THIS_MODULE, | ||
951 | .attr = longhaul_attr, | ||
952 | }; | ||
953 | |||
954 | |||
955 | static int __init longhaul_init(void) | ||
956 | { | ||
957 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
958 | |||
959 | if (c->x86_vendor != X86_VENDOR_CENTAUR || c->x86 != 6) | ||
960 | return -ENODEV; | ||
961 | |||
962 | #ifdef CONFIG_SMP | ||
963 | if (num_online_cpus() > 1) { | ||
964 | printk(KERN_ERR PFX "More than 1 CPU detected, " | ||
965 | "longhaul disabled.\n"); | ||
966 | return -ENODEV; | ||
967 | } | ||
968 | #endif | ||
969 | #ifdef CONFIG_X86_IO_APIC | ||
970 | if (cpu_has_apic) { | ||
971 | printk(KERN_ERR PFX "APIC detected. Longhaul is currently " | ||
972 | "broken in this configuration.\n"); | ||
973 | return -ENODEV; | ||
974 | } | ||
975 | #endif | ||
976 | switch (c->x86_model) { | ||
977 | case 6 ... 9: | ||
978 | return cpufreq_register_driver(&longhaul_driver); | ||
979 | case 10: | ||
980 | printk(KERN_ERR PFX "Use acpi-cpufreq driver for VIA C7\n"); | ||
981 | default: | ||
982 | ; | ||
983 | } | ||
984 | |||
985 | return -ENODEV; | ||
986 | } | ||
987 | |||
988 | |||
989 | static void __exit longhaul_exit(void) | ||
990 | { | ||
991 | int i; | ||
992 | |||
993 | for (i = 0; i < numscales; i++) { | ||
994 | if (mults[i] == maxmult) { | ||
995 | longhaul_setstate(i); | ||
996 | break; | ||
997 | } | ||
998 | } | ||
999 | |||
1000 | cpufreq_unregister_driver(&longhaul_driver); | ||
1001 | kfree(longhaul_table); | ||
1002 | } | ||
1003 | |||
1004 | /* Even if BIOS is exporting ACPI C3 state, and it is used | ||
1005 | * with success when CPU is idle, this state doesn't | ||
1006 | * trigger frequency transition in some cases. */ | ||
1007 | module_param(disable_acpi_c3, int, 0644); | ||
1008 | MODULE_PARM_DESC(disable_acpi_c3, "Don't use ACPI C3 support"); | ||
1009 | /* Change CPU voltage with frequency. Very useful to save | ||
1010 | * power, but most VIA C3 processors aren't supporting it. */ | ||
1011 | module_param(scale_voltage, int, 0644); | ||
1012 | MODULE_PARM_DESC(scale_voltage, "Scale voltage of processor"); | ||
1013 | /* Force revision key to 0 for processors which doesn't | ||
1014 | * support voltage scaling, but are introducing itself as | ||
1015 | * such. */ | ||
1016 | module_param(revid_errata, int, 0644); | ||
1017 | MODULE_PARM_DESC(revid_errata, "Ignore CPU Revision ID"); | ||
1018 | |||
1019 | MODULE_AUTHOR("Dave Jones <davej@redhat.com>"); | ||
1020 | MODULE_DESCRIPTION("Longhaul driver for VIA Cyrix processors."); | ||
1021 | MODULE_LICENSE("GPL"); | ||
1022 | |||
1023 | late_initcall(longhaul_init); | ||
1024 | module_exit(longhaul_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/longhaul.h b/arch/x86/kernel/cpu/cpufreq/longhaul.h deleted file mode 100644 index cbf48fbca881..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/longhaul.h +++ /dev/null | |||
@@ -1,353 +0,0 @@ | |||
1 | /* | ||
2 | * longhaul.h | ||
3 | * (C) 2003 Dave Jones. | ||
4 | * | ||
5 | * Licensed under the terms of the GNU GPL License version 2. | ||
6 | * | ||
7 | * VIA-specific information | ||
8 | */ | ||
9 | |||
10 | union msr_bcr2 { | ||
11 | struct { | ||
12 | unsigned Reseved:19, // 18:0 | ||
13 | ESOFTBF:1, // 19 | ||
14 | Reserved2:3, // 22:20 | ||
15 | CLOCKMUL:4, // 26:23 | ||
16 | Reserved3:5; // 31:27 | ||
17 | } bits; | ||
18 | unsigned long val; | ||
19 | }; | ||
20 | |||
21 | union msr_longhaul { | ||
22 | struct { | ||
23 | unsigned RevisionID:4, // 3:0 | ||
24 | RevisionKey:4, // 7:4 | ||
25 | EnableSoftBusRatio:1, // 8 | ||
26 | EnableSoftVID:1, // 9 | ||
27 | EnableSoftBSEL:1, // 10 | ||
28 | Reserved:3, // 11:13 | ||
29 | SoftBusRatio4:1, // 14 | ||
30 | VRMRev:1, // 15 | ||
31 | SoftBusRatio:4, // 19:16 | ||
32 | SoftVID:5, // 24:20 | ||
33 | Reserved2:3, // 27:25 | ||
34 | SoftBSEL:2, // 29:28 | ||
35 | Reserved3:2, // 31:30 | ||
36 | MaxMHzBR:4, // 35:32 | ||
37 | MaximumVID:5, // 40:36 | ||
38 | MaxMHzFSB:2, // 42:41 | ||
39 | MaxMHzBR4:1, // 43 | ||
40 | Reserved4:4, // 47:44 | ||
41 | MinMHzBR:4, // 51:48 | ||
42 | MinimumVID:5, // 56:52 | ||
43 | MinMHzFSB:2, // 58:57 | ||
44 | MinMHzBR4:1, // 59 | ||
45 | Reserved5:4; // 63:60 | ||
46 | } bits; | ||
47 | unsigned long long val; | ||
48 | }; | ||
49 | |||
50 | /* | ||
51 | * Clock ratio tables. Div/Mod by 10 to get ratio. | ||
52 | * The eblcr values specify the ratio read from the CPU. | ||
53 | * The mults values specify what to write to the CPU. | ||
54 | */ | ||
55 | |||
56 | /* | ||
57 | * VIA C3 Samuel 1 & Samuel 2 (stepping 0) | ||
58 | */ | ||
59 | static const int __cpuinitdata samuel1_mults[16] = { | ||
60 | -1, /* 0000 -> RESERVED */ | ||
61 | 30, /* 0001 -> 3.0x */ | ||
62 | 40, /* 0010 -> 4.0x */ | ||
63 | -1, /* 0011 -> RESERVED */ | ||
64 | -1, /* 0100 -> RESERVED */ | ||
65 | 35, /* 0101 -> 3.5x */ | ||
66 | 45, /* 0110 -> 4.5x */ | ||
67 | 55, /* 0111 -> 5.5x */ | ||
68 | 60, /* 1000 -> 6.0x */ | ||
69 | 70, /* 1001 -> 7.0x */ | ||
70 | 80, /* 1010 -> 8.0x */ | ||
71 | 50, /* 1011 -> 5.0x */ | ||
72 | 65, /* 1100 -> 6.5x */ | ||
73 | 75, /* 1101 -> 7.5x */ | ||
74 | -1, /* 1110 -> RESERVED */ | ||
75 | -1, /* 1111 -> RESERVED */ | ||
76 | }; | ||
77 | |||
78 | static const int __cpuinitdata samuel1_eblcr[16] = { | ||
79 | 50, /* 0000 -> RESERVED */ | ||
80 | 30, /* 0001 -> 3.0x */ | ||
81 | 40, /* 0010 -> 4.0x */ | ||
82 | -1, /* 0011 -> RESERVED */ | ||
83 | 55, /* 0100 -> 5.5x */ | ||
84 | 35, /* 0101 -> 3.5x */ | ||
85 | 45, /* 0110 -> 4.5x */ | ||
86 | -1, /* 0111 -> RESERVED */ | ||
87 | -1, /* 1000 -> RESERVED */ | ||
88 | 70, /* 1001 -> 7.0x */ | ||
89 | 80, /* 1010 -> 8.0x */ | ||
90 | 60, /* 1011 -> 6.0x */ | ||
91 | -1, /* 1100 -> RESERVED */ | ||
92 | 75, /* 1101 -> 7.5x */ | ||
93 | -1, /* 1110 -> RESERVED */ | ||
94 | 65, /* 1111 -> 6.5x */ | ||
95 | }; | ||
96 | |||
97 | /* | ||
98 | * VIA C3 Samuel2 Stepping 1->15 | ||
99 | */ | ||
100 | static const int __cpuinitdata samuel2_eblcr[16] = { | ||
101 | 50, /* 0000 -> 5.0x */ | ||
102 | 30, /* 0001 -> 3.0x */ | ||
103 | 40, /* 0010 -> 4.0x */ | ||
104 | 100, /* 0011 -> 10.0x */ | ||
105 | 55, /* 0100 -> 5.5x */ | ||
106 | 35, /* 0101 -> 3.5x */ | ||
107 | 45, /* 0110 -> 4.5x */ | ||
108 | 110, /* 0111 -> 11.0x */ | ||
109 | 90, /* 1000 -> 9.0x */ | ||
110 | 70, /* 1001 -> 7.0x */ | ||
111 | 80, /* 1010 -> 8.0x */ | ||
112 | 60, /* 1011 -> 6.0x */ | ||
113 | 120, /* 1100 -> 12.0x */ | ||
114 | 75, /* 1101 -> 7.5x */ | ||
115 | 130, /* 1110 -> 13.0x */ | ||
116 | 65, /* 1111 -> 6.5x */ | ||
117 | }; | ||
118 | |||
119 | /* | ||
120 | * VIA C3 Ezra | ||
121 | */ | ||
122 | static const int __cpuinitdata ezra_mults[16] = { | ||
123 | 100, /* 0000 -> 10.0x */ | ||
124 | 30, /* 0001 -> 3.0x */ | ||
125 | 40, /* 0010 -> 4.0x */ | ||
126 | 90, /* 0011 -> 9.0x */ | ||
127 | 95, /* 0100 -> 9.5x */ | ||
128 | 35, /* 0101 -> 3.5x */ | ||
129 | 45, /* 0110 -> 4.5x */ | ||
130 | 55, /* 0111 -> 5.5x */ | ||
131 | 60, /* 1000 -> 6.0x */ | ||
132 | 70, /* 1001 -> 7.0x */ | ||
133 | 80, /* 1010 -> 8.0x */ | ||
134 | 50, /* 1011 -> 5.0x */ | ||
135 | 65, /* 1100 -> 6.5x */ | ||
136 | 75, /* 1101 -> 7.5x */ | ||
137 | 85, /* 1110 -> 8.5x */ | ||
138 | 120, /* 1111 -> 12.0x */ | ||
139 | }; | ||
140 | |||
141 | static const int __cpuinitdata ezra_eblcr[16] = { | ||
142 | 50, /* 0000 -> 5.0x */ | ||
143 | 30, /* 0001 -> 3.0x */ | ||
144 | 40, /* 0010 -> 4.0x */ | ||
145 | 100, /* 0011 -> 10.0x */ | ||
146 | 55, /* 0100 -> 5.5x */ | ||
147 | 35, /* 0101 -> 3.5x */ | ||
148 | 45, /* 0110 -> 4.5x */ | ||
149 | 95, /* 0111 -> 9.5x */ | ||
150 | 90, /* 1000 -> 9.0x */ | ||
151 | 70, /* 1001 -> 7.0x */ | ||
152 | 80, /* 1010 -> 8.0x */ | ||
153 | 60, /* 1011 -> 6.0x */ | ||
154 | 120, /* 1100 -> 12.0x */ | ||
155 | 75, /* 1101 -> 7.5x */ | ||
156 | 85, /* 1110 -> 8.5x */ | ||
157 | 65, /* 1111 -> 6.5x */ | ||
158 | }; | ||
159 | |||
160 | /* | ||
161 | * VIA C3 (Ezra-T) [C5M]. | ||
162 | */ | ||
163 | static const int __cpuinitdata ezrat_mults[32] = { | ||
164 | 100, /* 0000 -> 10.0x */ | ||
165 | 30, /* 0001 -> 3.0x */ | ||
166 | 40, /* 0010 -> 4.0x */ | ||
167 | 90, /* 0011 -> 9.0x */ | ||
168 | 95, /* 0100 -> 9.5x */ | ||
169 | 35, /* 0101 -> 3.5x */ | ||
170 | 45, /* 0110 -> 4.5x */ | ||
171 | 55, /* 0111 -> 5.5x */ | ||
172 | 60, /* 1000 -> 6.0x */ | ||
173 | 70, /* 1001 -> 7.0x */ | ||
174 | 80, /* 1010 -> 8.0x */ | ||
175 | 50, /* 1011 -> 5.0x */ | ||
176 | 65, /* 1100 -> 6.5x */ | ||
177 | 75, /* 1101 -> 7.5x */ | ||
178 | 85, /* 1110 -> 8.5x */ | ||
179 | 120, /* 1111 -> 12.0x */ | ||
180 | |||
181 | -1, /* 0000 -> RESERVED (10.0x) */ | ||
182 | 110, /* 0001 -> 11.0x */ | ||
183 | -1, /* 0010 -> 12.0x */ | ||
184 | -1, /* 0011 -> RESERVED (9.0x)*/ | ||
185 | 105, /* 0100 -> 10.5x */ | ||
186 | 115, /* 0101 -> 11.5x */ | ||
187 | 125, /* 0110 -> 12.5x */ | ||
188 | 135, /* 0111 -> 13.5x */ | ||
189 | 140, /* 1000 -> 14.0x */ | ||
190 | 150, /* 1001 -> 15.0x */ | ||
191 | 160, /* 1010 -> 16.0x */ | ||
192 | 130, /* 1011 -> 13.0x */ | ||
193 | 145, /* 1100 -> 14.5x */ | ||
194 | 155, /* 1101 -> 15.5x */ | ||
195 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
196 | -1, /* 1111 -> RESERVED (12.0x) */ | ||
197 | }; | ||
198 | |||
199 | static const int __cpuinitdata ezrat_eblcr[32] = { | ||
200 | 50, /* 0000 -> 5.0x */ | ||
201 | 30, /* 0001 -> 3.0x */ | ||
202 | 40, /* 0010 -> 4.0x */ | ||
203 | 100, /* 0011 -> 10.0x */ | ||
204 | 55, /* 0100 -> 5.5x */ | ||
205 | 35, /* 0101 -> 3.5x */ | ||
206 | 45, /* 0110 -> 4.5x */ | ||
207 | 95, /* 0111 -> 9.5x */ | ||
208 | 90, /* 1000 -> 9.0x */ | ||
209 | 70, /* 1001 -> 7.0x */ | ||
210 | 80, /* 1010 -> 8.0x */ | ||
211 | 60, /* 1011 -> 6.0x */ | ||
212 | 120, /* 1100 -> 12.0x */ | ||
213 | 75, /* 1101 -> 7.5x */ | ||
214 | 85, /* 1110 -> 8.5x */ | ||
215 | 65, /* 1111 -> 6.5x */ | ||
216 | |||
217 | -1, /* 0000 -> RESERVED (9.0x) */ | ||
218 | 110, /* 0001 -> 11.0x */ | ||
219 | 120, /* 0010 -> 12.0x */ | ||
220 | -1, /* 0011 -> RESERVED (10.0x)*/ | ||
221 | 135, /* 0100 -> 13.5x */ | ||
222 | 115, /* 0101 -> 11.5x */ | ||
223 | 125, /* 0110 -> 12.5x */ | ||
224 | 105, /* 0111 -> 10.5x */ | ||
225 | 130, /* 1000 -> 13.0x */ | ||
226 | 150, /* 1001 -> 15.0x */ | ||
227 | 160, /* 1010 -> 16.0x */ | ||
228 | 140, /* 1011 -> 14.0x */ | ||
229 | -1, /* 1100 -> RESERVED (12.0x) */ | ||
230 | 155, /* 1101 -> 15.5x */ | ||
231 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
232 | 145, /* 1111 -> 14.5x */ | ||
233 | }; | ||
234 | |||
235 | /* | ||
236 | * VIA C3 Nehemiah */ | ||
237 | |||
238 | static const int __cpuinitdata nehemiah_mults[32] = { | ||
239 | 100, /* 0000 -> 10.0x */ | ||
240 | -1, /* 0001 -> 16.0x */ | ||
241 | 40, /* 0010 -> 4.0x */ | ||
242 | 90, /* 0011 -> 9.0x */ | ||
243 | 95, /* 0100 -> 9.5x */ | ||
244 | -1, /* 0101 -> RESERVED */ | ||
245 | 45, /* 0110 -> 4.5x */ | ||
246 | 55, /* 0111 -> 5.5x */ | ||
247 | 60, /* 1000 -> 6.0x */ | ||
248 | 70, /* 1001 -> 7.0x */ | ||
249 | 80, /* 1010 -> 8.0x */ | ||
250 | 50, /* 1011 -> 5.0x */ | ||
251 | 65, /* 1100 -> 6.5x */ | ||
252 | 75, /* 1101 -> 7.5x */ | ||
253 | 85, /* 1110 -> 8.5x */ | ||
254 | 120, /* 1111 -> 12.0x */ | ||
255 | -1, /* 0000 -> 10.0x */ | ||
256 | 110, /* 0001 -> 11.0x */ | ||
257 | -1, /* 0010 -> 12.0x */ | ||
258 | -1, /* 0011 -> 9.0x */ | ||
259 | 105, /* 0100 -> 10.5x */ | ||
260 | 115, /* 0101 -> 11.5x */ | ||
261 | 125, /* 0110 -> 12.5x */ | ||
262 | 135, /* 0111 -> 13.5x */ | ||
263 | 140, /* 1000 -> 14.0x */ | ||
264 | 150, /* 1001 -> 15.0x */ | ||
265 | 160, /* 1010 -> 16.0x */ | ||
266 | 130, /* 1011 -> 13.0x */ | ||
267 | 145, /* 1100 -> 14.5x */ | ||
268 | 155, /* 1101 -> 15.5x */ | ||
269 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
270 | -1, /* 1111 -> 12.0x */ | ||
271 | }; | ||
272 | |||
273 | static const int __cpuinitdata nehemiah_eblcr[32] = { | ||
274 | 50, /* 0000 -> 5.0x */ | ||
275 | 160, /* 0001 -> 16.0x */ | ||
276 | 40, /* 0010 -> 4.0x */ | ||
277 | 100, /* 0011 -> 10.0x */ | ||
278 | 55, /* 0100 -> 5.5x */ | ||
279 | -1, /* 0101 -> RESERVED */ | ||
280 | 45, /* 0110 -> 4.5x */ | ||
281 | 95, /* 0111 -> 9.5x */ | ||
282 | 90, /* 1000 -> 9.0x */ | ||
283 | 70, /* 1001 -> 7.0x */ | ||
284 | 80, /* 1010 -> 8.0x */ | ||
285 | 60, /* 1011 -> 6.0x */ | ||
286 | 120, /* 1100 -> 12.0x */ | ||
287 | 75, /* 1101 -> 7.5x */ | ||
288 | 85, /* 1110 -> 8.5x */ | ||
289 | 65, /* 1111 -> 6.5x */ | ||
290 | 90, /* 0000 -> 9.0x */ | ||
291 | 110, /* 0001 -> 11.0x */ | ||
292 | 120, /* 0010 -> 12.0x */ | ||
293 | 100, /* 0011 -> 10.0x */ | ||
294 | 135, /* 0100 -> 13.5x */ | ||
295 | 115, /* 0101 -> 11.5x */ | ||
296 | 125, /* 0110 -> 12.5x */ | ||
297 | 105, /* 0111 -> 10.5x */ | ||
298 | 130, /* 1000 -> 13.0x */ | ||
299 | 150, /* 1001 -> 15.0x */ | ||
300 | 160, /* 1010 -> 16.0x */ | ||
301 | 140, /* 1011 -> 14.0x */ | ||
302 | 120, /* 1100 -> 12.0x */ | ||
303 | 155, /* 1101 -> 15.5x */ | ||
304 | -1, /* 1110 -> RESERVED (13.0x) */ | ||
305 | 145 /* 1111 -> 14.5x */ | ||
306 | }; | ||
307 | |||
308 | /* | ||
309 | * Voltage scales. Div/Mod by 1000 to get actual voltage. | ||
310 | * Which scale to use depends on the VRM type in use. | ||
311 | */ | ||
312 | |||
313 | struct mV_pos { | ||
314 | unsigned short mV; | ||
315 | unsigned short pos; | ||
316 | }; | ||
317 | |||
318 | static const struct mV_pos __cpuinitdata vrm85_mV[32] = { | ||
319 | {1250, 8}, {1200, 6}, {1150, 4}, {1100, 2}, | ||
320 | {1050, 0}, {1800, 30}, {1750, 28}, {1700, 26}, | ||
321 | {1650, 24}, {1600, 22}, {1550, 20}, {1500, 18}, | ||
322 | {1450, 16}, {1400, 14}, {1350, 12}, {1300, 10}, | ||
323 | {1275, 9}, {1225, 7}, {1175, 5}, {1125, 3}, | ||
324 | {1075, 1}, {1825, 31}, {1775, 29}, {1725, 27}, | ||
325 | {1675, 25}, {1625, 23}, {1575, 21}, {1525, 19}, | ||
326 | {1475, 17}, {1425, 15}, {1375, 13}, {1325, 11} | ||
327 | }; | ||
328 | |||
329 | static const unsigned char __cpuinitdata mV_vrm85[32] = { | ||
330 | 0x04, 0x14, 0x03, 0x13, 0x02, 0x12, 0x01, 0x11, | ||
331 | 0x00, 0x10, 0x0f, 0x1f, 0x0e, 0x1e, 0x0d, 0x1d, | ||
332 | 0x0c, 0x1c, 0x0b, 0x1b, 0x0a, 0x1a, 0x09, 0x19, | ||
333 | 0x08, 0x18, 0x07, 0x17, 0x06, 0x16, 0x05, 0x15 | ||
334 | }; | ||
335 | |||
336 | static const struct mV_pos __cpuinitdata mobilevrm_mV[32] = { | ||
337 | {1750, 31}, {1700, 30}, {1650, 29}, {1600, 28}, | ||
338 | {1550, 27}, {1500, 26}, {1450, 25}, {1400, 24}, | ||
339 | {1350, 23}, {1300, 22}, {1250, 21}, {1200, 20}, | ||
340 | {1150, 19}, {1100, 18}, {1050, 17}, {1000, 16}, | ||
341 | {975, 15}, {950, 14}, {925, 13}, {900, 12}, | ||
342 | {875, 11}, {850, 10}, {825, 9}, {800, 8}, | ||
343 | {775, 7}, {750, 6}, {725, 5}, {700, 4}, | ||
344 | {675, 3}, {650, 2}, {625, 1}, {600, 0} | ||
345 | }; | ||
346 | |||
347 | static const unsigned char __cpuinitdata mV_mobilevrm[32] = { | ||
348 | 0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, | ||
349 | 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, | ||
350 | 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, | ||
351 | 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 | ||
352 | }; | ||
353 | |||
diff --git a/arch/x86/kernel/cpu/cpufreq/longrun.c b/arch/x86/kernel/cpu/cpufreq/longrun.c deleted file mode 100644 index 34ea359b370e..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/longrun.c +++ /dev/null | |||
@@ -1,324 +0,0 @@ | |||
1 | /* | ||
2 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * | ||
6 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
7 | */ | ||
8 | |||
9 | #include <linux/kernel.h> | ||
10 | #include <linux/module.h> | ||
11 | #include <linux/init.h> | ||
12 | #include <linux/cpufreq.h> | ||
13 | #include <linux/timex.h> | ||
14 | |||
15 | #include <asm/msr.h> | ||
16 | #include <asm/processor.h> | ||
17 | |||
18 | static struct cpufreq_driver longrun_driver; | ||
19 | |||
20 | /** | ||
21 | * longrun_{low,high}_freq is needed for the conversion of cpufreq kHz | ||
22 | * values into per cent values. In TMTA microcode, the following is valid: | ||
23 | * performance_pctg = (current_freq - low_freq)/(high_freq - low_freq) | ||
24 | */ | ||
25 | static unsigned int longrun_low_freq, longrun_high_freq; | ||
26 | |||
27 | |||
28 | /** | ||
29 | * longrun_get_policy - get the current LongRun policy | ||
30 | * @policy: struct cpufreq_policy where current policy is written into | ||
31 | * | ||
32 | * Reads the current LongRun policy by access to MSR_TMTA_LONGRUN_FLAGS | ||
33 | * and MSR_TMTA_LONGRUN_CTRL | ||
34 | */ | ||
35 | static void __cpuinit longrun_get_policy(struct cpufreq_policy *policy) | ||
36 | { | ||
37 | u32 msr_lo, msr_hi; | ||
38 | |||
39 | rdmsr(MSR_TMTA_LONGRUN_FLAGS, msr_lo, msr_hi); | ||
40 | pr_debug("longrun flags are %x - %x\n", msr_lo, msr_hi); | ||
41 | if (msr_lo & 0x01) | ||
42 | policy->policy = CPUFREQ_POLICY_PERFORMANCE; | ||
43 | else | ||
44 | policy->policy = CPUFREQ_POLICY_POWERSAVE; | ||
45 | |||
46 | rdmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
47 | pr_debug("longrun ctrl is %x - %x\n", msr_lo, msr_hi); | ||
48 | msr_lo &= 0x0000007F; | ||
49 | msr_hi &= 0x0000007F; | ||
50 | |||
51 | if (longrun_high_freq <= longrun_low_freq) { | ||
52 | /* Assume degenerate Longrun table */ | ||
53 | policy->min = policy->max = longrun_high_freq; | ||
54 | } else { | ||
55 | policy->min = longrun_low_freq + msr_lo * | ||
56 | ((longrun_high_freq - longrun_low_freq) / 100); | ||
57 | policy->max = longrun_low_freq + msr_hi * | ||
58 | ((longrun_high_freq - longrun_low_freq) / 100); | ||
59 | } | ||
60 | policy->cpu = 0; | ||
61 | } | ||
62 | |||
63 | |||
64 | /** | ||
65 | * longrun_set_policy - sets a new CPUFreq policy | ||
66 | * @policy: new policy | ||
67 | * | ||
68 | * Sets a new CPUFreq policy on LongRun-capable processors. This function | ||
69 | * has to be called with cpufreq_driver locked. | ||
70 | */ | ||
71 | static int longrun_set_policy(struct cpufreq_policy *policy) | ||
72 | { | ||
73 | u32 msr_lo, msr_hi; | ||
74 | u32 pctg_lo, pctg_hi; | ||
75 | |||
76 | if (!policy) | ||
77 | return -EINVAL; | ||
78 | |||
79 | if (longrun_high_freq <= longrun_low_freq) { | ||
80 | /* Assume degenerate Longrun table */ | ||
81 | pctg_lo = pctg_hi = 100; | ||
82 | } else { | ||
83 | pctg_lo = (policy->min - longrun_low_freq) / | ||
84 | ((longrun_high_freq - longrun_low_freq) / 100); | ||
85 | pctg_hi = (policy->max - longrun_low_freq) / | ||
86 | ((longrun_high_freq - longrun_low_freq) / 100); | ||
87 | } | ||
88 | |||
89 | if (pctg_hi > 100) | ||
90 | pctg_hi = 100; | ||
91 | if (pctg_lo > pctg_hi) | ||
92 | pctg_lo = pctg_hi; | ||
93 | |||
94 | /* performance or economy mode */ | ||
95 | rdmsr(MSR_TMTA_LONGRUN_FLAGS, msr_lo, msr_hi); | ||
96 | msr_lo &= 0xFFFFFFFE; | ||
97 | switch (policy->policy) { | ||
98 | case CPUFREQ_POLICY_PERFORMANCE: | ||
99 | msr_lo |= 0x00000001; | ||
100 | break; | ||
101 | case CPUFREQ_POLICY_POWERSAVE: | ||
102 | break; | ||
103 | } | ||
104 | wrmsr(MSR_TMTA_LONGRUN_FLAGS, msr_lo, msr_hi); | ||
105 | |||
106 | /* lower and upper boundary */ | ||
107 | rdmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
108 | msr_lo &= 0xFFFFFF80; | ||
109 | msr_hi &= 0xFFFFFF80; | ||
110 | msr_lo |= pctg_lo; | ||
111 | msr_hi |= pctg_hi; | ||
112 | wrmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
113 | |||
114 | return 0; | ||
115 | } | ||
116 | |||
117 | |||
118 | /** | ||
119 | * longrun_verify_poliy - verifies a new CPUFreq policy | ||
120 | * @policy: the policy to verify | ||
121 | * | ||
122 | * Validates a new CPUFreq policy. This function has to be called with | ||
123 | * cpufreq_driver locked. | ||
124 | */ | ||
125 | static int longrun_verify_policy(struct cpufreq_policy *policy) | ||
126 | { | ||
127 | if (!policy) | ||
128 | return -EINVAL; | ||
129 | |||
130 | policy->cpu = 0; | ||
131 | cpufreq_verify_within_limits(policy, | ||
132 | policy->cpuinfo.min_freq, | ||
133 | policy->cpuinfo.max_freq); | ||
134 | |||
135 | if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) && | ||
136 | (policy->policy != CPUFREQ_POLICY_PERFORMANCE)) | ||
137 | return -EINVAL; | ||
138 | |||
139 | return 0; | ||
140 | } | ||
141 | |||
142 | static unsigned int longrun_get(unsigned int cpu) | ||
143 | { | ||
144 | u32 eax, ebx, ecx, edx; | ||
145 | |||
146 | if (cpu) | ||
147 | return 0; | ||
148 | |||
149 | cpuid(0x80860007, &eax, &ebx, &ecx, &edx); | ||
150 | pr_debug("cpuid eax is %u\n", eax); | ||
151 | |||
152 | return eax * 1000; | ||
153 | } | ||
154 | |||
155 | /** | ||
156 | * longrun_determine_freqs - determines the lowest and highest possible core frequency | ||
157 | * @low_freq: an int to put the lowest frequency into | ||
158 | * @high_freq: an int to put the highest frequency into | ||
159 | * | ||
160 | * Determines the lowest and highest possible core frequencies on this CPU. | ||
161 | * This is necessary to calculate the performance percentage according to | ||
162 | * TMTA rules: | ||
163 | * performance_pctg = (target_freq - low_freq)/(high_freq - low_freq) | ||
164 | */ | ||
165 | static int __cpuinit longrun_determine_freqs(unsigned int *low_freq, | ||
166 | unsigned int *high_freq) | ||
167 | { | ||
168 | u32 msr_lo, msr_hi; | ||
169 | u32 save_lo, save_hi; | ||
170 | u32 eax, ebx, ecx, edx; | ||
171 | u32 try_hi; | ||
172 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
173 | |||
174 | if (!low_freq || !high_freq) | ||
175 | return -EINVAL; | ||
176 | |||
177 | if (cpu_has(c, X86_FEATURE_LRTI)) { | ||
178 | /* if the LongRun Table Interface is present, the | ||
179 | * detection is a bit easier: | ||
180 | * For minimum frequency, read out the maximum | ||
181 | * level (msr_hi), write that into "currently | ||
182 | * selected level", and read out the frequency. | ||
183 | * For maximum frequency, read out level zero. | ||
184 | */ | ||
185 | /* minimum */ | ||
186 | rdmsr(MSR_TMTA_LRTI_READOUT, msr_lo, msr_hi); | ||
187 | wrmsr(MSR_TMTA_LRTI_READOUT, msr_hi, msr_hi); | ||
188 | rdmsr(MSR_TMTA_LRTI_VOLT_MHZ, msr_lo, msr_hi); | ||
189 | *low_freq = msr_lo * 1000; /* to kHz */ | ||
190 | |||
191 | /* maximum */ | ||
192 | wrmsr(MSR_TMTA_LRTI_READOUT, 0, msr_hi); | ||
193 | rdmsr(MSR_TMTA_LRTI_VOLT_MHZ, msr_lo, msr_hi); | ||
194 | *high_freq = msr_lo * 1000; /* to kHz */ | ||
195 | |||
196 | pr_debug("longrun table interface told %u - %u kHz\n", | ||
197 | *low_freq, *high_freq); | ||
198 | |||
199 | if (*low_freq > *high_freq) | ||
200 | *low_freq = *high_freq; | ||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | /* set the upper border to the value determined during TSC init */ | ||
205 | *high_freq = (cpu_khz / 1000); | ||
206 | *high_freq = *high_freq * 1000; | ||
207 | pr_debug("high frequency is %u kHz\n", *high_freq); | ||
208 | |||
209 | /* get current borders */ | ||
210 | rdmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
211 | save_lo = msr_lo & 0x0000007F; | ||
212 | save_hi = msr_hi & 0x0000007F; | ||
213 | |||
214 | /* if current perf_pctg is larger than 90%, we need to decrease the | ||
215 | * upper limit to make the calculation more accurate. | ||
216 | */ | ||
217 | cpuid(0x80860007, &eax, &ebx, &ecx, &edx); | ||
218 | /* try decreasing in 10% steps, some processors react only | ||
219 | * on some barrier values */ | ||
220 | for (try_hi = 80; try_hi > 0 && ecx > 90; try_hi -= 10) { | ||
221 | /* set to 0 to try_hi perf_pctg */ | ||
222 | msr_lo &= 0xFFFFFF80; | ||
223 | msr_hi &= 0xFFFFFF80; | ||
224 | msr_hi |= try_hi; | ||
225 | wrmsr(MSR_TMTA_LONGRUN_CTRL, msr_lo, msr_hi); | ||
226 | |||
227 | /* read out current core MHz and current perf_pctg */ | ||
228 | cpuid(0x80860007, &eax, &ebx, &ecx, &edx); | ||
229 | |||
230 | /* restore values */ | ||
231 | wrmsr(MSR_TMTA_LONGRUN_CTRL, save_lo, save_hi); | ||
232 | } | ||
233 | pr_debug("percentage is %u %%, freq is %u MHz\n", ecx, eax); | ||
234 | |||
235 | /* performance_pctg = (current_freq - low_freq)/(high_freq - low_freq) | ||
236 | * eqals | ||
237 | * low_freq * (1 - perf_pctg) = (cur_freq - high_freq * perf_pctg) | ||
238 | * | ||
239 | * high_freq * perf_pctg is stored tempoarily into "ebx". | ||
240 | */ | ||
241 | ebx = (((cpu_khz / 1000) * ecx) / 100); /* to MHz */ | ||
242 | |||
243 | if ((ecx > 95) || (ecx == 0) || (eax < ebx)) | ||
244 | return -EIO; | ||
245 | |||
246 | edx = ((eax - ebx) * 100) / (100 - ecx); | ||
247 | *low_freq = edx * 1000; /* back to kHz */ | ||
248 | |||
249 | pr_debug("low frequency is %u kHz\n", *low_freq); | ||
250 | |||
251 | if (*low_freq > *high_freq) | ||
252 | *low_freq = *high_freq; | ||
253 | |||
254 | return 0; | ||
255 | } | ||
256 | |||
257 | |||
258 | static int __cpuinit longrun_cpu_init(struct cpufreq_policy *policy) | ||
259 | { | ||
260 | int result = 0; | ||
261 | |||
262 | /* capability check */ | ||
263 | if (policy->cpu != 0) | ||
264 | return -ENODEV; | ||
265 | |||
266 | /* detect low and high frequency */ | ||
267 | result = longrun_determine_freqs(&longrun_low_freq, &longrun_high_freq); | ||
268 | if (result) | ||
269 | return result; | ||
270 | |||
271 | /* cpuinfo and default policy values */ | ||
272 | policy->cpuinfo.min_freq = longrun_low_freq; | ||
273 | policy->cpuinfo.max_freq = longrun_high_freq; | ||
274 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
275 | longrun_get_policy(policy); | ||
276 | |||
277 | return 0; | ||
278 | } | ||
279 | |||
280 | |||
281 | static struct cpufreq_driver longrun_driver = { | ||
282 | .flags = CPUFREQ_CONST_LOOPS, | ||
283 | .verify = longrun_verify_policy, | ||
284 | .setpolicy = longrun_set_policy, | ||
285 | .get = longrun_get, | ||
286 | .init = longrun_cpu_init, | ||
287 | .name = "longrun", | ||
288 | .owner = THIS_MODULE, | ||
289 | }; | ||
290 | |||
291 | |||
292 | /** | ||
293 | * longrun_init - initializes the Transmeta Crusoe LongRun CPUFreq driver | ||
294 | * | ||
295 | * Initializes the LongRun support. | ||
296 | */ | ||
297 | static int __init longrun_init(void) | ||
298 | { | ||
299 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
300 | |||
301 | if (c->x86_vendor != X86_VENDOR_TRANSMETA || | ||
302 | !cpu_has(c, X86_FEATURE_LONGRUN)) | ||
303 | return -ENODEV; | ||
304 | |||
305 | return cpufreq_register_driver(&longrun_driver); | ||
306 | } | ||
307 | |||
308 | |||
309 | /** | ||
310 | * longrun_exit - unregisters LongRun support | ||
311 | */ | ||
312 | static void __exit longrun_exit(void) | ||
313 | { | ||
314 | cpufreq_unregister_driver(&longrun_driver); | ||
315 | } | ||
316 | |||
317 | |||
318 | MODULE_AUTHOR("Dominik Brodowski <linux@brodo.de>"); | ||
319 | MODULE_DESCRIPTION("LongRun driver for Transmeta Crusoe and " | ||
320 | "Efficeon processors."); | ||
321 | MODULE_LICENSE("GPL"); | ||
322 | |||
323 | module_init(longrun_init); | ||
324 | module_exit(longrun_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/mperf.c b/arch/x86/kernel/cpu/cpufreq/mperf.c deleted file mode 100644 index 911e193018ae..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/mperf.c +++ /dev/null | |||
@@ -1,51 +0,0 @@ | |||
1 | #include <linux/kernel.h> | ||
2 | #include <linux/smp.h> | ||
3 | #include <linux/module.h> | ||
4 | #include <linux/init.h> | ||
5 | #include <linux/cpufreq.h> | ||
6 | #include <linux/slab.h> | ||
7 | |||
8 | #include "mperf.h" | ||
9 | |||
10 | static DEFINE_PER_CPU(struct aperfmperf, acfreq_old_perf); | ||
11 | |||
12 | /* Called via smp_call_function_single(), on the target CPU */ | ||
13 | static void read_measured_perf_ctrs(void *_cur) | ||
14 | { | ||
15 | struct aperfmperf *am = _cur; | ||
16 | |||
17 | get_aperfmperf(am); | ||
18 | } | ||
19 | |||
20 | /* | ||
21 | * Return the measured active (C0) frequency on this CPU since last call | ||
22 | * to this function. | ||
23 | * Input: cpu number | ||
24 | * Return: Average CPU frequency in terms of max frequency (zero on error) | ||
25 | * | ||
26 | * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance | ||
27 | * over a period of time, while CPU is in C0 state. | ||
28 | * IA32_MPERF counts at the rate of max advertised frequency | ||
29 | * IA32_APERF counts at the rate of actual CPU frequency | ||
30 | * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and | ||
31 | * no meaning should be associated with absolute values of these MSRs. | ||
32 | */ | ||
33 | unsigned int cpufreq_get_measured_perf(struct cpufreq_policy *policy, | ||
34 | unsigned int cpu) | ||
35 | { | ||
36 | struct aperfmperf perf; | ||
37 | unsigned long ratio; | ||
38 | unsigned int retval; | ||
39 | |||
40 | if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1)) | ||
41 | return 0; | ||
42 | |||
43 | ratio = calc_aperfmperf_ratio(&per_cpu(acfreq_old_perf, cpu), &perf); | ||
44 | per_cpu(acfreq_old_perf, cpu) = perf; | ||
45 | |||
46 | retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT; | ||
47 | |||
48 | return retval; | ||
49 | } | ||
50 | EXPORT_SYMBOL_GPL(cpufreq_get_measured_perf); | ||
51 | MODULE_LICENSE("GPL"); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/mperf.h b/arch/x86/kernel/cpu/cpufreq/mperf.h deleted file mode 100644 index 5dbf2950dc22..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/mperf.h +++ /dev/null | |||
@@ -1,9 +0,0 @@ | |||
1 | /* | ||
2 | * (c) 2010 Advanced Micro Devices, Inc. | ||
3 | * Your use of this code is subject to the terms and conditions of the | ||
4 | * GNU general public license version 2. See "COPYING" or | ||
5 | * http://www.gnu.org/licenses/gpl.html | ||
6 | */ | ||
7 | |||
8 | unsigned int cpufreq_get_measured_perf(struct cpufreq_policy *policy, | ||
9 | unsigned int cpu); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/p4-clockmod.c b/arch/x86/kernel/cpu/cpufreq/p4-clockmod.c deleted file mode 100644 index 6be3e0760c26..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/p4-clockmod.c +++ /dev/null | |||
@@ -1,329 +0,0 @@ | |||
1 | /* | ||
2 | * Pentium 4/Xeon CPU on demand clock modulation/speed scaling | ||
3 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
4 | * (C) 2002 Zwane Mwaikambo <zwane@commfireservices.com> | ||
5 | * (C) 2002 Arjan van de Ven <arjanv@redhat.com> | ||
6 | * (C) 2002 Tora T. Engstad | ||
7 | * All Rights Reserved | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or | ||
10 | * modify it under the terms of the GNU General Public License | ||
11 | * as published by the Free Software Foundation; either version | ||
12 | * 2 of the License, or (at your option) any later version. | ||
13 | * | ||
14 | * The author(s) of this software shall not be held liable for damages | ||
15 | * of any nature resulting due to the use of this software. This | ||
16 | * software is provided AS-IS with no warranties. | ||
17 | * | ||
18 | * Date Errata Description | ||
19 | * 20020525 N44, O17 12.5% or 25% DC causes lockup | ||
20 | * | ||
21 | */ | ||
22 | |||
23 | #include <linux/kernel.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <linux/smp.h> | ||
27 | #include <linux/cpufreq.h> | ||
28 | #include <linux/cpumask.h> | ||
29 | #include <linux/timex.h> | ||
30 | |||
31 | #include <asm/processor.h> | ||
32 | #include <asm/msr.h> | ||
33 | #include <asm/timer.h> | ||
34 | |||
35 | #include "speedstep-lib.h" | ||
36 | |||
37 | #define PFX "p4-clockmod: " | ||
38 | |||
39 | /* | ||
40 | * Duty Cycle (3bits), note DC_DISABLE is not specified in | ||
41 | * intel docs i just use it to mean disable | ||
42 | */ | ||
43 | enum { | ||
44 | DC_RESV, DC_DFLT, DC_25PT, DC_38PT, DC_50PT, | ||
45 | DC_64PT, DC_75PT, DC_88PT, DC_DISABLE | ||
46 | }; | ||
47 | |||
48 | #define DC_ENTRIES 8 | ||
49 | |||
50 | |||
51 | static int has_N44_O17_errata[NR_CPUS]; | ||
52 | static unsigned int stock_freq; | ||
53 | static struct cpufreq_driver p4clockmod_driver; | ||
54 | static unsigned int cpufreq_p4_get(unsigned int cpu); | ||
55 | |||
56 | static int cpufreq_p4_setdc(unsigned int cpu, unsigned int newstate) | ||
57 | { | ||
58 | u32 l, h; | ||
59 | |||
60 | if (!cpu_online(cpu) || | ||
61 | (newstate > DC_DISABLE) || (newstate == DC_RESV)) | ||
62 | return -EINVAL; | ||
63 | |||
64 | rdmsr_on_cpu(cpu, MSR_IA32_THERM_STATUS, &l, &h); | ||
65 | |||
66 | if (l & 0x01) | ||
67 | pr_debug("CPU#%d currently thermal throttled\n", cpu); | ||
68 | |||
69 | if (has_N44_O17_errata[cpu] && | ||
70 | (newstate == DC_25PT || newstate == DC_DFLT)) | ||
71 | newstate = DC_38PT; | ||
72 | |||
73 | rdmsr_on_cpu(cpu, MSR_IA32_THERM_CONTROL, &l, &h); | ||
74 | if (newstate == DC_DISABLE) { | ||
75 | pr_debug("CPU#%d disabling modulation\n", cpu); | ||
76 | wrmsr_on_cpu(cpu, MSR_IA32_THERM_CONTROL, l & ~(1<<4), h); | ||
77 | } else { | ||
78 | pr_debug("CPU#%d setting duty cycle to %d%%\n", | ||
79 | cpu, ((125 * newstate) / 10)); | ||
80 | /* bits 63 - 5 : reserved | ||
81 | * bit 4 : enable/disable | ||
82 | * bits 3-1 : duty cycle | ||
83 | * bit 0 : reserved | ||
84 | */ | ||
85 | l = (l & ~14); | ||
86 | l = l | (1<<4) | ((newstate & 0x7)<<1); | ||
87 | wrmsr_on_cpu(cpu, MSR_IA32_THERM_CONTROL, l, h); | ||
88 | } | ||
89 | |||
90 | return 0; | ||
91 | } | ||
92 | |||
93 | |||
94 | static struct cpufreq_frequency_table p4clockmod_table[] = { | ||
95 | {DC_RESV, CPUFREQ_ENTRY_INVALID}, | ||
96 | {DC_DFLT, 0}, | ||
97 | {DC_25PT, 0}, | ||
98 | {DC_38PT, 0}, | ||
99 | {DC_50PT, 0}, | ||
100 | {DC_64PT, 0}, | ||
101 | {DC_75PT, 0}, | ||
102 | {DC_88PT, 0}, | ||
103 | {DC_DISABLE, 0}, | ||
104 | {DC_RESV, CPUFREQ_TABLE_END}, | ||
105 | }; | ||
106 | |||
107 | |||
108 | static int cpufreq_p4_target(struct cpufreq_policy *policy, | ||
109 | unsigned int target_freq, | ||
110 | unsigned int relation) | ||
111 | { | ||
112 | unsigned int newstate = DC_RESV; | ||
113 | struct cpufreq_freqs freqs; | ||
114 | int i; | ||
115 | |||
116 | if (cpufreq_frequency_table_target(policy, &p4clockmod_table[0], | ||
117 | target_freq, relation, &newstate)) | ||
118 | return -EINVAL; | ||
119 | |||
120 | freqs.old = cpufreq_p4_get(policy->cpu); | ||
121 | freqs.new = stock_freq * p4clockmod_table[newstate].index / 8; | ||
122 | |||
123 | if (freqs.new == freqs.old) | ||
124 | return 0; | ||
125 | |||
126 | /* notifiers */ | ||
127 | for_each_cpu(i, policy->cpus) { | ||
128 | freqs.cpu = i; | ||
129 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
130 | } | ||
131 | |||
132 | /* run on each logical CPU, | ||
133 | * see section 13.15.3 of IA32 Intel Architecture Software | ||
134 | * Developer's Manual, Volume 3 | ||
135 | */ | ||
136 | for_each_cpu(i, policy->cpus) | ||
137 | cpufreq_p4_setdc(i, p4clockmod_table[newstate].index); | ||
138 | |||
139 | /* notifiers */ | ||
140 | for_each_cpu(i, policy->cpus) { | ||
141 | freqs.cpu = i; | ||
142 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
143 | } | ||
144 | |||
145 | return 0; | ||
146 | } | ||
147 | |||
148 | |||
149 | static int cpufreq_p4_verify(struct cpufreq_policy *policy) | ||
150 | { | ||
151 | return cpufreq_frequency_table_verify(policy, &p4clockmod_table[0]); | ||
152 | } | ||
153 | |||
154 | |||
155 | static unsigned int cpufreq_p4_get_frequency(struct cpuinfo_x86 *c) | ||
156 | { | ||
157 | if (c->x86 == 0x06) { | ||
158 | if (cpu_has(c, X86_FEATURE_EST)) | ||
159 | printk_once(KERN_WARNING PFX "Warning: EST-capable " | ||
160 | "CPU detected. The acpi-cpufreq module offers " | ||
161 | "voltage scaling in addition to frequency " | ||
162 | "scaling. You should use that instead of " | ||
163 | "p4-clockmod, if possible.\n"); | ||
164 | switch (c->x86_model) { | ||
165 | case 0x0E: /* Core */ | ||
166 | case 0x0F: /* Core Duo */ | ||
167 | case 0x16: /* Celeron Core */ | ||
168 | case 0x1C: /* Atom */ | ||
169 | p4clockmod_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
170 | return speedstep_get_frequency(SPEEDSTEP_CPU_PCORE); | ||
171 | case 0x0D: /* Pentium M (Dothan) */ | ||
172 | p4clockmod_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
173 | /* fall through */ | ||
174 | case 0x09: /* Pentium M (Banias) */ | ||
175 | return speedstep_get_frequency(SPEEDSTEP_CPU_PM); | ||
176 | } | ||
177 | } | ||
178 | |||
179 | if (c->x86 != 0xF) | ||
180 | return 0; | ||
181 | |||
182 | /* on P-4s, the TSC runs with constant frequency independent whether | ||
183 | * throttling is active or not. */ | ||
184 | p4clockmod_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
185 | |||
186 | if (speedstep_detect_processor() == SPEEDSTEP_CPU_P4M) { | ||
187 | printk(KERN_WARNING PFX "Warning: Pentium 4-M detected. " | ||
188 | "The speedstep-ich or acpi cpufreq modules offer " | ||
189 | "voltage scaling in addition of frequency scaling. " | ||
190 | "You should use either one instead of p4-clockmod, " | ||
191 | "if possible.\n"); | ||
192 | return speedstep_get_frequency(SPEEDSTEP_CPU_P4M); | ||
193 | } | ||
194 | |||
195 | return speedstep_get_frequency(SPEEDSTEP_CPU_P4D); | ||
196 | } | ||
197 | |||
198 | |||
199 | |||
200 | static int cpufreq_p4_cpu_init(struct cpufreq_policy *policy) | ||
201 | { | ||
202 | struct cpuinfo_x86 *c = &cpu_data(policy->cpu); | ||
203 | int cpuid = 0; | ||
204 | unsigned int i; | ||
205 | |||
206 | #ifdef CONFIG_SMP | ||
207 | cpumask_copy(policy->cpus, cpu_sibling_mask(policy->cpu)); | ||
208 | #endif | ||
209 | |||
210 | /* Errata workaround */ | ||
211 | cpuid = (c->x86 << 8) | (c->x86_model << 4) | c->x86_mask; | ||
212 | switch (cpuid) { | ||
213 | case 0x0f07: | ||
214 | case 0x0f0a: | ||
215 | case 0x0f11: | ||
216 | case 0x0f12: | ||
217 | has_N44_O17_errata[policy->cpu] = 1; | ||
218 | pr_debug("has errata -- disabling low frequencies\n"); | ||
219 | } | ||
220 | |||
221 | if (speedstep_detect_processor() == SPEEDSTEP_CPU_P4D && | ||
222 | c->x86_model < 2) { | ||
223 | /* switch to maximum frequency and measure result */ | ||
224 | cpufreq_p4_setdc(policy->cpu, DC_DISABLE); | ||
225 | recalibrate_cpu_khz(); | ||
226 | } | ||
227 | /* get max frequency */ | ||
228 | stock_freq = cpufreq_p4_get_frequency(c); | ||
229 | if (!stock_freq) | ||
230 | return -EINVAL; | ||
231 | |||
232 | /* table init */ | ||
233 | for (i = 1; (p4clockmod_table[i].frequency != CPUFREQ_TABLE_END); i++) { | ||
234 | if ((i < 2) && (has_N44_O17_errata[policy->cpu])) | ||
235 | p4clockmod_table[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
236 | else | ||
237 | p4clockmod_table[i].frequency = (stock_freq * i)/8; | ||
238 | } | ||
239 | cpufreq_frequency_table_get_attr(p4clockmod_table, policy->cpu); | ||
240 | |||
241 | /* cpuinfo and default policy values */ | ||
242 | |||
243 | /* the transition latency is set to be 1 higher than the maximum | ||
244 | * transition latency of the ondemand governor */ | ||
245 | policy->cpuinfo.transition_latency = 10000001; | ||
246 | policy->cur = stock_freq; | ||
247 | |||
248 | return cpufreq_frequency_table_cpuinfo(policy, &p4clockmod_table[0]); | ||
249 | } | ||
250 | |||
251 | |||
252 | static int cpufreq_p4_cpu_exit(struct cpufreq_policy *policy) | ||
253 | { | ||
254 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
255 | return 0; | ||
256 | } | ||
257 | |||
258 | static unsigned int cpufreq_p4_get(unsigned int cpu) | ||
259 | { | ||
260 | u32 l, h; | ||
261 | |||
262 | rdmsr_on_cpu(cpu, MSR_IA32_THERM_CONTROL, &l, &h); | ||
263 | |||
264 | if (l & 0x10) { | ||
265 | l = l >> 1; | ||
266 | l &= 0x7; | ||
267 | } else | ||
268 | l = DC_DISABLE; | ||
269 | |||
270 | if (l != DC_DISABLE) | ||
271 | return stock_freq * l / 8; | ||
272 | |||
273 | return stock_freq; | ||
274 | } | ||
275 | |||
276 | static struct freq_attr *p4clockmod_attr[] = { | ||
277 | &cpufreq_freq_attr_scaling_available_freqs, | ||
278 | NULL, | ||
279 | }; | ||
280 | |||
281 | static struct cpufreq_driver p4clockmod_driver = { | ||
282 | .verify = cpufreq_p4_verify, | ||
283 | .target = cpufreq_p4_target, | ||
284 | .init = cpufreq_p4_cpu_init, | ||
285 | .exit = cpufreq_p4_cpu_exit, | ||
286 | .get = cpufreq_p4_get, | ||
287 | .name = "p4-clockmod", | ||
288 | .owner = THIS_MODULE, | ||
289 | .attr = p4clockmod_attr, | ||
290 | }; | ||
291 | |||
292 | |||
293 | static int __init cpufreq_p4_init(void) | ||
294 | { | ||
295 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
296 | int ret; | ||
297 | |||
298 | /* | ||
299 | * THERM_CONTROL is architectural for IA32 now, so | ||
300 | * we can rely on the capability checks | ||
301 | */ | ||
302 | if (c->x86_vendor != X86_VENDOR_INTEL) | ||
303 | return -ENODEV; | ||
304 | |||
305 | if (!test_cpu_cap(c, X86_FEATURE_ACPI) || | ||
306 | !test_cpu_cap(c, X86_FEATURE_ACC)) | ||
307 | return -ENODEV; | ||
308 | |||
309 | ret = cpufreq_register_driver(&p4clockmod_driver); | ||
310 | if (!ret) | ||
311 | printk(KERN_INFO PFX "P4/Xeon(TM) CPU On-Demand Clock " | ||
312 | "Modulation available\n"); | ||
313 | |||
314 | return ret; | ||
315 | } | ||
316 | |||
317 | |||
318 | static void __exit cpufreq_p4_exit(void) | ||
319 | { | ||
320 | cpufreq_unregister_driver(&p4clockmod_driver); | ||
321 | } | ||
322 | |||
323 | |||
324 | MODULE_AUTHOR("Zwane Mwaikambo <zwane@commfireservices.com>"); | ||
325 | MODULE_DESCRIPTION("cpufreq driver for Pentium(TM) 4/Xeon(TM)"); | ||
326 | MODULE_LICENSE("GPL"); | ||
327 | |||
328 | late_initcall(cpufreq_p4_init); | ||
329 | module_exit(cpufreq_p4_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/pcc-cpufreq.c b/arch/x86/kernel/cpu/cpufreq/pcc-cpufreq.c deleted file mode 100644 index 7b0603eb0129..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/pcc-cpufreq.c +++ /dev/null | |||
@@ -1,621 +0,0 @@ | |||
1 | /* | ||
2 | * pcc-cpufreq.c - Processor Clocking Control firmware cpufreq interface | ||
3 | * | ||
4 | * Copyright (C) 2009 Red Hat, Matthew Garrett <mjg@redhat.com> | ||
5 | * Copyright (C) 2009 Hewlett-Packard Development Company, L.P. | ||
6 | * Nagananda Chumbalkar <nagananda.chumbalkar@hp.com> | ||
7 | * | ||
8 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of the GNU General Public License as published by | ||
12 | * the Free Software Foundation; version 2 of the License. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but | ||
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or NON | ||
17 | * INFRINGEMENT. See the GNU General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License along | ||
20 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
21 | * 675 Mass Ave, Cambridge, MA 02139, USA. | ||
22 | * | ||
23 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
24 | */ | ||
25 | |||
26 | #include <linux/kernel.h> | ||
27 | #include <linux/module.h> | ||
28 | #include <linux/init.h> | ||
29 | #include <linux/smp.h> | ||
30 | #include <linux/sched.h> | ||
31 | #include <linux/cpufreq.h> | ||
32 | #include <linux/compiler.h> | ||
33 | #include <linux/slab.h> | ||
34 | |||
35 | #include <linux/acpi.h> | ||
36 | #include <linux/io.h> | ||
37 | #include <linux/spinlock.h> | ||
38 | #include <linux/uaccess.h> | ||
39 | |||
40 | #include <acpi/processor.h> | ||
41 | |||
42 | #define PCC_VERSION "1.10.00" | ||
43 | #define POLL_LOOPS 300 | ||
44 | |||
45 | #define CMD_COMPLETE 0x1 | ||
46 | #define CMD_GET_FREQ 0x0 | ||
47 | #define CMD_SET_FREQ 0x1 | ||
48 | |||
49 | #define BUF_SZ 4 | ||
50 | |||
51 | struct pcc_register_resource { | ||
52 | u8 descriptor; | ||
53 | u16 length; | ||
54 | u8 space_id; | ||
55 | u8 bit_width; | ||
56 | u8 bit_offset; | ||
57 | u8 access_size; | ||
58 | u64 address; | ||
59 | } __attribute__ ((packed)); | ||
60 | |||
61 | struct pcc_memory_resource { | ||
62 | u8 descriptor; | ||
63 | u16 length; | ||
64 | u8 space_id; | ||
65 | u8 resource_usage; | ||
66 | u8 type_specific; | ||
67 | u64 granularity; | ||
68 | u64 minimum; | ||
69 | u64 maximum; | ||
70 | u64 translation_offset; | ||
71 | u64 address_length; | ||
72 | } __attribute__ ((packed)); | ||
73 | |||
74 | static struct cpufreq_driver pcc_cpufreq_driver; | ||
75 | |||
76 | struct pcc_header { | ||
77 | u32 signature; | ||
78 | u16 length; | ||
79 | u8 major; | ||
80 | u8 minor; | ||
81 | u32 features; | ||
82 | u16 command; | ||
83 | u16 status; | ||
84 | u32 latency; | ||
85 | u32 minimum_time; | ||
86 | u32 maximum_time; | ||
87 | u32 nominal; | ||
88 | u32 throttled_frequency; | ||
89 | u32 minimum_frequency; | ||
90 | }; | ||
91 | |||
92 | static void __iomem *pcch_virt_addr; | ||
93 | static struct pcc_header __iomem *pcch_hdr; | ||
94 | |||
95 | static DEFINE_SPINLOCK(pcc_lock); | ||
96 | |||
97 | static struct acpi_generic_address doorbell; | ||
98 | |||
99 | static u64 doorbell_preserve; | ||
100 | static u64 doorbell_write; | ||
101 | |||
102 | static u8 OSC_UUID[16] = {0x9F, 0x2C, 0x9B, 0x63, 0x91, 0x70, 0x1f, 0x49, | ||
103 | 0xBB, 0x4F, 0xA5, 0x98, 0x2F, 0xA1, 0xB5, 0x46}; | ||
104 | |||
105 | struct pcc_cpu { | ||
106 | u32 input_offset; | ||
107 | u32 output_offset; | ||
108 | }; | ||
109 | |||
110 | static struct pcc_cpu __percpu *pcc_cpu_info; | ||
111 | |||
112 | static int pcc_cpufreq_verify(struct cpufreq_policy *policy) | ||
113 | { | ||
114 | cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, | ||
115 | policy->cpuinfo.max_freq); | ||
116 | return 0; | ||
117 | } | ||
118 | |||
119 | static inline void pcc_cmd(void) | ||
120 | { | ||
121 | u64 doorbell_value; | ||
122 | int i; | ||
123 | |||
124 | acpi_read(&doorbell_value, &doorbell); | ||
125 | acpi_write((doorbell_value & doorbell_preserve) | doorbell_write, | ||
126 | &doorbell); | ||
127 | |||
128 | for (i = 0; i < POLL_LOOPS; i++) { | ||
129 | if (ioread16(&pcch_hdr->status) & CMD_COMPLETE) | ||
130 | break; | ||
131 | } | ||
132 | } | ||
133 | |||
134 | static inline void pcc_clear_mapping(void) | ||
135 | { | ||
136 | if (pcch_virt_addr) | ||
137 | iounmap(pcch_virt_addr); | ||
138 | pcch_virt_addr = NULL; | ||
139 | } | ||
140 | |||
141 | static unsigned int pcc_get_freq(unsigned int cpu) | ||
142 | { | ||
143 | struct pcc_cpu *pcc_cpu_data; | ||
144 | unsigned int curr_freq; | ||
145 | unsigned int freq_limit; | ||
146 | u16 status; | ||
147 | u32 input_buffer; | ||
148 | u32 output_buffer; | ||
149 | |||
150 | spin_lock(&pcc_lock); | ||
151 | |||
152 | pr_debug("get: get_freq for CPU %d\n", cpu); | ||
153 | pcc_cpu_data = per_cpu_ptr(pcc_cpu_info, cpu); | ||
154 | |||
155 | input_buffer = 0x1; | ||
156 | iowrite32(input_buffer, | ||
157 | (pcch_virt_addr + pcc_cpu_data->input_offset)); | ||
158 | iowrite16(CMD_GET_FREQ, &pcch_hdr->command); | ||
159 | |||
160 | pcc_cmd(); | ||
161 | |||
162 | output_buffer = | ||
163 | ioread32(pcch_virt_addr + pcc_cpu_data->output_offset); | ||
164 | |||
165 | /* Clear the input buffer - we are done with the current command */ | ||
166 | memset_io((pcch_virt_addr + pcc_cpu_data->input_offset), 0, BUF_SZ); | ||
167 | |||
168 | status = ioread16(&pcch_hdr->status); | ||
169 | if (status != CMD_COMPLETE) { | ||
170 | pr_debug("get: FAILED: for CPU %d, status is %d\n", | ||
171 | cpu, status); | ||
172 | goto cmd_incomplete; | ||
173 | } | ||
174 | iowrite16(0, &pcch_hdr->status); | ||
175 | curr_freq = (((ioread32(&pcch_hdr->nominal) * (output_buffer & 0xff)) | ||
176 | / 100) * 1000); | ||
177 | |||
178 | pr_debug("get: SUCCESS: (virtual) output_offset for cpu %d is " | ||
179 | "0x%p, contains a value of: 0x%x. Speed is: %d MHz\n", | ||
180 | cpu, (pcch_virt_addr + pcc_cpu_data->output_offset), | ||
181 | output_buffer, curr_freq); | ||
182 | |||
183 | freq_limit = (output_buffer >> 8) & 0xff; | ||
184 | if (freq_limit != 0xff) { | ||
185 | pr_debug("get: frequency for cpu %d is being temporarily" | ||
186 | " capped at %d\n", cpu, curr_freq); | ||
187 | } | ||
188 | |||
189 | spin_unlock(&pcc_lock); | ||
190 | return curr_freq; | ||
191 | |||
192 | cmd_incomplete: | ||
193 | iowrite16(0, &pcch_hdr->status); | ||
194 | spin_unlock(&pcc_lock); | ||
195 | return 0; | ||
196 | } | ||
197 | |||
198 | static int pcc_cpufreq_target(struct cpufreq_policy *policy, | ||
199 | unsigned int target_freq, | ||
200 | unsigned int relation) | ||
201 | { | ||
202 | struct pcc_cpu *pcc_cpu_data; | ||
203 | struct cpufreq_freqs freqs; | ||
204 | u16 status; | ||
205 | u32 input_buffer; | ||
206 | int cpu; | ||
207 | |||
208 | spin_lock(&pcc_lock); | ||
209 | cpu = policy->cpu; | ||
210 | pcc_cpu_data = per_cpu_ptr(pcc_cpu_info, cpu); | ||
211 | |||
212 | pr_debug("target: CPU %d should go to target freq: %d " | ||
213 | "(virtual) input_offset is 0x%p\n", | ||
214 | cpu, target_freq, | ||
215 | (pcch_virt_addr + pcc_cpu_data->input_offset)); | ||
216 | |||
217 | freqs.new = target_freq; | ||
218 | freqs.cpu = cpu; | ||
219 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
220 | |||
221 | input_buffer = 0x1 | (((target_freq * 100) | ||
222 | / (ioread32(&pcch_hdr->nominal) * 1000)) << 8); | ||
223 | iowrite32(input_buffer, | ||
224 | (pcch_virt_addr + pcc_cpu_data->input_offset)); | ||
225 | iowrite16(CMD_SET_FREQ, &pcch_hdr->command); | ||
226 | |||
227 | pcc_cmd(); | ||
228 | |||
229 | /* Clear the input buffer - we are done with the current command */ | ||
230 | memset_io((pcch_virt_addr + pcc_cpu_data->input_offset), 0, BUF_SZ); | ||
231 | |||
232 | status = ioread16(&pcch_hdr->status); | ||
233 | if (status != CMD_COMPLETE) { | ||
234 | pr_debug("target: FAILED for cpu %d, with status: 0x%x\n", | ||
235 | cpu, status); | ||
236 | goto cmd_incomplete; | ||
237 | } | ||
238 | iowrite16(0, &pcch_hdr->status); | ||
239 | |||
240 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
241 | pr_debug("target: was SUCCESSFUL for cpu %d\n", cpu); | ||
242 | spin_unlock(&pcc_lock); | ||
243 | |||
244 | return 0; | ||
245 | |||
246 | cmd_incomplete: | ||
247 | iowrite16(0, &pcch_hdr->status); | ||
248 | spin_unlock(&pcc_lock); | ||
249 | return -EINVAL; | ||
250 | } | ||
251 | |||
252 | static int pcc_get_offset(int cpu) | ||
253 | { | ||
254 | acpi_status status; | ||
255 | struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; | ||
256 | union acpi_object *pccp, *offset; | ||
257 | struct pcc_cpu *pcc_cpu_data; | ||
258 | struct acpi_processor *pr; | ||
259 | int ret = 0; | ||
260 | |||
261 | pr = per_cpu(processors, cpu); | ||
262 | pcc_cpu_data = per_cpu_ptr(pcc_cpu_info, cpu); | ||
263 | |||
264 | status = acpi_evaluate_object(pr->handle, "PCCP", NULL, &buffer); | ||
265 | if (ACPI_FAILURE(status)) | ||
266 | return -ENODEV; | ||
267 | |||
268 | pccp = buffer.pointer; | ||
269 | if (!pccp || pccp->type != ACPI_TYPE_PACKAGE) { | ||
270 | ret = -ENODEV; | ||
271 | goto out_free; | ||
272 | }; | ||
273 | |||
274 | offset = &(pccp->package.elements[0]); | ||
275 | if (!offset || offset->type != ACPI_TYPE_INTEGER) { | ||
276 | ret = -ENODEV; | ||
277 | goto out_free; | ||
278 | } | ||
279 | |||
280 | pcc_cpu_data->input_offset = offset->integer.value; | ||
281 | |||
282 | offset = &(pccp->package.elements[1]); | ||
283 | if (!offset || offset->type != ACPI_TYPE_INTEGER) { | ||
284 | ret = -ENODEV; | ||
285 | goto out_free; | ||
286 | } | ||
287 | |||
288 | pcc_cpu_data->output_offset = offset->integer.value; | ||
289 | |||
290 | memset_io((pcch_virt_addr + pcc_cpu_data->input_offset), 0, BUF_SZ); | ||
291 | memset_io((pcch_virt_addr + pcc_cpu_data->output_offset), 0, BUF_SZ); | ||
292 | |||
293 | pr_debug("pcc_get_offset: for CPU %d: pcc_cpu_data " | ||
294 | "input_offset: 0x%x, pcc_cpu_data output_offset: 0x%x\n", | ||
295 | cpu, pcc_cpu_data->input_offset, pcc_cpu_data->output_offset); | ||
296 | out_free: | ||
297 | kfree(buffer.pointer); | ||
298 | return ret; | ||
299 | } | ||
300 | |||
301 | static int __init pcc_cpufreq_do_osc(acpi_handle *handle) | ||
302 | { | ||
303 | acpi_status status; | ||
304 | struct acpi_object_list input; | ||
305 | struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; | ||
306 | union acpi_object in_params[4]; | ||
307 | union acpi_object *out_obj; | ||
308 | u32 capabilities[2]; | ||
309 | u32 errors; | ||
310 | u32 supported; | ||
311 | int ret = 0; | ||
312 | |||
313 | input.count = 4; | ||
314 | input.pointer = in_params; | ||
315 | in_params[0].type = ACPI_TYPE_BUFFER; | ||
316 | in_params[0].buffer.length = 16; | ||
317 | in_params[0].buffer.pointer = OSC_UUID; | ||
318 | in_params[1].type = ACPI_TYPE_INTEGER; | ||
319 | in_params[1].integer.value = 1; | ||
320 | in_params[2].type = ACPI_TYPE_INTEGER; | ||
321 | in_params[2].integer.value = 2; | ||
322 | in_params[3].type = ACPI_TYPE_BUFFER; | ||
323 | in_params[3].buffer.length = 8; | ||
324 | in_params[3].buffer.pointer = (u8 *)&capabilities; | ||
325 | |||
326 | capabilities[0] = OSC_QUERY_ENABLE; | ||
327 | capabilities[1] = 0x1; | ||
328 | |||
329 | status = acpi_evaluate_object(*handle, "_OSC", &input, &output); | ||
330 | if (ACPI_FAILURE(status)) | ||
331 | return -ENODEV; | ||
332 | |||
333 | if (!output.length) | ||
334 | return -ENODEV; | ||
335 | |||
336 | out_obj = output.pointer; | ||
337 | if (out_obj->type != ACPI_TYPE_BUFFER) { | ||
338 | ret = -ENODEV; | ||
339 | goto out_free; | ||
340 | } | ||
341 | |||
342 | errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0); | ||
343 | if (errors) { | ||
344 | ret = -ENODEV; | ||
345 | goto out_free; | ||
346 | } | ||
347 | |||
348 | supported = *((u32 *)(out_obj->buffer.pointer + 4)); | ||
349 | if (!(supported & 0x1)) { | ||
350 | ret = -ENODEV; | ||
351 | goto out_free; | ||
352 | } | ||
353 | |||
354 | kfree(output.pointer); | ||
355 | capabilities[0] = 0x0; | ||
356 | capabilities[1] = 0x1; | ||
357 | |||
358 | status = acpi_evaluate_object(*handle, "_OSC", &input, &output); | ||
359 | if (ACPI_FAILURE(status)) | ||
360 | return -ENODEV; | ||
361 | |||
362 | if (!output.length) | ||
363 | return -ENODEV; | ||
364 | |||
365 | out_obj = output.pointer; | ||
366 | if (out_obj->type != ACPI_TYPE_BUFFER) { | ||
367 | ret = -ENODEV; | ||
368 | goto out_free; | ||
369 | } | ||
370 | |||
371 | errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0); | ||
372 | if (errors) { | ||
373 | ret = -ENODEV; | ||
374 | goto out_free; | ||
375 | } | ||
376 | |||
377 | supported = *((u32 *)(out_obj->buffer.pointer + 4)); | ||
378 | if (!(supported & 0x1)) { | ||
379 | ret = -ENODEV; | ||
380 | goto out_free; | ||
381 | } | ||
382 | |||
383 | out_free: | ||
384 | kfree(output.pointer); | ||
385 | return ret; | ||
386 | } | ||
387 | |||
388 | static int __init pcc_cpufreq_probe(void) | ||
389 | { | ||
390 | acpi_status status; | ||
391 | struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; | ||
392 | struct pcc_memory_resource *mem_resource; | ||
393 | struct pcc_register_resource *reg_resource; | ||
394 | union acpi_object *out_obj, *member; | ||
395 | acpi_handle handle, osc_handle, pcch_handle; | ||
396 | int ret = 0; | ||
397 | |||
398 | status = acpi_get_handle(NULL, "\\_SB", &handle); | ||
399 | if (ACPI_FAILURE(status)) | ||
400 | return -ENODEV; | ||
401 | |||
402 | status = acpi_get_handle(handle, "PCCH", &pcch_handle); | ||
403 | if (ACPI_FAILURE(status)) | ||
404 | return -ENODEV; | ||
405 | |||
406 | status = acpi_get_handle(handle, "_OSC", &osc_handle); | ||
407 | if (ACPI_SUCCESS(status)) { | ||
408 | ret = pcc_cpufreq_do_osc(&osc_handle); | ||
409 | if (ret) | ||
410 | pr_debug("probe: _OSC evaluation did not succeed\n"); | ||
411 | /* Firmware's use of _OSC is optional */ | ||
412 | ret = 0; | ||
413 | } | ||
414 | |||
415 | status = acpi_evaluate_object(handle, "PCCH", NULL, &output); | ||
416 | if (ACPI_FAILURE(status)) | ||
417 | return -ENODEV; | ||
418 | |||
419 | out_obj = output.pointer; | ||
420 | if (out_obj->type != ACPI_TYPE_PACKAGE) { | ||
421 | ret = -ENODEV; | ||
422 | goto out_free; | ||
423 | } | ||
424 | |||
425 | member = &out_obj->package.elements[0]; | ||
426 | if (member->type != ACPI_TYPE_BUFFER) { | ||
427 | ret = -ENODEV; | ||
428 | goto out_free; | ||
429 | } | ||
430 | |||
431 | mem_resource = (struct pcc_memory_resource *)member->buffer.pointer; | ||
432 | |||
433 | pr_debug("probe: mem_resource descriptor: 0x%x," | ||
434 | " length: %d, space_id: %d, resource_usage: %d," | ||
435 | " type_specific: %d, granularity: 0x%llx," | ||
436 | " minimum: 0x%llx, maximum: 0x%llx," | ||
437 | " translation_offset: 0x%llx, address_length: 0x%llx\n", | ||
438 | mem_resource->descriptor, mem_resource->length, | ||
439 | mem_resource->space_id, mem_resource->resource_usage, | ||
440 | mem_resource->type_specific, mem_resource->granularity, | ||
441 | mem_resource->minimum, mem_resource->maximum, | ||
442 | mem_resource->translation_offset, | ||
443 | mem_resource->address_length); | ||
444 | |||
445 | if (mem_resource->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) { | ||
446 | ret = -ENODEV; | ||
447 | goto out_free; | ||
448 | } | ||
449 | |||
450 | pcch_virt_addr = ioremap_nocache(mem_resource->minimum, | ||
451 | mem_resource->address_length); | ||
452 | if (pcch_virt_addr == NULL) { | ||
453 | pr_debug("probe: could not map shared mem region\n"); | ||
454 | goto out_free; | ||
455 | } | ||
456 | pcch_hdr = pcch_virt_addr; | ||
457 | |||
458 | pr_debug("probe: PCCH header (virtual) addr: 0x%p\n", pcch_hdr); | ||
459 | pr_debug("probe: PCCH header is at physical address: 0x%llx," | ||
460 | " signature: 0x%x, length: %d bytes, major: %d, minor: %d," | ||
461 | " supported features: 0x%x, command field: 0x%x," | ||
462 | " status field: 0x%x, nominal latency: %d us\n", | ||
463 | mem_resource->minimum, ioread32(&pcch_hdr->signature), | ||
464 | ioread16(&pcch_hdr->length), ioread8(&pcch_hdr->major), | ||
465 | ioread8(&pcch_hdr->minor), ioread32(&pcch_hdr->features), | ||
466 | ioread16(&pcch_hdr->command), ioread16(&pcch_hdr->status), | ||
467 | ioread32(&pcch_hdr->latency)); | ||
468 | |||
469 | pr_debug("probe: min time between commands: %d us," | ||
470 | " max time between commands: %d us," | ||
471 | " nominal CPU frequency: %d MHz," | ||
472 | " minimum CPU frequency: %d MHz," | ||
473 | " minimum CPU frequency without throttling: %d MHz\n", | ||
474 | ioread32(&pcch_hdr->minimum_time), | ||
475 | ioread32(&pcch_hdr->maximum_time), | ||
476 | ioread32(&pcch_hdr->nominal), | ||
477 | ioread32(&pcch_hdr->throttled_frequency), | ||
478 | ioread32(&pcch_hdr->minimum_frequency)); | ||
479 | |||
480 | member = &out_obj->package.elements[1]; | ||
481 | if (member->type != ACPI_TYPE_BUFFER) { | ||
482 | ret = -ENODEV; | ||
483 | goto pcch_free; | ||
484 | } | ||
485 | |||
486 | reg_resource = (struct pcc_register_resource *)member->buffer.pointer; | ||
487 | |||
488 | doorbell.space_id = reg_resource->space_id; | ||
489 | doorbell.bit_width = reg_resource->bit_width; | ||
490 | doorbell.bit_offset = reg_resource->bit_offset; | ||
491 | doorbell.access_width = 64; | ||
492 | doorbell.address = reg_resource->address; | ||
493 | |||
494 | pr_debug("probe: doorbell: space_id is %d, bit_width is %d, " | ||
495 | "bit_offset is %d, access_width is %d, address is 0x%llx\n", | ||
496 | doorbell.space_id, doorbell.bit_width, doorbell.bit_offset, | ||
497 | doorbell.access_width, reg_resource->address); | ||
498 | |||
499 | member = &out_obj->package.elements[2]; | ||
500 | if (member->type != ACPI_TYPE_INTEGER) { | ||
501 | ret = -ENODEV; | ||
502 | goto pcch_free; | ||
503 | } | ||
504 | |||
505 | doorbell_preserve = member->integer.value; | ||
506 | |||
507 | member = &out_obj->package.elements[3]; | ||
508 | if (member->type != ACPI_TYPE_INTEGER) { | ||
509 | ret = -ENODEV; | ||
510 | goto pcch_free; | ||
511 | } | ||
512 | |||
513 | doorbell_write = member->integer.value; | ||
514 | |||
515 | pr_debug("probe: doorbell_preserve: 0x%llx," | ||
516 | " doorbell_write: 0x%llx\n", | ||
517 | doorbell_preserve, doorbell_write); | ||
518 | |||
519 | pcc_cpu_info = alloc_percpu(struct pcc_cpu); | ||
520 | if (!pcc_cpu_info) { | ||
521 | ret = -ENOMEM; | ||
522 | goto pcch_free; | ||
523 | } | ||
524 | |||
525 | printk(KERN_DEBUG "pcc-cpufreq: (v%s) driver loaded with frequency" | ||
526 | " limits: %d MHz, %d MHz\n", PCC_VERSION, | ||
527 | ioread32(&pcch_hdr->minimum_frequency), | ||
528 | ioread32(&pcch_hdr->nominal)); | ||
529 | kfree(output.pointer); | ||
530 | return ret; | ||
531 | pcch_free: | ||
532 | pcc_clear_mapping(); | ||
533 | out_free: | ||
534 | kfree(output.pointer); | ||
535 | return ret; | ||
536 | } | ||
537 | |||
538 | static int pcc_cpufreq_cpu_init(struct cpufreq_policy *policy) | ||
539 | { | ||
540 | unsigned int cpu = policy->cpu; | ||
541 | unsigned int result = 0; | ||
542 | |||
543 | if (!pcch_virt_addr) { | ||
544 | result = -1; | ||
545 | goto out; | ||
546 | } | ||
547 | |||
548 | result = pcc_get_offset(cpu); | ||
549 | if (result) { | ||
550 | pr_debug("init: PCCP evaluation failed\n"); | ||
551 | goto out; | ||
552 | } | ||
553 | |||
554 | policy->max = policy->cpuinfo.max_freq = | ||
555 | ioread32(&pcch_hdr->nominal) * 1000; | ||
556 | policy->min = policy->cpuinfo.min_freq = | ||
557 | ioread32(&pcch_hdr->minimum_frequency) * 1000; | ||
558 | policy->cur = pcc_get_freq(cpu); | ||
559 | |||
560 | if (!policy->cur) { | ||
561 | pr_debug("init: Unable to get current CPU frequency\n"); | ||
562 | result = -EINVAL; | ||
563 | goto out; | ||
564 | } | ||
565 | |||
566 | pr_debug("init: policy->max is %d, policy->min is %d\n", | ||
567 | policy->max, policy->min); | ||
568 | out: | ||
569 | return result; | ||
570 | } | ||
571 | |||
572 | static int pcc_cpufreq_cpu_exit(struct cpufreq_policy *policy) | ||
573 | { | ||
574 | return 0; | ||
575 | } | ||
576 | |||
577 | static struct cpufreq_driver pcc_cpufreq_driver = { | ||
578 | .flags = CPUFREQ_CONST_LOOPS, | ||
579 | .get = pcc_get_freq, | ||
580 | .verify = pcc_cpufreq_verify, | ||
581 | .target = pcc_cpufreq_target, | ||
582 | .init = pcc_cpufreq_cpu_init, | ||
583 | .exit = pcc_cpufreq_cpu_exit, | ||
584 | .name = "pcc-cpufreq", | ||
585 | .owner = THIS_MODULE, | ||
586 | }; | ||
587 | |||
588 | static int __init pcc_cpufreq_init(void) | ||
589 | { | ||
590 | int ret; | ||
591 | |||
592 | if (acpi_disabled) | ||
593 | return 0; | ||
594 | |||
595 | ret = pcc_cpufreq_probe(); | ||
596 | if (ret) { | ||
597 | pr_debug("pcc_cpufreq_init: PCCH evaluation failed\n"); | ||
598 | return ret; | ||
599 | } | ||
600 | |||
601 | ret = cpufreq_register_driver(&pcc_cpufreq_driver); | ||
602 | |||
603 | return ret; | ||
604 | } | ||
605 | |||
606 | static void __exit pcc_cpufreq_exit(void) | ||
607 | { | ||
608 | cpufreq_unregister_driver(&pcc_cpufreq_driver); | ||
609 | |||
610 | pcc_clear_mapping(); | ||
611 | |||
612 | free_percpu(pcc_cpu_info); | ||
613 | } | ||
614 | |||
615 | MODULE_AUTHOR("Matthew Garrett, Naga Chumbalkar"); | ||
616 | MODULE_VERSION(PCC_VERSION); | ||
617 | MODULE_DESCRIPTION("Processor Clocking Control interface driver"); | ||
618 | MODULE_LICENSE("GPL"); | ||
619 | |||
620 | late_initcall(pcc_cpufreq_init); | ||
621 | module_exit(pcc_cpufreq_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/powernow-k6.c b/arch/x86/kernel/cpu/cpufreq/powernow-k6.c deleted file mode 100644 index b3379d6a5c57..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/powernow-k6.c +++ /dev/null | |||
@@ -1,261 +0,0 @@ | |||
1 | /* | ||
2 | * This file was based upon code in Powertweak Linux (http://powertweak.sf.net) | ||
3 | * (C) 2000-2003 Dave Jones, Arjan van de Ven, Janne Pänkälä, | ||
4 | * Dominik Brodowski. | ||
5 | * | ||
6 | * Licensed under the terms of the GNU GPL License version 2. | ||
7 | * | ||
8 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
9 | */ | ||
10 | |||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/cpufreq.h> | ||
15 | #include <linux/ioport.h> | ||
16 | #include <linux/timex.h> | ||
17 | #include <linux/io.h> | ||
18 | |||
19 | #include <asm/msr.h> | ||
20 | |||
21 | #define POWERNOW_IOPORT 0xfff0 /* it doesn't matter where, as long | ||
22 | as it is unused */ | ||
23 | |||
24 | #define PFX "powernow-k6: " | ||
25 | static unsigned int busfreq; /* FSB, in 10 kHz */ | ||
26 | static unsigned int max_multiplier; | ||
27 | |||
28 | |||
29 | /* Clock ratio multiplied by 10 - see table 27 in AMD#23446 */ | ||
30 | static struct cpufreq_frequency_table clock_ratio[] = { | ||
31 | {45, /* 000 -> 4.5x */ 0}, | ||
32 | {50, /* 001 -> 5.0x */ 0}, | ||
33 | {40, /* 010 -> 4.0x */ 0}, | ||
34 | {55, /* 011 -> 5.5x */ 0}, | ||
35 | {20, /* 100 -> 2.0x */ 0}, | ||
36 | {30, /* 101 -> 3.0x */ 0}, | ||
37 | {60, /* 110 -> 6.0x */ 0}, | ||
38 | {35, /* 111 -> 3.5x */ 0}, | ||
39 | {0, CPUFREQ_TABLE_END} | ||
40 | }; | ||
41 | |||
42 | |||
43 | /** | ||
44 | * powernow_k6_get_cpu_multiplier - returns the current FSB multiplier | ||
45 | * | ||
46 | * Returns the current setting of the frequency multiplier. Core clock | ||
47 | * speed is frequency of the Front-Side Bus multiplied with this value. | ||
48 | */ | ||
49 | static int powernow_k6_get_cpu_multiplier(void) | ||
50 | { | ||
51 | u64 invalue = 0; | ||
52 | u32 msrval; | ||
53 | |||
54 | msrval = POWERNOW_IOPORT + 0x1; | ||
55 | wrmsr(MSR_K6_EPMR, msrval, 0); /* enable the PowerNow port */ | ||
56 | invalue = inl(POWERNOW_IOPORT + 0x8); | ||
57 | msrval = POWERNOW_IOPORT + 0x0; | ||
58 | wrmsr(MSR_K6_EPMR, msrval, 0); /* disable it again */ | ||
59 | |||
60 | return clock_ratio[(invalue >> 5)&7].index; | ||
61 | } | ||
62 | |||
63 | |||
64 | /** | ||
65 | * powernow_k6_set_state - set the PowerNow! multiplier | ||
66 | * @best_i: clock_ratio[best_i] is the target multiplier | ||
67 | * | ||
68 | * Tries to change the PowerNow! multiplier | ||
69 | */ | ||
70 | static void powernow_k6_set_state(unsigned int best_i) | ||
71 | { | ||
72 | unsigned long outvalue = 0, invalue = 0; | ||
73 | unsigned long msrval; | ||
74 | struct cpufreq_freqs freqs; | ||
75 | |||
76 | if (clock_ratio[best_i].index > max_multiplier) { | ||
77 | printk(KERN_ERR PFX "invalid target frequency\n"); | ||
78 | return; | ||
79 | } | ||
80 | |||
81 | freqs.old = busfreq * powernow_k6_get_cpu_multiplier(); | ||
82 | freqs.new = busfreq * clock_ratio[best_i].index; | ||
83 | freqs.cpu = 0; /* powernow-k6.c is UP only driver */ | ||
84 | |||
85 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
86 | |||
87 | /* we now need to transform best_i to the BVC format, see AMD#23446 */ | ||
88 | |||
89 | outvalue = (1<<12) | (1<<10) | (1<<9) | (best_i<<5); | ||
90 | |||
91 | msrval = POWERNOW_IOPORT + 0x1; | ||
92 | wrmsr(MSR_K6_EPMR, msrval, 0); /* enable the PowerNow port */ | ||
93 | invalue = inl(POWERNOW_IOPORT + 0x8); | ||
94 | invalue = invalue & 0xf; | ||
95 | outvalue = outvalue | invalue; | ||
96 | outl(outvalue , (POWERNOW_IOPORT + 0x8)); | ||
97 | msrval = POWERNOW_IOPORT + 0x0; | ||
98 | wrmsr(MSR_K6_EPMR, msrval, 0); /* disable it again */ | ||
99 | |||
100 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
101 | |||
102 | return; | ||
103 | } | ||
104 | |||
105 | |||
106 | /** | ||
107 | * powernow_k6_verify - verifies a new CPUfreq policy | ||
108 | * @policy: new policy | ||
109 | * | ||
110 | * Policy must be within lowest and highest possible CPU Frequency, | ||
111 | * and at least one possible state must be within min and max. | ||
112 | */ | ||
113 | static int powernow_k6_verify(struct cpufreq_policy *policy) | ||
114 | { | ||
115 | return cpufreq_frequency_table_verify(policy, &clock_ratio[0]); | ||
116 | } | ||
117 | |||
118 | |||
119 | /** | ||
120 | * powernow_k6_setpolicy - sets a new CPUFreq policy | ||
121 | * @policy: new policy | ||
122 | * @target_freq: the target frequency | ||
123 | * @relation: how that frequency relates to achieved frequency | ||
124 | * (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H) | ||
125 | * | ||
126 | * sets a new CPUFreq policy | ||
127 | */ | ||
128 | static int powernow_k6_target(struct cpufreq_policy *policy, | ||
129 | unsigned int target_freq, | ||
130 | unsigned int relation) | ||
131 | { | ||
132 | unsigned int newstate = 0; | ||
133 | |||
134 | if (cpufreq_frequency_table_target(policy, &clock_ratio[0], | ||
135 | target_freq, relation, &newstate)) | ||
136 | return -EINVAL; | ||
137 | |||
138 | powernow_k6_set_state(newstate); | ||
139 | |||
140 | return 0; | ||
141 | } | ||
142 | |||
143 | |||
144 | static int powernow_k6_cpu_init(struct cpufreq_policy *policy) | ||
145 | { | ||
146 | unsigned int i, f; | ||
147 | int result; | ||
148 | |||
149 | if (policy->cpu != 0) | ||
150 | return -ENODEV; | ||
151 | |||
152 | /* get frequencies */ | ||
153 | max_multiplier = powernow_k6_get_cpu_multiplier(); | ||
154 | busfreq = cpu_khz / max_multiplier; | ||
155 | |||
156 | /* table init */ | ||
157 | for (i = 0; (clock_ratio[i].frequency != CPUFREQ_TABLE_END); i++) { | ||
158 | f = clock_ratio[i].index; | ||
159 | if (f > max_multiplier) | ||
160 | clock_ratio[i].frequency = CPUFREQ_ENTRY_INVALID; | ||
161 | else | ||
162 | clock_ratio[i].frequency = busfreq * f; | ||
163 | } | ||
164 | |||
165 | /* cpuinfo and default policy values */ | ||
166 | policy->cpuinfo.transition_latency = 200000; | ||
167 | policy->cur = busfreq * max_multiplier; | ||
168 | |||
169 | result = cpufreq_frequency_table_cpuinfo(policy, clock_ratio); | ||
170 | if (result) | ||
171 | return result; | ||
172 | |||
173 | cpufreq_frequency_table_get_attr(clock_ratio, policy->cpu); | ||
174 | |||
175 | return 0; | ||
176 | } | ||
177 | |||
178 | |||
179 | static int powernow_k6_cpu_exit(struct cpufreq_policy *policy) | ||
180 | { | ||
181 | unsigned int i; | ||
182 | for (i = 0; i < 8; i++) { | ||
183 | if (i == max_multiplier) | ||
184 | powernow_k6_set_state(i); | ||
185 | } | ||
186 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
187 | return 0; | ||
188 | } | ||
189 | |||
190 | static unsigned int powernow_k6_get(unsigned int cpu) | ||
191 | { | ||
192 | unsigned int ret; | ||
193 | ret = (busfreq * powernow_k6_get_cpu_multiplier()); | ||
194 | return ret; | ||
195 | } | ||
196 | |||
197 | static struct freq_attr *powernow_k6_attr[] = { | ||
198 | &cpufreq_freq_attr_scaling_available_freqs, | ||
199 | NULL, | ||
200 | }; | ||
201 | |||
202 | static struct cpufreq_driver powernow_k6_driver = { | ||
203 | .verify = powernow_k6_verify, | ||
204 | .target = powernow_k6_target, | ||
205 | .init = powernow_k6_cpu_init, | ||
206 | .exit = powernow_k6_cpu_exit, | ||
207 | .get = powernow_k6_get, | ||
208 | .name = "powernow-k6", | ||
209 | .owner = THIS_MODULE, | ||
210 | .attr = powernow_k6_attr, | ||
211 | }; | ||
212 | |||
213 | |||
214 | /** | ||
215 | * powernow_k6_init - initializes the k6 PowerNow! CPUFreq driver | ||
216 | * | ||
217 | * Initializes the K6 PowerNow! support. Returns -ENODEV on unsupported | ||
218 | * devices, -EINVAL or -ENOMEM on problems during initiatization, and zero | ||
219 | * on success. | ||
220 | */ | ||
221 | static int __init powernow_k6_init(void) | ||
222 | { | ||
223 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
224 | |||
225 | if ((c->x86_vendor != X86_VENDOR_AMD) || (c->x86 != 5) || | ||
226 | ((c->x86_model != 12) && (c->x86_model != 13))) | ||
227 | return -ENODEV; | ||
228 | |||
229 | if (!request_region(POWERNOW_IOPORT, 16, "PowerNow!")) { | ||
230 | printk(KERN_INFO PFX "PowerNow IOPORT region already used.\n"); | ||
231 | return -EIO; | ||
232 | } | ||
233 | |||
234 | if (cpufreq_register_driver(&powernow_k6_driver)) { | ||
235 | release_region(POWERNOW_IOPORT, 16); | ||
236 | return -EINVAL; | ||
237 | } | ||
238 | |||
239 | return 0; | ||
240 | } | ||
241 | |||
242 | |||
243 | /** | ||
244 | * powernow_k6_exit - unregisters AMD K6-2+/3+ PowerNow! support | ||
245 | * | ||
246 | * Unregisters AMD K6-2+ / K6-3+ PowerNow! support. | ||
247 | */ | ||
248 | static void __exit powernow_k6_exit(void) | ||
249 | { | ||
250 | cpufreq_unregister_driver(&powernow_k6_driver); | ||
251 | release_region(POWERNOW_IOPORT, 16); | ||
252 | } | ||
253 | |||
254 | |||
255 | MODULE_AUTHOR("Arjan van de Ven, Dave Jones <davej@redhat.com>, " | ||
256 | "Dominik Brodowski <linux@brodo.de>"); | ||
257 | MODULE_DESCRIPTION("PowerNow! driver for AMD K6-2+ / K6-3+ processors."); | ||
258 | MODULE_LICENSE("GPL"); | ||
259 | |||
260 | module_init(powernow_k6_init); | ||
261 | module_exit(powernow_k6_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/powernow-k7.c b/arch/x86/kernel/cpu/cpufreq/powernow-k7.c deleted file mode 100644 index d71d9f372359..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/powernow-k7.c +++ /dev/null | |||
@@ -1,747 +0,0 @@ | |||
1 | /* | ||
2 | * AMD K7 Powernow driver. | ||
3 | * (C) 2003 Dave Jones on behalf of SuSE Labs. | ||
4 | * (C) 2003-2004 Dave Jones <davej@redhat.com> | ||
5 | * | ||
6 | * Licensed under the terms of the GNU GPL License version 2. | ||
7 | * Based upon datasheets & sample CPUs kindly provided by AMD. | ||
8 | * | ||
9 | * Errata 5: | ||
10 | * CPU may fail to execute a FID/VID change in presence of interrupt. | ||
11 | * - We cli/sti on stepping A0 CPUs around the FID/VID transition. | ||
12 | * Errata 15: | ||
13 | * CPU with half frequency multipliers may hang upon wakeup from disconnect. | ||
14 | * - We disable half multipliers if ACPI is used on A0 stepping CPUs. | ||
15 | */ | ||
16 | |||
17 | #include <linux/kernel.h> | ||
18 | #include <linux/module.h> | ||
19 | #include <linux/moduleparam.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/cpufreq.h> | ||
22 | #include <linux/slab.h> | ||
23 | #include <linux/string.h> | ||
24 | #include <linux/dmi.h> | ||
25 | #include <linux/timex.h> | ||
26 | #include <linux/io.h> | ||
27 | |||
28 | #include <asm/timer.h> /* Needed for recalibrate_cpu_khz() */ | ||
29 | #include <asm/msr.h> | ||
30 | #include <asm/system.h> | ||
31 | |||
32 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
33 | #include <linux/acpi.h> | ||
34 | #include <acpi/processor.h> | ||
35 | #endif | ||
36 | |||
37 | #include "powernow-k7.h" | ||
38 | |||
39 | #define PFX "powernow: " | ||
40 | |||
41 | |||
42 | struct psb_s { | ||
43 | u8 signature[10]; | ||
44 | u8 tableversion; | ||
45 | u8 flags; | ||
46 | u16 settlingtime; | ||
47 | u8 reserved1; | ||
48 | u8 numpst; | ||
49 | }; | ||
50 | |||
51 | struct pst_s { | ||
52 | u32 cpuid; | ||
53 | u8 fsbspeed; | ||
54 | u8 maxfid; | ||
55 | u8 startvid; | ||
56 | u8 numpstates; | ||
57 | }; | ||
58 | |||
59 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
60 | union powernow_acpi_control_t { | ||
61 | struct { | ||
62 | unsigned long fid:5, | ||
63 | vid:5, | ||
64 | sgtc:20, | ||
65 | res1:2; | ||
66 | } bits; | ||
67 | unsigned long val; | ||
68 | }; | ||
69 | #endif | ||
70 | |||
71 | /* divide by 1000 to get VCore voltage in V. */ | ||
72 | static const int mobile_vid_table[32] = { | ||
73 | 2000, 1950, 1900, 1850, 1800, 1750, 1700, 1650, | ||
74 | 1600, 1550, 1500, 1450, 1400, 1350, 1300, 0, | ||
75 | 1275, 1250, 1225, 1200, 1175, 1150, 1125, 1100, | ||
76 | 1075, 1050, 1025, 1000, 975, 950, 925, 0, | ||
77 | }; | ||
78 | |||
79 | /* divide by 10 to get FID. */ | ||
80 | static const int fid_codes[32] = { | ||
81 | 110, 115, 120, 125, 50, 55, 60, 65, | ||
82 | 70, 75, 80, 85, 90, 95, 100, 105, | ||
83 | 30, 190, 40, 200, 130, 135, 140, 210, | ||
84 | 150, 225, 160, 165, 170, 180, -1, -1, | ||
85 | }; | ||
86 | |||
87 | /* This parameter is used in order to force ACPI instead of legacy method for | ||
88 | * configuration purpose. | ||
89 | */ | ||
90 | |||
91 | static int acpi_force; | ||
92 | |||
93 | static struct cpufreq_frequency_table *powernow_table; | ||
94 | |||
95 | static unsigned int can_scale_bus; | ||
96 | static unsigned int can_scale_vid; | ||
97 | static unsigned int minimum_speed = -1; | ||
98 | static unsigned int maximum_speed; | ||
99 | static unsigned int number_scales; | ||
100 | static unsigned int fsb; | ||
101 | static unsigned int latency; | ||
102 | static char have_a0; | ||
103 | |||
104 | static int check_fsb(unsigned int fsbspeed) | ||
105 | { | ||
106 | int delta; | ||
107 | unsigned int f = fsb / 1000; | ||
108 | |||
109 | delta = (fsbspeed > f) ? fsbspeed - f : f - fsbspeed; | ||
110 | return delta < 5; | ||
111 | } | ||
112 | |||
113 | static int check_powernow(void) | ||
114 | { | ||
115 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
116 | unsigned int maxei, eax, ebx, ecx, edx; | ||
117 | |||
118 | if ((c->x86_vendor != X86_VENDOR_AMD) || (c->x86 != 6)) { | ||
119 | #ifdef MODULE | ||
120 | printk(KERN_INFO PFX "This module only works with " | ||
121 | "AMD K7 CPUs\n"); | ||
122 | #endif | ||
123 | return 0; | ||
124 | } | ||
125 | |||
126 | /* Get maximum capabilities */ | ||
127 | maxei = cpuid_eax(0x80000000); | ||
128 | if (maxei < 0x80000007) { /* Any powernow info ? */ | ||
129 | #ifdef MODULE | ||
130 | printk(KERN_INFO PFX "No powernow capabilities detected\n"); | ||
131 | #endif | ||
132 | return 0; | ||
133 | } | ||
134 | |||
135 | if ((c->x86_model == 6) && (c->x86_mask == 0)) { | ||
136 | printk(KERN_INFO PFX "K7 660[A0] core detected, " | ||
137 | "enabling errata workarounds\n"); | ||
138 | have_a0 = 1; | ||
139 | } | ||
140 | |||
141 | cpuid(0x80000007, &eax, &ebx, &ecx, &edx); | ||
142 | |||
143 | /* Check we can actually do something before we say anything.*/ | ||
144 | if (!(edx & (1 << 1 | 1 << 2))) | ||
145 | return 0; | ||
146 | |||
147 | printk(KERN_INFO PFX "PowerNOW! Technology present. Can scale: "); | ||
148 | |||
149 | if (edx & 1 << 1) { | ||
150 | printk("frequency"); | ||
151 | can_scale_bus = 1; | ||
152 | } | ||
153 | |||
154 | if ((edx & (1 << 1 | 1 << 2)) == 0x6) | ||
155 | printk(" and "); | ||
156 | |||
157 | if (edx & 1 << 2) { | ||
158 | printk("voltage"); | ||
159 | can_scale_vid = 1; | ||
160 | } | ||
161 | |||
162 | printk(".\n"); | ||
163 | return 1; | ||
164 | } | ||
165 | |||
166 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
167 | static void invalidate_entry(unsigned int entry) | ||
168 | { | ||
169 | powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; | ||
170 | } | ||
171 | #endif | ||
172 | |||
173 | static int get_ranges(unsigned char *pst) | ||
174 | { | ||
175 | unsigned int j; | ||
176 | unsigned int speed; | ||
177 | u8 fid, vid; | ||
178 | |||
179 | powernow_table = kzalloc((sizeof(struct cpufreq_frequency_table) * | ||
180 | (number_scales + 1)), GFP_KERNEL); | ||
181 | if (!powernow_table) | ||
182 | return -ENOMEM; | ||
183 | |||
184 | for (j = 0 ; j < number_scales; j++) { | ||
185 | fid = *pst++; | ||
186 | |||
187 | powernow_table[j].frequency = (fsb * fid_codes[fid]) / 10; | ||
188 | powernow_table[j].index = fid; /* lower 8 bits */ | ||
189 | |||
190 | speed = powernow_table[j].frequency; | ||
191 | |||
192 | if ((fid_codes[fid] % 10) == 5) { | ||
193 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
194 | if (have_a0 == 1) | ||
195 | invalidate_entry(j); | ||
196 | #endif | ||
197 | } | ||
198 | |||
199 | if (speed < minimum_speed) | ||
200 | minimum_speed = speed; | ||
201 | if (speed > maximum_speed) | ||
202 | maximum_speed = speed; | ||
203 | |||
204 | vid = *pst++; | ||
205 | powernow_table[j].index |= (vid << 8); /* upper 8 bits */ | ||
206 | |||
207 | pr_debug(" FID: 0x%x (%d.%dx [%dMHz]) " | ||
208 | "VID: 0x%x (%d.%03dV)\n", fid, fid_codes[fid] / 10, | ||
209 | fid_codes[fid] % 10, speed/1000, vid, | ||
210 | mobile_vid_table[vid]/1000, | ||
211 | mobile_vid_table[vid]%1000); | ||
212 | } | ||
213 | powernow_table[number_scales].frequency = CPUFREQ_TABLE_END; | ||
214 | powernow_table[number_scales].index = 0; | ||
215 | |||
216 | return 0; | ||
217 | } | ||
218 | |||
219 | |||
220 | static void change_FID(int fid) | ||
221 | { | ||
222 | union msr_fidvidctl fidvidctl; | ||
223 | |||
224 | rdmsrl(MSR_K7_FID_VID_CTL, fidvidctl.val); | ||
225 | if (fidvidctl.bits.FID != fid) { | ||
226 | fidvidctl.bits.SGTC = latency; | ||
227 | fidvidctl.bits.FID = fid; | ||
228 | fidvidctl.bits.VIDC = 0; | ||
229 | fidvidctl.bits.FIDC = 1; | ||
230 | wrmsrl(MSR_K7_FID_VID_CTL, fidvidctl.val); | ||
231 | } | ||
232 | } | ||
233 | |||
234 | |||
235 | static void change_VID(int vid) | ||
236 | { | ||
237 | union msr_fidvidctl fidvidctl; | ||
238 | |||
239 | rdmsrl(MSR_K7_FID_VID_CTL, fidvidctl.val); | ||
240 | if (fidvidctl.bits.VID != vid) { | ||
241 | fidvidctl.bits.SGTC = latency; | ||
242 | fidvidctl.bits.VID = vid; | ||
243 | fidvidctl.bits.FIDC = 0; | ||
244 | fidvidctl.bits.VIDC = 1; | ||
245 | wrmsrl(MSR_K7_FID_VID_CTL, fidvidctl.val); | ||
246 | } | ||
247 | } | ||
248 | |||
249 | |||
250 | static void change_speed(unsigned int index) | ||
251 | { | ||
252 | u8 fid, vid; | ||
253 | struct cpufreq_freqs freqs; | ||
254 | union msr_fidvidstatus fidvidstatus; | ||
255 | int cfid; | ||
256 | |||
257 | /* fid are the lower 8 bits of the index we stored into | ||
258 | * the cpufreq frequency table in powernow_decode_bios, | ||
259 | * vid are the upper 8 bits. | ||
260 | */ | ||
261 | |||
262 | fid = powernow_table[index].index & 0xFF; | ||
263 | vid = (powernow_table[index].index & 0xFF00) >> 8; | ||
264 | |||
265 | freqs.cpu = 0; | ||
266 | |||
267 | rdmsrl(MSR_K7_FID_VID_STATUS, fidvidstatus.val); | ||
268 | cfid = fidvidstatus.bits.CFID; | ||
269 | freqs.old = fsb * fid_codes[cfid] / 10; | ||
270 | |||
271 | freqs.new = powernow_table[index].frequency; | ||
272 | |||
273 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
274 | |||
275 | /* Now do the magic poking into the MSRs. */ | ||
276 | |||
277 | if (have_a0 == 1) /* A0 errata 5 */ | ||
278 | local_irq_disable(); | ||
279 | |||
280 | if (freqs.old > freqs.new) { | ||
281 | /* Going down, so change FID first */ | ||
282 | change_FID(fid); | ||
283 | change_VID(vid); | ||
284 | } else { | ||
285 | /* Going up, so change VID first */ | ||
286 | change_VID(vid); | ||
287 | change_FID(fid); | ||
288 | } | ||
289 | |||
290 | |||
291 | if (have_a0 == 1) | ||
292 | local_irq_enable(); | ||
293 | |||
294 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
295 | } | ||
296 | |||
297 | |||
298 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
299 | |||
300 | static struct acpi_processor_performance *acpi_processor_perf; | ||
301 | |||
302 | static int powernow_acpi_init(void) | ||
303 | { | ||
304 | int i; | ||
305 | int retval = 0; | ||
306 | union powernow_acpi_control_t pc; | ||
307 | |||
308 | if (acpi_processor_perf != NULL && powernow_table != NULL) { | ||
309 | retval = -EINVAL; | ||
310 | goto err0; | ||
311 | } | ||
312 | |||
313 | acpi_processor_perf = kzalloc(sizeof(struct acpi_processor_performance), | ||
314 | GFP_KERNEL); | ||
315 | if (!acpi_processor_perf) { | ||
316 | retval = -ENOMEM; | ||
317 | goto err0; | ||
318 | } | ||
319 | |||
320 | if (!zalloc_cpumask_var(&acpi_processor_perf->shared_cpu_map, | ||
321 | GFP_KERNEL)) { | ||
322 | retval = -ENOMEM; | ||
323 | goto err05; | ||
324 | } | ||
325 | |||
326 | if (acpi_processor_register_performance(acpi_processor_perf, 0)) { | ||
327 | retval = -EIO; | ||
328 | goto err1; | ||
329 | } | ||
330 | |||
331 | if (acpi_processor_perf->control_register.space_id != | ||
332 | ACPI_ADR_SPACE_FIXED_HARDWARE) { | ||
333 | retval = -ENODEV; | ||
334 | goto err2; | ||
335 | } | ||
336 | |||
337 | if (acpi_processor_perf->status_register.space_id != | ||
338 | ACPI_ADR_SPACE_FIXED_HARDWARE) { | ||
339 | retval = -ENODEV; | ||
340 | goto err2; | ||
341 | } | ||
342 | |||
343 | number_scales = acpi_processor_perf->state_count; | ||
344 | |||
345 | if (number_scales < 2) { | ||
346 | retval = -ENODEV; | ||
347 | goto err2; | ||
348 | } | ||
349 | |||
350 | powernow_table = kzalloc((sizeof(struct cpufreq_frequency_table) * | ||
351 | (number_scales + 1)), GFP_KERNEL); | ||
352 | if (!powernow_table) { | ||
353 | retval = -ENOMEM; | ||
354 | goto err2; | ||
355 | } | ||
356 | |||
357 | pc.val = (unsigned long) acpi_processor_perf->states[0].control; | ||
358 | for (i = 0; i < number_scales; i++) { | ||
359 | u8 fid, vid; | ||
360 | struct acpi_processor_px *state = | ||
361 | &acpi_processor_perf->states[i]; | ||
362 | unsigned int speed, speed_mhz; | ||
363 | |||
364 | pc.val = (unsigned long) state->control; | ||
365 | pr_debug("acpi: P%d: %d MHz %d mW %d uS control %08x SGTC %d\n", | ||
366 | i, | ||
367 | (u32) state->core_frequency, | ||
368 | (u32) state->power, | ||
369 | (u32) state->transition_latency, | ||
370 | (u32) state->control, | ||
371 | pc.bits.sgtc); | ||
372 | |||
373 | vid = pc.bits.vid; | ||
374 | fid = pc.bits.fid; | ||
375 | |||
376 | powernow_table[i].frequency = fsb * fid_codes[fid] / 10; | ||
377 | powernow_table[i].index = fid; /* lower 8 bits */ | ||
378 | powernow_table[i].index |= (vid << 8); /* upper 8 bits */ | ||
379 | |||
380 | speed = powernow_table[i].frequency; | ||
381 | speed_mhz = speed / 1000; | ||
382 | |||
383 | /* processor_perflib will multiply the MHz value by 1000 to | ||
384 | * get a KHz value (e.g. 1266000). However, powernow-k7 works | ||
385 | * with true KHz values (e.g. 1266768). To ensure that all | ||
386 | * powernow frequencies are available, we must ensure that | ||
387 | * ACPI doesn't restrict them, so we round up the MHz value | ||
388 | * to ensure that perflib's computed KHz value is greater than | ||
389 | * or equal to powernow's KHz value. | ||
390 | */ | ||
391 | if (speed % 1000 > 0) | ||
392 | speed_mhz++; | ||
393 | |||
394 | if ((fid_codes[fid] % 10) == 5) { | ||
395 | if (have_a0 == 1) | ||
396 | invalidate_entry(i); | ||
397 | } | ||
398 | |||
399 | pr_debug(" FID: 0x%x (%d.%dx [%dMHz]) " | ||
400 | "VID: 0x%x (%d.%03dV)\n", fid, fid_codes[fid] / 10, | ||
401 | fid_codes[fid] % 10, speed_mhz, vid, | ||
402 | mobile_vid_table[vid]/1000, | ||
403 | mobile_vid_table[vid]%1000); | ||
404 | |||
405 | if (state->core_frequency != speed_mhz) { | ||
406 | state->core_frequency = speed_mhz; | ||
407 | pr_debug(" Corrected ACPI frequency to %d\n", | ||
408 | speed_mhz); | ||
409 | } | ||
410 | |||
411 | if (latency < pc.bits.sgtc) | ||
412 | latency = pc.bits.sgtc; | ||
413 | |||
414 | if (speed < minimum_speed) | ||
415 | minimum_speed = speed; | ||
416 | if (speed > maximum_speed) | ||
417 | maximum_speed = speed; | ||
418 | } | ||
419 | |||
420 | powernow_table[i].frequency = CPUFREQ_TABLE_END; | ||
421 | powernow_table[i].index = 0; | ||
422 | |||
423 | /* notify BIOS that we exist */ | ||
424 | acpi_processor_notify_smm(THIS_MODULE); | ||
425 | |||
426 | return 0; | ||
427 | |||
428 | err2: | ||
429 | acpi_processor_unregister_performance(acpi_processor_perf, 0); | ||
430 | err1: | ||
431 | free_cpumask_var(acpi_processor_perf->shared_cpu_map); | ||
432 | err05: | ||
433 | kfree(acpi_processor_perf); | ||
434 | err0: | ||
435 | printk(KERN_WARNING PFX "ACPI perflib can not be used on " | ||
436 | "this platform\n"); | ||
437 | acpi_processor_perf = NULL; | ||
438 | return retval; | ||
439 | } | ||
440 | #else | ||
441 | static int powernow_acpi_init(void) | ||
442 | { | ||
443 | printk(KERN_INFO PFX "no support for ACPI processor found." | ||
444 | " Please recompile your kernel with ACPI processor\n"); | ||
445 | return -EINVAL; | ||
446 | } | ||
447 | #endif | ||
448 | |||
449 | static void print_pst_entry(struct pst_s *pst, unsigned int j) | ||
450 | { | ||
451 | pr_debug("PST:%d (@%p)\n", j, pst); | ||
452 | pr_debug(" cpuid: 0x%x fsb: %d maxFID: 0x%x startvid: 0x%x\n", | ||
453 | pst->cpuid, pst->fsbspeed, pst->maxfid, pst->startvid); | ||
454 | } | ||
455 | |||
456 | static int powernow_decode_bios(int maxfid, int startvid) | ||
457 | { | ||
458 | struct psb_s *psb; | ||
459 | struct pst_s *pst; | ||
460 | unsigned int i, j; | ||
461 | unsigned char *p; | ||
462 | unsigned int etuple; | ||
463 | unsigned int ret; | ||
464 | |||
465 | etuple = cpuid_eax(0x80000001); | ||
466 | |||
467 | for (i = 0xC0000; i < 0xffff0 ; i += 16) { | ||
468 | |||
469 | p = phys_to_virt(i); | ||
470 | |||
471 | if (memcmp(p, "AMDK7PNOW!", 10) == 0) { | ||
472 | pr_debug("Found PSB header at %p\n", p); | ||
473 | psb = (struct psb_s *) p; | ||
474 | pr_debug("Table version: 0x%x\n", psb->tableversion); | ||
475 | if (psb->tableversion != 0x12) { | ||
476 | printk(KERN_INFO PFX "Sorry, only v1.2 tables" | ||
477 | " supported right now\n"); | ||
478 | return -ENODEV; | ||
479 | } | ||
480 | |||
481 | pr_debug("Flags: 0x%x\n", psb->flags); | ||
482 | if ((psb->flags & 1) == 0) | ||
483 | pr_debug("Mobile voltage regulator\n"); | ||
484 | else | ||
485 | pr_debug("Desktop voltage regulator\n"); | ||
486 | |||
487 | latency = psb->settlingtime; | ||
488 | if (latency < 100) { | ||
489 | printk(KERN_INFO PFX "BIOS set settling time " | ||
490 | "to %d microseconds. " | ||
491 | "Should be at least 100. " | ||
492 | "Correcting.\n", latency); | ||
493 | latency = 100; | ||
494 | } | ||
495 | pr_debug("Settling Time: %d microseconds.\n", | ||
496 | psb->settlingtime); | ||
497 | pr_debug("Has %d PST tables. (Only dumping ones " | ||
498 | "relevant to this CPU).\n", | ||
499 | psb->numpst); | ||
500 | |||
501 | p += sizeof(struct psb_s); | ||
502 | |||
503 | pst = (struct pst_s *) p; | ||
504 | |||
505 | for (j = 0; j < psb->numpst; j++) { | ||
506 | pst = (struct pst_s *) p; | ||
507 | number_scales = pst->numpstates; | ||
508 | |||
509 | if ((etuple == pst->cpuid) && | ||
510 | check_fsb(pst->fsbspeed) && | ||
511 | (maxfid == pst->maxfid) && | ||
512 | (startvid == pst->startvid)) { | ||
513 | print_pst_entry(pst, j); | ||
514 | p = (char *)pst + sizeof(struct pst_s); | ||
515 | ret = get_ranges(p); | ||
516 | return ret; | ||
517 | } else { | ||
518 | unsigned int k; | ||
519 | p = (char *)pst + sizeof(struct pst_s); | ||
520 | for (k = 0; k < number_scales; k++) | ||
521 | p += 2; | ||
522 | } | ||
523 | } | ||
524 | printk(KERN_INFO PFX "No PST tables match this cpuid " | ||
525 | "(0x%x)\n", etuple); | ||
526 | printk(KERN_INFO PFX "This is indicative of a broken " | ||
527 | "BIOS.\n"); | ||
528 | |||
529 | return -EINVAL; | ||
530 | } | ||
531 | p++; | ||
532 | } | ||
533 | |||
534 | return -ENODEV; | ||
535 | } | ||
536 | |||
537 | |||
538 | static int powernow_target(struct cpufreq_policy *policy, | ||
539 | unsigned int target_freq, | ||
540 | unsigned int relation) | ||
541 | { | ||
542 | unsigned int newstate; | ||
543 | |||
544 | if (cpufreq_frequency_table_target(policy, powernow_table, target_freq, | ||
545 | relation, &newstate)) | ||
546 | return -EINVAL; | ||
547 | |||
548 | change_speed(newstate); | ||
549 | |||
550 | return 0; | ||
551 | } | ||
552 | |||
553 | |||
554 | static int powernow_verify(struct cpufreq_policy *policy) | ||
555 | { | ||
556 | return cpufreq_frequency_table_verify(policy, powernow_table); | ||
557 | } | ||
558 | |||
559 | /* | ||
560 | * We use the fact that the bus frequency is somehow | ||
561 | * a multiple of 100000/3 khz, then we compute sgtc according | ||
562 | * to this multiple. | ||
563 | * That way, we match more how AMD thinks all of that work. | ||
564 | * We will then get the same kind of behaviour already tested under | ||
565 | * the "well-known" other OS. | ||
566 | */ | ||
567 | static int __cpuinit fixup_sgtc(void) | ||
568 | { | ||
569 | unsigned int sgtc; | ||
570 | unsigned int m; | ||
571 | |||
572 | m = fsb / 3333; | ||
573 | if ((m % 10) >= 5) | ||
574 | m += 5; | ||
575 | |||
576 | m /= 10; | ||
577 | |||
578 | sgtc = 100 * m * latency; | ||
579 | sgtc = sgtc / 3; | ||
580 | if (sgtc > 0xfffff) { | ||
581 | printk(KERN_WARNING PFX "SGTC too large %d\n", sgtc); | ||
582 | sgtc = 0xfffff; | ||
583 | } | ||
584 | return sgtc; | ||
585 | } | ||
586 | |||
587 | static unsigned int powernow_get(unsigned int cpu) | ||
588 | { | ||
589 | union msr_fidvidstatus fidvidstatus; | ||
590 | unsigned int cfid; | ||
591 | |||
592 | if (cpu) | ||
593 | return 0; | ||
594 | rdmsrl(MSR_K7_FID_VID_STATUS, fidvidstatus.val); | ||
595 | cfid = fidvidstatus.bits.CFID; | ||
596 | |||
597 | return fsb * fid_codes[cfid] / 10; | ||
598 | } | ||
599 | |||
600 | |||
601 | static int __cpuinit acer_cpufreq_pst(const struct dmi_system_id *d) | ||
602 | { | ||
603 | printk(KERN_WARNING PFX | ||
604 | "%s laptop with broken PST tables in BIOS detected.\n", | ||
605 | d->ident); | ||
606 | printk(KERN_WARNING PFX | ||
607 | "You need to downgrade to 3A21 (09/09/2002), or try a newer " | ||
608 | "BIOS than 3A71 (01/20/2003)\n"); | ||
609 | printk(KERN_WARNING PFX | ||
610 | "cpufreq scaling has been disabled as a result of this.\n"); | ||
611 | return 0; | ||
612 | } | ||
613 | |||
614 | /* | ||
615 | * Some Athlon laptops have really fucked PST tables. | ||
616 | * A BIOS update is all that can save them. | ||
617 | * Mention this, and disable cpufreq. | ||
618 | */ | ||
619 | static struct dmi_system_id __cpuinitdata powernow_dmi_table[] = { | ||
620 | { | ||
621 | .callback = acer_cpufreq_pst, | ||
622 | .ident = "Acer Aspire", | ||
623 | .matches = { | ||
624 | DMI_MATCH(DMI_SYS_VENDOR, "Insyde Software"), | ||
625 | DMI_MATCH(DMI_BIOS_VERSION, "3A71"), | ||
626 | }, | ||
627 | }, | ||
628 | { } | ||
629 | }; | ||
630 | |||
631 | static int __cpuinit powernow_cpu_init(struct cpufreq_policy *policy) | ||
632 | { | ||
633 | union msr_fidvidstatus fidvidstatus; | ||
634 | int result; | ||
635 | |||
636 | if (policy->cpu != 0) | ||
637 | return -ENODEV; | ||
638 | |||
639 | rdmsrl(MSR_K7_FID_VID_STATUS, fidvidstatus.val); | ||
640 | |||
641 | recalibrate_cpu_khz(); | ||
642 | |||
643 | fsb = (10 * cpu_khz) / fid_codes[fidvidstatus.bits.CFID]; | ||
644 | if (!fsb) { | ||
645 | printk(KERN_WARNING PFX "can not determine bus frequency\n"); | ||
646 | return -EINVAL; | ||
647 | } | ||
648 | pr_debug("FSB: %3dMHz\n", fsb/1000); | ||
649 | |||
650 | if (dmi_check_system(powernow_dmi_table) || acpi_force) { | ||
651 | printk(KERN_INFO PFX "PSB/PST known to be broken. " | ||
652 | "Trying ACPI instead\n"); | ||
653 | result = powernow_acpi_init(); | ||
654 | } else { | ||
655 | result = powernow_decode_bios(fidvidstatus.bits.MFID, | ||
656 | fidvidstatus.bits.SVID); | ||
657 | if (result) { | ||
658 | printk(KERN_INFO PFX "Trying ACPI perflib\n"); | ||
659 | maximum_speed = 0; | ||
660 | minimum_speed = -1; | ||
661 | latency = 0; | ||
662 | result = powernow_acpi_init(); | ||
663 | if (result) { | ||
664 | printk(KERN_INFO PFX | ||
665 | "ACPI and legacy methods failed\n"); | ||
666 | } | ||
667 | } else { | ||
668 | /* SGTC use the bus clock as timer */ | ||
669 | latency = fixup_sgtc(); | ||
670 | printk(KERN_INFO PFX "SGTC: %d\n", latency); | ||
671 | } | ||
672 | } | ||
673 | |||
674 | if (result) | ||
675 | return result; | ||
676 | |||
677 | printk(KERN_INFO PFX "Minimum speed %d MHz. Maximum speed %d MHz.\n", | ||
678 | minimum_speed/1000, maximum_speed/1000); | ||
679 | |||
680 | policy->cpuinfo.transition_latency = | ||
681 | cpufreq_scale(2000000UL, fsb, latency); | ||
682 | |||
683 | policy->cur = powernow_get(0); | ||
684 | |||
685 | cpufreq_frequency_table_get_attr(powernow_table, policy->cpu); | ||
686 | |||
687 | return cpufreq_frequency_table_cpuinfo(policy, powernow_table); | ||
688 | } | ||
689 | |||
690 | static int powernow_cpu_exit(struct cpufreq_policy *policy) | ||
691 | { | ||
692 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
693 | |||
694 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
695 | if (acpi_processor_perf) { | ||
696 | acpi_processor_unregister_performance(acpi_processor_perf, 0); | ||
697 | free_cpumask_var(acpi_processor_perf->shared_cpu_map); | ||
698 | kfree(acpi_processor_perf); | ||
699 | } | ||
700 | #endif | ||
701 | |||
702 | kfree(powernow_table); | ||
703 | return 0; | ||
704 | } | ||
705 | |||
706 | static struct freq_attr *powernow_table_attr[] = { | ||
707 | &cpufreq_freq_attr_scaling_available_freqs, | ||
708 | NULL, | ||
709 | }; | ||
710 | |||
711 | static struct cpufreq_driver powernow_driver = { | ||
712 | .verify = powernow_verify, | ||
713 | .target = powernow_target, | ||
714 | .get = powernow_get, | ||
715 | #ifdef CONFIG_X86_POWERNOW_K7_ACPI | ||
716 | .bios_limit = acpi_processor_get_bios_limit, | ||
717 | #endif | ||
718 | .init = powernow_cpu_init, | ||
719 | .exit = powernow_cpu_exit, | ||
720 | .name = "powernow-k7", | ||
721 | .owner = THIS_MODULE, | ||
722 | .attr = powernow_table_attr, | ||
723 | }; | ||
724 | |||
725 | static int __init powernow_init(void) | ||
726 | { | ||
727 | if (check_powernow() == 0) | ||
728 | return -ENODEV; | ||
729 | return cpufreq_register_driver(&powernow_driver); | ||
730 | } | ||
731 | |||
732 | |||
733 | static void __exit powernow_exit(void) | ||
734 | { | ||
735 | cpufreq_unregister_driver(&powernow_driver); | ||
736 | } | ||
737 | |||
738 | module_param(acpi_force, int, 0444); | ||
739 | MODULE_PARM_DESC(acpi_force, "Force ACPI to be used."); | ||
740 | |||
741 | MODULE_AUTHOR("Dave Jones <davej@redhat.com>"); | ||
742 | MODULE_DESCRIPTION("Powernow driver for AMD K7 processors."); | ||
743 | MODULE_LICENSE("GPL"); | ||
744 | |||
745 | late_initcall(powernow_init); | ||
746 | module_exit(powernow_exit); | ||
747 | |||
diff --git a/arch/x86/kernel/cpu/cpufreq/powernow-k7.h b/arch/x86/kernel/cpu/cpufreq/powernow-k7.h deleted file mode 100644 index 35fb4eaf6e1c..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/powernow-k7.h +++ /dev/null | |||
@@ -1,43 +0,0 @@ | |||
1 | /* | ||
2 | * (C) 2003 Dave Jones. | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * | ||
6 | * AMD-specific information | ||
7 | * | ||
8 | */ | ||
9 | |||
10 | union msr_fidvidctl { | ||
11 | struct { | ||
12 | unsigned FID:5, // 4:0 | ||
13 | reserved1:3, // 7:5 | ||
14 | VID:5, // 12:8 | ||
15 | reserved2:3, // 15:13 | ||
16 | FIDC:1, // 16 | ||
17 | VIDC:1, // 17 | ||
18 | reserved3:2, // 19:18 | ||
19 | FIDCHGRATIO:1, // 20 | ||
20 | reserved4:11, // 31-21 | ||
21 | SGTC:20, // 32:51 | ||
22 | reserved5:12; // 63:52 | ||
23 | } bits; | ||
24 | unsigned long long val; | ||
25 | }; | ||
26 | |||
27 | union msr_fidvidstatus { | ||
28 | struct { | ||
29 | unsigned CFID:5, // 4:0 | ||
30 | reserved1:3, // 7:5 | ||
31 | SFID:5, // 12:8 | ||
32 | reserved2:3, // 15:13 | ||
33 | MFID:5, // 20:16 | ||
34 | reserved3:11, // 31:21 | ||
35 | CVID:5, // 36:32 | ||
36 | reserved4:3, // 39:37 | ||
37 | SVID:5, // 44:40 | ||
38 | reserved5:3, // 47:45 | ||
39 | MVID:5, // 52:48 | ||
40 | reserved6:11; // 63:53 | ||
41 | } bits; | ||
42 | unsigned long long val; | ||
43 | }; | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/powernow-k8.c b/arch/x86/kernel/cpu/cpufreq/powernow-k8.c deleted file mode 100644 index 83479b6fb9a1..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/powernow-k8.c +++ /dev/null | |||
@@ -1,1607 +0,0 @@ | |||
1 | /* | ||
2 | * (c) 2003-2010 Advanced Micro Devices, Inc. | ||
3 | * Your use of this code is subject to the terms and conditions of the | ||
4 | * GNU general public license version 2. See "COPYING" or | ||
5 | * http://www.gnu.org/licenses/gpl.html | ||
6 | * | ||
7 | * Support : mark.langsdorf@amd.com | ||
8 | * | ||
9 | * Based on the powernow-k7.c module written by Dave Jones. | ||
10 | * (C) 2003 Dave Jones on behalf of SuSE Labs | ||
11 | * (C) 2004 Dominik Brodowski <linux@brodo.de> | ||
12 | * (C) 2004 Pavel Machek <pavel@ucw.cz> | ||
13 | * Licensed under the terms of the GNU GPL License version 2. | ||
14 | * Based upon datasheets & sample CPUs kindly provided by AMD. | ||
15 | * | ||
16 | * Valuable input gratefully received from Dave Jones, Pavel Machek, | ||
17 | * Dominik Brodowski, Jacob Shin, and others. | ||
18 | * Originally developed by Paul Devriendt. | ||
19 | * Processor information obtained from Chapter 9 (Power and Thermal Management) | ||
20 | * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD | ||
21 | * Opteron Processors" available for download from www.amd.com | ||
22 | * | ||
23 | * Tables for specific CPUs can be inferred from | ||
24 | * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf | ||
25 | */ | ||
26 | |||
27 | #include <linux/kernel.h> | ||
28 | #include <linux/smp.h> | ||
29 | #include <linux/module.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/cpufreq.h> | ||
32 | #include <linux/slab.h> | ||
33 | #include <linux/string.h> | ||
34 | #include <linux/cpumask.h> | ||
35 | #include <linux/sched.h> /* for current / set_cpus_allowed() */ | ||
36 | #include <linux/io.h> | ||
37 | #include <linux/delay.h> | ||
38 | |||
39 | #include <asm/msr.h> | ||
40 | |||
41 | #include <linux/acpi.h> | ||
42 | #include <linux/mutex.h> | ||
43 | #include <acpi/processor.h> | ||
44 | |||
45 | #define PFX "powernow-k8: " | ||
46 | #define VERSION "version 2.20.00" | ||
47 | #include "powernow-k8.h" | ||
48 | #include "mperf.h" | ||
49 | |||
50 | /* serialize freq changes */ | ||
51 | static DEFINE_MUTEX(fidvid_mutex); | ||
52 | |||
53 | static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); | ||
54 | |||
55 | static int cpu_family = CPU_OPTERON; | ||
56 | |||
57 | /* core performance boost */ | ||
58 | static bool cpb_capable, cpb_enabled; | ||
59 | static struct msr __percpu *msrs; | ||
60 | |||
61 | static struct cpufreq_driver cpufreq_amd64_driver; | ||
62 | |||
63 | #ifndef CONFIG_SMP | ||
64 | static inline const struct cpumask *cpu_core_mask(int cpu) | ||
65 | { | ||
66 | return cpumask_of(0); | ||
67 | } | ||
68 | #endif | ||
69 | |||
70 | /* Return a frequency in MHz, given an input fid */ | ||
71 | static u32 find_freq_from_fid(u32 fid) | ||
72 | { | ||
73 | return 800 + (fid * 100); | ||
74 | } | ||
75 | |||
76 | /* Return a frequency in KHz, given an input fid */ | ||
77 | static u32 find_khz_freq_from_fid(u32 fid) | ||
78 | { | ||
79 | return 1000 * find_freq_from_fid(fid); | ||
80 | } | ||
81 | |||
82 | static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, | ||
83 | u32 pstate) | ||
84 | { | ||
85 | return data[pstate].frequency; | ||
86 | } | ||
87 | |||
88 | /* Return the vco fid for an input fid | ||
89 | * | ||
90 | * Each "low" fid has corresponding "high" fid, and you can get to "low" fids | ||
91 | * only from corresponding high fids. This returns "high" fid corresponding to | ||
92 | * "low" one. | ||
93 | */ | ||
94 | static u32 convert_fid_to_vco_fid(u32 fid) | ||
95 | { | ||
96 | if (fid < HI_FID_TABLE_BOTTOM) | ||
97 | return 8 + (2 * fid); | ||
98 | else | ||
99 | return fid; | ||
100 | } | ||
101 | |||
102 | /* | ||
103 | * Return 1 if the pending bit is set. Unless we just instructed the processor | ||
104 | * to transition to a new state, seeing this bit set is really bad news. | ||
105 | */ | ||
106 | static int pending_bit_stuck(void) | ||
107 | { | ||
108 | u32 lo, hi; | ||
109 | |||
110 | if (cpu_family == CPU_HW_PSTATE) | ||
111 | return 0; | ||
112 | |||
113 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | ||
114 | return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; | ||
115 | } | ||
116 | |||
117 | /* | ||
118 | * Update the global current fid / vid values from the status msr. | ||
119 | * Returns 1 on error. | ||
120 | */ | ||
121 | static int query_current_values_with_pending_wait(struct powernow_k8_data *data) | ||
122 | { | ||
123 | u32 lo, hi; | ||
124 | u32 i = 0; | ||
125 | |||
126 | if (cpu_family == CPU_HW_PSTATE) { | ||
127 | rdmsr(MSR_PSTATE_STATUS, lo, hi); | ||
128 | i = lo & HW_PSTATE_MASK; | ||
129 | data->currpstate = i; | ||
130 | |||
131 | /* | ||
132 | * a workaround for family 11h erratum 311 might cause | ||
133 | * an "out-of-range Pstate if the core is in Pstate-0 | ||
134 | */ | ||
135 | if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps)) | ||
136 | data->currpstate = HW_PSTATE_0; | ||
137 | |||
138 | return 0; | ||
139 | } | ||
140 | do { | ||
141 | if (i++ > 10000) { | ||
142 | pr_debug("detected change pending stuck\n"); | ||
143 | return 1; | ||
144 | } | ||
145 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | ||
146 | } while (lo & MSR_S_LO_CHANGE_PENDING); | ||
147 | |||
148 | data->currvid = hi & MSR_S_HI_CURRENT_VID; | ||
149 | data->currfid = lo & MSR_S_LO_CURRENT_FID; | ||
150 | |||
151 | return 0; | ||
152 | } | ||
153 | |||
154 | /* the isochronous relief time */ | ||
155 | static void count_off_irt(struct powernow_k8_data *data) | ||
156 | { | ||
157 | udelay((1 << data->irt) * 10); | ||
158 | return; | ||
159 | } | ||
160 | |||
161 | /* the voltage stabilization time */ | ||
162 | static void count_off_vst(struct powernow_k8_data *data) | ||
163 | { | ||
164 | udelay(data->vstable * VST_UNITS_20US); | ||
165 | return; | ||
166 | } | ||
167 | |||
168 | /* need to init the control msr to a safe value (for each cpu) */ | ||
169 | static void fidvid_msr_init(void) | ||
170 | { | ||
171 | u32 lo, hi; | ||
172 | u8 fid, vid; | ||
173 | |||
174 | rdmsr(MSR_FIDVID_STATUS, lo, hi); | ||
175 | vid = hi & MSR_S_HI_CURRENT_VID; | ||
176 | fid = lo & MSR_S_LO_CURRENT_FID; | ||
177 | lo = fid | (vid << MSR_C_LO_VID_SHIFT); | ||
178 | hi = MSR_C_HI_STP_GNT_BENIGN; | ||
179 | pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); | ||
180 | wrmsr(MSR_FIDVID_CTL, lo, hi); | ||
181 | } | ||
182 | |||
183 | /* write the new fid value along with the other control fields to the msr */ | ||
184 | static int write_new_fid(struct powernow_k8_data *data, u32 fid) | ||
185 | { | ||
186 | u32 lo; | ||
187 | u32 savevid = data->currvid; | ||
188 | u32 i = 0; | ||
189 | |||
190 | if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { | ||
191 | printk(KERN_ERR PFX "internal error - overflow on fid write\n"); | ||
192 | return 1; | ||
193 | } | ||
194 | |||
195 | lo = fid; | ||
196 | lo |= (data->currvid << MSR_C_LO_VID_SHIFT); | ||
197 | lo |= MSR_C_LO_INIT_FID_VID; | ||
198 | |||
199 | pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", | ||
200 | fid, lo, data->plllock * PLL_LOCK_CONVERSION); | ||
201 | |||
202 | do { | ||
203 | wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); | ||
204 | if (i++ > 100) { | ||
205 | printk(KERN_ERR PFX | ||
206 | "Hardware error - pending bit very stuck - " | ||
207 | "no further pstate changes possible\n"); | ||
208 | return 1; | ||
209 | } | ||
210 | } while (query_current_values_with_pending_wait(data)); | ||
211 | |||
212 | count_off_irt(data); | ||
213 | |||
214 | if (savevid != data->currvid) { | ||
215 | printk(KERN_ERR PFX | ||
216 | "vid change on fid trans, old 0x%x, new 0x%x\n", | ||
217 | savevid, data->currvid); | ||
218 | return 1; | ||
219 | } | ||
220 | |||
221 | if (fid != data->currfid) { | ||
222 | printk(KERN_ERR PFX | ||
223 | "fid trans failed, fid 0x%x, curr 0x%x\n", fid, | ||
224 | data->currfid); | ||
225 | return 1; | ||
226 | } | ||
227 | |||
228 | return 0; | ||
229 | } | ||
230 | |||
231 | /* Write a new vid to the hardware */ | ||
232 | static int write_new_vid(struct powernow_k8_data *data, u32 vid) | ||
233 | { | ||
234 | u32 lo; | ||
235 | u32 savefid = data->currfid; | ||
236 | int i = 0; | ||
237 | |||
238 | if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { | ||
239 | printk(KERN_ERR PFX "internal error - overflow on vid write\n"); | ||
240 | return 1; | ||
241 | } | ||
242 | |||
243 | lo = data->currfid; | ||
244 | lo |= (vid << MSR_C_LO_VID_SHIFT); | ||
245 | lo |= MSR_C_LO_INIT_FID_VID; | ||
246 | |||
247 | pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", | ||
248 | vid, lo, STOP_GRANT_5NS); | ||
249 | |||
250 | do { | ||
251 | wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); | ||
252 | if (i++ > 100) { | ||
253 | printk(KERN_ERR PFX "internal error - pending bit " | ||
254 | "very stuck - no further pstate " | ||
255 | "changes possible\n"); | ||
256 | return 1; | ||
257 | } | ||
258 | } while (query_current_values_with_pending_wait(data)); | ||
259 | |||
260 | if (savefid != data->currfid) { | ||
261 | printk(KERN_ERR PFX "fid changed on vid trans, old " | ||
262 | "0x%x new 0x%x\n", | ||
263 | savefid, data->currfid); | ||
264 | return 1; | ||
265 | } | ||
266 | |||
267 | if (vid != data->currvid) { | ||
268 | printk(KERN_ERR PFX "vid trans failed, vid 0x%x, " | ||
269 | "curr 0x%x\n", | ||
270 | vid, data->currvid); | ||
271 | return 1; | ||
272 | } | ||
273 | |||
274 | return 0; | ||
275 | } | ||
276 | |||
277 | /* | ||
278 | * Reduce the vid by the max of step or reqvid. | ||
279 | * Decreasing vid codes represent increasing voltages: | ||
280 | * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. | ||
281 | */ | ||
282 | static int decrease_vid_code_by_step(struct powernow_k8_data *data, | ||
283 | u32 reqvid, u32 step) | ||
284 | { | ||
285 | if ((data->currvid - reqvid) > step) | ||
286 | reqvid = data->currvid - step; | ||
287 | |||
288 | if (write_new_vid(data, reqvid)) | ||
289 | return 1; | ||
290 | |||
291 | count_off_vst(data); | ||
292 | |||
293 | return 0; | ||
294 | } | ||
295 | |||
296 | /* Change hardware pstate by single MSR write */ | ||
297 | static int transition_pstate(struct powernow_k8_data *data, u32 pstate) | ||
298 | { | ||
299 | wrmsr(MSR_PSTATE_CTRL, pstate, 0); | ||
300 | data->currpstate = pstate; | ||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ | ||
305 | static int transition_fid_vid(struct powernow_k8_data *data, | ||
306 | u32 reqfid, u32 reqvid) | ||
307 | { | ||
308 | if (core_voltage_pre_transition(data, reqvid, reqfid)) | ||
309 | return 1; | ||
310 | |||
311 | if (core_frequency_transition(data, reqfid)) | ||
312 | return 1; | ||
313 | |||
314 | if (core_voltage_post_transition(data, reqvid)) | ||
315 | return 1; | ||
316 | |||
317 | if (query_current_values_with_pending_wait(data)) | ||
318 | return 1; | ||
319 | |||
320 | if ((reqfid != data->currfid) || (reqvid != data->currvid)) { | ||
321 | printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, " | ||
322 | "curr 0x%x 0x%x\n", | ||
323 | smp_processor_id(), | ||
324 | reqfid, reqvid, data->currfid, data->currvid); | ||
325 | return 1; | ||
326 | } | ||
327 | |||
328 | pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", | ||
329 | smp_processor_id(), data->currfid, data->currvid); | ||
330 | |||
331 | return 0; | ||
332 | } | ||
333 | |||
334 | /* Phase 1 - core voltage transition ... setup voltage */ | ||
335 | static int core_voltage_pre_transition(struct powernow_k8_data *data, | ||
336 | u32 reqvid, u32 reqfid) | ||
337 | { | ||
338 | u32 rvosteps = data->rvo; | ||
339 | u32 savefid = data->currfid; | ||
340 | u32 maxvid, lo, rvomult = 1; | ||
341 | |||
342 | pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, " | ||
343 | "reqvid 0x%x, rvo 0x%x\n", | ||
344 | smp_processor_id(), | ||
345 | data->currfid, data->currvid, reqvid, data->rvo); | ||
346 | |||
347 | if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) | ||
348 | rvomult = 2; | ||
349 | rvosteps *= rvomult; | ||
350 | rdmsr(MSR_FIDVID_STATUS, lo, maxvid); | ||
351 | maxvid = 0x1f & (maxvid >> 16); | ||
352 | pr_debug("ph1 maxvid=0x%x\n", maxvid); | ||
353 | if (reqvid < maxvid) /* lower numbers are higher voltages */ | ||
354 | reqvid = maxvid; | ||
355 | |||
356 | while (data->currvid > reqvid) { | ||
357 | pr_debug("ph1: curr 0x%x, req vid 0x%x\n", | ||
358 | data->currvid, reqvid); | ||
359 | if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) | ||
360 | return 1; | ||
361 | } | ||
362 | |||
363 | while ((rvosteps > 0) && | ||
364 | ((rvomult * data->rvo + data->currvid) > reqvid)) { | ||
365 | if (data->currvid == maxvid) { | ||
366 | rvosteps = 0; | ||
367 | } else { | ||
368 | pr_debug("ph1: changing vid for rvo, req 0x%x\n", | ||
369 | data->currvid - 1); | ||
370 | if (decrease_vid_code_by_step(data, data->currvid-1, 1)) | ||
371 | return 1; | ||
372 | rvosteps--; | ||
373 | } | ||
374 | } | ||
375 | |||
376 | if (query_current_values_with_pending_wait(data)) | ||
377 | return 1; | ||
378 | |||
379 | if (savefid != data->currfid) { | ||
380 | printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", | ||
381 | data->currfid); | ||
382 | return 1; | ||
383 | } | ||
384 | |||
385 | pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", | ||
386 | data->currfid, data->currvid); | ||
387 | |||
388 | return 0; | ||
389 | } | ||
390 | |||
391 | /* Phase 2 - core frequency transition */ | ||
392 | static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) | ||
393 | { | ||
394 | u32 vcoreqfid, vcocurrfid, vcofiddiff; | ||
395 | u32 fid_interval, savevid = data->currvid; | ||
396 | |||
397 | if (data->currfid == reqfid) { | ||
398 | printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", | ||
399 | data->currfid); | ||
400 | return 0; | ||
401 | } | ||
402 | |||
403 | pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, " | ||
404 | "reqfid 0x%x\n", | ||
405 | smp_processor_id(), | ||
406 | data->currfid, data->currvid, reqfid); | ||
407 | |||
408 | vcoreqfid = convert_fid_to_vco_fid(reqfid); | ||
409 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | ||
410 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | ||
411 | : vcoreqfid - vcocurrfid; | ||
412 | |||
413 | if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) | ||
414 | vcofiddiff = 0; | ||
415 | |||
416 | while (vcofiddiff > 2) { | ||
417 | (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); | ||
418 | |||
419 | if (reqfid > data->currfid) { | ||
420 | if (data->currfid > LO_FID_TABLE_TOP) { | ||
421 | if (write_new_fid(data, | ||
422 | data->currfid + fid_interval)) | ||
423 | return 1; | ||
424 | } else { | ||
425 | if (write_new_fid | ||
426 | (data, | ||
427 | 2 + convert_fid_to_vco_fid(data->currfid))) | ||
428 | return 1; | ||
429 | } | ||
430 | } else { | ||
431 | if (write_new_fid(data, data->currfid - fid_interval)) | ||
432 | return 1; | ||
433 | } | ||
434 | |||
435 | vcocurrfid = convert_fid_to_vco_fid(data->currfid); | ||
436 | vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid | ||
437 | : vcoreqfid - vcocurrfid; | ||
438 | } | ||
439 | |||
440 | if (write_new_fid(data, reqfid)) | ||
441 | return 1; | ||
442 | |||
443 | if (query_current_values_with_pending_wait(data)) | ||
444 | return 1; | ||
445 | |||
446 | if (data->currfid != reqfid) { | ||
447 | printk(KERN_ERR PFX | ||
448 | "ph2: mismatch, failed fid transition, " | ||
449 | "curr 0x%x, req 0x%x\n", | ||
450 | data->currfid, reqfid); | ||
451 | return 1; | ||
452 | } | ||
453 | |||
454 | if (savevid != data->currvid) { | ||
455 | printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", | ||
456 | savevid, data->currvid); | ||
457 | return 1; | ||
458 | } | ||
459 | |||
460 | pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", | ||
461 | data->currfid, data->currvid); | ||
462 | |||
463 | return 0; | ||
464 | } | ||
465 | |||
466 | /* Phase 3 - core voltage transition flow ... jump to the final vid. */ | ||
467 | static int core_voltage_post_transition(struct powernow_k8_data *data, | ||
468 | u32 reqvid) | ||
469 | { | ||
470 | u32 savefid = data->currfid; | ||
471 | u32 savereqvid = reqvid; | ||
472 | |||
473 | pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", | ||
474 | smp_processor_id(), | ||
475 | data->currfid, data->currvid); | ||
476 | |||
477 | if (reqvid != data->currvid) { | ||
478 | if (write_new_vid(data, reqvid)) | ||
479 | return 1; | ||
480 | |||
481 | if (savefid != data->currfid) { | ||
482 | printk(KERN_ERR PFX | ||
483 | "ph3: bad fid change, save 0x%x, curr 0x%x\n", | ||
484 | savefid, data->currfid); | ||
485 | return 1; | ||
486 | } | ||
487 | |||
488 | if (data->currvid != reqvid) { | ||
489 | printk(KERN_ERR PFX | ||
490 | "ph3: failed vid transition\n, " | ||
491 | "req 0x%x, curr 0x%x", | ||
492 | reqvid, data->currvid); | ||
493 | return 1; | ||
494 | } | ||
495 | } | ||
496 | |||
497 | if (query_current_values_with_pending_wait(data)) | ||
498 | return 1; | ||
499 | |||
500 | if (savereqvid != data->currvid) { | ||
501 | pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); | ||
502 | return 1; | ||
503 | } | ||
504 | |||
505 | if (savefid != data->currfid) { | ||
506 | pr_debug("ph3 failed, currfid changed 0x%x\n", | ||
507 | data->currfid); | ||
508 | return 1; | ||
509 | } | ||
510 | |||
511 | pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", | ||
512 | data->currfid, data->currvid); | ||
513 | |||
514 | return 0; | ||
515 | } | ||
516 | |||
517 | static void check_supported_cpu(void *_rc) | ||
518 | { | ||
519 | u32 eax, ebx, ecx, edx; | ||
520 | int *rc = _rc; | ||
521 | |||
522 | *rc = -ENODEV; | ||
523 | |||
524 | if (__this_cpu_read(cpu_info.x86_vendor) != X86_VENDOR_AMD) | ||
525 | return; | ||
526 | |||
527 | eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); | ||
528 | if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) && | ||
529 | ((eax & CPUID_XFAM) < CPUID_XFAM_10H)) | ||
530 | return; | ||
531 | |||
532 | if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { | ||
533 | if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || | ||
534 | ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { | ||
535 | printk(KERN_INFO PFX | ||
536 | "Processor cpuid %x not supported\n", eax); | ||
537 | return; | ||
538 | } | ||
539 | |||
540 | eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); | ||
541 | if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { | ||
542 | printk(KERN_INFO PFX | ||
543 | "No frequency change capabilities detected\n"); | ||
544 | return; | ||
545 | } | ||
546 | |||
547 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); | ||
548 | if ((edx & P_STATE_TRANSITION_CAPABLE) | ||
549 | != P_STATE_TRANSITION_CAPABLE) { | ||
550 | printk(KERN_INFO PFX | ||
551 | "Power state transitions not supported\n"); | ||
552 | return; | ||
553 | } | ||
554 | } else { /* must be a HW Pstate capable processor */ | ||
555 | cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); | ||
556 | if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE) | ||
557 | cpu_family = CPU_HW_PSTATE; | ||
558 | else | ||
559 | return; | ||
560 | } | ||
561 | |||
562 | *rc = 0; | ||
563 | } | ||
564 | |||
565 | static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, | ||
566 | u8 maxvid) | ||
567 | { | ||
568 | unsigned int j; | ||
569 | u8 lastfid = 0xff; | ||
570 | |||
571 | for (j = 0; j < data->numps; j++) { | ||
572 | if (pst[j].vid > LEAST_VID) { | ||
573 | printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n", | ||
574 | j, pst[j].vid); | ||
575 | return -EINVAL; | ||
576 | } | ||
577 | if (pst[j].vid < data->rvo) { | ||
578 | /* vid + rvo >= 0 */ | ||
579 | printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate" | ||
580 | " %d\n", j); | ||
581 | return -ENODEV; | ||
582 | } | ||
583 | if (pst[j].vid < maxvid + data->rvo) { | ||
584 | /* vid + rvo >= maxvid */ | ||
585 | printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate" | ||
586 | " %d\n", j); | ||
587 | return -ENODEV; | ||
588 | } | ||
589 | if (pst[j].fid > MAX_FID) { | ||
590 | printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate" | ||
591 | " %d\n", j); | ||
592 | return -ENODEV; | ||
593 | } | ||
594 | if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { | ||
595 | /* Only first fid is allowed to be in "low" range */ | ||
596 | printk(KERN_ERR FW_BUG PFX "two low fids - %d : " | ||
597 | "0x%x\n", j, pst[j].fid); | ||
598 | return -EINVAL; | ||
599 | } | ||
600 | if (pst[j].fid < lastfid) | ||
601 | lastfid = pst[j].fid; | ||
602 | } | ||
603 | if (lastfid & 1) { | ||
604 | printk(KERN_ERR FW_BUG PFX "lastfid invalid\n"); | ||
605 | return -EINVAL; | ||
606 | } | ||
607 | if (lastfid > LO_FID_TABLE_TOP) | ||
608 | printk(KERN_INFO FW_BUG PFX | ||
609 | "first fid not from lo freq table\n"); | ||
610 | |||
611 | return 0; | ||
612 | } | ||
613 | |||
614 | static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, | ||
615 | unsigned int entry) | ||
616 | { | ||
617 | powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; | ||
618 | } | ||
619 | |||
620 | static void print_basics(struct powernow_k8_data *data) | ||
621 | { | ||
622 | int j; | ||
623 | for (j = 0; j < data->numps; j++) { | ||
624 | if (data->powernow_table[j].frequency != | ||
625 | CPUFREQ_ENTRY_INVALID) { | ||
626 | if (cpu_family == CPU_HW_PSTATE) { | ||
627 | printk(KERN_INFO PFX | ||
628 | " %d : pstate %d (%d MHz)\n", j, | ||
629 | data->powernow_table[j].index, | ||
630 | data->powernow_table[j].frequency/1000); | ||
631 | } else { | ||
632 | printk(KERN_INFO PFX | ||
633 | "fid 0x%x (%d MHz), vid 0x%x\n", | ||
634 | data->powernow_table[j].index & 0xff, | ||
635 | data->powernow_table[j].frequency/1000, | ||
636 | data->powernow_table[j].index >> 8); | ||
637 | } | ||
638 | } | ||
639 | } | ||
640 | if (data->batps) | ||
641 | printk(KERN_INFO PFX "Only %d pstates on battery\n", | ||
642 | data->batps); | ||
643 | } | ||
644 | |||
645 | static u32 freq_from_fid_did(u32 fid, u32 did) | ||
646 | { | ||
647 | u32 mhz = 0; | ||
648 | |||
649 | if (boot_cpu_data.x86 == 0x10) | ||
650 | mhz = (100 * (fid + 0x10)) >> did; | ||
651 | else if (boot_cpu_data.x86 == 0x11) | ||
652 | mhz = (100 * (fid + 8)) >> did; | ||
653 | else | ||
654 | BUG(); | ||
655 | |||
656 | return mhz * 1000; | ||
657 | } | ||
658 | |||
659 | static int fill_powernow_table(struct powernow_k8_data *data, | ||
660 | struct pst_s *pst, u8 maxvid) | ||
661 | { | ||
662 | struct cpufreq_frequency_table *powernow_table; | ||
663 | unsigned int j; | ||
664 | |||
665 | if (data->batps) { | ||
666 | /* use ACPI support to get full speed on mains power */ | ||
667 | printk(KERN_WARNING PFX | ||
668 | "Only %d pstates usable (use ACPI driver for full " | ||
669 | "range\n", data->batps); | ||
670 | data->numps = data->batps; | ||
671 | } | ||
672 | |||
673 | for (j = 1; j < data->numps; j++) { | ||
674 | if (pst[j-1].fid >= pst[j].fid) { | ||
675 | printk(KERN_ERR PFX "PST out of sequence\n"); | ||
676 | return -EINVAL; | ||
677 | } | ||
678 | } | ||
679 | |||
680 | if (data->numps < 2) { | ||
681 | printk(KERN_ERR PFX "no p states to transition\n"); | ||
682 | return -ENODEV; | ||
683 | } | ||
684 | |||
685 | if (check_pst_table(data, pst, maxvid)) | ||
686 | return -EINVAL; | ||
687 | |||
688 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | ||
689 | * (data->numps + 1)), GFP_KERNEL); | ||
690 | if (!powernow_table) { | ||
691 | printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); | ||
692 | return -ENOMEM; | ||
693 | } | ||
694 | |||
695 | for (j = 0; j < data->numps; j++) { | ||
696 | int freq; | ||
697 | powernow_table[j].index = pst[j].fid; /* lower 8 bits */ | ||
698 | powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ | ||
699 | freq = find_khz_freq_from_fid(pst[j].fid); | ||
700 | powernow_table[j].frequency = freq; | ||
701 | } | ||
702 | powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; | ||
703 | powernow_table[data->numps].index = 0; | ||
704 | |||
705 | if (query_current_values_with_pending_wait(data)) { | ||
706 | kfree(powernow_table); | ||
707 | return -EIO; | ||
708 | } | ||
709 | |||
710 | pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); | ||
711 | data->powernow_table = powernow_table; | ||
712 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) | ||
713 | print_basics(data); | ||
714 | |||
715 | for (j = 0; j < data->numps; j++) | ||
716 | if ((pst[j].fid == data->currfid) && | ||
717 | (pst[j].vid == data->currvid)) | ||
718 | return 0; | ||
719 | |||
720 | pr_debug("currfid/vid do not match PST, ignoring\n"); | ||
721 | return 0; | ||
722 | } | ||
723 | |||
724 | /* Find and validate the PSB/PST table in BIOS. */ | ||
725 | static int find_psb_table(struct powernow_k8_data *data) | ||
726 | { | ||
727 | struct psb_s *psb; | ||
728 | unsigned int i; | ||
729 | u32 mvs; | ||
730 | u8 maxvid; | ||
731 | u32 cpst = 0; | ||
732 | u32 thiscpuid; | ||
733 | |||
734 | for (i = 0xc0000; i < 0xffff0; i += 0x10) { | ||
735 | /* Scan BIOS looking for the signature. */ | ||
736 | /* It can not be at ffff0 - it is too big. */ | ||
737 | |||
738 | psb = phys_to_virt(i); | ||
739 | if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) | ||
740 | continue; | ||
741 | |||
742 | pr_debug("found PSB header at 0x%p\n", psb); | ||
743 | |||
744 | pr_debug("table vers: 0x%x\n", psb->tableversion); | ||
745 | if (psb->tableversion != PSB_VERSION_1_4) { | ||
746 | printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n"); | ||
747 | return -ENODEV; | ||
748 | } | ||
749 | |||
750 | pr_debug("flags: 0x%x\n", psb->flags1); | ||
751 | if (psb->flags1) { | ||
752 | printk(KERN_ERR FW_BUG PFX "unknown flags\n"); | ||
753 | return -ENODEV; | ||
754 | } | ||
755 | |||
756 | data->vstable = psb->vstable; | ||
757 | pr_debug("voltage stabilization time: %d(*20us)\n", | ||
758 | data->vstable); | ||
759 | |||
760 | pr_debug("flags2: 0x%x\n", psb->flags2); | ||
761 | data->rvo = psb->flags2 & 3; | ||
762 | data->irt = ((psb->flags2) >> 2) & 3; | ||
763 | mvs = ((psb->flags2) >> 4) & 3; | ||
764 | data->vidmvs = 1 << mvs; | ||
765 | data->batps = ((psb->flags2) >> 6) & 3; | ||
766 | |||
767 | pr_debug("ramp voltage offset: %d\n", data->rvo); | ||
768 | pr_debug("isochronous relief time: %d\n", data->irt); | ||
769 | pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); | ||
770 | |||
771 | pr_debug("numpst: 0x%x\n", psb->num_tables); | ||
772 | cpst = psb->num_tables; | ||
773 | if ((psb->cpuid == 0x00000fc0) || | ||
774 | (psb->cpuid == 0x00000fe0)) { | ||
775 | thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); | ||
776 | if ((thiscpuid == 0x00000fc0) || | ||
777 | (thiscpuid == 0x00000fe0)) | ||
778 | cpst = 1; | ||
779 | } | ||
780 | if (cpst != 1) { | ||
781 | printk(KERN_ERR FW_BUG PFX "numpst must be 1\n"); | ||
782 | return -ENODEV; | ||
783 | } | ||
784 | |||
785 | data->plllock = psb->plllocktime; | ||
786 | pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); | ||
787 | pr_debug("maxfid: 0x%x\n", psb->maxfid); | ||
788 | pr_debug("maxvid: 0x%x\n", psb->maxvid); | ||
789 | maxvid = psb->maxvid; | ||
790 | |||
791 | data->numps = psb->numps; | ||
792 | pr_debug("numpstates: 0x%x\n", data->numps); | ||
793 | return fill_powernow_table(data, | ||
794 | (struct pst_s *)(psb+1), maxvid); | ||
795 | } | ||
796 | /* | ||
797 | * If you see this message, complain to BIOS manufacturer. If | ||
798 | * he tells you "we do not support Linux" or some similar | ||
799 | * nonsense, remember that Windows 2000 uses the same legacy | ||
800 | * mechanism that the old Linux PSB driver uses. Tell them it | ||
801 | * is broken with Windows 2000. | ||
802 | * | ||
803 | * The reference to the AMD documentation is chapter 9 in the | ||
804 | * BIOS and Kernel Developer's Guide, which is available on | ||
805 | * www.amd.com | ||
806 | */ | ||
807 | printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n"); | ||
808 | printk(KERN_ERR PFX "Make sure that your BIOS is up to date" | ||
809 | " and Cool'N'Quiet support is enabled in BIOS setup\n"); | ||
810 | return -ENODEV; | ||
811 | } | ||
812 | |||
813 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, | ||
814 | unsigned int index) | ||
815 | { | ||
816 | u64 control; | ||
817 | |||
818 | if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE)) | ||
819 | return; | ||
820 | |||
821 | control = data->acpi_data.states[index].control; | ||
822 | data->irt = (control >> IRT_SHIFT) & IRT_MASK; | ||
823 | data->rvo = (control >> RVO_SHIFT) & RVO_MASK; | ||
824 | data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; | ||
825 | data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; | ||
826 | data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); | ||
827 | data->vstable = (control >> VST_SHIFT) & VST_MASK; | ||
828 | } | ||
829 | |||
830 | static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) | ||
831 | { | ||
832 | struct cpufreq_frequency_table *powernow_table; | ||
833 | int ret_val = -ENODEV; | ||
834 | u64 control, status; | ||
835 | |||
836 | if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { | ||
837 | pr_debug("register performance failed: bad ACPI data\n"); | ||
838 | return -EIO; | ||
839 | } | ||
840 | |||
841 | /* verify the data contained in the ACPI structures */ | ||
842 | if (data->acpi_data.state_count <= 1) { | ||
843 | pr_debug("No ACPI P-States\n"); | ||
844 | goto err_out; | ||
845 | } | ||
846 | |||
847 | control = data->acpi_data.control_register.space_id; | ||
848 | status = data->acpi_data.status_register.space_id; | ||
849 | |||
850 | if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || | ||
851 | (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { | ||
852 | pr_debug("Invalid control/status registers (%llx - %llx)\n", | ||
853 | control, status); | ||
854 | goto err_out; | ||
855 | } | ||
856 | |||
857 | /* fill in data->powernow_table */ | ||
858 | powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) | ||
859 | * (data->acpi_data.state_count + 1)), GFP_KERNEL); | ||
860 | if (!powernow_table) { | ||
861 | pr_debug("powernow_table memory alloc failure\n"); | ||
862 | goto err_out; | ||
863 | } | ||
864 | |||
865 | /* fill in data */ | ||
866 | data->numps = data->acpi_data.state_count; | ||
867 | powernow_k8_acpi_pst_values(data, 0); | ||
868 | |||
869 | if (cpu_family == CPU_HW_PSTATE) | ||
870 | ret_val = fill_powernow_table_pstate(data, powernow_table); | ||
871 | else | ||
872 | ret_val = fill_powernow_table_fidvid(data, powernow_table); | ||
873 | if (ret_val) | ||
874 | goto err_out_mem; | ||
875 | |||
876 | powernow_table[data->acpi_data.state_count].frequency = | ||
877 | CPUFREQ_TABLE_END; | ||
878 | powernow_table[data->acpi_data.state_count].index = 0; | ||
879 | data->powernow_table = powernow_table; | ||
880 | |||
881 | if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) | ||
882 | print_basics(data); | ||
883 | |||
884 | /* notify BIOS that we exist */ | ||
885 | acpi_processor_notify_smm(THIS_MODULE); | ||
886 | |||
887 | if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { | ||
888 | printk(KERN_ERR PFX | ||
889 | "unable to alloc powernow_k8_data cpumask\n"); | ||
890 | ret_val = -ENOMEM; | ||
891 | goto err_out_mem; | ||
892 | } | ||
893 | |||
894 | return 0; | ||
895 | |||
896 | err_out_mem: | ||
897 | kfree(powernow_table); | ||
898 | |||
899 | err_out: | ||
900 | acpi_processor_unregister_performance(&data->acpi_data, data->cpu); | ||
901 | |||
902 | /* data->acpi_data.state_count informs us at ->exit() | ||
903 | * whether ACPI was used */ | ||
904 | data->acpi_data.state_count = 0; | ||
905 | |||
906 | return ret_val; | ||
907 | } | ||
908 | |||
909 | static int fill_powernow_table_pstate(struct powernow_k8_data *data, | ||
910 | struct cpufreq_frequency_table *powernow_table) | ||
911 | { | ||
912 | int i; | ||
913 | u32 hi = 0, lo = 0; | ||
914 | rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi); | ||
915 | data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT; | ||
916 | |||
917 | for (i = 0; i < data->acpi_data.state_count; i++) { | ||
918 | u32 index; | ||
919 | |||
920 | index = data->acpi_data.states[i].control & HW_PSTATE_MASK; | ||
921 | if (index > data->max_hw_pstate) { | ||
922 | printk(KERN_ERR PFX "invalid pstate %d - " | ||
923 | "bad value %d.\n", i, index); | ||
924 | printk(KERN_ERR PFX "Please report to BIOS " | ||
925 | "manufacturer\n"); | ||
926 | invalidate_entry(powernow_table, i); | ||
927 | continue; | ||
928 | } | ||
929 | rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi); | ||
930 | if (!(hi & HW_PSTATE_VALID_MASK)) { | ||
931 | pr_debug("invalid pstate %d, ignoring\n", index); | ||
932 | invalidate_entry(powernow_table, i); | ||
933 | continue; | ||
934 | } | ||
935 | |||
936 | powernow_table[i].index = index; | ||
937 | |||
938 | /* Frequency may be rounded for these */ | ||
939 | if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10) | ||
940 | || boot_cpu_data.x86 == 0x11) { | ||
941 | powernow_table[i].frequency = | ||
942 | freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7); | ||
943 | } else | ||
944 | powernow_table[i].frequency = | ||
945 | data->acpi_data.states[i].core_frequency * 1000; | ||
946 | } | ||
947 | return 0; | ||
948 | } | ||
949 | |||
950 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, | ||
951 | struct cpufreq_frequency_table *powernow_table) | ||
952 | { | ||
953 | int i; | ||
954 | |||
955 | for (i = 0; i < data->acpi_data.state_count; i++) { | ||
956 | u32 fid; | ||
957 | u32 vid; | ||
958 | u32 freq, index; | ||
959 | u64 status, control; | ||
960 | |||
961 | if (data->exttype) { | ||
962 | status = data->acpi_data.states[i].status; | ||
963 | fid = status & EXT_FID_MASK; | ||
964 | vid = (status >> VID_SHIFT) & EXT_VID_MASK; | ||
965 | } else { | ||
966 | control = data->acpi_data.states[i].control; | ||
967 | fid = control & FID_MASK; | ||
968 | vid = (control >> VID_SHIFT) & VID_MASK; | ||
969 | } | ||
970 | |||
971 | pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); | ||
972 | |||
973 | index = fid | (vid<<8); | ||
974 | powernow_table[i].index = index; | ||
975 | |||
976 | freq = find_khz_freq_from_fid(fid); | ||
977 | powernow_table[i].frequency = freq; | ||
978 | |||
979 | /* verify frequency is OK */ | ||
980 | if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { | ||
981 | pr_debug("invalid freq %u kHz, ignoring\n", freq); | ||
982 | invalidate_entry(powernow_table, i); | ||
983 | continue; | ||
984 | } | ||
985 | |||
986 | /* verify voltage is OK - | ||
987 | * BIOSs are using "off" to indicate invalid */ | ||
988 | if (vid == VID_OFF) { | ||
989 | pr_debug("invalid vid %u, ignoring\n", vid); | ||
990 | invalidate_entry(powernow_table, i); | ||
991 | continue; | ||
992 | } | ||
993 | |||
994 | if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { | ||
995 | printk(KERN_INFO PFX "invalid freq entries " | ||
996 | "%u kHz vs. %u kHz\n", freq, | ||
997 | (unsigned int) | ||
998 | (data->acpi_data.states[i].core_frequency | ||
999 | * 1000)); | ||
1000 | invalidate_entry(powernow_table, i); | ||
1001 | continue; | ||
1002 | } | ||
1003 | } | ||
1004 | return 0; | ||
1005 | } | ||
1006 | |||
1007 | static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) | ||
1008 | { | ||
1009 | if (data->acpi_data.state_count) | ||
1010 | acpi_processor_unregister_performance(&data->acpi_data, | ||
1011 | data->cpu); | ||
1012 | free_cpumask_var(data->acpi_data.shared_cpu_map); | ||
1013 | } | ||
1014 | |||
1015 | static int get_transition_latency(struct powernow_k8_data *data) | ||
1016 | { | ||
1017 | int max_latency = 0; | ||
1018 | int i; | ||
1019 | for (i = 0; i < data->acpi_data.state_count; i++) { | ||
1020 | int cur_latency = data->acpi_data.states[i].transition_latency | ||
1021 | + data->acpi_data.states[i].bus_master_latency; | ||
1022 | if (cur_latency > max_latency) | ||
1023 | max_latency = cur_latency; | ||
1024 | } | ||
1025 | if (max_latency == 0) { | ||
1026 | /* | ||
1027 | * Fam 11h and later may return 0 as transition latency. This | ||
1028 | * is intended and means "very fast". While cpufreq core and | ||
1029 | * governors currently can handle that gracefully, better set it | ||
1030 | * to 1 to avoid problems in the future. | ||
1031 | */ | ||
1032 | if (boot_cpu_data.x86 < 0x11) | ||
1033 | printk(KERN_ERR FW_WARN PFX "Invalid zero transition " | ||
1034 | "latency\n"); | ||
1035 | max_latency = 1; | ||
1036 | } | ||
1037 | /* value in usecs, needs to be in nanoseconds */ | ||
1038 | return 1000 * max_latency; | ||
1039 | } | ||
1040 | |||
1041 | /* Take a frequency, and issue the fid/vid transition command */ | ||
1042 | static int transition_frequency_fidvid(struct powernow_k8_data *data, | ||
1043 | unsigned int index) | ||
1044 | { | ||
1045 | u32 fid = 0; | ||
1046 | u32 vid = 0; | ||
1047 | int res, i; | ||
1048 | struct cpufreq_freqs freqs; | ||
1049 | |||
1050 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); | ||
1051 | |||
1052 | /* fid/vid correctness check for k8 */ | ||
1053 | /* fid are the lower 8 bits of the index we stored into | ||
1054 | * the cpufreq frequency table in find_psb_table, vid | ||
1055 | * are the upper 8 bits. | ||
1056 | */ | ||
1057 | fid = data->powernow_table[index].index & 0xFF; | ||
1058 | vid = (data->powernow_table[index].index & 0xFF00) >> 8; | ||
1059 | |||
1060 | pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); | ||
1061 | |||
1062 | if (query_current_values_with_pending_wait(data)) | ||
1063 | return 1; | ||
1064 | |||
1065 | if ((data->currvid == vid) && (data->currfid == fid)) { | ||
1066 | pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", | ||
1067 | fid, vid); | ||
1068 | return 0; | ||
1069 | } | ||
1070 | |||
1071 | pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", | ||
1072 | smp_processor_id(), fid, vid); | ||
1073 | freqs.old = find_khz_freq_from_fid(data->currfid); | ||
1074 | freqs.new = find_khz_freq_from_fid(fid); | ||
1075 | |||
1076 | for_each_cpu(i, data->available_cores) { | ||
1077 | freqs.cpu = i; | ||
1078 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
1079 | } | ||
1080 | |||
1081 | res = transition_fid_vid(data, fid, vid); | ||
1082 | freqs.new = find_khz_freq_from_fid(data->currfid); | ||
1083 | |||
1084 | for_each_cpu(i, data->available_cores) { | ||
1085 | freqs.cpu = i; | ||
1086 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
1087 | } | ||
1088 | return res; | ||
1089 | } | ||
1090 | |||
1091 | /* Take a frequency, and issue the hardware pstate transition command */ | ||
1092 | static int transition_frequency_pstate(struct powernow_k8_data *data, | ||
1093 | unsigned int index) | ||
1094 | { | ||
1095 | u32 pstate = 0; | ||
1096 | int res, i; | ||
1097 | struct cpufreq_freqs freqs; | ||
1098 | |||
1099 | pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); | ||
1100 | |||
1101 | /* get MSR index for hardware pstate transition */ | ||
1102 | pstate = index & HW_PSTATE_MASK; | ||
1103 | if (pstate > data->max_hw_pstate) | ||
1104 | return 0; | ||
1105 | freqs.old = find_khz_freq_from_pstate(data->powernow_table, | ||
1106 | data->currpstate); | ||
1107 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); | ||
1108 | |||
1109 | for_each_cpu(i, data->available_cores) { | ||
1110 | freqs.cpu = i; | ||
1111 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
1112 | } | ||
1113 | |||
1114 | res = transition_pstate(data, pstate); | ||
1115 | freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate); | ||
1116 | |||
1117 | for_each_cpu(i, data->available_cores) { | ||
1118 | freqs.cpu = i; | ||
1119 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
1120 | } | ||
1121 | return res; | ||
1122 | } | ||
1123 | |||
1124 | /* Driver entry point to switch to the target frequency */ | ||
1125 | static int powernowk8_target(struct cpufreq_policy *pol, | ||
1126 | unsigned targfreq, unsigned relation) | ||
1127 | { | ||
1128 | cpumask_var_t oldmask; | ||
1129 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); | ||
1130 | u32 checkfid; | ||
1131 | u32 checkvid; | ||
1132 | unsigned int newstate; | ||
1133 | int ret = -EIO; | ||
1134 | |||
1135 | if (!data) | ||
1136 | return -EINVAL; | ||
1137 | |||
1138 | checkfid = data->currfid; | ||
1139 | checkvid = data->currvid; | ||
1140 | |||
1141 | /* only run on specific CPU from here on. */ | ||
1142 | /* This is poor form: use a workqueue or smp_call_function_single */ | ||
1143 | if (!alloc_cpumask_var(&oldmask, GFP_KERNEL)) | ||
1144 | return -ENOMEM; | ||
1145 | |||
1146 | cpumask_copy(oldmask, tsk_cpus_allowed(current)); | ||
1147 | set_cpus_allowed_ptr(current, cpumask_of(pol->cpu)); | ||
1148 | |||
1149 | if (smp_processor_id() != pol->cpu) { | ||
1150 | printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu); | ||
1151 | goto err_out; | ||
1152 | } | ||
1153 | |||
1154 | if (pending_bit_stuck()) { | ||
1155 | printk(KERN_ERR PFX "failing targ, change pending bit set\n"); | ||
1156 | goto err_out; | ||
1157 | } | ||
1158 | |||
1159 | pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", | ||
1160 | pol->cpu, targfreq, pol->min, pol->max, relation); | ||
1161 | |||
1162 | if (query_current_values_with_pending_wait(data)) | ||
1163 | goto err_out; | ||
1164 | |||
1165 | if (cpu_family != CPU_HW_PSTATE) { | ||
1166 | pr_debug("targ: curr fid 0x%x, vid 0x%x\n", | ||
1167 | data->currfid, data->currvid); | ||
1168 | |||
1169 | if ((checkvid != data->currvid) || | ||
1170 | (checkfid != data->currfid)) { | ||
1171 | printk(KERN_INFO PFX | ||
1172 | "error - out of sync, fix 0x%x 0x%x, " | ||
1173 | "vid 0x%x 0x%x\n", | ||
1174 | checkfid, data->currfid, | ||
1175 | checkvid, data->currvid); | ||
1176 | } | ||
1177 | } | ||
1178 | |||
1179 | if (cpufreq_frequency_table_target(pol, data->powernow_table, | ||
1180 | targfreq, relation, &newstate)) | ||
1181 | goto err_out; | ||
1182 | |||
1183 | mutex_lock(&fidvid_mutex); | ||
1184 | |||
1185 | powernow_k8_acpi_pst_values(data, newstate); | ||
1186 | |||
1187 | if (cpu_family == CPU_HW_PSTATE) | ||
1188 | ret = transition_frequency_pstate(data, newstate); | ||
1189 | else | ||
1190 | ret = transition_frequency_fidvid(data, newstate); | ||
1191 | if (ret) { | ||
1192 | printk(KERN_ERR PFX "transition frequency failed\n"); | ||
1193 | ret = 1; | ||
1194 | mutex_unlock(&fidvid_mutex); | ||
1195 | goto err_out; | ||
1196 | } | ||
1197 | mutex_unlock(&fidvid_mutex); | ||
1198 | |||
1199 | if (cpu_family == CPU_HW_PSTATE) | ||
1200 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, | ||
1201 | newstate); | ||
1202 | else | ||
1203 | pol->cur = find_khz_freq_from_fid(data->currfid); | ||
1204 | ret = 0; | ||
1205 | |||
1206 | err_out: | ||
1207 | set_cpus_allowed_ptr(current, oldmask); | ||
1208 | free_cpumask_var(oldmask); | ||
1209 | return ret; | ||
1210 | } | ||
1211 | |||
1212 | /* Driver entry point to verify the policy and range of frequencies */ | ||
1213 | static int powernowk8_verify(struct cpufreq_policy *pol) | ||
1214 | { | ||
1215 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); | ||
1216 | |||
1217 | if (!data) | ||
1218 | return -EINVAL; | ||
1219 | |||
1220 | return cpufreq_frequency_table_verify(pol, data->powernow_table); | ||
1221 | } | ||
1222 | |||
1223 | struct init_on_cpu { | ||
1224 | struct powernow_k8_data *data; | ||
1225 | int rc; | ||
1226 | }; | ||
1227 | |||
1228 | static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu) | ||
1229 | { | ||
1230 | struct init_on_cpu *init_on_cpu = _init_on_cpu; | ||
1231 | |||
1232 | if (pending_bit_stuck()) { | ||
1233 | printk(KERN_ERR PFX "failing init, change pending bit set\n"); | ||
1234 | init_on_cpu->rc = -ENODEV; | ||
1235 | return; | ||
1236 | } | ||
1237 | |||
1238 | if (query_current_values_with_pending_wait(init_on_cpu->data)) { | ||
1239 | init_on_cpu->rc = -ENODEV; | ||
1240 | return; | ||
1241 | } | ||
1242 | |||
1243 | if (cpu_family == CPU_OPTERON) | ||
1244 | fidvid_msr_init(); | ||
1245 | |||
1246 | init_on_cpu->rc = 0; | ||
1247 | } | ||
1248 | |||
1249 | /* per CPU init entry point to the driver */ | ||
1250 | static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) | ||
1251 | { | ||
1252 | static const char ACPI_PSS_BIOS_BUG_MSG[] = | ||
1253 | KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n" | ||
1254 | FW_BUG PFX "Try again with latest BIOS.\n"; | ||
1255 | struct powernow_k8_data *data; | ||
1256 | struct init_on_cpu init_on_cpu; | ||
1257 | int rc; | ||
1258 | struct cpuinfo_x86 *c = &cpu_data(pol->cpu); | ||
1259 | |||
1260 | if (!cpu_online(pol->cpu)) | ||
1261 | return -ENODEV; | ||
1262 | |||
1263 | smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); | ||
1264 | if (rc) | ||
1265 | return -ENODEV; | ||
1266 | |||
1267 | data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); | ||
1268 | if (!data) { | ||
1269 | printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); | ||
1270 | return -ENOMEM; | ||
1271 | } | ||
1272 | |||
1273 | data->cpu = pol->cpu; | ||
1274 | data->currpstate = HW_PSTATE_INVALID; | ||
1275 | |||
1276 | if (powernow_k8_cpu_init_acpi(data)) { | ||
1277 | /* | ||
1278 | * Use the PSB BIOS structure. This is only available on | ||
1279 | * an UP version, and is deprecated by AMD. | ||
1280 | */ | ||
1281 | if (num_online_cpus() != 1) { | ||
1282 | printk_once(ACPI_PSS_BIOS_BUG_MSG); | ||
1283 | goto err_out; | ||
1284 | } | ||
1285 | if (pol->cpu != 0) { | ||
1286 | printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for " | ||
1287 | "CPU other than CPU0. Complain to your BIOS " | ||
1288 | "vendor.\n"); | ||
1289 | goto err_out; | ||
1290 | } | ||
1291 | rc = find_psb_table(data); | ||
1292 | if (rc) | ||
1293 | goto err_out; | ||
1294 | |||
1295 | /* Take a crude guess here. | ||
1296 | * That guess was in microseconds, so multiply with 1000 */ | ||
1297 | pol->cpuinfo.transition_latency = ( | ||
1298 | ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + | ||
1299 | ((1 << data->irt) * 30)) * 1000; | ||
1300 | } else /* ACPI _PSS objects available */ | ||
1301 | pol->cpuinfo.transition_latency = get_transition_latency(data); | ||
1302 | |||
1303 | /* only run on specific CPU from here on */ | ||
1304 | init_on_cpu.data = data; | ||
1305 | smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, | ||
1306 | &init_on_cpu, 1); | ||
1307 | rc = init_on_cpu.rc; | ||
1308 | if (rc != 0) | ||
1309 | goto err_out_exit_acpi; | ||
1310 | |||
1311 | if (cpu_family == CPU_HW_PSTATE) | ||
1312 | cpumask_copy(pol->cpus, cpumask_of(pol->cpu)); | ||
1313 | else | ||
1314 | cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); | ||
1315 | data->available_cores = pol->cpus; | ||
1316 | |||
1317 | if (cpu_family == CPU_HW_PSTATE) | ||
1318 | pol->cur = find_khz_freq_from_pstate(data->powernow_table, | ||
1319 | data->currpstate); | ||
1320 | else | ||
1321 | pol->cur = find_khz_freq_from_fid(data->currfid); | ||
1322 | pr_debug("policy current frequency %d kHz\n", pol->cur); | ||
1323 | |||
1324 | /* min/max the cpu is capable of */ | ||
1325 | if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { | ||
1326 | printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n"); | ||
1327 | powernow_k8_cpu_exit_acpi(data); | ||
1328 | kfree(data->powernow_table); | ||
1329 | kfree(data); | ||
1330 | return -EINVAL; | ||
1331 | } | ||
1332 | |||
1333 | /* Check for APERF/MPERF support in hardware */ | ||
1334 | if (cpu_has(c, X86_FEATURE_APERFMPERF)) | ||
1335 | cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf; | ||
1336 | |||
1337 | cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); | ||
1338 | |||
1339 | if (cpu_family == CPU_HW_PSTATE) | ||
1340 | pr_debug("cpu_init done, current pstate 0x%x\n", | ||
1341 | data->currpstate); | ||
1342 | else | ||
1343 | pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", | ||
1344 | data->currfid, data->currvid); | ||
1345 | |||
1346 | per_cpu(powernow_data, pol->cpu) = data; | ||
1347 | |||
1348 | return 0; | ||
1349 | |||
1350 | err_out_exit_acpi: | ||
1351 | powernow_k8_cpu_exit_acpi(data); | ||
1352 | |||
1353 | err_out: | ||
1354 | kfree(data); | ||
1355 | return -ENODEV; | ||
1356 | } | ||
1357 | |||
1358 | static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol) | ||
1359 | { | ||
1360 | struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); | ||
1361 | |||
1362 | if (!data) | ||
1363 | return -EINVAL; | ||
1364 | |||
1365 | powernow_k8_cpu_exit_acpi(data); | ||
1366 | |||
1367 | cpufreq_frequency_table_put_attr(pol->cpu); | ||
1368 | |||
1369 | kfree(data->powernow_table); | ||
1370 | kfree(data); | ||
1371 | per_cpu(powernow_data, pol->cpu) = NULL; | ||
1372 | |||
1373 | return 0; | ||
1374 | } | ||
1375 | |||
1376 | static void query_values_on_cpu(void *_err) | ||
1377 | { | ||
1378 | int *err = _err; | ||
1379 | struct powernow_k8_data *data = __this_cpu_read(powernow_data); | ||
1380 | |||
1381 | *err = query_current_values_with_pending_wait(data); | ||
1382 | } | ||
1383 | |||
1384 | static unsigned int powernowk8_get(unsigned int cpu) | ||
1385 | { | ||
1386 | struct powernow_k8_data *data = per_cpu(powernow_data, cpu); | ||
1387 | unsigned int khz = 0; | ||
1388 | int err; | ||
1389 | |||
1390 | if (!data) | ||
1391 | return 0; | ||
1392 | |||
1393 | smp_call_function_single(cpu, query_values_on_cpu, &err, true); | ||
1394 | if (err) | ||
1395 | goto out; | ||
1396 | |||
1397 | if (cpu_family == CPU_HW_PSTATE) | ||
1398 | khz = find_khz_freq_from_pstate(data->powernow_table, | ||
1399 | data->currpstate); | ||
1400 | else | ||
1401 | khz = find_khz_freq_from_fid(data->currfid); | ||
1402 | |||
1403 | |||
1404 | out: | ||
1405 | return khz; | ||
1406 | } | ||
1407 | |||
1408 | static void _cpb_toggle_msrs(bool t) | ||
1409 | { | ||
1410 | int cpu; | ||
1411 | |||
1412 | get_online_cpus(); | ||
1413 | |||
1414 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | ||
1415 | |||
1416 | for_each_cpu(cpu, cpu_online_mask) { | ||
1417 | struct msr *reg = per_cpu_ptr(msrs, cpu); | ||
1418 | if (t) | ||
1419 | reg->l &= ~BIT(25); | ||
1420 | else | ||
1421 | reg->l |= BIT(25); | ||
1422 | } | ||
1423 | wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | ||
1424 | |||
1425 | put_online_cpus(); | ||
1426 | } | ||
1427 | |||
1428 | /* | ||
1429 | * Switch on/off core performance boosting. | ||
1430 | * | ||
1431 | * 0=disable | ||
1432 | * 1=enable. | ||
1433 | */ | ||
1434 | static void cpb_toggle(bool t) | ||
1435 | { | ||
1436 | if (!cpb_capable) | ||
1437 | return; | ||
1438 | |||
1439 | if (t && !cpb_enabled) { | ||
1440 | cpb_enabled = true; | ||
1441 | _cpb_toggle_msrs(t); | ||
1442 | printk(KERN_INFO PFX "Core Boosting enabled.\n"); | ||
1443 | } else if (!t && cpb_enabled) { | ||
1444 | cpb_enabled = false; | ||
1445 | _cpb_toggle_msrs(t); | ||
1446 | printk(KERN_INFO PFX "Core Boosting disabled.\n"); | ||
1447 | } | ||
1448 | } | ||
1449 | |||
1450 | static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, | ||
1451 | size_t count) | ||
1452 | { | ||
1453 | int ret = -EINVAL; | ||
1454 | unsigned long val = 0; | ||
1455 | |||
1456 | ret = strict_strtoul(buf, 10, &val); | ||
1457 | if (!ret && (val == 0 || val == 1) && cpb_capable) | ||
1458 | cpb_toggle(val); | ||
1459 | else | ||
1460 | return -EINVAL; | ||
1461 | |||
1462 | return count; | ||
1463 | } | ||
1464 | |||
1465 | static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) | ||
1466 | { | ||
1467 | return sprintf(buf, "%u\n", cpb_enabled); | ||
1468 | } | ||
1469 | |||
1470 | #define define_one_rw(_name) \ | ||
1471 | static struct freq_attr _name = \ | ||
1472 | __ATTR(_name, 0644, show_##_name, store_##_name) | ||
1473 | |||
1474 | define_one_rw(cpb); | ||
1475 | |||
1476 | static struct freq_attr *powernow_k8_attr[] = { | ||
1477 | &cpufreq_freq_attr_scaling_available_freqs, | ||
1478 | &cpb, | ||
1479 | NULL, | ||
1480 | }; | ||
1481 | |||
1482 | static struct cpufreq_driver cpufreq_amd64_driver = { | ||
1483 | .verify = powernowk8_verify, | ||
1484 | .target = powernowk8_target, | ||
1485 | .bios_limit = acpi_processor_get_bios_limit, | ||
1486 | .init = powernowk8_cpu_init, | ||
1487 | .exit = __devexit_p(powernowk8_cpu_exit), | ||
1488 | .get = powernowk8_get, | ||
1489 | .name = "powernow-k8", | ||
1490 | .owner = THIS_MODULE, | ||
1491 | .attr = powernow_k8_attr, | ||
1492 | }; | ||
1493 | |||
1494 | /* | ||
1495 | * Clear the boost-disable flag on the CPU_DOWN path so that this cpu | ||
1496 | * cannot block the remaining ones from boosting. On the CPU_UP path we | ||
1497 | * simply keep the boost-disable flag in sync with the current global | ||
1498 | * state. | ||
1499 | */ | ||
1500 | static int cpb_notify(struct notifier_block *nb, unsigned long action, | ||
1501 | void *hcpu) | ||
1502 | { | ||
1503 | unsigned cpu = (long)hcpu; | ||
1504 | u32 lo, hi; | ||
1505 | |||
1506 | switch (action) { | ||
1507 | case CPU_UP_PREPARE: | ||
1508 | case CPU_UP_PREPARE_FROZEN: | ||
1509 | |||
1510 | if (!cpb_enabled) { | ||
1511 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | ||
1512 | lo |= BIT(25); | ||
1513 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | ||
1514 | } | ||
1515 | break; | ||
1516 | |||
1517 | case CPU_DOWN_PREPARE: | ||
1518 | case CPU_DOWN_PREPARE_FROZEN: | ||
1519 | rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); | ||
1520 | lo &= ~BIT(25); | ||
1521 | wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi); | ||
1522 | break; | ||
1523 | |||
1524 | default: | ||
1525 | break; | ||
1526 | } | ||
1527 | |||
1528 | return NOTIFY_OK; | ||
1529 | } | ||
1530 | |||
1531 | static struct notifier_block cpb_nb = { | ||
1532 | .notifier_call = cpb_notify, | ||
1533 | }; | ||
1534 | |||
1535 | /* driver entry point for init */ | ||
1536 | static int __cpuinit powernowk8_init(void) | ||
1537 | { | ||
1538 | unsigned int i, supported_cpus = 0, cpu; | ||
1539 | int rv; | ||
1540 | |||
1541 | for_each_online_cpu(i) { | ||
1542 | int rc; | ||
1543 | smp_call_function_single(i, check_supported_cpu, &rc, 1); | ||
1544 | if (rc == 0) | ||
1545 | supported_cpus++; | ||
1546 | } | ||
1547 | |||
1548 | if (supported_cpus != num_online_cpus()) | ||
1549 | return -ENODEV; | ||
1550 | |||
1551 | printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n", | ||
1552 | num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus); | ||
1553 | |||
1554 | if (boot_cpu_has(X86_FEATURE_CPB)) { | ||
1555 | |||
1556 | cpb_capable = true; | ||
1557 | |||
1558 | msrs = msrs_alloc(); | ||
1559 | if (!msrs) { | ||
1560 | printk(KERN_ERR "%s: Error allocating msrs!\n", __func__); | ||
1561 | return -ENOMEM; | ||
1562 | } | ||
1563 | |||
1564 | register_cpu_notifier(&cpb_nb); | ||
1565 | |||
1566 | rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs); | ||
1567 | |||
1568 | for_each_cpu(cpu, cpu_online_mask) { | ||
1569 | struct msr *reg = per_cpu_ptr(msrs, cpu); | ||
1570 | cpb_enabled |= !(!!(reg->l & BIT(25))); | ||
1571 | } | ||
1572 | |||
1573 | printk(KERN_INFO PFX "Core Performance Boosting: %s.\n", | ||
1574 | (cpb_enabled ? "on" : "off")); | ||
1575 | } | ||
1576 | |||
1577 | rv = cpufreq_register_driver(&cpufreq_amd64_driver); | ||
1578 | if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) { | ||
1579 | unregister_cpu_notifier(&cpb_nb); | ||
1580 | msrs_free(msrs); | ||
1581 | msrs = NULL; | ||
1582 | } | ||
1583 | return rv; | ||
1584 | } | ||
1585 | |||
1586 | /* driver entry point for term */ | ||
1587 | static void __exit powernowk8_exit(void) | ||
1588 | { | ||
1589 | pr_debug("exit\n"); | ||
1590 | |||
1591 | if (boot_cpu_has(X86_FEATURE_CPB)) { | ||
1592 | msrs_free(msrs); | ||
1593 | msrs = NULL; | ||
1594 | |||
1595 | unregister_cpu_notifier(&cpb_nb); | ||
1596 | } | ||
1597 | |||
1598 | cpufreq_unregister_driver(&cpufreq_amd64_driver); | ||
1599 | } | ||
1600 | |||
1601 | MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and " | ||
1602 | "Mark Langsdorf <mark.langsdorf@amd.com>"); | ||
1603 | MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); | ||
1604 | MODULE_LICENSE("GPL"); | ||
1605 | |||
1606 | late_initcall(powernowk8_init); | ||
1607 | module_exit(powernowk8_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/powernow-k8.h b/arch/x86/kernel/cpu/cpufreq/powernow-k8.h deleted file mode 100644 index 3744d26cdc2b..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/powernow-k8.h +++ /dev/null | |||
@@ -1,222 +0,0 @@ | |||
1 | /* | ||
2 | * (c) 2003-2006 Advanced Micro Devices, Inc. | ||
3 | * Your use of this code is subject to the terms and conditions of the | ||
4 | * GNU general public license version 2. See "COPYING" or | ||
5 | * http://www.gnu.org/licenses/gpl.html | ||
6 | */ | ||
7 | |||
8 | enum pstate { | ||
9 | HW_PSTATE_INVALID = 0xff, | ||
10 | HW_PSTATE_0 = 0, | ||
11 | HW_PSTATE_1 = 1, | ||
12 | HW_PSTATE_2 = 2, | ||
13 | HW_PSTATE_3 = 3, | ||
14 | HW_PSTATE_4 = 4, | ||
15 | HW_PSTATE_5 = 5, | ||
16 | HW_PSTATE_6 = 6, | ||
17 | HW_PSTATE_7 = 7, | ||
18 | }; | ||
19 | |||
20 | struct powernow_k8_data { | ||
21 | unsigned int cpu; | ||
22 | |||
23 | u32 numps; /* number of p-states */ | ||
24 | u32 batps; /* number of p-states supported on battery */ | ||
25 | u32 max_hw_pstate; /* maximum legal hardware pstate */ | ||
26 | |||
27 | /* these values are constant when the PSB is used to determine | ||
28 | * vid/fid pairings, but are modified during the ->target() call | ||
29 | * when ACPI is used */ | ||
30 | u32 rvo; /* ramp voltage offset */ | ||
31 | u32 irt; /* isochronous relief time */ | ||
32 | u32 vidmvs; /* usable value calculated from mvs */ | ||
33 | u32 vstable; /* voltage stabilization time, units 20 us */ | ||
34 | u32 plllock; /* pll lock time, units 1 us */ | ||
35 | u32 exttype; /* extended interface = 1 */ | ||
36 | |||
37 | /* keep track of the current fid / vid or pstate */ | ||
38 | u32 currvid; | ||
39 | u32 currfid; | ||
40 | enum pstate currpstate; | ||
41 | |||
42 | /* the powernow_table includes all frequency and vid/fid pairings: | ||
43 | * fid are the lower 8 bits of the index, vid are the upper 8 bits. | ||
44 | * frequency is in kHz */ | ||
45 | struct cpufreq_frequency_table *powernow_table; | ||
46 | |||
47 | /* the acpi table needs to be kept. it's only available if ACPI was | ||
48 | * used to determine valid frequency/vid/fid states */ | ||
49 | struct acpi_processor_performance acpi_data; | ||
50 | |||
51 | /* we need to keep track of associated cores, but let cpufreq | ||
52 | * handle hotplug events - so just point at cpufreq pol->cpus | ||
53 | * structure */ | ||
54 | struct cpumask *available_cores; | ||
55 | }; | ||
56 | |||
57 | /* processor's cpuid instruction support */ | ||
58 | #define CPUID_PROCESSOR_SIGNATURE 1 /* function 1 */ | ||
59 | #define CPUID_XFAM 0x0ff00000 /* extended family */ | ||
60 | #define CPUID_XFAM_K8 0 | ||
61 | #define CPUID_XMOD 0x000f0000 /* extended model */ | ||
62 | #define CPUID_XMOD_REV_MASK 0x000c0000 | ||
63 | #define CPUID_XFAM_10H 0x00100000 /* family 0x10 */ | ||
64 | #define CPUID_USE_XFAM_XMOD 0x00000f00 | ||
65 | #define CPUID_GET_MAX_CAPABILITIES 0x80000000 | ||
66 | #define CPUID_FREQ_VOLT_CAPABILITIES 0x80000007 | ||
67 | #define P_STATE_TRANSITION_CAPABLE 6 | ||
68 | |||
69 | /* Model Specific Registers for p-state transitions. MSRs are 64-bit. For */ | ||
70 | /* writes (wrmsr - opcode 0f 30), the register number is placed in ecx, and */ | ||
71 | /* the value to write is placed in edx:eax. For reads (rdmsr - opcode 0f 32), */ | ||
72 | /* the register number is placed in ecx, and the data is returned in edx:eax. */ | ||
73 | |||
74 | #define MSR_FIDVID_CTL 0xc0010041 | ||
75 | #define MSR_FIDVID_STATUS 0xc0010042 | ||
76 | |||
77 | /* Field definitions within the FID VID Low Control MSR : */ | ||
78 | #define MSR_C_LO_INIT_FID_VID 0x00010000 | ||
79 | #define MSR_C_LO_NEW_VID 0x00003f00 | ||
80 | #define MSR_C_LO_NEW_FID 0x0000003f | ||
81 | #define MSR_C_LO_VID_SHIFT 8 | ||
82 | |||
83 | /* Field definitions within the FID VID High Control MSR : */ | ||
84 | #define MSR_C_HI_STP_GNT_TO 0x000fffff | ||
85 | |||
86 | /* Field definitions within the FID VID Low Status MSR : */ | ||
87 | #define MSR_S_LO_CHANGE_PENDING 0x80000000 /* cleared when completed */ | ||
88 | #define MSR_S_LO_MAX_RAMP_VID 0x3f000000 | ||
89 | #define MSR_S_LO_MAX_FID 0x003f0000 | ||
90 | #define MSR_S_LO_START_FID 0x00003f00 | ||
91 | #define MSR_S_LO_CURRENT_FID 0x0000003f | ||
92 | |||
93 | /* Field definitions within the FID VID High Status MSR : */ | ||
94 | #define MSR_S_HI_MIN_WORKING_VID 0x3f000000 | ||
95 | #define MSR_S_HI_MAX_WORKING_VID 0x003f0000 | ||
96 | #define MSR_S_HI_START_VID 0x00003f00 | ||
97 | #define MSR_S_HI_CURRENT_VID 0x0000003f | ||
98 | #define MSR_C_HI_STP_GNT_BENIGN 0x00000001 | ||
99 | |||
100 | |||
101 | /* Hardware Pstate _PSS and MSR definitions */ | ||
102 | #define USE_HW_PSTATE 0x00000080 | ||
103 | #define HW_PSTATE_MASK 0x00000007 | ||
104 | #define HW_PSTATE_VALID_MASK 0x80000000 | ||
105 | #define HW_PSTATE_MAX_MASK 0x000000f0 | ||
106 | #define HW_PSTATE_MAX_SHIFT 4 | ||
107 | #define MSR_PSTATE_DEF_BASE 0xc0010064 /* base of Pstate MSRs */ | ||
108 | #define MSR_PSTATE_STATUS 0xc0010063 /* Pstate Status MSR */ | ||
109 | #define MSR_PSTATE_CTRL 0xc0010062 /* Pstate control MSR */ | ||
110 | #define MSR_PSTATE_CUR_LIMIT 0xc0010061 /* pstate current limit MSR */ | ||
111 | |||
112 | /* define the two driver architectures */ | ||
113 | #define CPU_OPTERON 0 | ||
114 | #define CPU_HW_PSTATE 1 | ||
115 | |||
116 | |||
117 | /* | ||
118 | * There are restrictions frequencies have to follow: | ||
119 | * - only 1 entry in the low fid table ( <=1.4GHz ) | ||
120 | * - lowest entry in the high fid table must be >= 2 * the entry in the | ||
121 | * low fid table | ||
122 | * - lowest entry in the high fid table must be a <= 200MHz + 2 * the entry | ||
123 | * in the low fid table | ||
124 | * - the parts can only step at <= 200 MHz intervals, odd fid values are | ||
125 | * supported in revision G and later revisions. | ||
126 | * - lowest frequency must be >= interprocessor hypertransport link speed | ||
127 | * (only applies to MP systems obviously) | ||
128 | */ | ||
129 | |||
130 | /* fids (frequency identifiers) are arranged in 2 tables - lo and hi */ | ||
131 | #define LO_FID_TABLE_TOP 7 /* fid values marking the boundary */ | ||
132 | #define HI_FID_TABLE_BOTTOM 8 /* between the low and high tables */ | ||
133 | |||
134 | #define LO_VCOFREQ_TABLE_TOP 1400 /* corresponding vco frequency values */ | ||
135 | #define HI_VCOFREQ_TABLE_BOTTOM 1600 | ||
136 | |||
137 | #define MIN_FREQ_RESOLUTION 200 /* fids jump by 2 matching freq jumps by 200 */ | ||
138 | |||
139 | #define MAX_FID 0x2a /* Spec only gives FID values as far as 5 GHz */ | ||
140 | #define LEAST_VID 0x3e /* Lowest (numerically highest) useful vid value */ | ||
141 | |||
142 | #define MIN_FREQ 800 /* Min and max freqs, per spec */ | ||
143 | #define MAX_FREQ 5000 | ||
144 | |||
145 | #define INVALID_FID_MASK 0xffffffc0 /* not a valid fid if these bits are set */ | ||
146 | #define INVALID_VID_MASK 0xffffffc0 /* not a valid vid if these bits are set */ | ||
147 | |||
148 | #define VID_OFF 0x3f | ||
149 | |||
150 | #define STOP_GRANT_5NS 1 /* min poss memory access latency for voltage change */ | ||
151 | |||
152 | #define PLL_LOCK_CONVERSION (1000/5) /* ms to ns, then divide by clock period */ | ||
153 | |||
154 | #define MAXIMUM_VID_STEPS 1 /* Current cpus only allow a single step of 25mV */ | ||
155 | #define VST_UNITS_20US 20 /* Voltage Stabilization Time is in units of 20us */ | ||
156 | |||
157 | /* | ||
158 | * Most values of interest are encoded in a single field of the _PSS | ||
159 | * entries: the "control" value. | ||
160 | */ | ||
161 | |||
162 | #define IRT_SHIFT 30 | ||
163 | #define RVO_SHIFT 28 | ||
164 | #define EXT_TYPE_SHIFT 27 | ||
165 | #define PLL_L_SHIFT 20 | ||
166 | #define MVS_SHIFT 18 | ||
167 | #define VST_SHIFT 11 | ||
168 | #define VID_SHIFT 6 | ||
169 | #define IRT_MASK 3 | ||
170 | #define RVO_MASK 3 | ||
171 | #define EXT_TYPE_MASK 1 | ||
172 | #define PLL_L_MASK 0x7f | ||
173 | #define MVS_MASK 3 | ||
174 | #define VST_MASK 0x7f | ||
175 | #define VID_MASK 0x1f | ||
176 | #define FID_MASK 0x1f | ||
177 | #define EXT_VID_MASK 0x3f | ||
178 | #define EXT_FID_MASK 0x3f | ||
179 | |||
180 | |||
181 | /* | ||
182 | * Version 1.4 of the PSB table. This table is constructed by BIOS and is | ||
183 | * to tell the OS's power management driver which VIDs and FIDs are | ||
184 | * supported by this particular processor. | ||
185 | * If the data in the PSB / PST is wrong, then this driver will program the | ||
186 | * wrong values into hardware, which is very likely to lead to a crash. | ||
187 | */ | ||
188 | |||
189 | #define PSB_ID_STRING "AMDK7PNOW!" | ||
190 | #define PSB_ID_STRING_LEN 10 | ||
191 | |||
192 | #define PSB_VERSION_1_4 0x14 | ||
193 | |||
194 | struct psb_s { | ||
195 | u8 signature[10]; | ||
196 | u8 tableversion; | ||
197 | u8 flags1; | ||
198 | u16 vstable; | ||
199 | u8 flags2; | ||
200 | u8 num_tables; | ||
201 | u32 cpuid; | ||
202 | u8 plllocktime; | ||
203 | u8 maxfid; | ||
204 | u8 maxvid; | ||
205 | u8 numps; | ||
206 | }; | ||
207 | |||
208 | /* Pairs of fid/vid values are appended to the version 1.4 PSB table. */ | ||
209 | struct pst_s { | ||
210 | u8 fid; | ||
211 | u8 vid; | ||
212 | }; | ||
213 | |||
214 | static int core_voltage_pre_transition(struct powernow_k8_data *data, | ||
215 | u32 reqvid, u32 regfid); | ||
216 | static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid); | ||
217 | static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid); | ||
218 | |||
219 | static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index); | ||
220 | |||
221 | static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table); | ||
222 | static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/sc520_freq.c b/arch/x86/kernel/cpu/cpufreq/sc520_freq.c deleted file mode 100644 index 1e205e6b1727..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/sc520_freq.c +++ /dev/null | |||
@@ -1,192 +0,0 @@ | |||
1 | /* | ||
2 | * sc520_freq.c: cpufreq driver for the AMD Elan sc520 | ||
3 | * | ||
4 | * Copyright (C) 2005 Sean Young <sean@mess.org> | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public License | ||
8 | * as published by the Free Software Foundation; either version | ||
9 | * 2 of the License, or (at your option) any later version. | ||
10 | * | ||
11 | * Based on elanfreq.c | ||
12 | * | ||
13 | * 2005-03-30: - initial revision | ||
14 | */ | ||
15 | |||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/init.h> | ||
19 | |||
20 | #include <linux/delay.h> | ||
21 | #include <linux/cpufreq.h> | ||
22 | #include <linux/timex.h> | ||
23 | #include <linux/io.h> | ||
24 | |||
25 | #include <asm/msr.h> | ||
26 | |||
27 | #define MMCR_BASE 0xfffef000 /* The default base address */ | ||
28 | #define OFFS_CPUCTL 0x2 /* CPU Control Register */ | ||
29 | |||
30 | static __u8 __iomem *cpuctl; | ||
31 | |||
32 | #define PFX "sc520_freq: " | ||
33 | |||
34 | static struct cpufreq_frequency_table sc520_freq_table[] = { | ||
35 | {0x01, 100000}, | ||
36 | {0x02, 133000}, | ||
37 | {0, CPUFREQ_TABLE_END}, | ||
38 | }; | ||
39 | |||
40 | static unsigned int sc520_freq_get_cpu_frequency(unsigned int cpu) | ||
41 | { | ||
42 | u8 clockspeed_reg = *cpuctl; | ||
43 | |||
44 | switch (clockspeed_reg & 0x03) { | ||
45 | default: | ||
46 | printk(KERN_ERR PFX "error: cpuctl register has unexpected " | ||
47 | "value %02x\n", clockspeed_reg); | ||
48 | case 0x01: | ||
49 | return 100000; | ||
50 | case 0x02: | ||
51 | return 133000; | ||
52 | } | ||
53 | } | ||
54 | |||
55 | static void sc520_freq_set_cpu_state(unsigned int state) | ||
56 | { | ||
57 | |||
58 | struct cpufreq_freqs freqs; | ||
59 | u8 clockspeed_reg; | ||
60 | |||
61 | freqs.old = sc520_freq_get_cpu_frequency(0); | ||
62 | freqs.new = sc520_freq_table[state].frequency; | ||
63 | freqs.cpu = 0; /* AMD Elan is UP */ | ||
64 | |||
65 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
66 | |||
67 | pr_debug("attempting to set frequency to %i kHz\n", | ||
68 | sc520_freq_table[state].frequency); | ||
69 | |||
70 | local_irq_disable(); | ||
71 | |||
72 | clockspeed_reg = *cpuctl & ~0x03; | ||
73 | *cpuctl = clockspeed_reg | sc520_freq_table[state].index; | ||
74 | |||
75 | local_irq_enable(); | ||
76 | |||
77 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
78 | }; | ||
79 | |||
80 | static int sc520_freq_verify(struct cpufreq_policy *policy) | ||
81 | { | ||
82 | return cpufreq_frequency_table_verify(policy, &sc520_freq_table[0]); | ||
83 | } | ||
84 | |||
85 | static int sc520_freq_target(struct cpufreq_policy *policy, | ||
86 | unsigned int target_freq, | ||
87 | unsigned int relation) | ||
88 | { | ||
89 | unsigned int newstate = 0; | ||
90 | |||
91 | if (cpufreq_frequency_table_target(policy, sc520_freq_table, | ||
92 | target_freq, relation, &newstate)) | ||
93 | return -EINVAL; | ||
94 | |||
95 | sc520_freq_set_cpu_state(newstate); | ||
96 | |||
97 | return 0; | ||
98 | } | ||
99 | |||
100 | |||
101 | /* | ||
102 | * Module init and exit code | ||
103 | */ | ||
104 | |||
105 | static int sc520_freq_cpu_init(struct cpufreq_policy *policy) | ||
106 | { | ||
107 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
108 | int result; | ||
109 | |||
110 | /* capability check */ | ||
111 | if (c->x86_vendor != X86_VENDOR_AMD || | ||
112 | c->x86 != 4 || c->x86_model != 9) | ||
113 | return -ENODEV; | ||
114 | |||
115 | /* cpuinfo and default policy values */ | ||
116 | policy->cpuinfo.transition_latency = 1000000; /* 1ms */ | ||
117 | policy->cur = sc520_freq_get_cpu_frequency(0); | ||
118 | |||
119 | result = cpufreq_frequency_table_cpuinfo(policy, sc520_freq_table); | ||
120 | if (result) | ||
121 | return result; | ||
122 | |||
123 | cpufreq_frequency_table_get_attr(sc520_freq_table, policy->cpu); | ||
124 | |||
125 | return 0; | ||
126 | } | ||
127 | |||
128 | |||
129 | static int sc520_freq_cpu_exit(struct cpufreq_policy *policy) | ||
130 | { | ||
131 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
132 | return 0; | ||
133 | } | ||
134 | |||
135 | |||
136 | static struct freq_attr *sc520_freq_attr[] = { | ||
137 | &cpufreq_freq_attr_scaling_available_freqs, | ||
138 | NULL, | ||
139 | }; | ||
140 | |||
141 | |||
142 | static struct cpufreq_driver sc520_freq_driver = { | ||
143 | .get = sc520_freq_get_cpu_frequency, | ||
144 | .verify = sc520_freq_verify, | ||
145 | .target = sc520_freq_target, | ||
146 | .init = sc520_freq_cpu_init, | ||
147 | .exit = sc520_freq_cpu_exit, | ||
148 | .name = "sc520_freq", | ||
149 | .owner = THIS_MODULE, | ||
150 | .attr = sc520_freq_attr, | ||
151 | }; | ||
152 | |||
153 | |||
154 | static int __init sc520_freq_init(void) | ||
155 | { | ||
156 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
157 | int err; | ||
158 | |||
159 | /* Test if we have the right hardware */ | ||
160 | if (c->x86_vendor != X86_VENDOR_AMD || | ||
161 | c->x86 != 4 || c->x86_model != 9) { | ||
162 | pr_debug("no Elan SC520 processor found!\n"); | ||
163 | return -ENODEV; | ||
164 | } | ||
165 | cpuctl = ioremap((unsigned long)(MMCR_BASE + OFFS_CPUCTL), 1); | ||
166 | if (!cpuctl) { | ||
167 | printk(KERN_ERR "sc520_freq: error: failed to remap memory\n"); | ||
168 | return -ENOMEM; | ||
169 | } | ||
170 | |||
171 | err = cpufreq_register_driver(&sc520_freq_driver); | ||
172 | if (err) | ||
173 | iounmap(cpuctl); | ||
174 | |||
175 | return err; | ||
176 | } | ||
177 | |||
178 | |||
179 | static void __exit sc520_freq_exit(void) | ||
180 | { | ||
181 | cpufreq_unregister_driver(&sc520_freq_driver); | ||
182 | iounmap(cpuctl); | ||
183 | } | ||
184 | |||
185 | |||
186 | MODULE_LICENSE("GPL"); | ||
187 | MODULE_AUTHOR("Sean Young <sean@mess.org>"); | ||
188 | MODULE_DESCRIPTION("cpufreq driver for AMD's Elan sc520 CPU"); | ||
189 | |||
190 | module_init(sc520_freq_init); | ||
191 | module_exit(sc520_freq_exit); | ||
192 | |||
diff --git a/arch/x86/kernel/cpu/cpufreq/speedstep-centrino.c b/arch/x86/kernel/cpu/cpufreq/speedstep-centrino.c deleted file mode 100644 index 6ea3455def21..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/speedstep-centrino.c +++ /dev/null | |||
@@ -1,633 +0,0 @@ | |||
1 | /* | ||
2 | * cpufreq driver for Enhanced SpeedStep, as found in Intel's Pentium | ||
3 | * M (part of the Centrino chipset). | ||
4 | * | ||
5 | * Since the original Pentium M, most new Intel CPUs support Enhanced | ||
6 | * SpeedStep. | ||
7 | * | ||
8 | * Despite the "SpeedStep" in the name, this is almost entirely unlike | ||
9 | * traditional SpeedStep. | ||
10 | * | ||
11 | * Modelled on speedstep.c | ||
12 | * | ||
13 | * Copyright (C) 2003 Jeremy Fitzhardinge <jeremy@goop.org> | ||
14 | */ | ||
15 | |||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/cpufreq.h> | ||
20 | #include <linux/sched.h> /* current */ | ||
21 | #include <linux/delay.h> | ||
22 | #include <linux/compiler.h> | ||
23 | #include <linux/gfp.h> | ||
24 | |||
25 | #include <asm/msr.h> | ||
26 | #include <asm/processor.h> | ||
27 | #include <asm/cpufeature.h> | ||
28 | |||
29 | #define PFX "speedstep-centrino: " | ||
30 | #define MAINTAINER "cpufreq@vger.kernel.org" | ||
31 | |||
32 | #define INTEL_MSR_RANGE (0xffff) | ||
33 | |||
34 | struct cpu_id | ||
35 | { | ||
36 | __u8 x86; /* CPU family */ | ||
37 | __u8 x86_model; /* model */ | ||
38 | __u8 x86_mask; /* stepping */ | ||
39 | }; | ||
40 | |||
41 | enum { | ||
42 | CPU_BANIAS, | ||
43 | CPU_DOTHAN_A1, | ||
44 | CPU_DOTHAN_A2, | ||
45 | CPU_DOTHAN_B0, | ||
46 | CPU_MP4HT_D0, | ||
47 | CPU_MP4HT_E0, | ||
48 | }; | ||
49 | |||
50 | static const struct cpu_id cpu_ids[] = { | ||
51 | [CPU_BANIAS] = { 6, 9, 5 }, | ||
52 | [CPU_DOTHAN_A1] = { 6, 13, 1 }, | ||
53 | [CPU_DOTHAN_A2] = { 6, 13, 2 }, | ||
54 | [CPU_DOTHAN_B0] = { 6, 13, 6 }, | ||
55 | [CPU_MP4HT_D0] = {15, 3, 4 }, | ||
56 | [CPU_MP4HT_E0] = {15, 4, 1 }, | ||
57 | }; | ||
58 | #define N_IDS ARRAY_SIZE(cpu_ids) | ||
59 | |||
60 | struct cpu_model | ||
61 | { | ||
62 | const struct cpu_id *cpu_id; | ||
63 | const char *model_name; | ||
64 | unsigned max_freq; /* max clock in kHz */ | ||
65 | |||
66 | struct cpufreq_frequency_table *op_points; /* clock/voltage pairs */ | ||
67 | }; | ||
68 | static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, | ||
69 | const struct cpu_id *x); | ||
70 | |||
71 | /* Operating points for current CPU */ | ||
72 | static DEFINE_PER_CPU(struct cpu_model *, centrino_model); | ||
73 | static DEFINE_PER_CPU(const struct cpu_id *, centrino_cpu); | ||
74 | |||
75 | static struct cpufreq_driver centrino_driver; | ||
76 | |||
77 | #ifdef CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE | ||
78 | |||
79 | /* Computes the correct form for IA32_PERF_CTL MSR for a particular | ||
80 | frequency/voltage operating point; frequency in MHz, volts in mV. | ||
81 | This is stored as "index" in the structure. */ | ||
82 | #define OP(mhz, mv) \ | ||
83 | { \ | ||
84 | .frequency = (mhz) * 1000, \ | ||
85 | .index = (((mhz)/100) << 8) | ((mv - 700) / 16) \ | ||
86 | } | ||
87 | |||
88 | /* | ||
89 | * These voltage tables were derived from the Intel Pentium M | ||
90 | * datasheet, document 25261202.pdf, Table 5. I have verified they | ||
91 | * are consistent with my IBM ThinkPad X31, which has a 1.3GHz Pentium | ||
92 | * M. | ||
93 | */ | ||
94 | |||
95 | /* Ultra Low Voltage Intel Pentium M processor 900MHz (Banias) */ | ||
96 | static struct cpufreq_frequency_table banias_900[] = | ||
97 | { | ||
98 | OP(600, 844), | ||
99 | OP(800, 988), | ||
100 | OP(900, 1004), | ||
101 | { .frequency = CPUFREQ_TABLE_END } | ||
102 | }; | ||
103 | |||
104 | /* Ultra Low Voltage Intel Pentium M processor 1000MHz (Banias) */ | ||
105 | static struct cpufreq_frequency_table banias_1000[] = | ||
106 | { | ||
107 | OP(600, 844), | ||
108 | OP(800, 972), | ||
109 | OP(900, 988), | ||
110 | OP(1000, 1004), | ||
111 | { .frequency = CPUFREQ_TABLE_END } | ||
112 | }; | ||
113 | |||
114 | /* Low Voltage Intel Pentium M processor 1.10GHz (Banias) */ | ||
115 | static struct cpufreq_frequency_table banias_1100[] = | ||
116 | { | ||
117 | OP( 600, 956), | ||
118 | OP( 800, 1020), | ||
119 | OP( 900, 1100), | ||
120 | OP(1000, 1164), | ||
121 | OP(1100, 1180), | ||
122 | { .frequency = CPUFREQ_TABLE_END } | ||
123 | }; | ||
124 | |||
125 | |||
126 | /* Low Voltage Intel Pentium M processor 1.20GHz (Banias) */ | ||
127 | static struct cpufreq_frequency_table banias_1200[] = | ||
128 | { | ||
129 | OP( 600, 956), | ||
130 | OP( 800, 1004), | ||
131 | OP( 900, 1020), | ||
132 | OP(1000, 1100), | ||
133 | OP(1100, 1164), | ||
134 | OP(1200, 1180), | ||
135 | { .frequency = CPUFREQ_TABLE_END } | ||
136 | }; | ||
137 | |||
138 | /* Intel Pentium M processor 1.30GHz (Banias) */ | ||
139 | static struct cpufreq_frequency_table banias_1300[] = | ||
140 | { | ||
141 | OP( 600, 956), | ||
142 | OP( 800, 1260), | ||
143 | OP(1000, 1292), | ||
144 | OP(1200, 1356), | ||
145 | OP(1300, 1388), | ||
146 | { .frequency = CPUFREQ_TABLE_END } | ||
147 | }; | ||
148 | |||
149 | /* Intel Pentium M processor 1.40GHz (Banias) */ | ||
150 | static struct cpufreq_frequency_table banias_1400[] = | ||
151 | { | ||
152 | OP( 600, 956), | ||
153 | OP( 800, 1180), | ||
154 | OP(1000, 1308), | ||
155 | OP(1200, 1436), | ||
156 | OP(1400, 1484), | ||
157 | { .frequency = CPUFREQ_TABLE_END } | ||
158 | }; | ||
159 | |||
160 | /* Intel Pentium M processor 1.50GHz (Banias) */ | ||
161 | static struct cpufreq_frequency_table banias_1500[] = | ||
162 | { | ||
163 | OP( 600, 956), | ||
164 | OP( 800, 1116), | ||
165 | OP(1000, 1228), | ||
166 | OP(1200, 1356), | ||
167 | OP(1400, 1452), | ||
168 | OP(1500, 1484), | ||
169 | { .frequency = CPUFREQ_TABLE_END } | ||
170 | }; | ||
171 | |||
172 | /* Intel Pentium M processor 1.60GHz (Banias) */ | ||
173 | static struct cpufreq_frequency_table banias_1600[] = | ||
174 | { | ||
175 | OP( 600, 956), | ||
176 | OP( 800, 1036), | ||
177 | OP(1000, 1164), | ||
178 | OP(1200, 1276), | ||
179 | OP(1400, 1420), | ||
180 | OP(1600, 1484), | ||
181 | { .frequency = CPUFREQ_TABLE_END } | ||
182 | }; | ||
183 | |||
184 | /* Intel Pentium M processor 1.70GHz (Banias) */ | ||
185 | static struct cpufreq_frequency_table banias_1700[] = | ||
186 | { | ||
187 | OP( 600, 956), | ||
188 | OP( 800, 1004), | ||
189 | OP(1000, 1116), | ||
190 | OP(1200, 1228), | ||
191 | OP(1400, 1308), | ||
192 | OP(1700, 1484), | ||
193 | { .frequency = CPUFREQ_TABLE_END } | ||
194 | }; | ||
195 | #undef OP | ||
196 | |||
197 | #define _BANIAS(cpuid, max, name) \ | ||
198 | { .cpu_id = cpuid, \ | ||
199 | .model_name = "Intel(R) Pentium(R) M processor " name "MHz", \ | ||
200 | .max_freq = (max)*1000, \ | ||
201 | .op_points = banias_##max, \ | ||
202 | } | ||
203 | #define BANIAS(max) _BANIAS(&cpu_ids[CPU_BANIAS], max, #max) | ||
204 | |||
205 | /* CPU models, their operating frequency range, and freq/voltage | ||
206 | operating points */ | ||
207 | static struct cpu_model models[] = | ||
208 | { | ||
209 | _BANIAS(&cpu_ids[CPU_BANIAS], 900, " 900"), | ||
210 | BANIAS(1000), | ||
211 | BANIAS(1100), | ||
212 | BANIAS(1200), | ||
213 | BANIAS(1300), | ||
214 | BANIAS(1400), | ||
215 | BANIAS(1500), | ||
216 | BANIAS(1600), | ||
217 | BANIAS(1700), | ||
218 | |||
219 | /* NULL model_name is a wildcard */ | ||
220 | { &cpu_ids[CPU_DOTHAN_A1], NULL, 0, NULL }, | ||
221 | { &cpu_ids[CPU_DOTHAN_A2], NULL, 0, NULL }, | ||
222 | { &cpu_ids[CPU_DOTHAN_B0], NULL, 0, NULL }, | ||
223 | { &cpu_ids[CPU_MP4HT_D0], NULL, 0, NULL }, | ||
224 | { &cpu_ids[CPU_MP4HT_E0], NULL, 0, NULL }, | ||
225 | |||
226 | { NULL, } | ||
227 | }; | ||
228 | #undef _BANIAS | ||
229 | #undef BANIAS | ||
230 | |||
231 | static int centrino_cpu_init_table(struct cpufreq_policy *policy) | ||
232 | { | ||
233 | struct cpuinfo_x86 *cpu = &cpu_data(policy->cpu); | ||
234 | struct cpu_model *model; | ||
235 | |||
236 | for(model = models; model->cpu_id != NULL; model++) | ||
237 | if (centrino_verify_cpu_id(cpu, model->cpu_id) && | ||
238 | (model->model_name == NULL || | ||
239 | strcmp(cpu->x86_model_id, model->model_name) == 0)) | ||
240 | break; | ||
241 | |||
242 | if (model->cpu_id == NULL) { | ||
243 | /* No match at all */ | ||
244 | pr_debug("no support for CPU model \"%s\": " | ||
245 | "send /proc/cpuinfo to " MAINTAINER "\n", | ||
246 | cpu->x86_model_id); | ||
247 | return -ENOENT; | ||
248 | } | ||
249 | |||
250 | if (model->op_points == NULL) { | ||
251 | /* Matched a non-match */ | ||
252 | pr_debug("no table support for CPU model \"%s\"\n", | ||
253 | cpu->x86_model_id); | ||
254 | pr_debug("try using the acpi-cpufreq driver\n"); | ||
255 | return -ENOENT; | ||
256 | } | ||
257 | |||
258 | per_cpu(centrino_model, policy->cpu) = model; | ||
259 | |||
260 | pr_debug("found \"%s\": max frequency: %dkHz\n", | ||
261 | model->model_name, model->max_freq); | ||
262 | |||
263 | return 0; | ||
264 | } | ||
265 | |||
266 | #else | ||
267 | static inline int centrino_cpu_init_table(struct cpufreq_policy *policy) | ||
268 | { | ||
269 | return -ENODEV; | ||
270 | } | ||
271 | #endif /* CONFIG_X86_SPEEDSTEP_CENTRINO_TABLE */ | ||
272 | |||
273 | static int centrino_verify_cpu_id(const struct cpuinfo_x86 *c, | ||
274 | const struct cpu_id *x) | ||
275 | { | ||
276 | if ((c->x86 == x->x86) && | ||
277 | (c->x86_model == x->x86_model) && | ||
278 | (c->x86_mask == x->x86_mask)) | ||
279 | return 1; | ||
280 | return 0; | ||
281 | } | ||
282 | |||
283 | /* To be called only after centrino_model is initialized */ | ||
284 | static unsigned extract_clock(unsigned msr, unsigned int cpu, int failsafe) | ||
285 | { | ||
286 | int i; | ||
287 | |||
288 | /* | ||
289 | * Extract clock in kHz from PERF_CTL value | ||
290 | * for centrino, as some DSDTs are buggy. | ||
291 | * Ideally, this can be done using the acpi_data structure. | ||
292 | */ | ||
293 | if ((per_cpu(centrino_cpu, cpu) == &cpu_ids[CPU_BANIAS]) || | ||
294 | (per_cpu(centrino_cpu, cpu) == &cpu_ids[CPU_DOTHAN_A1]) || | ||
295 | (per_cpu(centrino_cpu, cpu) == &cpu_ids[CPU_DOTHAN_B0])) { | ||
296 | msr = (msr >> 8) & 0xff; | ||
297 | return msr * 100000; | ||
298 | } | ||
299 | |||
300 | if ((!per_cpu(centrino_model, cpu)) || | ||
301 | (!per_cpu(centrino_model, cpu)->op_points)) | ||
302 | return 0; | ||
303 | |||
304 | msr &= 0xffff; | ||
305 | for (i = 0; | ||
306 | per_cpu(centrino_model, cpu)->op_points[i].frequency | ||
307 | != CPUFREQ_TABLE_END; | ||
308 | i++) { | ||
309 | if (msr == per_cpu(centrino_model, cpu)->op_points[i].index) | ||
310 | return per_cpu(centrino_model, cpu)-> | ||
311 | op_points[i].frequency; | ||
312 | } | ||
313 | if (failsafe) | ||
314 | return per_cpu(centrino_model, cpu)->op_points[i-1].frequency; | ||
315 | else | ||
316 | return 0; | ||
317 | } | ||
318 | |||
319 | /* Return the current CPU frequency in kHz */ | ||
320 | static unsigned int get_cur_freq(unsigned int cpu) | ||
321 | { | ||
322 | unsigned l, h; | ||
323 | unsigned clock_freq; | ||
324 | |||
325 | rdmsr_on_cpu(cpu, MSR_IA32_PERF_STATUS, &l, &h); | ||
326 | clock_freq = extract_clock(l, cpu, 0); | ||
327 | |||
328 | if (unlikely(clock_freq == 0)) { | ||
329 | /* | ||
330 | * On some CPUs, we can see transient MSR values (which are | ||
331 | * not present in _PSS), while CPU is doing some automatic | ||
332 | * P-state transition (like TM2). Get the last freq set | ||
333 | * in PERF_CTL. | ||
334 | */ | ||
335 | rdmsr_on_cpu(cpu, MSR_IA32_PERF_CTL, &l, &h); | ||
336 | clock_freq = extract_clock(l, cpu, 1); | ||
337 | } | ||
338 | return clock_freq; | ||
339 | } | ||
340 | |||
341 | |||
342 | static int centrino_cpu_init(struct cpufreq_policy *policy) | ||
343 | { | ||
344 | struct cpuinfo_x86 *cpu = &cpu_data(policy->cpu); | ||
345 | unsigned freq; | ||
346 | unsigned l, h; | ||
347 | int ret; | ||
348 | int i; | ||
349 | |||
350 | /* Only Intel makes Enhanced Speedstep-capable CPUs */ | ||
351 | if (cpu->x86_vendor != X86_VENDOR_INTEL || | ||
352 | !cpu_has(cpu, X86_FEATURE_EST)) | ||
353 | return -ENODEV; | ||
354 | |||
355 | if (cpu_has(cpu, X86_FEATURE_CONSTANT_TSC)) | ||
356 | centrino_driver.flags |= CPUFREQ_CONST_LOOPS; | ||
357 | |||
358 | if (policy->cpu != 0) | ||
359 | return -ENODEV; | ||
360 | |||
361 | for (i = 0; i < N_IDS; i++) | ||
362 | if (centrino_verify_cpu_id(cpu, &cpu_ids[i])) | ||
363 | break; | ||
364 | |||
365 | if (i != N_IDS) | ||
366 | per_cpu(centrino_cpu, policy->cpu) = &cpu_ids[i]; | ||
367 | |||
368 | if (!per_cpu(centrino_cpu, policy->cpu)) { | ||
369 | pr_debug("found unsupported CPU with " | ||
370 | "Enhanced SpeedStep: send /proc/cpuinfo to " | ||
371 | MAINTAINER "\n"); | ||
372 | return -ENODEV; | ||
373 | } | ||
374 | |||
375 | if (centrino_cpu_init_table(policy)) { | ||
376 | return -ENODEV; | ||
377 | } | ||
378 | |||
379 | /* Check to see if Enhanced SpeedStep is enabled, and try to | ||
380 | enable it if not. */ | ||
381 | rdmsr(MSR_IA32_MISC_ENABLE, l, h); | ||
382 | |||
383 | if (!(l & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) { | ||
384 | l |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP; | ||
385 | pr_debug("trying to enable Enhanced SpeedStep (%x)\n", l); | ||
386 | wrmsr(MSR_IA32_MISC_ENABLE, l, h); | ||
387 | |||
388 | /* check to see if it stuck */ | ||
389 | rdmsr(MSR_IA32_MISC_ENABLE, l, h); | ||
390 | if (!(l & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) { | ||
391 | printk(KERN_INFO PFX | ||
392 | "couldn't enable Enhanced SpeedStep\n"); | ||
393 | return -ENODEV; | ||
394 | } | ||
395 | } | ||
396 | |||
397 | freq = get_cur_freq(policy->cpu); | ||
398 | policy->cpuinfo.transition_latency = 10000; | ||
399 | /* 10uS transition latency */ | ||
400 | policy->cur = freq; | ||
401 | |||
402 | pr_debug("centrino_cpu_init: cur=%dkHz\n", policy->cur); | ||
403 | |||
404 | ret = cpufreq_frequency_table_cpuinfo(policy, | ||
405 | per_cpu(centrino_model, policy->cpu)->op_points); | ||
406 | if (ret) | ||
407 | return (ret); | ||
408 | |||
409 | cpufreq_frequency_table_get_attr( | ||
410 | per_cpu(centrino_model, policy->cpu)->op_points, policy->cpu); | ||
411 | |||
412 | return 0; | ||
413 | } | ||
414 | |||
415 | static int centrino_cpu_exit(struct cpufreq_policy *policy) | ||
416 | { | ||
417 | unsigned int cpu = policy->cpu; | ||
418 | |||
419 | if (!per_cpu(centrino_model, cpu)) | ||
420 | return -ENODEV; | ||
421 | |||
422 | cpufreq_frequency_table_put_attr(cpu); | ||
423 | |||
424 | per_cpu(centrino_model, cpu) = NULL; | ||
425 | |||
426 | return 0; | ||
427 | } | ||
428 | |||
429 | /** | ||
430 | * centrino_verify - verifies a new CPUFreq policy | ||
431 | * @policy: new policy | ||
432 | * | ||
433 | * Limit must be within this model's frequency range at least one | ||
434 | * border included. | ||
435 | */ | ||
436 | static int centrino_verify (struct cpufreq_policy *policy) | ||
437 | { | ||
438 | return cpufreq_frequency_table_verify(policy, | ||
439 | per_cpu(centrino_model, policy->cpu)->op_points); | ||
440 | } | ||
441 | |||
442 | /** | ||
443 | * centrino_setpolicy - set a new CPUFreq policy | ||
444 | * @policy: new policy | ||
445 | * @target_freq: the target frequency | ||
446 | * @relation: how that frequency relates to achieved frequency | ||
447 | * (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H) | ||
448 | * | ||
449 | * Sets a new CPUFreq policy. | ||
450 | */ | ||
451 | static int centrino_target (struct cpufreq_policy *policy, | ||
452 | unsigned int target_freq, | ||
453 | unsigned int relation) | ||
454 | { | ||
455 | unsigned int newstate = 0; | ||
456 | unsigned int msr, oldmsr = 0, h = 0, cpu = policy->cpu; | ||
457 | struct cpufreq_freqs freqs; | ||
458 | int retval = 0; | ||
459 | unsigned int j, k, first_cpu, tmp; | ||
460 | cpumask_var_t covered_cpus; | ||
461 | |||
462 | if (unlikely(!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))) | ||
463 | return -ENOMEM; | ||
464 | |||
465 | if (unlikely(per_cpu(centrino_model, cpu) == NULL)) { | ||
466 | retval = -ENODEV; | ||
467 | goto out; | ||
468 | } | ||
469 | |||
470 | if (unlikely(cpufreq_frequency_table_target(policy, | ||
471 | per_cpu(centrino_model, cpu)->op_points, | ||
472 | target_freq, | ||
473 | relation, | ||
474 | &newstate))) { | ||
475 | retval = -EINVAL; | ||
476 | goto out; | ||
477 | } | ||
478 | |||
479 | first_cpu = 1; | ||
480 | for_each_cpu(j, policy->cpus) { | ||
481 | int good_cpu; | ||
482 | |||
483 | /* cpufreq holds the hotplug lock, so we are safe here */ | ||
484 | if (!cpu_online(j)) | ||
485 | continue; | ||
486 | |||
487 | /* | ||
488 | * Support for SMP systems. | ||
489 | * Make sure we are running on CPU that wants to change freq | ||
490 | */ | ||
491 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) | ||
492 | good_cpu = cpumask_any_and(policy->cpus, | ||
493 | cpu_online_mask); | ||
494 | else | ||
495 | good_cpu = j; | ||
496 | |||
497 | if (good_cpu >= nr_cpu_ids) { | ||
498 | pr_debug("couldn't limit to CPUs in this domain\n"); | ||
499 | retval = -EAGAIN; | ||
500 | if (first_cpu) { | ||
501 | /* We haven't started the transition yet. */ | ||
502 | goto out; | ||
503 | } | ||
504 | break; | ||
505 | } | ||
506 | |||
507 | msr = per_cpu(centrino_model, cpu)->op_points[newstate].index; | ||
508 | |||
509 | if (first_cpu) { | ||
510 | rdmsr_on_cpu(good_cpu, MSR_IA32_PERF_CTL, &oldmsr, &h); | ||
511 | if (msr == (oldmsr & 0xffff)) { | ||
512 | pr_debug("no change needed - msr was and needs " | ||
513 | "to be %x\n", oldmsr); | ||
514 | retval = 0; | ||
515 | goto out; | ||
516 | } | ||
517 | |||
518 | freqs.old = extract_clock(oldmsr, cpu, 0); | ||
519 | freqs.new = extract_clock(msr, cpu, 0); | ||
520 | |||
521 | pr_debug("target=%dkHz old=%d new=%d msr=%04x\n", | ||
522 | target_freq, freqs.old, freqs.new, msr); | ||
523 | |||
524 | for_each_cpu(k, policy->cpus) { | ||
525 | if (!cpu_online(k)) | ||
526 | continue; | ||
527 | freqs.cpu = k; | ||
528 | cpufreq_notify_transition(&freqs, | ||
529 | CPUFREQ_PRECHANGE); | ||
530 | } | ||
531 | |||
532 | first_cpu = 0; | ||
533 | /* all but 16 LSB are reserved, treat them with care */ | ||
534 | oldmsr &= ~0xffff; | ||
535 | msr &= 0xffff; | ||
536 | oldmsr |= msr; | ||
537 | } | ||
538 | |||
539 | wrmsr_on_cpu(good_cpu, MSR_IA32_PERF_CTL, oldmsr, h); | ||
540 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) | ||
541 | break; | ||
542 | |||
543 | cpumask_set_cpu(j, covered_cpus); | ||
544 | } | ||
545 | |||
546 | for_each_cpu(k, policy->cpus) { | ||
547 | if (!cpu_online(k)) | ||
548 | continue; | ||
549 | freqs.cpu = k; | ||
550 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
551 | } | ||
552 | |||
553 | if (unlikely(retval)) { | ||
554 | /* | ||
555 | * We have failed halfway through the frequency change. | ||
556 | * We have sent callbacks to policy->cpus and | ||
557 | * MSRs have already been written on coverd_cpus. | ||
558 | * Best effort undo.. | ||
559 | */ | ||
560 | |||
561 | for_each_cpu(j, covered_cpus) | ||
562 | wrmsr_on_cpu(j, MSR_IA32_PERF_CTL, oldmsr, h); | ||
563 | |||
564 | tmp = freqs.new; | ||
565 | freqs.new = freqs.old; | ||
566 | freqs.old = tmp; | ||
567 | for_each_cpu(j, policy->cpus) { | ||
568 | if (!cpu_online(j)) | ||
569 | continue; | ||
570 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
571 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
572 | } | ||
573 | } | ||
574 | retval = 0; | ||
575 | |||
576 | out: | ||
577 | free_cpumask_var(covered_cpus); | ||
578 | return retval; | ||
579 | } | ||
580 | |||
581 | static struct freq_attr* centrino_attr[] = { | ||
582 | &cpufreq_freq_attr_scaling_available_freqs, | ||
583 | NULL, | ||
584 | }; | ||
585 | |||
586 | static struct cpufreq_driver centrino_driver = { | ||
587 | .name = "centrino", /* should be speedstep-centrino, | ||
588 | but there's a 16 char limit */ | ||
589 | .init = centrino_cpu_init, | ||
590 | .exit = centrino_cpu_exit, | ||
591 | .verify = centrino_verify, | ||
592 | .target = centrino_target, | ||
593 | .get = get_cur_freq, | ||
594 | .attr = centrino_attr, | ||
595 | .owner = THIS_MODULE, | ||
596 | }; | ||
597 | |||
598 | |||
599 | /** | ||
600 | * centrino_init - initializes the Enhanced SpeedStep CPUFreq driver | ||
601 | * | ||
602 | * Initializes the Enhanced SpeedStep support. Returns -ENODEV on | ||
603 | * unsupported devices, -ENOENT if there's no voltage table for this | ||
604 | * particular CPU model, -EINVAL on problems during initiatization, | ||
605 | * and zero on success. | ||
606 | * | ||
607 | * This is quite picky. Not only does the CPU have to advertise the | ||
608 | * "est" flag in the cpuid capability flags, we look for a specific | ||
609 | * CPU model and stepping, and we need to have the exact model name in | ||
610 | * our voltage tables. That is, be paranoid about not releasing | ||
611 | * someone's valuable magic smoke. | ||
612 | */ | ||
613 | static int __init centrino_init(void) | ||
614 | { | ||
615 | struct cpuinfo_x86 *cpu = &cpu_data(0); | ||
616 | |||
617 | if (!cpu_has(cpu, X86_FEATURE_EST)) | ||
618 | return -ENODEV; | ||
619 | |||
620 | return cpufreq_register_driver(¢rino_driver); | ||
621 | } | ||
622 | |||
623 | static void __exit centrino_exit(void) | ||
624 | { | ||
625 | cpufreq_unregister_driver(¢rino_driver); | ||
626 | } | ||
627 | |||
628 | MODULE_AUTHOR ("Jeremy Fitzhardinge <jeremy@goop.org>"); | ||
629 | MODULE_DESCRIPTION ("Enhanced SpeedStep driver for Intel Pentium M processors."); | ||
630 | MODULE_LICENSE ("GPL"); | ||
631 | |||
632 | late_initcall(centrino_init); | ||
633 | module_exit(centrino_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/speedstep-ich.c b/arch/x86/kernel/cpu/cpufreq/speedstep-ich.c deleted file mode 100644 index a748ce782fee..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/speedstep-ich.c +++ /dev/null | |||
@@ -1,448 +0,0 @@ | |||
1 | /* | ||
2 | * (C) 2001 Dave Jones, Arjan van de ven. | ||
3 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
4 | * | ||
5 | * Licensed under the terms of the GNU GPL License version 2. | ||
6 | * Based upon reverse engineered information, and on Intel documentation | ||
7 | * for chipsets ICH2-M and ICH3-M. | ||
8 | * | ||
9 | * Many thanks to Ducrot Bruno for finding and fixing the last | ||
10 | * "missing link" for ICH2-M/ICH3-M support, and to Thomas Winkler | ||
11 | * for extensive testing. | ||
12 | * | ||
13 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
14 | */ | ||
15 | |||
16 | |||
17 | /********************************************************************* | ||
18 | * SPEEDSTEP - DEFINITIONS * | ||
19 | *********************************************************************/ | ||
20 | |||
21 | #include <linux/kernel.h> | ||
22 | #include <linux/module.h> | ||
23 | #include <linux/init.h> | ||
24 | #include <linux/cpufreq.h> | ||
25 | #include <linux/pci.h> | ||
26 | #include <linux/sched.h> | ||
27 | |||
28 | #include "speedstep-lib.h" | ||
29 | |||
30 | |||
31 | /* speedstep_chipset: | ||
32 | * It is necessary to know which chipset is used. As accesses to | ||
33 | * this device occur at various places in this module, we need a | ||
34 | * static struct pci_dev * pointing to that device. | ||
35 | */ | ||
36 | static struct pci_dev *speedstep_chipset_dev; | ||
37 | |||
38 | |||
39 | /* speedstep_processor | ||
40 | */ | ||
41 | static enum speedstep_processor speedstep_processor; | ||
42 | |||
43 | static u32 pmbase; | ||
44 | |||
45 | /* | ||
46 | * There are only two frequency states for each processor. Values | ||
47 | * are in kHz for the time being. | ||
48 | */ | ||
49 | static struct cpufreq_frequency_table speedstep_freqs[] = { | ||
50 | {SPEEDSTEP_HIGH, 0}, | ||
51 | {SPEEDSTEP_LOW, 0}, | ||
52 | {0, CPUFREQ_TABLE_END}, | ||
53 | }; | ||
54 | |||
55 | |||
56 | /** | ||
57 | * speedstep_find_register - read the PMBASE address | ||
58 | * | ||
59 | * Returns: -ENODEV if no register could be found | ||
60 | */ | ||
61 | static int speedstep_find_register(void) | ||
62 | { | ||
63 | if (!speedstep_chipset_dev) | ||
64 | return -ENODEV; | ||
65 | |||
66 | /* get PMBASE */ | ||
67 | pci_read_config_dword(speedstep_chipset_dev, 0x40, &pmbase); | ||
68 | if (!(pmbase & 0x01)) { | ||
69 | printk(KERN_ERR "speedstep-ich: could not find speedstep register\n"); | ||
70 | return -ENODEV; | ||
71 | } | ||
72 | |||
73 | pmbase &= 0xFFFFFFFE; | ||
74 | if (!pmbase) { | ||
75 | printk(KERN_ERR "speedstep-ich: could not find speedstep register\n"); | ||
76 | return -ENODEV; | ||
77 | } | ||
78 | |||
79 | pr_debug("pmbase is 0x%x\n", pmbase); | ||
80 | return 0; | ||
81 | } | ||
82 | |||
83 | /** | ||
84 | * speedstep_set_state - set the SpeedStep state | ||
85 | * @state: new processor frequency state (SPEEDSTEP_LOW or SPEEDSTEP_HIGH) | ||
86 | * | ||
87 | * Tries to change the SpeedStep state. Can be called from | ||
88 | * smp_call_function_single. | ||
89 | */ | ||
90 | static void speedstep_set_state(unsigned int state) | ||
91 | { | ||
92 | u8 pm2_blk; | ||
93 | u8 value; | ||
94 | unsigned long flags; | ||
95 | |||
96 | if (state > 0x1) | ||
97 | return; | ||
98 | |||
99 | /* Disable IRQs */ | ||
100 | local_irq_save(flags); | ||
101 | |||
102 | /* read state */ | ||
103 | value = inb(pmbase + 0x50); | ||
104 | |||
105 | pr_debug("read at pmbase 0x%x + 0x50 returned 0x%x\n", pmbase, value); | ||
106 | |||
107 | /* write new state */ | ||
108 | value &= 0xFE; | ||
109 | value |= state; | ||
110 | |||
111 | pr_debug("writing 0x%x to pmbase 0x%x + 0x50\n", value, pmbase); | ||
112 | |||
113 | /* Disable bus master arbitration */ | ||
114 | pm2_blk = inb(pmbase + 0x20); | ||
115 | pm2_blk |= 0x01; | ||
116 | outb(pm2_blk, (pmbase + 0x20)); | ||
117 | |||
118 | /* Actual transition */ | ||
119 | outb(value, (pmbase + 0x50)); | ||
120 | |||
121 | /* Restore bus master arbitration */ | ||
122 | pm2_blk &= 0xfe; | ||
123 | outb(pm2_blk, (pmbase + 0x20)); | ||
124 | |||
125 | /* check if transition was successful */ | ||
126 | value = inb(pmbase + 0x50); | ||
127 | |||
128 | /* Enable IRQs */ | ||
129 | local_irq_restore(flags); | ||
130 | |||
131 | pr_debug("read at pmbase 0x%x + 0x50 returned 0x%x\n", pmbase, value); | ||
132 | |||
133 | if (state == (value & 0x1)) | ||
134 | pr_debug("change to %u MHz succeeded\n", | ||
135 | speedstep_get_frequency(speedstep_processor) / 1000); | ||
136 | else | ||
137 | printk(KERN_ERR "cpufreq: change failed - I/O error\n"); | ||
138 | |||
139 | return; | ||
140 | } | ||
141 | |||
142 | /* Wrapper for smp_call_function_single. */ | ||
143 | static void _speedstep_set_state(void *_state) | ||
144 | { | ||
145 | speedstep_set_state(*(unsigned int *)_state); | ||
146 | } | ||
147 | |||
148 | /** | ||
149 | * speedstep_activate - activate SpeedStep control in the chipset | ||
150 | * | ||
151 | * Tries to activate the SpeedStep status and control registers. | ||
152 | * Returns -EINVAL on an unsupported chipset, and zero on success. | ||
153 | */ | ||
154 | static int speedstep_activate(void) | ||
155 | { | ||
156 | u16 value = 0; | ||
157 | |||
158 | if (!speedstep_chipset_dev) | ||
159 | return -EINVAL; | ||
160 | |||
161 | pci_read_config_word(speedstep_chipset_dev, 0x00A0, &value); | ||
162 | if (!(value & 0x08)) { | ||
163 | value |= 0x08; | ||
164 | pr_debug("activating SpeedStep (TM) registers\n"); | ||
165 | pci_write_config_word(speedstep_chipset_dev, 0x00A0, value); | ||
166 | } | ||
167 | |||
168 | return 0; | ||
169 | } | ||
170 | |||
171 | |||
172 | /** | ||
173 | * speedstep_detect_chipset - detect the Southbridge which contains SpeedStep logic | ||
174 | * | ||
175 | * Detects ICH2-M, ICH3-M and ICH4-M so far. The pci_dev points to | ||
176 | * the LPC bridge / PM module which contains all power-management | ||
177 | * functions. Returns the SPEEDSTEP_CHIPSET_-number for the detected | ||
178 | * chipset, or zero on failure. | ||
179 | */ | ||
180 | static unsigned int speedstep_detect_chipset(void) | ||
181 | { | ||
182 | speedstep_chipset_dev = pci_get_subsys(PCI_VENDOR_ID_INTEL, | ||
183 | PCI_DEVICE_ID_INTEL_82801DB_12, | ||
184 | PCI_ANY_ID, PCI_ANY_ID, | ||
185 | NULL); | ||
186 | if (speedstep_chipset_dev) | ||
187 | return 4; /* 4-M */ | ||
188 | |||
189 | speedstep_chipset_dev = pci_get_subsys(PCI_VENDOR_ID_INTEL, | ||
190 | PCI_DEVICE_ID_INTEL_82801CA_12, | ||
191 | PCI_ANY_ID, PCI_ANY_ID, | ||
192 | NULL); | ||
193 | if (speedstep_chipset_dev) | ||
194 | return 3; /* 3-M */ | ||
195 | |||
196 | |||
197 | speedstep_chipset_dev = pci_get_subsys(PCI_VENDOR_ID_INTEL, | ||
198 | PCI_DEVICE_ID_INTEL_82801BA_10, | ||
199 | PCI_ANY_ID, PCI_ANY_ID, | ||
200 | NULL); | ||
201 | if (speedstep_chipset_dev) { | ||
202 | /* speedstep.c causes lockups on Dell Inspirons 8000 and | ||
203 | * 8100 which use a pretty old revision of the 82815 | ||
204 | * host brige. Abort on these systems. | ||
205 | */ | ||
206 | static struct pci_dev *hostbridge; | ||
207 | |||
208 | hostbridge = pci_get_subsys(PCI_VENDOR_ID_INTEL, | ||
209 | PCI_DEVICE_ID_INTEL_82815_MC, | ||
210 | PCI_ANY_ID, PCI_ANY_ID, | ||
211 | NULL); | ||
212 | |||
213 | if (!hostbridge) | ||
214 | return 2; /* 2-M */ | ||
215 | |||
216 | if (hostbridge->revision < 5) { | ||
217 | pr_debug("hostbridge does not support speedstep\n"); | ||
218 | speedstep_chipset_dev = NULL; | ||
219 | pci_dev_put(hostbridge); | ||
220 | return 0; | ||
221 | } | ||
222 | |||
223 | pci_dev_put(hostbridge); | ||
224 | return 2; /* 2-M */ | ||
225 | } | ||
226 | |||
227 | return 0; | ||
228 | } | ||
229 | |||
230 | static void get_freq_data(void *_speed) | ||
231 | { | ||
232 | unsigned int *speed = _speed; | ||
233 | |||
234 | *speed = speedstep_get_frequency(speedstep_processor); | ||
235 | } | ||
236 | |||
237 | static unsigned int speedstep_get(unsigned int cpu) | ||
238 | { | ||
239 | unsigned int speed; | ||
240 | |||
241 | /* You're supposed to ensure CPU is online. */ | ||
242 | if (smp_call_function_single(cpu, get_freq_data, &speed, 1) != 0) | ||
243 | BUG(); | ||
244 | |||
245 | pr_debug("detected %u kHz as current frequency\n", speed); | ||
246 | return speed; | ||
247 | } | ||
248 | |||
249 | /** | ||
250 | * speedstep_target - set a new CPUFreq policy | ||
251 | * @policy: new policy | ||
252 | * @target_freq: the target frequency | ||
253 | * @relation: how that frequency relates to achieved frequency | ||
254 | * (CPUFREQ_RELATION_L or CPUFREQ_RELATION_H) | ||
255 | * | ||
256 | * Sets a new CPUFreq policy. | ||
257 | */ | ||
258 | static int speedstep_target(struct cpufreq_policy *policy, | ||
259 | unsigned int target_freq, | ||
260 | unsigned int relation) | ||
261 | { | ||
262 | unsigned int newstate = 0, policy_cpu; | ||
263 | struct cpufreq_freqs freqs; | ||
264 | int i; | ||
265 | |||
266 | if (cpufreq_frequency_table_target(policy, &speedstep_freqs[0], | ||
267 | target_freq, relation, &newstate)) | ||
268 | return -EINVAL; | ||
269 | |||
270 | policy_cpu = cpumask_any_and(policy->cpus, cpu_online_mask); | ||
271 | freqs.old = speedstep_get(policy_cpu); | ||
272 | freqs.new = speedstep_freqs[newstate].frequency; | ||
273 | freqs.cpu = policy->cpu; | ||
274 | |||
275 | pr_debug("transiting from %u to %u kHz\n", freqs.old, freqs.new); | ||
276 | |||
277 | /* no transition necessary */ | ||
278 | if (freqs.old == freqs.new) | ||
279 | return 0; | ||
280 | |||
281 | for_each_cpu(i, policy->cpus) { | ||
282 | freqs.cpu = i; | ||
283 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
284 | } | ||
285 | |||
286 | smp_call_function_single(policy_cpu, _speedstep_set_state, &newstate, | ||
287 | true); | ||
288 | |||
289 | for_each_cpu(i, policy->cpus) { | ||
290 | freqs.cpu = i; | ||
291 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
292 | } | ||
293 | |||
294 | return 0; | ||
295 | } | ||
296 | |||
297 | |||
298 | /** | ||
299 | * speedstep_verify - verifies a new CPUFreq policy | ||
300 | * @policy: new policy | ||
301 | * | ||
302 | * Limit must be within speedstep_low_freq and speedstep_high_freq, with | ||
303 | * at least one border included. | ||
304 | */ | ||
305 | static int speedstep_verify(struct cpufreq_policy *policy) | ||
306 | { | ||
307 | return cpufreq_frequency_table_verify(policy, &speedstep_freqs[0]); | ||
308 | } | ||
309 | |||
310 | struct get_freqs { | ||
311 | struct cpufreq_policy *policy; | ||
312 | int ret; | ||
313 | }; | ||
314 | |||
315 | static void get_freqs_on_cpu(void *_get_freqs) | ||
316 | { | ||
317 | struct get_freqs *get_freqs = _get_freqs; | ||
318 | |||
319 | get_freqs->ret = | ||
320 | speedstep_get_freqs(speedstep_processor, | ||
321 | &speedstep_freqs[SPEEDSTEP_LOW].frequency, | ||
322 | &speedstep_freqs[SPEEDSTEP_HIGH].frequency, | ||
323 | &get_freqs->policy->cpuinfo.transition_latency, | ||
324 | &speedstep_set_state); | ||
325 | } | ||
326 | |||
327 | static int speedstep_cpu_init(struct cpufreq_policy *policy) | ||
328 | { | ||
329 | int result; | ||
330 | unsigned int policy_cpu, speed; | ||
331 | struct get_freqs gf; | ||
332 | |||
333 | /* only run on CPU to be set, or on its sibling */ | ||
334 | #ifdef CONFIG_SMP | ||
335 | cpumask_copy(policy->cpus, cpu_sibling_mask(policy->cpu)); | ||
336 | #endif | ||
337 | policy_cpu = cpumask_any_and(policy->cpus, cpu_online_mask); | ||
338 | |||
339 | /* detect low and high frequency and transition latency */ | ||
340 | gf.policy = policy; | ||
341 | smp_call_function_single(policy_cpu, get_freqs_on_cpu, &gf, 1); | ||
342 | if (gf.ret) | ||
343 | return gf.ret; | ||
344 | |||
345 | /* get current speed setting */ | ||
346 | speed = speedstep_get(policy_cpu); | ||
347 | if (!speed) | ||
348 | return -EIO; | ||
349 | |||
350 | pr_debug("currently at %s speed setting - %i MHz\n", | ||
351 | (speed == speedstep_freqs[SPEEDSTEP_LOW].frequency) | ||
352 | ? "low" : "high", | ||
353 | (speed / 1000)); | ||
354 | |||
355 | /* cpuinfo and default policy values */ | ||
356 | policy->cur = speed; | ||
357 | |||
358 | result = cpufreq_frequency_table_cpuinfo(policy, speedstep_freqs); | ||
359 | if (result) | ||
360 | return result; | ||
361 | |||
362 | cpufreq_frequency_table_get_attr(speedstep_freqs, policy->cpu); | ||
363 | |||
364 | return 0; | ||
365 | } | ||
366 | |||
367 | |||
368 | static int speedstep_cpu_exit(struct cpufreq_policy *policy) | ||
369 | { | ||
370 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
371 | return 0; | ||
372 | } | ||
373 | |||
374 | static struct freq_attr *speedstep_attr[] = { | ||
375 | &cpufreq_freq_attr_scaling_available_freqs, | ||
376 | NULL, | ||
377 | }; | ||
378 | |||
379 | |||
380 | static struct cpufreq_driver speedstep_driver = { | ||
381 | .name = "speedstep-ich", | ||
382 | .verify = speedstep_verify, | ||
383 | .target = speedstep_target, | ||
384 | .init = speedstep_cpu_init, | ||
385 | .exit = speedstep_cpu_exit, | ||
386 | .get = speedstep_get, | ||
387 | .owner = THIS_MODULE, | ||
388 | .attr = speedstep_attr, | ||
389 | }; | ||
390 | |||
391 | |||
392 | /** | ||
393 | * speedstep_init - initializes the SpeedStep CPUFreq driver | ||
394 | * | ||
395 | * Initializes the SpeedStep support. Returns -ENODEV on unsupported | ||
396 | * devices, -EINVAL on problems during initiatization, and zero on | ||
397 | * success. | ||
398 | */ | ||
399 | static int __init speedstep_init(void) | ||
400 | { | ||
401 | /* detect processor */ | ||
402 | speedstep_processor = speedstep_detect_processor(); | ||
403 | if (!speedstep_processor) { | ||
404 | pr_debug("Intel(R) SpeedStep(TM) capable processor " | ||
405 | "not found\n"); | ||
406 | return -ENODEV; | ||
407 | } | ||
408 | |||
409 | /* detect chipset */ | ||
410 | if (!speedstep_detect_chipset()) { | ||
411 | pr_debug("Intel(R) SpeedStep(TM) for this chipset not " | ||
412 | "(yet) available.\n"); | ||
413 | return -ENODEV; | ||
414 | } | ||
415 | |||
416 | /* activate speedstep support */ | ||
417 | if (speedstep_activate()) { | ||
418 | pci_dev_put(speedstep_chipset_dev); | ||
419 | return -EINVAL; | ||
420 | } | ||
421 | |||
422 | if (speedstep_find_register()) | ||
423 | return -ENODEV; | ||
424 | |||
425 | return cpufreq_register_driver(&speedstep_driver); | ||
426 | } | ||
427 | |||
428 | |||
429 | /** | ||
430 | * speedstep_exit - unregisters SpeedStep support | ||
431 | * | ||
432 | * Unregisters SpeedStep support. | ||
433 | */ | ||
434 | static void __exit speedstep_exit(void) | ||
435 | { | ||
436 | pci_dev_put(speedstep_chipset_dev); | ||
437 | cpufreq_unregister_driver(&speedstep_driver); | ||
438 | } | ||
439 | |||
440 | |||
441 | MODULE_AUTHOR("Dave Jones <davej@redhat.com>, " | ||
442 | "Dominik Brodowski <linux@brodo.de>"); | ||
443 | MODULE_DESCRIPTION("Speedstep driver for Intel mobile processors on chipsets " | ||
444 | "with ICH-M southbridges."); | ||
445 | MODULE_LICENSE("GPL"); | ||
446 | |||
447 | module_init(speedstep_init); | ||
448 | module_exit(speedstep_exit); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/speedstep-lib.c b/arch/x86/kernel/cpu/cpufreq/speedstep-lib.c deleted file mode 100644 index 8af2d2fd9d51..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/speedstep-lib.c +++ /dev/null | |||
@@ -1,478 +0,0 @@ | |||
1 | /* | ||
2 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * | ||
6 | * Library for common functions for Intel SpeedStep v.1 and v.2 support | ||
7 | * | ||
8 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
9 | */ | ||
10 | |||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/module.h> | ||
13 | #include <linux/moduleparam.h> | ||
14 | #include <linux/init.h> | ||
15 | #include <linux/cpufreq.h> | ||
16 | |||
17 | #include <asm/msr.h> | ||
18 | #include <asm/tsc.h> | ||
19 | #include "speedstep-lib.h" | ||
20 | |||
21 | #define PFX "speedstep-lib: " | ||
22 | |||
23 | #ifdef CONFIG_X86_SPEEDSTEP_RELAXED_CAP_CHECK | ||
24 | static int relaxed_check; | ||
25 | #else | ||
26 | #define relaxed_check 0 | ||
27 | #endif | ||
28 | |||
29 | /********************************************************************* | ||
30 | * GET PROCESSOR CORE SPEED IN KHZ * | ||
31 | *********************************************************************/ | ||
32 | |||
33 | static unsigned int pentium3_get_frequency(enum speedstep_processor processor) | ||
34 | { | ||
35 | /* See table 14 of p3_ds.pdf and table 22 of 29834003.pdf */ | ||
36 | struct { | ||
37 | unsigned int ratio; /* Frequency Multiplier (x10) */ | ||
38 | u8 bitmap; /* power on configuration bits | ||
39 | [27, 25:22] (in MSR 0x2a) */ | ||
40 | } msr_decode_mult[] = { | ||
41 | { 30, 0x01 }, | ||
42 | { 35, 0x05 }, | ||
43 | { 40, 0x02 }, | ||
44 | { 45, 0x06 }, | ||
45 | { 50, 0x00 }, | ||
46 | { 55, 0x04 }, | ||
47 | { 60, 0x0b }, | ||
48 | { 65, 0x0f }, | ||
49 | { 70, 0x09 }, | ||
50 | { 75, 0x0d }, | ||
51 | { 80, 0x0a }, | ||
52 | { 85, 0x26 }, | ||
53 | { 90, 0x20 }, | ||
54 | { 100, 0x2b }, | ||
55 | { 0, 0xff } /* error or unknown value */ | ||
56 | }; | ||
57 | |||
58 | /* PIII(-M) FSB settings: see table b1-b of 24547206.pdf */ | ||
59 | struct { | ||
60 | unsigned int value; /* Front Side Bus speed in MHz */ | ||
61 | u8 bitmap; /* power on configuration bits [18: 19] | ||
62 | (in MSR 0x2a) */ | ||
63 | } msr_decode_fsb[] = { | ||
64 | { 66, 0x0 }, | ||
65 | { 100, 0x2 }, | ||
66 | { 133, 0x1 }, | ||
67 | { 0, 0xff} | ||
68 | }; | ||
69 | |||
70 | u32 msr_lo, msr_tmp; | ||
71 | int i = 0, j = 0; | ||
72 | |||
73 | /* read MSR 0x2a - we only need the low 32 bits */ | ||
74 | rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp); | ||
75 | pr_debug("P3 - MSR_IA32_EBL_CR_POWERON: 0x%x 0x%x\n", msr_lo, msr_tmp); | ||
76 | msr_tmp = msr_lo; | ||
77 | |||
78 | /* decode the FSB */ | ||
79 | msr_tmp &= 0x00c0000; | ||
80 | msr_tmp >>= 18; | ||
81 | while (msr_tmp != msr_decode_fsb[i].bitmap) { | ||
82 | if (msr_decode_fsb[i].bitmap == 0xff) | ||
83 | return 0; | ||
84 | i++; | ||
85 | } | ||
86 | |||
87 | /* decode the multiplier */ | ||
88 | if (processor == SPEEDSTEP_CPU_PIII_C_EARLY) { | ||
89 | pr_debug("workaround for early PIIIs\n"); | ||
90 | msr_lo &= 0x03c00000; | ||
91 | } else | ||
92 | msr_lo &= 0x0bc00000; | ||
93 | msr_lo >>= 22; | ||
94 | while (msr_lo != msr_decode_mult[j].bitmap) { | ||
95 | if (msr_decode_mult[j].bitmap == 0xff) | ||
96 | return 0; | ||
97 | j++; | ||
98 | } | ||
99 | |||
100 | pr_debug("speed is %u\n", | ||
101 | (msr_decode_mult[j].ratio * msr_decode_fsb[i].value * 100)); | ||
102 | |||
103 | return msr_decode_mult[j].ratio * msr_decode_fsb[i].value * 100; | ||
104 | } | ||
105 | |||
106 | |||
107 | static unsigned int pentiumM_get_frequency(void) | ||
108 | { | ||
109 | u32 msr_lo, msr_tmp; | ||
110 | |||
111 | rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp); | ||
112 | pr_debug("PM - MSR_IA32_EBL_CR_POWERON: 0x%x 0x%x\n", msr_lo, msr_tmp); | ||
113 | |||
114 | /* see table B-2 of 24547212.pdf */ | ||
115 | if (msr_lo & 0x00040000) { | ||
116 | printk(KERN_DEBUG PFX "PM - invalid FSB: 0x%x 0x%x\n", | ||
117 | msr_lo, msr_tmp); | ||
118 | return 0; | ||
119 | } | ||
120 | |||
121 | msr_tmp = (msr_lo >> 22) & 0x1f; | ||
122 | pr_debug("bits 22-26 are 0x%x, speed is %u\n", | ||
123 | msr_tmp, (msr_tmp * 100 * 1000)); | ||
124 | |||
125 | return msr_tmp * 100 * 1000; | ||
126 | } | ||
127 | |||
128 | static unsigned int pentium_core_get_frequency(void) | ||
129 | { | ||
130 | u32 fsb = 0; | ||
131 | u32 msr_lo, msr_tmp; | ||
132 | int ret; | ||
133 | |||
134 | rdmsr(MSR_FSB_FREQ, msr_lo, msr_tmp); | ||
135 | /* see table B-2 of 25366920.pdf */ | ||
136 | switch (msr_lo & 0x07) { | ||
137 | case 5: | ||
138 | fsb = 100000; | ||
139 | break; | ||
140 | case 1: | ||
141 | fsb = 133333; | ||
142 | break; | ||
143 | case 3: | ||
144 | fsb = 166667; | ||
145 | break; | ||
146 | case 2: | ||
147 | fsb = 200000; | ||
148 | break; | ||
149 | case 0: | ||
150 | fsb = 266667; | ||
151 | break; | ||
152 | case 4: | ||
153 | fsb = 333333; | ||
154 | break; | ||
155 | default: | ||
156 | printk(KERN_ERR "PCORE - MSR_FSB_FREQ undefined value"); | ||
157 | } | ||
158 | |||
159 | rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_tmp); | ||
160 | pr_debug("PCORE - MSR_IA32_EBL_CR_POWERON: 0x%x 0x%x\n", | ||
161 | msr_lo, msr_tmp); | ||
162 | |||
163 | msr_tmp = (msr_lo >> 22) & 0x1f; | ||
164 | pr_debug("bits 22-26 are 0x%x, speed is %u\n", | ||
165 | msr_tmp, (msr_tmp * fsb)); | ||
166 | |||
167 | ret = (msr_tmp * fsb); | ||
168 | return ret; | ||
169 | } | ||
170 | |||
171 | |||
172 | static unsigned int pentium4_get_frequency(void) | ||
173 | { | ||
174 | struct cpuinfo_x86 *c = &boot_cpu_data; | ||
175 | u32 msr_lo, msr_hi, mult; | ||
176 | unsigned int fsb = 0; | ||
177 | unsigned int ret; | ||
178 | u8 fsb_code; | ||
179 | |||
180 | /* Pentium 4 Model 0 and 1 do not have the Core Clock Frequency | ||
181 | * to System Bus Frequency Ratio Field in the Processor Frequency | ||
182 | * Configuration Register of the MSR. Therefore the current | ||
183 | * frequency cannot be calculated and has to be measured. | ||
184 | */ | ||
185 | if (c->x86_model < 2) | ||
186 | return cpu_khz; | ||
187 | |||
188 | rdmsr(0x2c, msr_lo, msr_hi); | ||
189 | |||
190 | pr_debug("P4 - MSR_EBC_FREQUENCY_ID: 0x%x 0x%x\n", msr_lo, msr_hi); | ||
191 | |||
192 | /* decode the FSB: see IA-32 Intel (C) Architecture Software | ||
193 | * Developer's Manual, Volume 3: System Prgramming Guide, | ||
194 | * revision #12 in Table B-1: MSRs in the Pentium 4 and | ||
195 | * Intel Xeon Processors, on page B-4 and B-5. | ||
196 | */ | ||
197 | fsb_code = (msr_lo >> 16) & 0x7; | ||
198 | switch (fsb_code) { | ||
199 | case 0: | ||
200 | fsb = 100 * 1000; | ||
201 | break; | ||
202 | case 1: | ||
203 | fsb = 13333 * 10; | ||
204 | break; | ||
205 | case 2: | ||
206 | fsb = 200 * 1000; | ||
207 | break; | ||
208 | } | ||
209 | |||
210 | if (!fsb) | ||
211 | printk(KERN_DEBUG PFX "couldn't detect FSB speed. " | ||
212 | "Please send an e-mail to <linux@brodo.de>\n"); | ||
213 | |||
214 | /* Multiplier. */ | ||
215 | mult = msr_lo >> 24; | ||
216 | |||
217 | pr_debug("P4 - FSB %u kHz; Multiplier %u; Speed %u kHz\n", | ||
218 | fsb, mult, (fsb * mult)); | ||
219 | |||
220 | ret = (fsb * mult); | ||
221 | return ret; | ||
222 | } | ||
223 | |||
224 | |||
225 | /* Warning: may get called from smp_call_function_single. */ | ||
226 | unsigned int speedstep_get_frequency(enum speedstep_processor processor) | ||
227 | { | ||
228 | switch (processor) { | ||
229 | case SPEEDSTEP_CPU_PCORE: | ||
230 | return pentium_core_get_frequency(); | ||
231 | case SPEEDSTEP_CPU_PM: | ||
232 | return pentiumM_get_frequency(); | ||
233 | case SPEEDSTEP_CPU_P4D: | ||
234 | case SPEEDSTEP_CPU_P4M: | ||
235 | return pentium4_get_frequency(); | ||
236 | case SPEEDSTEP_CPU_PIII_T: | ||
237 | case SPEEDSTEP_CPU_PIII_C: | ||
238 | case SPEEDSTEP_CPU_PIII_C_EARLY: | ||
239 | return pentium3_get_frequency(processor); | ||
240 | default: | ||
241 | return 0; | ||
242 | }; | ||
243 | return 0; | ||
244 | } | ||
245 | EXPORT_SYMBOL_GPL(speedstep_get_frequency); | ||
246 | |||
247 | |||
248 | /********************************************************************* | ||
249 | * DETECT SPEEDSTEP-CAPABLE PROCESSOR * | ||
250 | *********************************************************************/ | ||
251 | |||
252 | unsigned int speedstep_detect_processor(void) | ||
253 | { | ||
254 | struct cpuinfo_x86 *c = &cpu_data(0); | ||
255 | u32 ebx, msr_lo, msr_hi; | ||
256 | |||
257 | pr_debug("x86: %x, model: %x\n", c->x86, c->x86_model); | ||
258 | |||
259 | if ((c->x86_vendor != X86_VENDOR_INTEL) || | ||
260 | ((c->x86 != 6) && (c->x86 != 0xF))) | ||
261 | return 0; | ||
262 | |||
263 | if (c->x86 == 0xF) { | ||
264 | /* Intel Mobile Pentium 4-M | ||
265 | * or Intel Mobile Pentium 4 with 533 MHz FSB */ | ||
266 | if (c->x86_model != 2) | ||
267 | return 0; | ||
268 | |||
269 | ebx = cpuid_ebx(0x00000001); | ||
270 | ebx &= 0x000000FF; | ||
271 | |||
272 | pr_debug("ebx value is %x, x86_mask is %x\n", ebx, c->x86_mask); | ||
273 | |||
274 | switch (c->x86_mask) { | ||
275 | case 4: | ||
276 | /* | ||
277 | * B-stepping [M-P4-M] | ||
278 | * sample has ebx = 0x0f, production has 0x0e. | ||
279 | */ | ||
280 | if ((ebx == 0x0e) || (ebx == 0x0f)) | ||
281 | return SPEEDSTEP_CPU_P4M; | ||
282 | break; | ||
283 | case 7: | ||
284 | /* | ||
285 | * C-stepping [M-P4-M] | ||
286 | * needs to have ebx=0x0e, else it's a celeron: | ||
287 | * cf. 25130917.pdf / page 7, footnote 5 even | ||
288 | * though 25072120.pdf / page 7 doesn't say | ||
289 | * samples are only of B-stepping... | ||
290 | */ | ||
291 | if (ebx == 0x0e) | ||
292 | return SPEEDSTEP_CPU_P4M; | ||
293 | break; | ||
294 | case 9: | ||
295 | /* | ||
296 | * D-stepping [M-P4-M or M-P4/533] | ||
297 | * | ||
298 | * this is totally strange: CPUID 0x0F29 is | ||
299 | * used by M-P4-M, M-P4/533 and(!) Celeron CPUs. | ||
300 | * The latter need to be sorted out as they don't | ||
301 | * support speedstep. | ||
302 | * Celerons with CPUID 0x0F29 may have either | ||
303 | * ebx=0x8 or 0xf -- 25130917.pdf doesn't say anything | ||
304 | * specific. | ||
305 | * M-P4-Ms may have either ebx=0xe or 0xf [see above] | ||
306 | * M-P4/533 have either ebx=0xe or 0xf. [25317607.pdf] | ||
307 | * also, M-P4M HTs have ebx=0x8, too | ||
308 | * For now, they are distinguished by the model_id | ||
309 | * string | ||
310 | */ | ||
311 | if ((ebx == 0x0e) || | ||
312 | (strstr(c->x86_model_id, | ||
313 | "Mobile Intel(R) Pentium(R) 4") != NULL)) | ||
314 | return SPEEDSTEP_CPU_P4M; | ||
315 | break; | ||
316 | default: | ||
317 | break; | ||
318 | } | ||
319 | return 0; | ||
320 | } | ||
321 | |||
322 | switch (c->x86_model) { | ||
323 | case 0x0B: /* Intel PIII [Tualatin] */ | ||
324 | /* cpuid_ebx(1) is 0x04 for desktop PIII, | ||
325 | * 0x06 for mobile PIII-M */ | ||
326 | ebx = cpuid_ebx(0x00000001); | ||
327 | pr_debug("ebx is %x\n", ebx); | ||
328 | |||
329 | ebx &= 0x000000FF; | ||
330 | |||
331 | if (ebx != 0x06) | ||
332 | return 0; | ||
333 | |||
334 | /* So far all PIII-M processors support SpeedStep. See | ||
335 | * Intel's 24540640.pdf of June 2003 | ||
336 | */ | ||
337 | return SPEEDSTEP_CPU_PIII_T; | ||
338 | |||
339 | case 0x08: /* Intel PIII [Coppermine] */ | ||
340 | |||
341 | /* all mobile PIII Coppermines have FSB 100 MHz | ||
342 | * ==> sort out a few desktop PIIIs. */ | ||
343 | rdmsr(MSR_IA32_EBL_CR_POWERON, msr_lo, msr_hi); | ||
344 | pr_debug("Coppermine: MSR_IA32_EBL_CR_POWERON is 0x%x, 0x%x\n", | ||
345 | msr_lo, msr_hi); | ||
346 | msr_lo &= 0x00c0000; | ||
347 | if (msr_lo != 0x0080000) | ||
348 | return 0; | ||
349 | |||
350 | /* | ||
351 | * If the processor is a mobile version, | ||
352 | * platform ID has bit 50 set | ||
353 | * it has SpeedStep technology if either | ||
354 | * bit 56 or 57 is set | ||
355 | */ | ||
356 | rdmsr(MSR_IA32_PLATFORM_ID, msr_lo, msr_hi); | ||
357 | pr_debug("Coppermine: MSR_IA32_PLATFORM ID is 0x%x, 0x%x\n", | ||
358 | msr_lo, msr_hi); | ||
359 | if ((msr_hi & (1<<18)) && | ||
360 | (relaxed_check ? 1 : (msr_hi & (3<<24)))) { | ||
361 | if (c->x86_mask == 0x01) { | ||
362 | pr_debug("early PIII version\n"); | ||
363 | return SPEEDSTEP_CPU_PIII_C_EARLY; | ||
364 | } else | ||
365 | return SPEEDSTEP_CPU_PIII_C; | ||
366 | } | ||
367 | |||
368 | default: | ||
369 | return 0; | ||
370 | } | ||
371 | } | ||
372 | EXPORT_SYMBOL_GPL(speedstep_detect_processor); | ||
373 | |||
374 | |||
375 | /********************************************************************* | ||
376 | * DETECT SPEEDSTEP SPEEDS * | ||
377 | *********************************************************************/ | ||
378 | |||
379 | unsigned int speedstep_get_freqs(enum speedstep_processor processor, | ||
380 | unsigned int *low_speed, | ||
381 | unsigned int *high_speed, | ||
382 | unsigned int *transition_latency, | ||
383 | void (*set_state) (unsigned int state)) | ||
384 | { | ||
385 | unsigned int prev_speed; | ||
386 | unsigned int ret = 0; | ||
387 | unsigned long flags; | ||
388 | struct timeval tv1, tv2; | ||
389 | |||
390 | if ((!processor) || (!low_speed) || (!high_speed) || (!set_state)) | ||
391 | return -EINVAL; | ||
392 | |||
393 | pr_debug("trying to determine both speeds\n"); | ||
394 | |||
395 | /* get current speed */ | ||
396 | prev_speed = speedstep_get_frequency(processor); | ||
397 | if (!prev_speed) | ||
398 | return -EIO; | ||
399 | |||
400 | pr_debug("previous speed is %u\n", prev_speed); | ||
401 | |||
402 | local_irq_save(flags); | ||
403 | |||
404 | /* switch to low state */ | ||
405 | set_state(SPEEDSTEP_LOW); | ||
406 | *low_speed = speedstep_get_frequency(processor); | ||
407 | if (!*low_speed) { | ||
408 | ret = -EIO; | ||
409 | goto out; | ||
410 | } | ||
411 | |||
412 | pr_debug("low speed is %u\n", *low_speed); | ||
413 | |||
414 | /* start latency measurement */ | ||
415 | if (transition_latency) | ||
416 | do_gettimeofday(&tv1); | ||
417 | |||
418 | /* switch to high state */ | ||
419 | set_state(SPEEDSTEP_HIGH); | ||
420 | |||
421 | /* end latency measurement */ | ||
422 | if (transition_latency) | ||
423 | do_gettimeofday(&tv2); | ||
424 | |||
425 | *high_speed = speedstep_get_frequency(processor); | ||
426 | if (!*high_speed) { | ||
427 | ret = -EIO; | ||
428 | goto out; | ||
429 | } | ||
430 | |||
431 | pr_debug("high speed is %u\n", *high_speed); | ||
432 | |||
433 | if (*low_speed == *high_speed) { | ||
434 | ret = -ENODEV; | ||
435 | goto out; | ||
436 | } | ||
437 | |||
438 | /* switch to previous state, if necessary */ | ||
439 | if (*high_speed != prev_speed) | ||
440 | set_state(SPEEDSTEP_LOW); | ||
441 | |||
442 | if (transition_latency) { | ||
443 | *transition_latency = (tv2.tv_sec - tv1.tv_sec) * USEC_PER_SEC + | ||
444 | tv2.tv_usec - tv1.tv_usec; | ||
445 | pr_debug("transition latency is %u uSec\n", *transition_latency); | ||
446 | |||
447 | /* convert uSec to nSec and add 20% for safety reasons */ | ||
448 | *transition_latency *= 1200; | ||
449 | |||
450 | /* check if the latency measurement is too high or too low | ||
451 | * and set it to a safe value (500uSec) in that case | ||
452 | */ | ||
453 | if (*transition_latency > 10000000 || | ||
454 | *transition_latency < 50000) { | ||
455 | printk(KERN_WARNING PFX "frequency transition " | ||
456 | "measured seems out of range (%u " | ||
457 | "nSec), falling back to a safe one of" | ||
458 | "%u nSec.\n", | ||
459 | *transition_latency, 500000); | ||
460 | *transition_latency = 500000; | ||
461 | } | ||
462 | } | ||
463 | |||
464 | out: | ||
465 | local_irq_restore(flags); | ||
466 | return ret; | ||
467 | } | ||
468 | EXPORT_SYMBOL_GPL(speedstep_get_freqs); | ||
469 | |||
470 | #ifdef CONFIG_X86_SPEEDSTEP_RELAXED_CAP_CHECK | ||
471 | module_param(relaxed_check, int, 0444); | ||
472 | MODULE_PARM_DESC(relaxed_check, | ||
473 | "Don't do all checks for speedstep capability."); | ||
474 | #endif | ||
475 | |||
476 | MODULE_AUTHOR("Dominik Brodowski <linux@brodo.de>"); | ||
477 | MODULE_DESCRIPTION("Library for Intel SpeedStep 1 or 2 cpufreq drivers."); | ||
478 | MODULE_LICENSE("GPL"); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/speedstep-lib.h b/arch/x86/kernel/cpu/cpufreq/speedstep-lib.h deleted file mode 100644 index 70d9cea1219d..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/speedstep-lib.h +++ /dev/null | |||
@@ -1,49 +0,0 @@ | |||
1 | /* | ||
2 | * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> | ||
3 | * | ||
4 | * Licensed under the terms of the GNU GPL License version 2. | ||
5 | * | ||
6 | * Library for common functions for Intel SpeedStep v.1 and v.2 support | ||
7 | * | ||
8 | * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous* | ||
9 | */ | ||
10 | |||
11 | |||
12 | |||
13 | /* processors */ | ||
14 | enum speedstep_processor { | ||
15 | SPEEDSTEP_CPU_PIII_C_EARLY = 0x00000001, /* Coppermine core */ | ||
16 | SPEEDSTEP_CPU_PIII_C = 0x00000002, /* Coppermine core */ | ||
17 | SPEEDSTEP_CPU_PIII_T = 0x00000003, /* Tualatin core */ | ||
18 | SPEEDSTEP_CPU_P4M = 0x00000004, /* P4-M */ | ||
19 | /* the following processors are not speedstep-capable and are not auto-detected | ||
20 | * in speedstep_detect_processor(). However, their speed can be detected using | ||
21 | * the speedstep_get_frequency() call. */ | ||
22 | SPEEDSTEP_CPU_PM = 0xFFFFFF03, /* Pentium M */ | ||
23 | SPEEDSTEP_CPU_P4D = 0xFFFFFF04, /* desktop P4 */ | ||
24 | SPEEDSTEP_CPU_PCORE = 0xFFFFFF05, /* Core */ | ||
25 | }; | ||
26 | |||
27 | /* speedstep states -- only two of them */ | ||
28 | |||
29 | #define SPEEDSTEP_HIGH 0x00000000 | ||
30 | #define SPEEDSTEP_LOW 0x00000001 | ||
31 | |||
32 | |||
33 | /* detect a speedstep-capable processor */ | ||
34 | extern enum speedstep_processor speedstep_detect_processor(void); | ||
35 | |||
36 | /* detect the current speed (in khz) of the processor */ | ||
37 | extern unsigned int speedstep_get_frequency(enum speedstep_processor processor); | ||
38 | |||
39 | |||
40 | /* detect the low and high speeds of the processor. The callback | ||
41 | * set_state"'s first argument is either SPEEDSTEP_HIGH or | ||
42 | * SPEEDSTEP_LOW; the second argument is zero so that no | ||
43 | * cpufreq_notify_transition calls are initiated. | ||
44 | */ | ||
45 | extern unsigned int speedstep_get_freqs(enum speedstep_processor processor, | ||
46 | unsigned int *low_speed, | ||
47 | unsigned int *high_speed, | ||
48 | unsigned int *transition_latency, | ||
49 | void (*set_state) (unsigned int state)); | ||
diff --git a/arch/x86/kernel/cpu/cpufreq/speedstep-smi.c b/arch/x86/kernel/cpu/cpufreq/speedstep-smi.c deleted file mode 100644 index c76ead3490bf..000000000000 --- a/arch/x86/kernel/cpu/cpufreq/speedstep-smi.c +++ /dev/null | |||
@@ -1,464 +0,0 @@ | |||
1 | /* | ||
2 | * Intel SpeedStep SMI driver. | ||
3 | * | ||
4 | * (C) 2003 Hiroshi Miura <miura@da-cha.org> | ||
5 | * | ||
6 | * Licensed under the terms of the GNU GPL License version 2. | ||
7 | * | ||
8 | */ | ||
9 | |||
10 | |||
11 | /********************************************************************* | ||
12 | * SPEEDSTEP - DEFINITIONS * | ||
13 | *********************************************************************/ | ||
14 | |||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/moduleparam.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/cpufreq.h> | ||
20 | #include <linux/delay.h> | ||
21 | #include <linux/io.h> | ||
22 | #include <asm/ist.h> | ||
23 | |||
24 | #include "speedstep-lib.h" | ||
25 | |||
26 | /* speedstep system management interface port/command. | ||
27 | * | ||
28 | * These parameters are got from IST-SMI BIOS call. | ||
29 | * If user gives it, these are used. | ||
30 | * | ||
31 | */ | ||
32 | static int smi_port; | ||
33 | static int smi_cmd; | ||
34 | static unsigned int smi_sig; | ||
35 | |||
36 | /* info about the processor */ | ||
37 | static enum speedstep_processor speedstep_processor; | ||
38 | |||
39 | /* | ||
40 | * There are only two frequency states for each processor. Values | ||
41 | * are in kHz for the time being. | ||
42 | */ | ||
43 | static struct cpufreq_frequency_table speedstep_freqs[] = { | ||
44 | {SPEEDSTEP_HIGH, 0}, | ||
45 | {SPEEDSTEP_LOW, 0}, | ||
46 | {0, CPUFREQ_TABLE_END}, | ||
47 | }; | ||
48 | |||
49 | #define GET_SPEEDSTEP_OWNER 0 | ||
50 | #define GET_SPEEDSTEP_STATE 1 | ||
51 | #define SET_SPEEDSTEP_STATE 2 | ||
52 | #define GET_SPEEDSTEP_FREQS 4 | ||
53 | |||
54 | /* how often shall the SMI call be tried if it failed, e.g. because | ||
55 | * of DMA activity going on? */ | ||
56 | #define SMI_TRIES 5 | ||
57 | |||
58 | /** | ||
59 | * speedstep_smi_ownership | ||
60 | */ | ||
61 | static int speedstep_smi_ownership(void) | ||
62 | { | ||
63 | u32 command, result, magic, dummy; | ||
64 | u32 function = GET_SPEEDSTEP_OWNER; | ||
65 | unsigned char magic_data[] = "Copyright (c) 1999 Intel Corporation"; | ||
66 | |||
67 | command = (smi_sig & 0xffffff00) | (smi_cmd & 0xff); | ||
68 | magic = virt_to_phys(magic_data); | ||
69 | |||
70 | pr_debug("trying to obtain ownership with command %x at port %x\n", | ||
71 | command, smi_port); | ||
72 | |||
73 | __asm__ __volatile__( | ||
74 | "push %%ebp\n" | ||
75 | "out %%al, (%%dx)\n" | ||
76 | "pop %%ebp\n" | ||
77 | : "=D" (result), | ||
78 | "=a" (dummy), "=b" (dummy), "=c" (dummy), "=d" (dummy), | ||
79 | "=S" (dummy) | ||
80 | : "a" (command), "b" (function), "c" (0), "d" (smi_port), | ||
81 | "D" (0), "S" (magic) | ||
82 | : "memory" | ||
83 | ); | ||
84 | |||
85 | pr_debug("result is %x\n", result); | ||
86 | |||
87 | return result; | ||
88 | } | ||
89 | |||
90 | /** | ||
91 | * speedstep_smi_get_freqs - get SpeedStep preferred & current freq. | ||
92 | * @low: the low frequency value is placed here | ||
93 | * @high: the high frequency value is placed here | ||
94 | * | ||
95 | * Only available on later SpeedStep-enabled systems, returns false results or | ||
96 | * even hangs [cf. bugme.osdl.org # 1422] on earlier systems. Empirical testing | ||
97 | * shows that the latter occurs if !(ist_info.event & 0xFFFF). | ||
98 | */ | ||
99 | static int speedstep_smi_get_freqs(unsigned int *low, unsigned int *high) | ||
100 | { | ||
101 | u32 command, result = 0, edi, high_mhz, low_mhz, dummy; | ||
102 | u32 state = 0; | ||
103 | u32 function = GET_SPEEDSTEP_FREQS; | ||
104 | |||
105 | if (!(ist_info.event & 0xFFFF)) { | ||
106 | pr_debug("bug #1422 -- can't read freqs from BIOS\n"); | ||
107 | return -ENODEV; | ||
108 | } | ||
109 | |||
110 | command = (smi_sig & 0xffffff00) | (smi_cmd & 0xff); | ||
111 | |||
112 | pr_debug("trying to determine frequencies with command %x at port %x\n", | ||
113 | command, smi_port); | ||
114 | |||
115 | __asm__ __volatile__( | ||
116 | "push %%ebp\n" | ||
117 | "out %%al, (%%dx)\n" | ||
118 | "pop %%ebp" | ||
119 | : "=a" (result), | ||
120 | "=b" (high_mhz), | ||
121 | "=c" (low_mhz), | ||
122 | "=d" (state), "=D" (edi), "=S" (dummy) | ||
123 | : "a" (command), | ||
124 | "b" (function), | ||
125 | "c" (state), | ||
126 | "d" (smi_port), "S" (0), "D" (0) | ||
127 | ); | ||
128 | |||
129 | pr_debug("result %x, low_freq %u, high_freq %u\n", | ||
130 | result, low_mhz, high_mhz); | ||
131 | |||
132 | /* abort if results are obviously incorrect... */ | ||
133 | if ((high_mhz + low_mhz) < 600) | ||
134 | return -EINVAL; | ||
135 | |||
136 | *high = high_mhz * 1000; | ||
137 | *low = low_mhz * 1000; | ||
138 | |||
139 | return result; | ||
140 | } | ||
141 | |||
142 | /** | ||
143 | * speedstep_get_state - set the SpeedStep state | ||
144 | * @state: processor frequency state (SPEEDSTEP_LOW or SPEEDSTEP_HIGH) | ||
145 | * | ||
146 | */ | ||
147 | static int speedstep_get_state(void) | ||
148 | { | ||
149 | u32 function = GET_SPEEDSTEP_STATE; | ||
150 | u32 result, state, edi, command, dummy; | ||
151 | |||
152 | command = (smi_sig & 0xffffff00) | (smi_cmd & 0xff); | ||
153 | |||
154 | pr_debug("trying to determine current setting with command %x " | ||
155 | "at port %x\n", command, smi_port); | ||
156 | |||
157 | __asm__ __volatile__( | ||
158 | "push %%ebp\n" | ||
159 | "out %%al, (%%dx)\n" | ||
160 | "pop %%ebp\n" | ||
161 | : "=a" (result), | ||
162 | "=b" (state), "=D" (edi), | ||
163 | "=c" (dummy), "=d" (dummy), "=S" (dummy) | ||
164 | : "a" (command), "b" (function), "c" (0), | ||
165 | "d" (smi_port), "S" (0), "D" (0) | ||
166 | ); | ||
167 | |||
168 | pr_debug("state is %x, result is %x\n", state, result); | ||
169 | |||
170 | return state & 1; | ||
171 | } | ||
172 | |||
173 | |||
174 | /** | ||
175 | * speedstep_set_state - set the SpeedStep state | ||
176 | * @state: new processor frequency state (SPEEDSTEP_LOW or SPEEDSTEP_HIGH) | ||
177 | * | ||
178 | */ | ||
179 | static void speedstep_set_state(unsigned int state) | ||
180 | { | ||
181 | unsigned int result = 0, command, new_state, dummy; | ||
182 | unsigned long flags; | ||
183 | unsigned int function = SET_SPEEDSTEP_STATE; | ||
184 | unsigned int retry = 0; | ||
185 | |||
186 | if (state > 0x1) | ||
187 | return; | ||
188 | |||
189 | /* Disable IRQs */ | ||
190 | local_irq_save(flags); | ||
191 | |||
192 | command = (smi_sig & 0xffffff00) | (smi_cmd & 0xff); | ||
193 | |||
194 | pr_debug("trying to set frequency to state %u " | ||
195 | "with command %x at port %x\n", | ||
196 | state, command, smi_port); | ||
197 | |||
198 | do { | ||
199 | if (retry) { | ||
200 | pr_debug("retry %u, previous result %u, waiting...\n", | ||
201 | retry, result); | ||
202 | mdelay(retry * 50); | ||
203 | } | ||
204 | retry++; | ||
205 | __asm__ __volatile__( | ||
206 | "push %%ebp\n" | ||
207 | "out %%al, (%%dx)\n" | ||
208 | "pop %%ebp" | ||
209 | : "=b" (new_state), "=D" (result), | ||
210 | "=c" (dummy), "=a" (dummy), | ||
211 | "=d" (dummy), "=S" (dummy) | ||
212 | : "a" (command), "b" (function), "c" (state), | ||
213 | "d" (smi_port), "S" (0), "D" (0) | ||
214 | ); | ||
215 | } while ((new_state != state) && (retry <= SMI_TRIES)); | ||
216 | |||
217 | /* enable IRQs */ | ||
218 | local_irq_restore(flags); | ||
219 | |||
220 | if (new_state == state) | ||
221 | pr_debug("change to %u MHz succeeded after %u tries " | ||
222 | "with result %u\n", | ||
223 | (speedstep_freqs[new_state].frequency / 1000), | ||
224 | retry, result); | ||
225 | else | ||
226 | printk(KERN_ERR "cpufreq: change to state %u " | ||
227 | "failed with new_state %u and result %u\n", | ||
228 | state, new_state, result); | ||
229 | |||
230 | return; | ||
231 | } | ||
232 | |||
233 | |||
234 | /** | ||
235 | * speedstep_target - set a new CPUFreq policy | ||
236 | * @policy: new policy | ||
237 | * @target_freq: new freq | ||
238 | * @relation: | ||
239 | * | ||
240 | * Sets a new CPUFreq policy/freq. | ||
241 | */ | ||
242 | static int speedstep_target(struct cpufreq_policy *policy, | ||
243 | unsigned int target_freq, unsigned int relation) | ||
244 | { | ||
245 | unsigned int newstate = 0; | ||
246 | struct cpufreq_freqs freqs; | ||
247 | |||
248 | if (cpufreq_frequency_table_target(policy, &speedstep_freqs[0], | ||
249 | target_freq, relation, &newstate)) | ||
250 | return -EINVAL; | ||
251 | |||
252 | freqs.old = speedstep_freqs[speedstep_get_state()].frequency; | ||
253 | freqs.new = speedstep_freqs[newstate].frequency; | ||
254 | freqs.cpu = 0; /* speedstep.c is UP only driver */ | ||
255 | |||
256 | if (freqs.old == freqs.new) | ||
257 | return 0; | ||
258 | |||
259 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); | ||
260 | speedstep_set_state(newstate); | ||
261 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); | ||
262 | |||
263 | return 0; | ||
264 | } | ||
265 | |||
266 | |||
267 | /** | ||
268 | * speedstep_verify - verifies a new CPUFreq policy | ||
269 | * @policy: new policy | ||
270 | * | ||
271 | * Limit must be within speedstep_low_freq and speedstep_high_freq, with | ||
272 | * at least one border included. | ||
273 | */ | ||
274 | static int speedstep_verify(struct cpufreq_policy *policy) | ||
275 | { | ||
276 | return cpufreq_frequency_table_verify(policy, &speedstep_freqs[0]); | ||
277 | } | ||
278 | |||
279 | |||
280 | static int speedstep_cpu_init(struct cpufreq_policy *policy) | ||
281 | { | ||
282 | int result; | ||
283 | unsigned int speed, state; | ||
284 | unsigned int *low, *high; | ||
285 | |||
286 | /* capability check */ | ||
287 | if (policy->cpu != 0) | ||
288 | return -ENODEV; | ||
289 | |||
290 | result = speedstep_smi_ownership(); | ||
291 | if (result) { | ||
292 | pr_debug("fails in acquiring ownership of a SMI interface.\n"); | ||
293 | return -EINVAL; | ||
294 | } | ||
295 | |||
296 | /* detect low and high frequency */ | ||
297 | low = &speedstep_freqs[SPEEDSTEP_LOW].frequency; | ||
298 | high = &speedstep_freqs[SPEEDSTEP_HIGH].frequency; | ||
299 | |||
300 | result = speedstep_smi_get_freqs(low, high); | ||
301 | if (result) { | ||
302 | /* fall back to speedstep_lib.c dection mechanism: | ||
303 | * try both states out */ | ||
304 | pr_debug("could not detect low and high frequencies " | ||
305 | "by SMI call.\n"); | ||
306 | result = speedstep_get_freqs(speedstep_processor, | ||
307 | low, high, | ||
308 | NULL, | ||
309 | &speedstep_set_state); | ||
310 | |||
311 | if (result) { | ||
312 | pr_debug("could not detect two different speeds" | ||
313 | " -- aborting.\n"); | ||
314 | return result; | ||
315 | } else | ||
316 | pr_debug("workaround worked.\n"); | ||
317 | } | ||
318 | |||
319 | /* get current speed setting */ | ||
320 | state = speedstep_get_state(); | ||
321 | speed = speedstep_freqs[state].frequency; | ||
322 | |||
323 | pr_debug("currently at %s speed setting - %i MHz\n", | ||
324 | (speed == speedstep_freqs[SPEEDSTEP_LOW].frequency) | ||
325 | ? "low" : "high", | ||
326 | (speed / 1000)); | ||
327 | |||
328 | /* cpuinfo and default policy values */ | ||
329 | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | ||
330 | policy->cur = speed; | ||
331 | |||
332 | result = cpufreq_frequency_table_cpuinfo(policy, speedstep_freqs); | ||
333 | if (result) | ||
334 | return result; | ||
335 | |||
336 | cpufreq_frequency_table_get_attr(speedstep_freqs, policy->cpu); | ||
337 | |||
338 | return 0; | ||
339 | } | ||
340 | |||
341 | static int speedstep_cpu_exit(struct cpufreq_policy *policy) | ||
342 | { | ||
343 | cpufreq_frequency_table_put_attr(policy->cpu); | ||
344 | return 0; | ||
345 | } | ||
346 | |||
347 | static unsigned int speedstep_get(unsigned int cpu) | ||
348 | { | ||
349 | if (cpu) | ||
350 | return -ENODEV; | ||
351 | return speedstep_get_frequency(speedstep_processor); | ||
352 | } | ||
353 | |||
354 | |||
355 | static int speedstep_resume(struct cpufreq_policy *policy) | ||
356 | { | ||
357 | int result = speedstep_smi_ownership(); | ||
358 | |||
359 | if (result) | ||
360 | pr_debug("fails in re-acquiring ownership of a SMI interface.\n"); | ||
361 | |||
362 | return result; | ||
363 | } | ||
364 | |||
365 | static struct freq_attr *speedstep_attr[] = { | ||
366 | &cpufreq_freq_attr_scaling_available_freqs, | ||
367 | NULL, | ||
368 | }; | ||
369 | |||
370 | static struct cpufreq_driver speedstep_driver = { | ||
371 | .name = "speedstep-smi", | ||
372 | .verify = speedstep_verify, | ||
373 | .target = speedstep_target, | ||
374 | .init = speedstep_cpu_init, | ||
375 | .exit = speedstep_cpu_exit, | ||
376 | .get = speedstep_get, | ||
377 | .resume = speedstep_resume, | ||
378 | .owner = THIS_MODULE, | ||
379 | .attr = speedstep_attr, | ||
380 | }; | ||
381 | |||
382 | /** | ||
383 | * speedstep_init - initializes the SpeedStep CPUFreq driver | ||
384 | * | ||
385 | * Initializes the SpeedStep support. Returns -ENODEV on unsupported | ||
386 | * BIOS, -EINVAL on problems during initiatization, and zero on | ||
387 | * success. | ||
388 | */ | ||
389 | static int __init speedstep_init(void) | ||
390 | { | ||
391 | speedstep_processor = speedstep_detect_processor(); | ||
392 | |||
393 | switch (speedstep_processor) { | ||
394 | case SPEEDSTEP_CPU_PIII_T: | ||
395 | case SPEEDSTEP_CPU_PIII_C: | ||
396 | case SPEEDSTEP_CPU_PIII_C_EARLY: | ||
397 | break; | ||
398 | default: | ||
399 | speedstep_processor = 0; | ||
400 | } | ||
401 | |||
402 | if (!speedstep_processor) { | ||
403 | pr_debug("No supported Intel CPU detected.\n"); | ||
404 | return -ENODEV; | ||
405 | } | ||
406 | |||
407 | pr_debug("signature:0x%.8ulx, command:0x%.8ulx, " | ||
408 | "event:0x%.8ulx, perf_level:0x%.8ulx.\n", | ||
409 | ist_info.signature, ist_info.command, | ||
410 | ist_info.event, ist_info.perf_level); | ||
411 | |||
412 | /* Error if no IST-SMI BIOS or no PARM | ||
413 | sig= 'ISGE' aka 'Intel Speedstep Gate E' */ | ||
414 | if ((ist_info.signature != 0x47534943) && ( | ||
415 | (smi_port == 0) || (smi_cmd == 0))) | ||
416 | return -ENODEV; | ||
417 | |||
418 | if (smi_sig == 1) | ||
419 | smi_sig = 0x47534943; | ||
420 | else | ||
421 | smi_sig = ist_info.signature; | ||
422 | |||
423 | /* setup smi_port from MODLULE_PARM or BIOS */ | ||
424 | if ((smi_port > 0xff) || (smi_port < 0)) | ||
425 | return -EINVAL; | ||
426 | else if (smi_port == 0) | ||
427 | smi_port = ist_info.command & 0xff; | ||
428 | |||
429 | if ((smi_cmd > 0xff) || (smi_cmd < 0)) | ||
430 | return -EINVAL; | ||
431 | else if (smi_cmd == 0) | ||
432 | smi_cmd = (ist_info.command >> 16) & 0xff; | ||
433 | |||
434 | return cpufreq_register_driver(&speedstep_driver); | ||
435 | } | ||
436 | |||
437 | |||
438 | /** | ||
439 | * speedstep_exit - unregisters SpeedStep support | ||
440 | * | ||
441 | * Unregisters SpeedStep support. | ||
442 | */ | ||
443 | static void __exit speedstep_exit(void) | ||
444 | { | ||
445 | cpufreq_unregister_driver(&speedstep_driver); | ||
446 | } | ||
447 | |||
448 | module_param(smi_port, int, 0444); | ||
449 | module_param(smi_cmd, int, 0444); | ||
450 | module_param(smi_sig, uint, 0444); | ||
451 | |||
452 | MODULE_PARM_DESC(smi_port, "Override the BIOS-given IST port with this value " | ||
453 | "-- Intel's default setting is 0xb2"); | ||
454 | MODULE_PARM_DESC(smi_cmd, "Override the BIOS-given IST command with this value " | ||
455 | "-- Intel's default setting is 0x82"); | ||
456 | MODULE_PARM_DESC(smi_sig, "Set to 1 to fake the IST signature when using the " | ||
457 | "SMI interface."); | ||
458 | |||
459 | MODULE_AUTHOR("Hiroshi Miura"); | ||
460 | MODULE_DESCRIPTION("Speedstep driver for IST applet SMI interface."); | ||
461 | MODULE_LICENSE("GPL"); | ||
462 | |||
463 | module_init(speedstep_init); | ||
464 | module_exit(speedstep_exit); | ||