diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:16:47 -0400 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:16:47 -0400 |
commit | ad757b6aa5801b81dec609d87753604a06313c53 (patch) | |
tree | 7bb40460e1729ad370b5ae75e65f9e6a0e824328 /arch/x86/mm | |
parent | 96ae6ea0be1b902c28b3b463c27da42b41e2b63a (diff) |
i386: move mm
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/mm')
-rw-r--r-- | arch/x86/mm/Makefile | 5 | ||||
-rw-r--r-- | arch/x86/mm/Makefile_32 | 10 | ||||
-rw-r--r-- | arch/x86/mm/boot_ioremap_32.c | 100 | ||||
-rw-r--r-- | arch/x86/mm/discontig_32.c | 431 | ||||
-rw-r--r-- | arch/x86/mm/extable_32.c | 35 | ||||
-rw-r--r-- | arch/x86/mm/fault_32.c | 657 | ||||
-rw-r--r-- | arch/x86/mm/highmem_32.c | 113 | ||||
-rw-r--r-- | arch/x86/mm/hugetlbpage.c | 391 | ||||
-rw-r--r-- | arch/x86/mm/init_32.c | 858 | ||||
-rw-r--r-- | arch/x86/mm/ioremap_32.c | 274 | ||||
-rw-r--r-- | arch/x86/mm/mmap_32.c | 77 | ||||
-rw-r--r-- | arch/x86/mm/pageattr_32.c | 278 | ||||
-rw-r--r-- | arch/x86/mm/pgtable_32.c | 373 |
13 files changed, 3602 insertions, 0 deletions
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile new file mode 100644 index 000000000000..7317648e6587 --- /dev/null +++ b/arch/x86/mm/Makefile | |||
@@ -0,0 +1,5 @@ | |||
1 | ifeq ($(CONFIG_X86_32),y) | ||
2 | include ${srctree}/arch/x86/mm/Makefile_32 | ||
3 | else | ||
4 | include ${srctree}/arch/x86_64/mm/Makefile_64 | ||
5 | endif | ||
diff --git a/arch/x86/mm/Makefile_32 b/arch/x86/mm/Makefile_32 new file mode 100644 index 000000000000..362b4ad082de --- /dev/null +++ b/arch/x86/mm/Makefile_32 | |||
@@ -0,0 +1,10 @@ | |||
1 | # | ||
2 | # Makefile for the linux i386-specific parts of the memory manager. | ||
3 | # | ||
4 | |||
5 | obj-y := init_32.o pgtable_32.o fault_32.o ioremap_32.o extable_32.o pageattr_32.o mmap_32.o | ||
6 | |||
7 | obj-$(CONFIG_NUMA) += discontig_32.o | ||
8 | obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o | ||
9 | obj-$(CONFIG_HIGHMEM) += highmem_32.o | ||
10 | obj-$(CONFIG_BOOT_IOREMAP) += boot_ioremap_32.o | ||
diff --git a/arch/x86/mm/boot_ioremap_32.c b/arch/x86/mm/boot_ioremap_32.c new file mode 100644 index 000000000000..4de95a17a7d4 --- /dev/null +++ b/arch/x86/mm/boot_ioremap_32.c | |||
@@ -0,0 +1,100 @@ | |||
1 | /* | ||
2 | * arch/i386/mm/boot_ioremap.c | ||
3 | * | ||
4 | * Re-map functions for early boot-time before paging_init() when the | ||
5 | * boot-time pagetables are still in use | ||
6 | * | ||
7 | * Written by Dave Hansen <haveblue@us.ibm.com> | ||
8 | */ | ||
9 | |||
10 | |||
11 | /* | ||
12 | * We need to use the 2-level pagetable functions, but CONFIG_X86_PAE | ||
13 | * keeps that from happenning. If anyone has a better way, I'm listening. | ||
14 | * | ||
15 | * boot_pte_t is defined only if this all works correctly | ||
16 | */ | ||
17 | |||
18 | #undef CONFIG_X86_PAE | ||
19 | #undef CONFIG_PARAVIRT | ||
20 | #include <asm/page.h> | ||
21 | #include <asm/pgtable.h> | ||
22 | #include <asm/tlbflush.h> | ||
23 | #include <linux/init.h> | ||
24 | #include <linux/stddef.h> | ||
25 | |||
26 | /* | ||
27 | * I'm cheating here. It is known that the two boot PTE pages are | ||
28 | * allocated next to each other. I'm pretending that they're just | ||
29 | * one big array. | ||
30 | */ | ||
31 | |||
32 | #define BOOT_PTE_PTRS (PTRS_PER_PTE*2) | ||
33 | |||
34 | static unsigned long boot_pte_index(unsigned long vaddr) | ||
35 | { | ||
36 | return __pa(vaddr) >> PAGE_SHIFT; | ||
37 | } | ||
38 | |||
39 | static inline boot_pte_t* boot_vaddr_to_pte(void *address) | ||
40 | { | ||
41 | boot_pte_t* boot_pg = (boot_pte_t*)pg0; | ||
42 | return &boot_pg[boot_pte_index((unsigned long)address)]; | ||
43 | } | ||
44 | |||
45 | /* | ||
46 | * This is only for a caller who is clever enough to page-align | ||
47 | * phys_addr and virtual_source, and who also has a preference | ||
48 | * about which virtual address from which to steal ptes | ||
49 | */ | ||
50 | static void __boot_ioremap(unsigned long phys_addr, unsigned long nrpages, | ||
51 | void* virtual_source) | ||
52 | { | ||
53 | boot_pte_t* pte; | ||
54 | int i; | ||
55 | char *vaddr = virtual_source; | ||
56 | |||
57 | pte = boot_vaddr_to_pte(virtual_source); | ||
58 | for (i=0; i < nrpages; i++, phys_addr += PAGE_SIZE, pte++) { | ||
59 | set_pte(pte, pfn_pte(phys_addr>>PAGE_SHIFT, PAGE_KERNEL)); | ||
60 | __flush_tlb_one(&vaddr[i*PAGE_SIZE]); | ||
61 | } | ||
62 | } | ||
63 | |||
64 | /* the virtual space we're going to remap comes from this array */ | ||
65 | #define BOOT_IOREMAP_PAGES 4 | ||
66 | #define BOOT_IOREMAP_SIZE (BOOT_IOREMAP_PAGES*PAGE_SIZE) | ||
67 | static __initdata char boot_ioremap_space[BOOT_IOREMAP_SIZE] | ||
68 | __attribute__ ((aligned (PAGE_SIZE))); | ||
69 | |||
70 | /* | ||
71 | * This only applies to things which need to ioremap before paging_init() | ||
72 | * bt_ioremap() and plain ioremap() are both useless at this point. | ||
73 | * | ||
74 | * When used, we're still using the boot-time pagetables, which only | ||
75 | * have 2 PTE pages mapping the first 8MB | ||
76 | * | ||
77 | * There is no unmap. The boot-time PTE pages aren't used after boot. | ||
78 | * If you really want the space back, just remap it yourself. | ||
79 | * boot_ioremap(&ioremap_space-PAGE_OFFSET, BOOT_IOREMAP_SIZE) | ||
80 | */ | ||
81 | __init void* boot_ioremap(unsigned long phys_addr, unsigned long size) | ||
82 | { | ||
83 | unsigned long last_addr, offset; | ||
84 | unsigned int nrpages; | ||
85 | |||
86 | last_addr = phys_addr + size - 1; | ||
87 | |||
88 | /* page align the requested address */ | ||
89 | offset = phys_addr & ~PAGE_MASK; | ||
90 | phys_addr &= PAGE_MASK; | ||
91 | size = PAGE_ALIGN(last_addr) - phys_addr; | ||
92 | |||
93 | nrpages = size >> PAGE_SHIFT; | ||
94 | if (nrpages > BOOT_IOREMAP_PAGES) | ||
95 | return NULL; | ||
96 | |||
97 | __boot_ioremap(phys_addr, nrpages, boot_ioremap_space); | ||
98 | |||
99 | return &boot_ioremap_space[offset]; | ||
100 | } | ||
diff --git a/arch/x86/mm/discontig_32.c b/arch/x86/mm/discontig_32.c new file mode 100644 index 000000000000..860e912a3fbb --- /dev/null +++ b/arch/x86/mm/discontig_32.c | |||
@@ -0,0 +1,431 @@ | |||
1 | /* | ||
2 | * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation | ||
3 | * August 2002: added remote node KVA remap - Martin J. Bligh | ||
4 | * | ||
5 | * Copyright (C) 2002, IBM Corp. | ||
6 | * | ||
7 | * All rights reserved. | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License as published by | ||
11 | * the Free Software Foundation; either version 2 of the License, or | ||
12 | * (at your option) any later version. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but | ||
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
17 | * NON INFRINGEMENT. See the GNU General Public License for more | ||
18 | * details. | ||
19 | * | ||
20 | * You should have received a copy of the GNU General Public License | ||
21 | * along with this program; if not, write to the Free Software | ||
22 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
23 | */ | ||
24 | |||
25 | #include <linux/mm.h> | ||
26 | #include <linux/bootmem.h> | ||
27 | #include <linux/mmzone.h> | ||
28 | #include <linux/highmem.h> | ||
29 | #include <linux/initrd.h> | ||
30 | #include <linux/nodemask.h> | ||
31 | #include <linux/module.h> | ||
32 | #include <linux/kexec.h> | ||
33 | #include <linux/pfn.h> | ||
34 | #include <linux/swap.h> | ||
35 | |||
36 | #include <asm/e820.h> | ||
37 | #include <asm/setup.h> | ||
38 | #include <asm/mmzone.h> | ||
39 | #include <bios_ebda.h> | ||
40 | |||
41 | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | ||
42 | EXPORT_SYMBOL(node_data); | ||
43 | bootmem_data_t node0_bdata; | ||
44 | |||
45 | /* | ||
46 | * numa interface - we expect the numa architecture specific code to have | ||
47 | * populated the following initialisation. | ||
48 | * | ||
49 | * 1) node_online_map - the map of all nodes configured (online) in the system | ||
50 | * 2) node_start_pfn - the starting page frame number for a node | ||
51 | * 3) node_end_pfn - the ending page fram number for a node | ||
52 | */ | ||
53 | unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; | ||
54 | unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; | ||
55 | |||
56 | |||
57 | #ifdef CONFIG_DISCONTIGMEM | ||
58 | /* | ||
59 | * 4) physnode_map - the mapping between a pfn and owning node | ||
60 | * physnode_map keeps track of the physical memory layout of a generic | ||
61 | * numa node on a 256Mb break (each element of the array will | ||
62 | * represent 256Mb of memory and will be marked by the node id. so, | ||
63 | * if the first gig is on node 0, and the second gig is on node 1 | ||
64 | * physnode_map will contain: | ||
65 | * | ||
66 | * physnode_map[0-3] = 0; | ||
67 | * physnode_map[4-7] = 1; | ||
68 | * physnode_map[8- ] = -1; | ||
69 | */ | ||
70 | s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1}; | ||
71 | EXPORT_SYMBOL(physnode_map); | ||
72 | |||
73 | void memory_present(int nid, unsigned long start, unsigned long end) | ||
74 | { | ||
75 | unsigned long pfn; | ||
76 | |||
77 | printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n", | ||
78 | nid, start, end); | ||
79 | printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); | ||
80 | printk(KERN_DEBUG " "); | ||
81 | for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { | ||
82 | physnode_map[pfn / PAGES_PER_ELEMENT] = nid; | ||
83 | printk("%ld ", pfn); | ||
84 | } | ||
85 | printk("\n"); | ||
86 | } | ||
87 | |||
88 | unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, | ||
89 | unsigned long end_pfn) | ||
90 | { | ||
91 | unsigned long nr_pages = end_pfn - start_pfn; | ||
92 | |||
93 | if (!nr_pages) | ||
94 | return 0; | ||
95 | |||
96 | return (nr_pages + 1) * sizeof(struct page); | ||
97 | } | ||
98 | #endif | ||
99 | |||
100 | extern unsigned long find_max_low_pfn(void); | ||
101 | extern void add_one_highpage_init(struct page *, int, int); | ||
102 | extern unsigned long highend_pfn, highstart_pfn; | ||
103 | |||
104 | #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) | ||
105 | |||
106 | unsigned long node_remap_start_pfn[MAX_NUMNODES]; | ||
107 | unsigned long node_remap_size[MAX_NUMNODES]; | ||
108 | unsigned long node_remap_offset[MAX_NUMNODES]; | ||
109 | void *node_remap_start_vaddr[MAX_NUMNODES]; | ||
110 | void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); | ||
111 | |||
112 | void *node_remap_end_vaddr[MAX_NUMNODES]; | ||
113 | void *node_remap_alloc_vaddr[MAX_NUMNODES]; | ||
114 | static unsigned long kva_start_pfn; | ||
115 | static unsigned long kva_pages; | ||
116 | /* | ||
117 | * FLAT - support for basic PC memory model with discontig enabled, essentially | ||
118 | * a single node with all available processors in it with a flat | ||
119 | * memory map. | ||
120 | */ | ||
121 | int __init get_memcfg_numa_flat(void) | ||
122 | { | ||
123 | printk("NUMA - single node, flat memory mode\n"); | ||
124 | |||
125 | /* Run the memory configuration and find the top of memory. */ | ||
126 | find_max_pfn(); | ||
127 | node_start_pfn[0] = 0; | ||
128 | node_end_pfn[0] = max_pfn; | ||
129 | memory_present(0, 0, max_pfn); | ||
130 | |||
131 | /* Indicate there is one node available. */ | ||
132 | nodes_clear(node_online_map); | ||
133 | node_set_online(0); | ||
134 | return 1; | ||
135 | } | ||
136 | |||
137 | /* | ||
138 | * Find the highest page frame number we have available for the node | ||
139 | */ | ||
140 | static void __init find_max_pfn_node(int nid) | ||
141 | { | ||
142 | if (node_end_pfn[nid] > max_pfn) | ||
143 | node_end_pfn[nid] = max_pfn; | ||
144 | /* | ||
145 | * if a user has given mem=XXXX, then we need to make sure | ||
146 | * that the node _starts_ before that, too, not just ends | ||
147 | */ | ||
148 | if (node_start_pfn[nid] > max_pfn) | ||
149 | node_start_pfn[nid] = max_pfn; | ||
150 | BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); | ||
151 | } | ||
152 | |||
153 | /* | ||
154 | * Allocate memory for the pg_data_t for this node via a crude pre-bootmem | ||
155 | * method. For node zero take this from the bottom of memory, for | ||
156 | * subsequent nodes place them at node_remap_start_vaddr which contains | ||
157 | * node local data in physically node local memory. See setup_memory() | ||
158 | * for details. | ||
159 | */ | ||
160 | static void __init allocate_pgdat(int nid) | ||
161 | { | ||
162 | if (nid && node_has_online_mem(nid)) | ||
163 | NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; | ||
164 | else { | ||
165 | NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn)); | ||
166 | min_low_pfn += PFN_UP(sizeof(pg_data_t)); | ||
167 | } | ||
168 | } | ||
169 | |||
170 | void *alloc_remap(int nid, unsigned long size) | ||
171 | { | ||
172 | void *allocation = node_remap_alloc_vaddr[nid]; | ||
173 | |||
174 | size = ALIGN(size, L1_CACHE_BYTES); | ||
175 | |||
176 | if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) | ||
177 | return 0; | ||
178 | |||
179 | node_remap_alloc_vaddr[nid] += size; | ||
180 | memset(allocation, 0, size); | ||
181 | |||
182 | return allocation; | ||
183 | } | ||
184 | |||
185 | void __init remap_numa_kva(void) | ||
186 | { | ||
187 | void *vaddr; | ||
188 | unsigned long pfn; | ||
189 | int node; | ||
190 | |||
191 | for_each_online_node(node) { | ||
192 | for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { | ||
193 | vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); | ||
194 | set_pmd_pfn((ulong) vaddr, | ||
195 | node_remap_start_pfn[node] + pfn, | ||
196 | PAGE_KERNEL_LARGE); | ||
197 | } | ||
198 | } | ||
199 | } | ||
200 | |||
201 | static unsigned long calculate_numa_remap_pages(void) | ||
202 | { | ||
203 | int nid; | ||
204 | unsigned long size, reserve_pages = 0; | ||
205 | unsigned long pfn; | ||
206 | |||
207 | for_each_online_node(nid) { | ||
208 | unsigned old_end_pfn = node_end_pfn[nid]; | ||
209 | |||
210 | /* | ||
211 | * The acpi/srat node info can show hot-add memroy zones | ||
212 | * where memory could be added but not currently present. | ||
213 | */ | ||
214 | if (node_start_pfn[nid] > max_pfn) | ||
215 | continue; | ||
216 | if (node_end_pfn[nid] > max_pfn) | ||
217 | node_end_pfn[nid] = max_pfn; | ||
218 | |||
219 | /* ensure the remap includes space for the pgdat. */ | ||
220 | size = node_remap_size[nid] + sizeof(pg_data_t); | ||
221 | |||
222 | /* convert size to large (pmd size) pages, rounding up */ | ||
223 | size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; | ||
224 | /* now the roundup is correct, convert to PAGE_SIZE pages */ | ||
225 | size = size * PTRS_PER_PTE; | ||
226 | |||
227 | /* | ||
228 | * Validate the region we are allocating only contains valid | ||
229 | * pages. | ||
230 | */ | ||
231 | for (pfn = node_end_pfn[nid] - size; | ||
232 | pfn < node_end_pfn[nid]; pfn++) | ||
233 | if (!page_is_ram(pfn)) | ||
234 | break; | ||
235 | |||
236 | if (pfn != node_end_pfn[nid]) | ||
237 | size = 0; | ||
238 | |||
239 | printk("Reserving %ld pages of KVA for lmem_map of node %d\n", | ||
240 | size, nid); | ||
241 | node_remap_size[nid] = size; | ||
242 | node_remap_offset[nid] = reserve_pages; | ||
243 | reserve_pages += size; | ||
244 | printk("Shrinking node %d from %ld pages to %ld pages\n", | ||
245 | nid, node_end_pfn[nid], node_end_pfn[nid] - size); | ||
246 | |||
247 | if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) { | ||
248 | /* | ||
249 | * Align node_end_pfn[] and node_remap_start_pfn[] to | ||
250 | * pmd boundary. remap_numa_kva will barf otherwise. | ||
251 | */ | ||
252 | printk("Shrinking node %d further by %ld pages for proper alignment\n", | ||
253 | nid, node_end_pfn[nid] & (PTRS_PER_PTE-1)); | ||
254 | size += node_end_pfn[nid] & (PTRS_PER_PTE-1); | ||
255 | } | ||
256 | |||
257 | node_end_pfn[nid] -= size; | ||
258 | node_remap_start_pfn[nid] = node_end_pfn[nid]; | ||
259 | shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]); | ||
260 | } | ||
261 | printk("Reserving total of %ld pages for numa KVA remap\n", | ||
262 | reserve_pages); | ||
263 | return reserve_pages; | ||
264 | } | ||
265 | |||
266 | extern void setup_bootmem_allocator(void); | ||
267 | unsigned long __init setup_memory(void) | ||
268 | { | ||
269 | int nid; | ||
270 | unsigned long system_start_pfn, system_max_low_pfn; | ||
271 | |||
272 | /* | ||
273 | * When mapping a NUMA machine we allocate the node_mem_map arrays | ||
274 | * from node local memory. They are then mapped directly into KVA | ||
275 | * between zone normal and vmalloc space. Calculate the size of | ||
276 | * this space and use it to adjust the boundry between ZONE_NORMAL | ||
277 | * and ZONE_HIGHMEM. | ||
278 | */ | ||
279 | find_max_pfn(); | ||
280 | get_memcfg_numa(); | ||
281 | |||
282 | kva_pages = calculate_numa_remap_pages(); | ||
283 | |||
284 | /* partially used pages are not usable - thus round upwards */ | ||
285 | system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end); | ||
286 | |||
287 | kva_start_pfn = find_max_low_pfn() - kva_pages; | ||
288 | |||
289 | #ifdef CONFIG_BLK_DEV_INITRD | ||
290 | /* Numa kva area is below the initrd */ | ||
291 | if (LOADER_TYPE && INITRD_START) | ||
292 | kva_start_pfn = PFN_DOWN(INITRD_START) - kva_pages; | ||
293 | #endif | ||
294 | kva_start_pfn -= kva_start_pfn & (PTRS_PER_PTE-1); | ||
295 | |||
296 | system_max_low_pfn = max_low_pfn = find_max_low_pfn(); | ||
297 | printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n", | ||
298 | kva_start_pfn, max_low_pfn); | ||
299 | printk("max_pfn = %ld\n", max_pfn); | ||
300 | #ifdef CONFIG_HIGHMEM | ||
301 | highstart_pfn = highend_pfn = max_pfn; | ||
302 | if (max_pfn > system_max_low_pfn) | ||
303 | highstart_pfn = system_max_low_pfn; | ||
304 | printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", | ||
305 | pages_to_mb(highend_pfn - highstart_pfn)); | ||
306 | num_physpages = highend_pfn; | ||
307 | high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; | ||
308 | #else | ||
309 | num_physpages = system_max_low_pfn; | ||
310 | high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1; | ||
311 | #endif | ||
312 | printk(KERN_NOTICE "%ldMB LOWMEM available.\n", | ||
313 | pages_to_mb(system_max_low_pfn)); | ||
314 | printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", | ||
315 | min_low_pfn, max_low_pfn, highstart_pfn); | ||
316 | |||
317 | printk("Low memory ends at vaddr %08lx\n", | ||
318 | (ulong) pfn_to_kaddr(max_low_pfn)); | ||
319 | for_each_online_node(nid) { | ||
320 | node_remap_start_vaddr[nid] = pfn_to_kaddr( | ||
321 | kva_start_pfn + node_remap_offset[nid]); | ||
322 | /* Init the node remap allocator */ | ||
323 | node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] + | ||
324 | (node_remap_size[nid] * PAGE_SIZE); | ||
325 | node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] + | ||
326 | ALIGN(sizeof(pg_data_t), PAGE_SIZE); | ||
327 | |||
328 | allocate_pgdat(nid); | ||
329 | printk ("node %d will remap to vaddr %08lx - %08lx\n", nid, | ||
330 | (ulong) node_remap_start_vaddr[nid], | ||
331 | (ulong) pfn_to_kaddr(highstart_pfn | ||
332 | + node_remap_offset[nid] + node_remap_size[nid])); | ||
333 | } | ||
334 | printk("High memory starts at vaddr %08lx\n", | ||
335 | (ulong) pfn_to_kaddr(highstart_pfn)); | ||
336 | for_each_online_node(nid) | ||
337 | find_max_pfn_node(nid); | ||
338 | |||
339 | memset(NODE_DATA(0), 0, sizeof(struct pglist_data)); | ||
340 | NODE_DATA(0)->bdata = &node0_bdata; | ||
341 | setup_bootmem_allocator(); | ||
342 | return max_low_pfn; | ||
343 | } | ||
344 | |||
345 | void __init numa_kva_reserve(void) | ||
346 | { | ||
347 | reserve_bootmem(PFN_PHYS(kva_start_pfn),PFN_PHYS(kva_pages)); | ||
348 | } | ||
349 | |||
350 | void __init zone_sizes_init(void) | ||
351 | { | ||
352 | int nid; | ||
353 | unsigned long max_zone_pfns[MAX_NR_ZONES]; | ||
354 | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | ||
355 | max_zone_pfns[ZONE_DMA] = | ||
356 | virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | ||
357 | max_zone_pfns[ZONE_NORMAL] = max_low_pfn; | ||
358 | #ifdef CONFIG_HIGHMEM | ||
359 | max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; | ||
360 | #endif | ||
361 | |||
362 | /* If SRAT has not registered memory, register it now */ | ||
363 | if (find_max_pfn_with_active_regions() == 0) { | ||
364 | for_each_online_node(nid) { | ||
365 | if (node_has_online_mem(nid)) | ||
366 | add_active_range(nid, node_start_pfn[nid], | ||
367 | node_end_pfn[nid]); | ||
368 | } | ||
369 | } | ||
370 | |||
371 | free_area_init_nodes(max_zone_pfns); | ||
372 | return; | ||
373 | } | ||
374 | |||
375 | void __init set_highmem_pages_init(int bad_ppro) | ||
376 | { | ||
377 | #ifdef CONFIG_HIGHMEM | ||
378 | struct zone *zone; | ||
379 | struct page *page; | ||
380 | |||
381 | for_each_zone(zone) { | ||
382 | unsigned long node_pfn, zone_start_pfn, zone_end_pfn; | ||
383 | |||
384 | if (!is_highmem(zone)) | ||
385 | continue; | ||
386 | |||
387 | zone_start_pfn = zone->zone_start_pfn; | ||
388 | zone_end_pfn = zone_start_pfn + zone->spanned_pages; | ||
389 | |||
390 | printk("Initializing %s for node %d (%08lx:%08lx)\n", | ||
391 | zone->name, zone_to_nid(zone), | ||
392 | zone_start_pfn, zone_end_pfn); | ||
393 | |||
394 | for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) { | ||
395 | if (!pfn_valid(node_pfn)) | ||
396 | continue; | ||
397 | page = pfn_to_page(node_pfn); | ||
398 | add_one_highpage_init(page, node_pfn, bad_ppro); | ||
399 | } | ||
400 | } | ||
401 | totalram_pages += totalhigh_pages; | ||
402 | #endif | ||
403 | } | ||
404 | |||
405 | #ifdef CONFIG_MEMORY_HOTPLUG | ||
406 | int paddr_to_nid(u64 addr) | ||
407 | { | ||
408 | int nid; | ||
409 | unsigned long pfn = PFN_DOWN(addr); | ||
410 | |||
411 | for_each_node(nid) | ||
412 | if (node_start_pfn[nid] <= pfn && | ||
413 | pfn < node_end_pfn[nid]) | ||
414 | return nid; | ||
415 | |||
416 | return -1; | ||
417 | } | ||
418 | |||
419 | /* | ||
420 | * This function is used to ask node id BEFORE memmap and mem_section's | ||
421 | * initialization (pfn_to_nid() can't be used yet). | ||
422 | * If _PXM is not defined on ACPI's DSDT, node id must be found by this. | ||
423 | */ | ||
424 | int memory_add_physaddr_to_nid(u64 addr) | ||
425 | { | ||
426 | int nid = paddr_to_nid(addr); | ||
427 | return (nid >= 0) ? nid : 0; | ||
428 | } | ||
429 | |||
430 | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); | ||
431 | #endif | ||
diff --git a/arch/x86/mm/extable_32.c b/arch/x86/mm/extable_32.c new file mode 100644 index 000000000000..0ce4f22a2635 --- /dev/null +++ b/arch/x86/mm/extable_32.c | |||
@@ -0,0 +1,35 @@ | |||
1 | /* | ||
2 | * linux/arch/i386/mm/extable.c | ||
3 | */ | ||
4 | |||
5 | #include <linux/module.h> | ||
6 | #include <linux/spinlock.h> | ||
7 | #include <asm/uaccess.h> | ||
8 | |||
9 | int fixup_exception(struct pt_regs *regs) | ||
10 | { | ||
11 | const struct exception_table_entry *fixup; | ||
12 | |||
13 | #ifdef CONFIG_PNPBIOS | ||
14 | if (unlikely(SEGMENT_IS_PNP_CODE(regs->xcs))) | ||
15 | { | ||
16 | extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp; | ||
17 | extern u32 pnp_bios_is_utter_crap; | ||
18 | pnp_bios_is_utter_crap = 1; | ||
19 | printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n"); | ||
20 | __asm__ volatile( | ||
21 | "movl %0, %%esp\n\t" | ||
22 | "jmp *%1\n\t" | ||
23 | : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip)); | ||
24 | panic("do_trap: can't hit this"); | ||
25 | } | ||
26 | #endif | ||
27 | |||
28 | fixup = search_exception_tables(regs->eip); | ||
29 | if (fixup) { | ||
30 | regs->eip = fixup->fixup; | ||
31 | return 1; | ||
32 | } | ||
33 | |||
34 | return 0; | ||
35 | } | ||
diff --git a/arch/x86/mm/fault_32.c b/arch/x86/mm/fault_32.c new file mode 100644 index 000000000000..fcb38e7f3543 --- /dev/null +++ b/arch/x86/mm/fault_32.c | |||
@@ -0,0 +1,657 @@ | |||
1 | /* | ||
2 | * linux/arch/i386/mm/fault.c | ||
3 | * | ||
4 | * Copyright (C) 1995 Linus Torvalds | ||
5 | */ | ||
6 | |||
7 | #include <linux/signal.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/kernel.h> | ||
10 | #include <linux/errno.h> | ||
11 | #include <linux/string.h> | ||
12 | #include <linux/types.h> | ||
13 | #include <linux/ptrace.h> | ||
14 | #include <linux/mman.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/smp.h> | ||
17 | #include <linux/interrupt.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/tty.h> | ||
20 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
21 | #include <linux/highmem.h> | ||
22 | #include <linux/bootmem.h> /* for max_low_pfn */ | ||
23 | #include <linux/vmalloc.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/kprobes.h> | ||
26 | #include <linux/uaccess.h> | ||
27 | #include <linux/kdebug.h> | ||
28 | |||
29 | #include <asm/system.h> | ||
30 | #include <asm/desc.h> | ||
31 | #include <asm/segment.h> | ||
32 | |||
33 | extern void die(const char *,struct pt_regs *,long); | ||
34 | |||
35 | static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain); | ||
36 | |||
37 | int register_page_fault_notifier(struct notifier_block *nb) | ||
38 | { | ||
39 | vmalloc_sync_all(); | ||
40 | return atomic_notifier_chain_register(¬ify_page_fault_chain, nb); | ||
41 | } | ||
42 | EXPORT_SYMBOL_GPL(register_page_fault_notifier); | ||
43 | |||
44 | int unregister_page_fault_notifier(struct notifier_block *nb) | ||
45 | { | ||
46 | return atomic_notifier_chain_unregister(¬ify_page_fault_chain, nb); | ||
47 | } | ||
48 | EXPORT_SYMBOL_GPL(unregister_page_fault_notifier); | ||
49 | |||
50 | static inline int notify_page_fault(struct pt_regs *regs, long err) | ||
51 | { | ||
52 | struct die_args args = { | ||
53 | .regs = regs, | ||
54 | .str = "page fault", | ||
55 | .err = err, | ||
56 | .trapnr = 14, | ||
57 | .signr = SIGSEGV | ||
58 | }; | ||
59 | return atomic_notifier_call_chain(¬ify_page_fault_chain, | ||
60 | DIE_PAGE_FAULT, &args); | ||
61 | } | ||
62 | |||
63 | /* | ||
64 | * Return EIP plus the CS segment base. The segment limit is also | ||
65 | * adjusted, clamped to the kernel/user address space (whichever is | ||
66 | * appropriate), and returned in *eip_limit. | ||
67 | * | ||
68 | * The segment is checked, because it might have been changed by another | ||
69 | * task between the original faulting instruction and here. | ||
70 | * | ||
71 | * If CS is no longer a valid code segment, or if EIP is beyond the | ||
72 | * limit, or if it is a kernel address when CS is not a kernel segment, | ||
73 | * then the returned value will be greater than *eip_limit. | ||
74 | * | ||
75 | * This is slow, but is very rarely executed. | ||
76 | */ | ||
77 | static inline unsigned long get_segment_eip(struct pt_regs *regs, | ||
78 | unsigned long *eip_limit) | ||
79 | { | ||
80 | unsigned long eip = regs->eip; | ||
81 | unsigned seg = regs->xcs & 0xffff; | ||
82 | u32 seg_ar, seg_limit, base, *desc; | ||
83 | |||
84 | /* Unlikely, but must come before segment checks. */ | ||
85 | if (unlikely(regs->eflags & VM_MASK)) { | ||
86 | base = seg << 4; | ||
87 | *eip_limit = base + 0xffff; | ||
88 | return base + (eip & 0xffff); | ||
89 | } | ||
90 | |||
91 | /* The standard kernel/user address space limit. */ | ||
92 | *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg; | ||
93 | |||
94 | /* By far the most common cases. */ | ||
95 | if (likely(SEGMENT_IS_FLAT_CODE(seg))) | ||
96 | return eip; | ||
97 | |||
98 | /* Check the segment exists, is within the current LDT/GDT size, | ||
99 | that kernel/user (ring 0..3) has the appropriate privilege, | ||
100 | that it's a code segment, and get the limit. */ | ||
101 | __asm__ ("larl %3,%0; lsll %3,%1" | ||
102 | : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | ||
103 | if ((~seg_ar & 0x9800) || eip > seg_limit) { | ||
104 | *eip_limit = 0; | ||
105 | return 1; /* So that returned eip > *eip_limit. */ | ||
106 | } | ||
107 | |||
108 | /* Get the GDT/LDT descriptor base. | ||
109 | When you look for races in this code remember that | ||
110 | LDT and other horrors are only used in user space. */ | ||
111 | if (seg & (1<<2)) { | ||
112 | /* Must lock the LDT while reading it. */ | ||
113 | down(¤t->mm->context.sem); | ||
114 | desc = current->mm->context.ldt; | ||
115 | desc = (void *)desc + (seg & ~7); | ||
116 | } else { | ||
117 | /* Must disable preemption while reading the GDT. */ | ||
118 | desc = (u32 *)get_cpu_gdt_table(get_cpu()); | ||
119 | desc = (void *)desc + (seg & ~7); | ||
120 | } | ||
121 | |||
122 | /* Decode the code segment base from the descriptor */ | ||
123 | base = get_desc_base((unsigned long *)desc); | ||
124 | |||
125 | if (seg & (1<<2)) { | ||
126 | up(¤t->mm->context.sem); | ||
127 | } else | ||
128 | put_cpu(); | ||
129 | |||
130 | /* Adjust EIP and segment limit, and clamp at the kernel limit. | ||
131 | It's legitimate for segments to wrap at 0xffffffff. */ | ||
132 | seg_limit += base; | ||
133 | if (seg_limit < *eip_limit && seg_limit >= base) | ||
134 | *eip_limit = seg_limit; | ||
135 | return eip + base; | ||
136 | } | ||
137 | |||
138 | /* | ||
139 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | ||
140 | * Check that here and ignore it. | ||
141 | */ | ||
142 | static int __is_prefetch(struct pt_regs *regs, unsigned long addr) | ||
143 | { | ||
144 | unsigned long limit; | ||
145 | unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit); | ||
146 | int scan_more = 1; | ||
147 | int prefetch = 0; | ||
148 | int i; | ||
149 | |||
150 | for (i = 0; scan_more && i < 15; i++) { | ||
151 | unsigned char opcode; | ||
152 | unsigned char instr_hi; | ||
153 | unsigned char instr_lo; | ||
154 | |||
155 | if (instr > (unsigned char *)limit) | ||
156 | break; | ||
157 | if (probe_kernel_address(instr, opcode)) | ||
158 | break; | ||
159 | |||
160 | instr_hi = opcode & 0xf0; | ||
161 | instr_lo = opcode & 0x0f; | ||
162 | instr++; | ||
163 | |||
164 | switch (instr_hi) { | ||
165 | case 0x20: | ||
166 | case 0x30: | ||
167 | /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */ | ||
168 | scan_more = ((instr_lo & 7) == 0x6); | ||
169 | break; | ||
170 | |||
171 | case 0x60: | ||
172 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
173 | scan_more = (instr_lo & 0xC) == 0x4; | ||
174 | break; | ||
175 | case 0xF0: | ||
176 | /* 0xF0, 0xF2, and 0xF3 are valid prefixes */ | ||
177 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
178 | break; | ||
179 | case 0x00: | ||
180 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
181 | scan_more = 0; | ||
182 | if (instr > (unsigned char *)limit) | ||
183 | break; | ||
184 | if (probe_kernel_address(instr, opcode)) | ||
185 | break; | ||
186 | prefetch = (instr_lo == 0xF) && | ||
187 | (opcode == 0x0D || opcode == 0x18); | ||
188 | break; | ||
189 | default: | ||
190 | scan_more = 0; | ||
191 | break; | ||
192 | } | ||
193 | } | ||
194 | return prefetch; | ||
195 | } | ||
196 | |||
197 | static inline int is_prefetch(struct pt_regs *regs, unsigned long addr, | ||
198 | unsigned long error_code) | ||
199 | { | ||
200 | if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | ||
201 | boot_cpu_data.x86 >= 6)) { | ||
202 | /* Catch an obscure case of prefetch inside an NX page. */ | ||
203 | if (nx_enabled && (error_code & 16)) | ||
204 | return 0; | ||
205 | return __is_prefetch(regs, addr); | ||
206 | } | ||
207 | return 0; | ||
208 | } | ||
209 | |||
210 | static noinline void force_sig_info_fault(int si_signo, int si_code, | ||
211 | unsigned long address, struct task_struct *tsk) | ||
212 | { | ||
213 | siginfo_t info; | ||
214 | |||
215 | info.si_signo = si_signo; | ||
216 | info.si_errno = 0; | ||
217 | info.si_code = si_code; | ||
218 | info.si_addr = (void __user *)address; | ||
219 | force_sig_info(si_signo, &info, tsk); | ||
220 | } | ||
221 | |||
222 | fastcall void do_invalid_op(struct pt_regs *, unsigned long); | ||
223 | |||
224 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | ||
225 | { | ||
226 | unsigned index = pgd_index(address); | ||
227 | pgd_t *pgd_k; | ||
228 | pud_t *pud, *pud_k; | ||
229 | pmd_t *pmd, *pmd_k; | ||
230 | |||
231 | pgd += index; | ||
232 | pgd_k = init_mm.pgd + index; | ||
233 | |||
234 | if (!pgd_present(*pgd_k)) | ||
235 | return NULL; | ||
236 | |||
237 | /* | ||
238 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | ||
239 | * and redundant with the set_pmd() on non-PAE. As would | ||
240 | * set_pud. | ||
241 | */ | ||
242 | |||
243 | pud = pud_offset(pgd, address); | ||
244 | pud_k = pud_offset(pgd_k, address); | ||
245 | if (!pud_present(*pud_k)) | ||
246 | return NULL; | ||
247 | |||
248 | pmd = pmd_offset(pud, address); | ||
249 | pmd_k = pmd_offset(pud_k, address); | ||
250 | if (!pmd_present(*pmd_k)) | ||
251 | return NULL; | ||
252 | if (!pmd_present(*pmd)) { | ||
253 | set_pmd(pmd, *pmd_k); | ||
254 | arch_flush_lazy_mmu_mode(); | ||
255 | } else | ||
256 | BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); | ||
257 | return pmd_k; | ||
258 | } | ||
259 | |||
260 | /* | ||
261 | * Handle a fault on the vmalloc or module mapping area | ||
262 | * | ||
263 | * This assumes no large pages in there. | ||
264 | */ | ||
265 | static inline int vmalloc_fault(unsigned long address) | ||
266 | { | ||
267 | unsigned long pgd_paddr; | ||
268 | pmd_t *pmd_k; | ||
269 | pte_t *pte_k; | ||
270 | /* | ||
271 | * Synchronize this task's top level page-table | ||
272 | * with the 'reference' page table. | ||
273 | * | ||
274 | * Do _not_ use "current" here. We might be inside | ||
275 | * an interrupt in the middle of a task switch.. | ||
276 | */ | ||
277 | pgd_paddr = read_cr3(); | ||
278 | pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | ||
279 | if (!pmd_k) | ||
280 | return -1; | ||
281 | pte_k = pte_offset_kernel(pmd_k, address); | ||
282 | if (!pte_present(*pte_k)) | ||
283 | return -1; | ||
284 | return 0; | ||
285 | } | ||
286 | |||
287 | int show_unhandled_signals = 1; | ||
288 | |||
289 | /* | ||
290 | * This routine handles page faults. It determines the address, | ||
291 | * and the problem, and then passes it off to one of the appropriate | ||
292 | * routines. | ||
293 | * | ||
294 | * error_code: | ||
295 | * bit 0 == 0 means no page found, 1 means protection fault | ||
296 | * bit 1 == 0 means read, 1 means write | ||
297 | * bit 2 == 0 means kernel, 1 means user-mode | ||
298 | * bit 3 == 1 means use of reserved bit detected | ||
299 | * bit 4 == 1 means fault was an instruction fetch | ||
300 | */ | ||
301 | fastcall void __kprobes do_page_fault(struct pt_regs *regs, | ||
302 | unsigned long error_code) | ||
303 | { | ||
304 | struct task_struct *tsk; | ||
305 | struct mm_struct *mm; | ||
306 | struct vm_area_struct * vma; | ||
307 | unsigned long address; | ||
308 | int write, si_code; | ||
309 | int fault; | ||
310 | |||
311 | /* get the address */ | ||
312 | address = read_cr2(); | ||
313 | |||
314 | tsk = current; | ||
315 | |||
316 | si_code = SEGV_MAPERR; | ||
317 | |||
318 | /* | ||
319 | * We fault-in kernel-space virtual memory on-demand. The | ||
320 | * 'reference' page table is init_mm.pgd. | ||
321 | * | ||
322 | * NOTE! We MUST NOT take any locks for this case. We may | ||
323 | * be in an interrupt or a critical region, and should | ||
324 | * only copy the information from the master page table, | ||
325 | * nothing more. | ||
326 | * | ||
327 | * This verifies that the fault happens in kernel space | ||
328 | * (error_code & 4) == 0, and that the fault was not a | ||
329 | * protection error (error_code & 9) == 0. | ||
330 | */ | ||
331 | if (unlikely(address >= TASK_SIZE)) { | ||
332 | if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0) | ||
333 | return; | ||
334 | if (notify_page_fault(regs, error_code) == NOTIFY_STOP) | ||
335 | return; | ||
336 | /* | ||
337 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
338 | * fault we could otherwise deadlock. | ||
339 | */ | ||
340 | goto bad_area_nosemaphore; | ||
341 | } | ||
342 | |||
343 | if (notify_page_fault(regs, error_code) == NOTIFY_STOP) | ||
344 | return; | ||
345 | |||
346 | /* It's safe to allow irq's after cr2 has been saved and the vmalloc | ||
347 | fault has been handled. */ | ||
348 | if (regs->eflags & (X86_EFLAGS_IF|VM_MASK)) | ||
349 | local_irq_enable(); | ||
350 | |||
351 | mm = tsk->mm; | ||
352 | |||
353 | /* | ||
354 | * If we're in an interrupt, have no user context or are running in an | ||
355 | * atomic region then we must not take the fault.. | ||
356 | */ | ||
357 | if (in_atomic() || !mm) | ||
358 | goto bad_area_nosemaphore; | ||
359 | |||
360 | /* When running in the kernel we expect faults to occur only to | ||
361 | * addresses in user space. All other faults represent errors in the | ||
362 | * kernel and should generate an OOPS. Unfortunatly, in the case of an | ||
363 | * erroneous fault occurring in a code path which already holds mmap_sem | ||
364 | * we will deadlock attempting to validate the fault against the | ||
365 | * address space. Luckily the kernel only validly references user | ||
366 | * space from well defined areas of code, which are listed in the | ||
367 | * exceptions table. | ||
368 | * | ||
369 | * As the vast majority of faults will be valid we will only perform | ||
370 | * the source reference check when there is a possibilty of a deadlock. | ||
371 | * Attempt to lock the address space, if we cannot we then validate the | ||
372 | * source. If this is invalid we can skip the address space check, | ||
373 | * thus avoiding the deadlock. | ||
374 | */ | ||
375 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
376 | if ((error_code & 4) == 0 && | ||
377 | !search_exception_tables(regs->eip)) | ||
378 | goto bad_area_nosemaphore; | ||
379 | down_read(&mm->mmap_sem); | ||
380 | } | ||
381 | |||
382 | vma = find_vma(mm, address); | ||
383 | if (!vma) | ||
384 | goto bad_area; | ||
385 | if (vma->vm_start <= address) | ||
386 | goto good_area; | ||
387 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
388 | goto bad_area; | ||
389 | if (error_code & 4) { | ||
390 | /* | ||
391 | * Accessing the stack below %esp is always a bug. | ||
392 | * The large cushion allows instructions like enter | ||
393 | * and pusha to work. ("enter $65535,$31" pushes | ||
394 | * 32 pointers and then decrements %esp by 65535.) | ||
395 | */ | ||
396 | if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp) | ||
397 | goto bad_area; | ||
398 | } | ||
399 | if (expand_stack(vma, address)) | ||
400 | goto bad_area; | ||
401 | /* | ||
402 | * Ok, we have a good vm_area for this memory access, so | ||
403 | * we can handle it.. | ||
404 | */ | ||
405 | good_area: | ||
406 | si_code = SEGV_ACCERR; | ||
407 | write = 0; | ||
408 | switch (error_code & 3) { | ||
409 | default: /* 3: write, present */ | ||
410 | /* fall through */ | ||
411 | case 2: /* write, not present */ | ||
412 | if (!(vma->vm_flags & VM_WRITE)) | ||
413 | goto bad_area; | ||
414 | write++; | ||
415 | break; | ||
416 | case 1: /* read, present */ | ||
417 | goto bad_area; | ||
418 | case 0: /* read, not present */ | ||
419 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | ||
420 | goto bad_area; | ||
421 | } | ||
422 | |||
423 | survive: | ||
424 | /* | ||
425 | * If for any reason at all we couldn't handle the fault, | ||
426 | * make sure we exit gracefully rather than endlessly redo | ||
427 | * the fault. | ||
428 | */ | ||
429 | fault = handle_mm_fault(mm, vma, address, write); | ||
430 | if (unlikely(fault & VM_FAULT_ERROR)) { | ||
431 | if (fault & VM_FAULT_OOM) | ||
432 | goto out_of_memory; | ||
433 | else if (fault & VM_FAULT_SIGBUS) | ||
434 | goto do_sigbus; | ||
435 | BUG(); | ||
436 | } | ||
437 | if (fault & VM_FAULT_MAJOR) | ||
438 | tsk->maj_flt++; | ||
439 | else | ||
440 | tsk->min_flt++; | ||
441 | |||
442 | /* | ||
443 | * Did it hit the DOS screen memory VA from vm86 mode? | ||
444 | */ | ||
445 | if (regs->eflags & VM_MASK) { | ||
446 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | ||
447 | if (bit < 32) | ||
448 | tsk->thread.screen_bitmap |= 1 << bit; | ||
449 | } | ||
450 | up_read(&mm->mmap_sem); | ||
451 | return; | ||
452 | |||
453 | /* | ||
454 | * Something tried to access memory that isn't in our memory map.. | ||
455 | * Fix it, but check if it's kernel or user first.. | ||
456 | */ | ||
457 | bad_area: | ||
458 | up_read(&mm->mmap_sem); | ||
459 | |||
460 | bad_area_nosemaphore: | ||
461 | /* User mode accesses just cause a SIGSEGV */ | ||
462 | if (error_code & 4) { | ||
463 | /* | ||
464 | * It's possible to have interrupts off here. | ||
465 | */ | ||
466 | local_irq_enable(); | ||
467 | |||
468 | /* | ||
469 | * Valid to do another page fault here because this one came | ||
470 | * from user space. | ||
471 | */ | ||
472 | if (is_prefetch(regs, address, error_code)) | ||
473 | return; | ||
474 | |||
475 | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | ||
476 | printk_ratelimit()) { | ||
477 | printk("%s%s[%d]: segfault at %08lx eip %08lx " | ||
478 | "esp %08lx error %lx\n", | ||
479 | tsk->pid > 1 ? KERN_INFO : KERN_EMERG, | ||
480 | tsk->comm, tsk->pid, address, regs->eip, | ||
481 | regs->esp, error_code); | ||
482 | } | ||
483 | tsk->thread.cr2 = address; | ||
484 | /* Kernel addresses are always protection faults */ | ||
485 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
486 | tsk->thread.trap_no = 14; | ||
487 | force_sig_info_fault(SIGSEGV, si_code, address, tsk); | ||
488 | return; | ||
489 | } | ||
490 | |||
491 | #ifdef CONFIG_X86_F00F_BUG | ||
492 | /* | ||
493 | * Pentium F0 0F C7 C8 bug workaround. | ||
494 | */ | ||
495 | if (boot_cpu_data.f00f_bug) { | ||
496 | unsigned long nr; | ||
497 | |||
498 | nr = (address - idt_descr.address) >> 3; | ||
499 | |||
500 | if (nr == 6) { | ||
501 | do_invalid_op(regs, 0); | ||
502 | return; | ||
503 | } | ||
504 | } | ||
505 | #endif | ||
506 | |||
507 | no_context: | ||
508 | /* Are we prepared to handle this kernel fault? */ | ||
509 | if (fixup_exception(regs)) | ||
510 | return; | ||
511 | |||
512 | /* | ||
513 | * Valid to do another page fault here, because if this fault | ||
514 | * had been triggered by is_prefetch fixup_exception would have | ||
515 | * handled it. | ||
516 | */ | ||
517 | if (is_prefetch(regs, address, error_code)) | ||
518 | return; | ||
519 | |||
520 | /* | ||
521 | * Oops. The kernel tried to access some bad page. We'll have to | ||
522 | * terminate things with extreme prejudice. | ||
523 | */ | ||
524 | |||
525 | bust_spinlocks(1); | ||
526 | |||
527 | if (oops_may_print()) { | ||
528 | __typeof__(pte_val(__pte(0))) page; | ||
529 | |||
530 | #ifdef CONFIG_X86_PAE | ||
531 | if (error_code & 16) { | ||
532 | pte_t *pte = lookup_address(address); | ||
533 | |||
534 | if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) | ||
535 | printk(KERN_CRIT "kernel tried to execute " | ||
536 | "NX-protected page - exploit attempt? " | ||
537 | "(uid: %d)\n", current->uid); | ||
538 | } | ||
539 | #endif | ||
540 | if (address < PAGE_SIZE) | ||
541 | printk(KERN_ALERT "BUG: unable to handle kernel NULL " | ||
542 | "pointer dereference"); | ||
543 | else | ||
544 | printk(KERN_ALERT "BUG: unable to handle kernel paging" | ||
545 | " request"); | ||
546 | printk(" at virtual address %08lx\n",address); | ||
547 | printk(KERN_ALERT " printing eip:\n"); | ||
548 | printk("%08lx\n", regs->eip); | ||
549 | |||
550 | page = read_cr3(); | ||
551 | page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; | ||
552 | #ifdef CONFIG_X86_PAE | ||
553 | printk(KERN_ALERT "*pdpt = %016Lx\n", page); | ||
554 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
555 | && page & _PAGE_PRESENT) { | ||
556 | page &= PAGE_MASK; | ||
557 | page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) | ||
558 | & (PTRS_PER_PMD - 1)]; | ||
559 | printk(KERN_ALERT "*pde = %016Lx\n", page); | ||
560 | page &= ~_PAGE_NX; | ||
561 | } | ||
562 | #else | ||
563 | printk(KERN_ALERT "*pde = %08lx\n", page); | ||
564 | #endif | ||
565 | |||
566 | /* | ||
567 | * We must not directly access the pte in the highpte | ||
568 | * case if the page table is located in highmem. | ||
569 | * And let's rather not kmap-atomic the pte, just in case | ||
570 | * it's allocated already. | ||
571 | */ | ||
572 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
573 | && (page & _PAGE_PRESENT)) { | ||
574 | page &= PAGE_MASK; | ||
575 | page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) | ||
576 | & (PTRS_PER_PTE - 1)]; | ||
577 | printk(KERN_ALERT "*pte = %0*Lx\n", sizeof(page)*2, (u64)page); | ||
578 | } | ||
579 | } | ||
580 | |||
581 | tsk->thread.cr2 = address; | ||
582 | tsk->thread.trap_no = 14; | ||
583 | tsk->thread.error_code = error_code; | ||
584 | die("Oops", regs, error_code); | ||
585 | bust_spinlocks(0); | ||
586 | do_exit(SIGKILL); | ||
587 | |||
588 | /* | ||
589 | * We ran out of memory, or some other thing happened to us that made | ||
590 | * us unable to handle the page fault gracefully. | ||
591 | */ | ||
592 | out_of_memory: | ||
593 | up_read(&mm->mmap_sem); | ||
594 | if (is_init(tsk)) { | ||
595 | yield(); | ||
596 | down_read(&mm->mmap_sem); | ||
597 | goto survive; | ||
598 | } | ||
599 | printk("VM: killing process %s\n", tsk->comm); | ||
600 | if (error_code & 4) | ||
601 | do_exit(SIGKILL); | ||
602 | goto no_context; | ||
603 | |||
604 | do_sigbus: | ||
605 | up_read(&mm->mmap_sem); | ||
606 | |||
607 | /* Kernel mode? Handle exceptions or die */ | ||
608 | if (!(error_code & 4)) | ||
609 | goto no_context; | ||
610 | |||
611 | /* User space => ok to do another page fault */ | ||
612 | if (is_prefetch(regs, address, error_code)) | ||
613 | return; | ||
614 | |||
615 | tsk->thread.cr2 = address; | ||
616 | tsk->thread.error_code = error_code; | ||
617 | tsk->thread.trap_no = 14; | ||
618 | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); | ||
619 | } | ||
620 | |||
621 | void vmalloc_sync_all(void) | ||
622 | { | ||
623 | /* | ||
624 | * Note that races in the updates of insync and start aren't | ||
625 | * problematic: insync can only get set bits added, and updates to | ||
626 | * start are only improving performance (without affecting correctness | ||
627 | * if undone). | ||
628 | */ | ||
629 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | ||
630 | static unsigned long start = TASK_SIZE; | ||
631 | unsigned long address; | ||
632 | |||
633 | if (SHARED_KERNEL_PMD) | ||
634 | return; | ||
635 | |||
636 | BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK); | ||
637 | for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) { | ||
638 | if (!test_bit(pgd_index(address), insync)) { | ||
639 | unsigned long flags; | ||
640 | struct page *page; | ||
641 | |||
642 | spin_lock_irqsave(&pgd_lock, flags); | ||
643 | for (page = pgd_list; page; page = | ||
644 | (struct page *)page->index) | ||
645 | if (!vmalloc_sync_one(page_address(page), | ||
646 | address)) { | ||
647 | BUG_ON(page != pgd_list); | ||
648 | break; | ||
649 | } | ||
650 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
651 | if (!page) | ||
652 | set_bit(pgd_index(address), insync); | ||
653 | } | ||
654 | if (address == start && test_bit(pgd_index(address), insync)) | ||
655 | start = address + PGDIR_SIZE; | ||
656 | } | ||
657 | } | ||
diff --git a/arch/x86/mm/highmem_32.c b/arch/x86/mm/highmem_32.c new file mode 100644 index 000000000000..1c3bf95f7356 --- /dev/null +++ b/arch/x86/mm/highmem_32.c | |||
@@ -0,0 +1,113 @@ | |||
1 | #include <linux/highmem.h> | ||
2 | #include <linux/module.h> | ||
3 | |||
4 | void *kmap(struct page *page) | ||
5 | { | ||
6 | might_sleep(); | ||
7 | if (!PageHighMem(page)) | ||
8 | return page_address(page); | ||
9 | return kmap_high(page); | ||
10 | } | ||
11 | |||
12 | void kunmap(struct page *page) | ||
13 | { | ||
14 | if (in_interrupt()) | ||
15 | BUG(); | ||
16 | if (!PageHighMem(page)) | ||
17 | return; | ||
18 | kunmap_high(page); | ||
19 | } | ||
20 | |||
21 | /* | ||
22 | * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because | ||
23 | * no global lock is needed and because the kmap code must perform a global TLB | ||
24 | * invalidation when the kmap pool wraps. | ||
25 | * | ||
26 | * However when holding an atomic kmap is is not legal to sleep, so atomic | ||
27 | * kmaps are appropriate for short, tight code paths only. | ||
28 | */ | ||
29 | void *kmap_atomic_prot(struct page *page, enum km_type type, pgprot_t prot) | ||
30 | { | ||
31 | enum fixed_addresses idx; | ||
32 | unsigned long vaddr; | ||
33 | |||
34 | /* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */ | ||
35 | pagefault_disable(); | ||
36 | |||
37 | if (!PageHighMem(page)) | ||
38 | return page_address(page); | ||
39 | |||
40 | idx = type + KM_TYPE_NR*smp_processor_id(); | ||
41 | vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); | ||
42 | BUG_ON(!pte_none(*(kmap_pte-idx))); | ||
43 | set_pte(kmap_pte-idx, mk_pte(page, prot)); | ||
44 | arch_flush_lazy_mmu_mode(); | ||
45 | |||
46 | return (void *)vaddr; | ||
47 | } | ||
48 | |||
49 | void *kmap_atomic(struct page *page, enum km_type type) | ||
50 | { | ||
51 | return kmap_atomic_prot(page, type, kmap_prot); | ||
52 | } | ||
53 | |||
54 | void kunmap_atomic(void *kvaddr, enum km_type type) | ||
55 | { | ||
56 | unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; | ||
57 | enum fixed_addresses idx = type + KM_TYPE_NR*smp_processor_id(); | ||
58 | |||
59 | /* | ||
60 | * Force other mappings to Oops if they'll try to access this pte | ||
61 | * without first remap it. Keeping stale mappings around is a bad idea | ||
62 | * also, in case the page changes cacheability attributes or becomes | ||
63 | * a protected page in a hypervisor. | ||
64 | */ | ||
65 | if (vaddr == __fix_to_virt(FIX_KMAP_BEGIN+idx)) | ||
66 | kpte_clear_flush(kmap_pte-idx, vaddr); | ||
67 | else { | ||
68 | #ifdef CONFIG_DEBUG_HIGHMEM | ||
69 | BUG_ON(vaddr < PAGE_OFFSET); | ||
70 | BUG_ON(vaddr >= (unsigned long)high_memory); | ||
71 | #endif | ||
72 | } | ||
73 | |||
74 | arch_flush_lazy_mmu_mode(); | ||
75 | pagefault_enable(); | ||
76 | } | ||
77 | |||
78 | /* This is the same as kmap_atomic() but can map memory that doesn't | ||
79 | * have a struct page associated with it. | ||
80 | */ | ||
81 | void *kmap_atomic_pfn(unsigned long pfn, enum km_type type) | ||
82 | { | ||
83 | enum fixed_addresses idx; | ||
84 | unsigned long vaddr; | ||
85 | |||
86 | pagefault_disable(); | ||
87 | |||
88 | idx = type + KM_TYPE_NR*smp_processor_id(); | ||
89 | vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); | ||
90 | set_pte(kmap_pte-idx, pfn_pte(pfn, kmap_prot)); | ||
91 | arch_flush_lazy_mmu_mode(); | ||
92 | |||
93 | return (void*) vaddr; | ||
94 | } | ||
95 | |||
96 | struct page *kmap_atomic_to_page(void *ptr) | ||
97 | { | ||
98 | unsigned long idx, vaddr = (unsigned long)ptr; | ||
99 | pte_t *pte; | ||
100 | |||
101 | if (vaddr < FIXADDR_START) | ||
102 | return virt_to_page(ptr); | ||
103 | |||
104 | idx = virt_to_fix(vaddr); | ||
105 | pte = kmap_pte - (idx - FIX_KMAP_BEGIN); | ||
106 | return pte_page(*pte); | ||
107 | } | ||
108 | |||
109 | EXPORT_SYMBOL(kmap); | ||
110 | EXPORT_SYMBOL(kunmap); | ||
111 | EXPORT_SYMBOL(kmap_atomic); | ||
112 | EXPORT_SYMBOL(kunmap_atomic); | ||
113 | EXPORT_SYMBOL(kmap_atomic_to_page); | ||
diff --git a/arch/x86/mm/hugetlbpage.c b/arch/x86/mm/hugetlbpage.c new file mode 100644 index 000000000000..6c06d9c0488e --- /dev/null +++ b/arch/x86/mm/hugetlbpage.c | |||
@@ -0,0 +1,391 @@ | |||
1 | /* | ||
2 | * IA-32 Huge TLB Page Support for Kernel. | ||
3 | * | ||
4 | * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | ||
5 | */ | ||
6 | |||
7 | #include <linux/init.h> | ||
8 | #include <linux/fs.h> | ||
9 | #include <linux/mm.h> | ||
10 | #include <linux/hugetlb.h> | ||
11 | #include <linux/pagemap.h> | ||
12 | #include <linux/slab.h> | ||
13 | #include <linux/err.h> | ||
14 | #include <linux/sysctl.h> | ||
15 | #include <asm/mman.h> | ||
16 | #include <asm/tlb.h> | ||
17 | #include <asm/tlbflush.h> | ||
18 | |||
19 | static unsigned long page_table_shareable(struct vm_area_struct *svma, | ||
20 | struct vm_area_struct *vma, | ||
21 | unsigned long addr, pgoff_t idx) | ||
22 | { | ||
23 | unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + | ||
24 | svma->vm_start; | ||
25 | unsigned long sbase = saddr & PUD_MASK; | ||
26 | unsigned long s_end = sbase + PUD_SIZE; | ||
27 | |||
28 | /* | ||
29 | * match the virtual addresses, permission and the alignment of the | ||
30 | * page table page. | ||
31 | */ | ||
32 | if (pmd_index(addr) != pmd_index(saddr) || | ||
33 | vma->vm_flags != svma->vm_flags || | ||
34 | sbase < svma->vm_start || svma->vm_end < s_end) | ||
35 | return 0; | ||
36 | |||
37 | return saddr; | ||
38 | } | ||
39 | |||
40 | static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) | ||
41 | { | ||
42 | unsigned long base = addr & PUD_MASK; | ||
43 | unsigned long end = base + PUD_SIZE; | ||
44 | |||
45 | /* | ||
46 | * check on proper vm_flags and page table alignment | ||
47 | */ | ||
48 | if (vma->vm_flags & VM_MAYSHARE && | ||
49 | vma->vm_start <= base && end <= vma->vm_end) | ||
50 | return 1; | ||
51 | return 0; | ||
52 | } | ||
53 | |||
54 | /* | ||
55 | * search for a shareable pmd page for hugetlb. | ||
56 | */ | ||
57 | static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | ||
58 | { | ||
59 | struct vm_area_struct *vma = find_vma(mm, addr); | ||
60 | struct address_space *mapping = vma->vm_file->f_mapping; | ||
61 | pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + | ||
62 | vma->vm_pgoff; | ||
63 | struct prio_tree_iter iter; | ||
64 | struct vm_area_struct *svma; | ||
65 | unsigned long saddr; | ||
66 | pte_t *spte = NULL; | ||
67 | |||
68 | if (!vma_shareable(vma, addr)) | ||
69 | return; | ||
70 | |||
71 | spin_lock(&mapping->i_mmap_lock); | ||
72 | vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) { | ||
73 | if (svma == vma) | ||
74 | continue; | ||
75 | |||
76 | saddr = page_table_shareable(svma, vma, addr, idx); | ||
77 | if (saddr) { | ||
78 | spte = huge_pte_offset(svma->vm_mm, saddr); | ||
79 | if (spte) { | ||
80 | get_page(virt_to_page(spte)); | ||
81 | break; | ||
82 | } | ||
83 | } | ||
84 | } | ||
85 | |||
86 | if (!spte) | ||
87 | goto out; | ||
88 | |||
89 | spin_lock(&mm->page_table_lock); | ||
90 | if (pud_none(*pud)) | ||
91 | pud_populate(mm, pud, (unsigned long) spte & PAGE_MASK); | ||
92 | else | ||
93 | put_page(virt_to_page(spte)); | ||
94 | spin_unlock(&mm->page_table_lock); | ||
95 | out: | ||
96 | spin_unlock(&mapping->i_mmap_lock); | ||
97 | } | ||
98 | |||
99 | /* | ||
100 | * unmap huge page backed by shared pte. | ||
101 | * | ||
102 | * Hugetlb pte page is ref counted at the time of mapping. If pte is shared | ||
103 | * indicated by page_count > 1, unmap is achieved by clearing pud and | ||
104 | * decrementing the ref count. If count == 1, the pte page is not shared. | ||
105 | * | ||
106 | * called with vma->vm_mm->page_table_lock held. | ||
107 | * | ||
108 | * returns: 1 successfully unmapped a shared pte page | ||
109 | * 0 the underlying pte page is not shared, or it is the last user | ||
110 | */ | ||
111 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | ||
112 | { | ||
113 | pgd_t *pgd = pgd_offset(mm, *addr); | ||
114 | pud_t *pud = pud_offset(pgd, *addr); | ||
115 | |||
116 | BUG_ON(page_count(virt_to_page(ptep)) == 0); | ||
117 | if (page_count(virt_to_page(ptep)) == 1) | ||
118 | return 0; | ||
119 | |||
120 | pud_clear(pud); | ||
121 | put_page(virt_to_page(ptep)); | ||
122 | *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; | ||
123 | return 1; | ||
124 | } | ||
125 | |||
126 | pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr) | ||
127 | { | ||
128 | pgd_t *pgd; | ||
129 | pud_t *pud; | ||
130 | pte_t *pte = NULL; | ||
131 | |||
132 | pgd = pgd_offset(mm, addr); | ||
133 | pud = pud_alloc(mm, pgd, addr); | ||
134 | if (pud) { | ||
135 | if (pud_none(*pud)) | ||
136 | huge_pmd_share(mm, addr, pud); | ||
137 | pte = (pte_t *) pmd_alloc(mm, pud, addr); | ||
138 | } | ||
139 | BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); | ||
140 | |||
141 | return pte; | ||
142 | } | ||
143 | |||
144 | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | ||
145 | { | ||
146 | pgd_t *pgd; | ||
147 | pud_t *pud; | ||
148 | pmd_t *pmd = NULL; | ||
149 | |||
150 | pgd = pgd_offset(mm, addr); | ||
151 | if (pgd_present(*pgd)) { | ||
152 | pud = pud_offset(pgd, addr); | ||
153 | if (pud_present(*pud)) | ||
154 | pmd = pmd_offset(pud, addr); | ||
155 | } | ||
156 | return (pte_t *) pmd; | ||
157 | } | ||
158 | |||
159 | #if 0 /* This is just for testing */ | ||
160 | struct page * | ||
161 | follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) | ||
162 | { | ||
163 | unsigned long start = address; | ||
164 | int length = 1; | ||
165 | int nr; | ||
166 | struct page *page; | ||
167 | struct vm_area_struct *vma; | ||
168 | |||
169 | vma = find_vma(mm, addr); | ||
170 | if (!vma || !is_vm_hugetlb_page(vma)) | ||
171 | return ERR_PTR(-EINVAL); | ||
172 | |||
173 | pte = huge_pte_offset(mm, address); | ||
174 | |||
175 | /* hugetlb should be locked, and hence, prefaulted */ | ||
176 | WARN_ON(!pte || pte_none(*pte)); | ||
177 | |||
178 | page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)]; | ||
179 | |||
180 | WARN_ON(!PageCompound(page)); | ||
181 | |||
182 | return page; | ||
183 | } | ||
184 | |||
185 | int pmd_huge(pmd_t pmd) | ||
186 | { | ||
187 | return 0; | ||
188 | } | ||
189 | |||
190 | struct page * | ||
191 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | ||
192 | pmd_t *pmd, int write) | ||
193 | { | ||
194 | return NULL; | ||
195 | } | ||
196 | |||
197 | #else | ||
198 | |||
199 | struct page * | ||
200 | follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) | ||
201 | { | ||
202 | return ERR_PTR(-EINVAL); | ||
203 | } | ||
204 | |||
205 | int pmd_huge(pmd_t pmd) | ||
206 | { | ||
207 | return !!(pmd_val(pmd) & _PAGE_PSE); | ||
208 | } | ||
209 | |||
210 | struct page * | ||
211 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | ||
212 | pmd_t *pmd, int write) | ||
213 | { | ||
214 | struct page *page; | ||
215 | |||
216 | page = pte_page(*(pte_t *)pmd); | ||
217 | if (page) | ||
218 | page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT); | ||
219 | return page; | ||
220 | } | ||
221 | #endif | ||
222 | |||
223 | /* x86_64 also uses this file */ | ||
224 | |||
225 | #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA | ||
226 | static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file, | ||
227 | unsigned long addr, unsigned long len, | ||
228 | unsigned long pgoff, unsigned long flags) | ||
229 | { | ||
230 | struct mm_struct *mm = current->mm; | ||
231 | struct vm_area_struct *vma; | ||
232 | unsigned long start_addr; | ||
233 | |||
234 | if (len > mm->cached_hole_size) { | ||
235 | start_addr = mm->free_area_cache; | ||
236 | } else { | ||
237 | start_addr = TASK_UNMAPPED_BASE; | ||
238 | mm->cached_hole_size = 0; | ||
239 | } | ||
240 | |||
241 | full_search: | ||
242 | addr = ALIGN(start_addr, HPAGE_SIZE); | ||
243 | |||
244 | for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { | ||
245 | /* At this point: (!vma || addr < vma->vm_end). */ | ||
246 | if (TASK_SIZE - len < addr) { | ||
247 | /* | ||
248 | * Start a new search - just in case we missed | ||
249 | * some holes. | ||
250 | */ | ||
251 | if (start_addr != TASK_UNMAPPED_BASE) { | ||
252 | start_addr = TASK_UNMAPPED_BASE; | ||
253 | mm->cached_hole_size = 0; | ||
254 | goto full_search; | ||
255 | } | ||
256 | return -ENOMEM; | ||
257 | } | ||
258 | if (!vma || addr + len <= vma->vm_start) { | ||
259 | mm->free_area_cache = addr + len; | ||
260 | return addr; | ||
261 | } | ||
262 | if (addr + mm->cached_hole_size < vma->vm_start) | ||
263 | mm->cached_hole_size = vma->vm_start - addr; | ||
264 | addr = ALIGN(vma->vm_end, HPAGE_SIZE); | ||
265 | } | ||
266 | } | ||
267 | |||
268 | static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file, | ||
269 | unsigned long addr0, unsigned long len, | ||
270 | unsigned long pgoff, unsigned long flags) | ||
271 | { | ||
272 | struct mm_struct *mm = current->mm; | ||
273 | struct vm_area_struct *vma, *prev_vma; | ||
274 | unsigned long base = mm->mmap_base, addr = addr0; | ||
275 | unsigned long largest_hole = mm->cached_hole_size; | ||
276 | int first_time = 1; | ||
277 | |||
278 | /* don't allow allocations above current base */ | ||
279 | if (mm->free_area_cache > base) | ||
280 | mm->free_area_cache = base; | ||
281 | |||
282 | if (len <= largest_hole) { | ||
283 | largest_hole = 0; | ||
284 | mm->free_area_cache = base; | ||
285 | } | ||
286 | try_again: | ||
287 | /* make sure it can fit in the remaining address space */ | ||
288 | if (mm->free_area_cache < len) | ||
289 | goto fail; | ||
290 | |||
291 | /* either no address requested or cant fit in requested address hole */ | ||
292 | addr = (mm->free_area_cache - len) & HPAGE_MASK; | ||
293 | do { | ||
294 | /* | ||
295 | * Lookup failure means no vma is above this address, | ||
296 | * i.e. return with success: | ||
297 | */ | ||
298 | if (!(vma = find_vma_prev(mm, addr, &prev_vma))) | ||
299 | return addr; | ||
300 | |||
301 | /* | ||
302 | * new region fits between prev_vma->vm_end and | ||
303 | * vma->vm_start, use it: | ||
304 | */ | ||
305 | if (addr + len <= vma->vm_start && | ||
306 | (!prev_vma || (addr >= prev_vma->vm_end))) { | ||
307 | /* remember the address as a hint for next time */ | ||
308 | mm->cached_hole_size = largest_hole; | ||
309 | return (mm->free_area_cache = addr); | ||
310 | } else { | ||
311 | /* pull free_area_cache down to the first hole */ | ||
312 | if (mm->free_area_cache == vma->vm_end) { | ||
313 | mm->free_area_cache = vma->vm_start; | ||
314 | mm->cached_hole_size = largest_hole; | ||
315 | } | ||
316 | } | ||
317 | |||
318 | /* remember the largest hole we saw so far */ | ||
319 | if (addr + largest_hole < vma->vm_start) | ||
320 | largest_hole = vma->vm_start - addr; | ||
321 | |||
322 | /* try just below the current vma->vm_start */ | ||
323 | addr = (vma->vm_start - len) & HPAGE_MASK; | ||
324 | } while (len <= vma->vm_start); | ||
325 | |||
326 | fail: | ||
327 | /* | ||
328 | * if hint left us with no space for the requested | ||
329 | * mapping then try again: | ||
330 | */ | ||
331 | if (first_time) { | ||
332 | mm->free_area_cache = base; | ||
333 | largest_hole = 0; | ||
334 | first_time = 0; | ||
335 | goto try_again; | ||
336 | } | ||
337 | /* | ||
338 | * A failed mmap() very likely causes application failure, | ||
339 | * so fall back to the bottom-up function here. This scenario | ||
340 | * can happen with large stack limits and large mmap() | ||
341 | * allocations. | ||
342 | */ | ||
343 | mm->free_area_cache = TASK_UNMAPPED_BASE; | ||
344 | mm->cached_hole_size = ~0UL; | ||
345 | addr = hugetlb_get_unmapped_area_bottomup(file, addr0, | ||
346 | len, pgoff, flags); | ||
347 | |||
348 | /* | ||
349 | * Restore the topdown base: | ||
350 | */ | ||
351 | mm->free_area_cache = base; | ||
352 | mm->cached_hole_size = ~0UL; | ||
353 | |||
354 | return addr; | ||
355 | } | ||
356 | |||
357 | unsigned long | ||
358 | hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | ||
359 | unsigned long len, unsigned long pgoff, unsigned long flags) | ||
360 | { | ||
361 | struct mm_struct *mm = current->mm; | ||
362 | struct vm_area_struct *vma; | ||
363 | |||
364 | if (len & ~HPAGE_MASK) | ||
365 | return -EINVAL; | ||
366 | if (len > TASK_SIZE) | ||
367 | return -ENOMEM; | ||
368 | |||
369 | if (flags & MAP_FIXED) { | ||
370 | if (prepare_hugepage_range(addr, len)) | ||
371 | return -EINVAL; | ||
372 | return addr; | ||
373 | } | ||
374 | |||
375 | if (addr) { | ||
376 | addr = ALIGN(addr, HPAGE_SIZE); | ||
377 | vma = find_vma(mm, addr); | ||
378 | if (TASK_SIZE - len >= addr && | ||
379 | (!vma || addr + len <= vma->vm_start)) | ||
380 | return addr; | ||
381 | } | ||
382 | if (mm->get_unmapped_area == arch_get_unmapped_area) | ||
383 | return hugetlb_get_unmapped_area_bottomup(file, addr, len, | ||
384 | pgoff, flags); | ||
385 | else | ||
386 | return hugetlb_get_unmapped_area_topdown(file, addr, len, | ||
387 | pgoff, flags); | ||
388 | } | ||
389 | |||
390 | #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/ | ||
391 | |||
diff --git a/arch/x86/mm/init_32.c b/arch/x86/mm/init_32.c new file mode 100644 index 000000000000..730a5b177b1f --- /dev/null +++ b/arch/x86/mm/init_32.c | |||
@@ -0,0 +1,858 @@ | |||
1 | /* | ||
2 | * linux/arch/i386/mm/init.c | ||
3 | * | ||
4 | * Copyright (C) 1995 Linus Torvalds | ||
5 | * | ||
6 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | ||
7 | */ | ||
8 | |||
9 | #include <linux/module.h> | ||
10 | #include <linux/signal.h> | ||
11 | #include <linux/sched.h> | ||
12 | #include <linux/kernel.h> | ||
13 | #include <linux/errno.h> | ||
14 | #include <linux/string.h> | ||
15 | #include <linux/types.h> | ||
16 | #include <linux/ptrace.h> | ||
17 | #include <linux/mman.h> | ||
18 | #include <linux/mm.h> | ||
19 | #include <linux/hugetlb.h> | ||
20 | #include <linux/swap.h> | ||
21 | #include <linux/smp.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/highmem.h> | ||
24 | #include <linux/pagemap.h> | ||
25 | #include <linux/pfn.h> | ||
26 | #include <linux/poison.h> | ||
27 | #include <linux/bootmem.h> | ||
28 | #include <linux/slab.h> | ||
29 | #include <linux/proc_fs.h> | ||
30 | #include <linux/efi.h> | ||
31 | #include <linux/memory_hotplug.h> | ||
32 | #include <linux/initrd.h> | ||
33 | #include <linux/cpumask.h> | ||
34 | |||
35 | #include <asm/processor.h> | ||
36 | #include <asm/system.h> | ||
37 | #include <asm/uaccess.h> | ||
38 | #include <asm/pgtable.h> | ||
39 | #include <asm/dma.h> | ||
40 | #include <asm/fixmap.h> | ||
41 | #include <asm/e820.h> | ||
42 | #include <asm/apic.h> | ||
43 | #include <asm/tlb.h> | ||
44 | #include <asm/tlbflush.h> | ||
45 | #include <asm/sections.h> | ||
46 | #include <asm/paravirt.h> | ||
47 | |||
48 | unsigned int __VMALLOC_RESERVE = 128 << 20; | ||
49 | |||
50 | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | ||
51 | unsigned long highstart_pfn, highend_pfn; | ||
52 | |||
53 | static int noinline do_test_wp_bit(void); | ||
54 | |||
55 | /* | ||
56 | * Creates a middle page table and puts a pointer to it in the | ||
57 | * given global directory entry. This only returns the gd entry | ||
58 | * in non-PAE compilation mode, since the middle layer is folded. | ||
59 | */ | ||
60 | static pmd_t * __init one_md_table_init(pgd_t *pgd) | ||
61 | { | ||
62 | pud_t *pud; | ||
63 | pmd_t *pmd_table; | ||
64 | |||
65 | #ifdef CONFIG_X86_PAE | ||
66 | if (!(pgd_val(*pgd) & _PAGE_PRESENT)) { | ||
67 | pmd_table = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE); | ||
68 | |||
69 | paravirt_alloc_pd(__pa(pmd_table) >> PAGE_SHIFT); | ||
70 | set_pgd(pgd, __pgd(__pa(pmd_table) | _PAGE_PRESENT)); | ||
71 | pud = pud_offset(pgd, 0); | ||
72 | if (pmd_table != pmd_offset(pud, 0)) | ||
73 | BUG(); | ||
74 | } | ||
75 | #endif | ||
76 | pud = pud_offset(pgd, 0); | ||
77 | pmd_table = pmd_offset(pud, 0); | ||
78 | return pmd_table; | ||
79 | } | ||
80 | |||
81 | /* | ||
82 | * Create a page table and place a pointer to it in a middle page | ||
83 | * directory entry. | ||
84 | */ | ||
85 | static pte_t * __init one_page_table_init(pmd_t *pmd) | ||
86 | { | ||
87 | if (!(pmd_val(*pmd) & _PAGE_PRESENT)) { | ||
88 | pte_t *page_table = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE); | ||
89 | |||
90 | paravirt_alloc_pt(&init_mm, __pa(page_table) >> PAGE_SHIFT); | ||
91 | set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE)); | ||
92 | BUG_ON(page_table != pte_offset_kernel(pmd, 0)); | ||
93 | } | ||
94 | |||
95 | return pte_offset_kernel(pmd, 0); | ||
96 | } | ||
97 | |||
98 | /* | ||
99 | * This function initializes a certain range of kernel virtual memory | ||
100 | * with new bootmem page tables, everywhere page tables are missing in | ||
101 | * the given range. | ||
102 | */ | ||
103 | |||
104 | /* | ||
105 | * NOTE: The pagetables are allocated contiguous on the physical space | ||
106 | * so we can cache the place of the first one and move around without | ||
107 | * checking the pgd every time. | ||
108 | */ | ||
109 | static void __init page_table_range_init (unsigned long start, unsigned long end, pgd_t *pgd_base) | ||
110 | { | ||
111 | pgd_t *pgd; | ||
112 | pmd_t *pmd; | ||
113 | int pgd_idx, pmd_idx; | ||
114 | unsigned long vaddr; | ||
115 | |||
116 | vaddr = start; | ||
117 | pgd_idx = pgd_index(vaddr); | ||
118 | pmd_idx = pmd_index(vaddr); | ||
119 | pgd = pgd_base + pgd_idx; | ||
120 | |||
121 | for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) { | ||
122 | pmd = one_md_table_init(pgd); | ||
123 | pmd = pmd + pmd_index(vaddr); | ||
124 | for (; (pmd_idx < PTRS_PER_PMD) && (vaddr != end); pmd++, pmd_idx++) { | ||
125 | one_page_table_init(pmd); | ||
126 | |||
127 | vaddr += PMD_SIZE; | ||
128 | } | ||
129 | pmd_idx = 0; | ||
130 | } | ||
131 | } | ||
132 | |||
133 | static inline int is_kernel_text(unsigned long addr) | ||
134 | { | ||
135 | if (addr >= PAGE_OFFSET && addr <= (unsigned long)__init_end) | ||
136 | return 1; | ||
137 | return 0; | ||
138 | } | ||
139 | |||
140 | /* | ||
141 | * This maps the physical memory to kernel virtual address space, a total | ||
142 | * of max_low_pfn pages, by creating page tables starting from address | ||
143 | * PAGE_OFFSET. | ||
144 | */ | ||
145 | static void __init kernel_physical_mapping_init(pgd_t *pgd_base) | ||
146 | { | ||
147 | unsigned long pfn; | ||
148 | pgd_t *pgd; | ||
149 | pmd_t *pmd; | ||
150 | pte_t *pte; | ||
151 | int pgd_idx, pmd_idx, pte_ofs; | ||
152 | |||
153 | pgd_idx = pgd_index(PAGE_OFFSET); | ||
154 | pgd = pgd_base + pgd_idx; | ||
155 | pfn = 0; | ||
156 | |||
157 | for (; pgd_idx < PTRS_PER_PGD; pgd++, pgd_idx++) { | ||
158 | pmd = one_md_table_init(pgd); | ||
159 | if (pfn >= max_low_pfn) | ||
160 | continue; | ||
161 | for (pmd_idx = 0; pmd_idx < PTRS_PER_PMD && pfn < max_low_pfn; pmd++, pmd_idx++) { | ||
162 | unsigned int address = pfn * PAGE_SIZE + PAGE_OFFSET; | ||
163 | |||
164 | /* Map with big pages if possible, otherwise create normal page tables. */ | ||
165 | if (cpu_has_pse) { | ||
166 | unsigned int address2 = (pfn + PTRS_PER_PTE - 1) * PAGE_SIZE + PAGE_OFFSET + PAGE_SIZE-1; | ||
167 | if (is_kernel_text(address) || is_kernel_text(address2)) | ||
168 | set_pmd(pmd, pfn_pmd(pfn, PAGE_KERNEL_LARGE_EXEC)); | ||
169 | else | ||
170 | set_pmd(pmd, pfn_pmd(pfn, PAGE_KERNEL_LARGE)); | ||
171 | |||
172 | pfn += PTRS_PER_PTE; | ||
173 | } else { | ||
174 | pte = one_page_table_init(pmd); | ||
175 | |||
176 | for (pte_ofs = 0; | ||
177 | pte_ofs < PTRS_PER_PTE && pfn < max_low_pfn; | ||
178 | pte++, pfn++, pte_ofs++, address += PAGE_SIZE) { | ||
179 | if (is_kernel_text(address)) | ||
180 | set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC)); | ||
181 | else | ||
182 | set_pte(pte, pfn_pte(pfn, PAGE_KERNEL)); | ||
183 | } | ||
184 | } | ||
185 | } | ||
186 | } | ||
187 | } | ||
188 | |||
189 | static inline int page_kills_ppro(unsigned long pagenr) | ||
190 | { | ||
191 | if (pagenr >= 0x70000 && pagenr <= 0x7003F) | ||
192 | return 1; | ||
193 | return 0; | ||
194 | } | ||
195 | |||
196 | int page_is_ram(unsigned long pagenr) | ||
197 | { | ||
198 | int i; | ||
199 | unsigned long addr, end; | ||
200 | |||
201 | if (efi_enabled) { | ||
202 | efi_memory_desc_t *md; | ||
203 | void *p; | ||
204 | |||
205 | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | ||
206 | md = p; | ||
207 | if (!is_available_memory(md)) | ||
208 | continue; | ||
209 | addr = (md->phys_addr+PAGE_SIZE-1) >> PAGE_SHIFT; | ||
210 | end = (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >> PAGE_SHIFT; | ||
211 | |||
212 | if ((pagenr >= addr) && (pagenr < end)) | ||
213 | return 1; | ||
214 | } | ||
215 | return 0; | ||
216 | } | ||
217 | |||
218 | for (i = 0; i < e820.nr_map; i++) { | ||
219 | |||
220 | if (e820.map[i].type != E820_RAM) /* not usable memory */ | ||
221 | continue; | ||
222 | /* | ||
223 | * !!!FIXME!!! Some BIOSen report areas as RAM that | ||
224 | * are not. Notably the 640->1Mb area. We need a sanity | ||
225 | * check here. | ||
226 | */ | ||
227 | addr = (e820.map[i].addr+PAGE_SIZE-1) >> PAGE_SHIFT; | ||
228 | end = (e820.map[i].addr+e820.map[i].size) >> PAGE_SHIFT; | ||
229 | if ((pagenr >= addr) && (pagenr < end)) | ||
230 | return 1; | ||
231 | } | ||
232 | return 0; | ||
233 | } | ||
234 | |||
235 | #ifdef CONFIG_HIGHMEM | ||
236 | pte_t *kmap_pte; | ||
237 | pgprot_t kmap_prot; | ||
238 | |||
239 | #define kmap_get_fixmap_pte(vaddr) \ | ||
240 | pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), vaddr), (vaddr)), (vaddr)) | ||
241 | |||
242 | static void __init kmap_init(void) | ||
243 | { | ||
244 | unsigned long kmap_vstart; | ||
245 | |||
246 | /* cache the first kmap pte */ | ||
247 | kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN); | ||
248 | kmap_pte = kmap_get_fixmap_pte(kmap_vstart); | ||
249 | |||
250 | kmap_prot = PAGE_KERNEL; | ||
251 | } | ||
252 | |||
253 | static void __init permanent_kmaps_init(pgd_t *pgd_base) | ||
254 | { | ||
255 | pgd_t *pgd; | ||
256 | pud_t *pud; | ||
257 | pmd_t *pmd; | ||
258 | pte_t *pte; | ||
259 | unsigned long vaddr; | ||
260 | |||
261 | vaddr = PKMAP_BASE; | ||
262 | page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base); | ||
263 | |||
264 | pgd = swapper_pg_dir + pgd_index(vaddr); | ||
265 | pud = pud_offset(pgd, vaddr); | ||
266 | pmd = pmd_offset(pud, vaddr); | ||
267 | pte = pte_offset_kernel(pmd, vaddr); | ||
268 | pkmap_page_table = pte; | ||
269 | } | ||
270 | |||
271 | static void __meminit free_new_highpage(struct page *page) | ||
272 | { | ||
273 | init_page_count(page); | ||
274 | __free_page(page); | ||
275 | totalhigh_pages++; | ||
276 | } | ||
277 | |||
278 | void __init add_one_highpage_init(struct page *page, int pfn, int bad_ppro) | ||
279 | { | ||
280 | if (page_is_ram(pfn) && !(bad_ppro && page_kills_ppro(pfn))) { | ||
281 | ClearPageReserved(page); | ||
282 | free_new_highpage(page); | ||
283 | } else | ||
284 | SetPageReserved(page); | ||
285 | } | ||
286 | |||
287 | static int __meminit add_one_highpage_hotplug(struct page *page, unsigned long pfn) | ||
288 | { | ||
289 | free_new_highpage(page); | ||
290 | totalram_pages++; | ||
291 | #ifdef CONFIG_FLATMEM | ||
292 | max_mapnr = max(pfn, max_mapnr); | ||
293 | #endif | ||
294 | num_physpages++; | ||
295 | return 0; | ||
296 | } | ||
297 | |||
298 | /* | ||
299 | * Not currently handling the NUMA case. | ||
300 | * Assuming single node and all memory that | ||
301 | * has been added dynamically that would be | ||
302 | * onlined here is in HIGHMEM | ||
303 | */ | ||
304 | void __meminit online_page(struct page *page) | ||
305 | { | ||
306 | ClearPageReserved(page); | ||
307 | add_one_highpage_hotplug(page, page_to_pfn(page)); | ||
308 | } | ||
309 | |||
310 | |||
311 | #ifdef CONFIG_NUMA | ||
312 | extern void set_highmem_pages_init(int); | ||
313 | #else | ||
314 | static void __init set_highmem_pages_init(int bad_ppro) | ||
315 | { | ||
316 | int pfn; | ||
317 | for (pfn = highstart_pfn; pfn < highend_pfn; pfn++) | ||
318 | add_one_highpage_init(pfn_to_page(pfn), pfn, bad_ppro); | ||
319 | totalram_pages += totalhigh_pages; | ||
320 | } | ||
321 | #endif /* CONFIG_FLATMEM */ | ||
322 | |||
323 | #else | ||
324 | #define kmap_init() do { } while (0) | ||
325 | #define permanent_kmaps_init(pgd_base) do { } while (0) | ||
326 | #define set_highmem_pages_init(bad_ppro) do { } while (0) | ||
327 | #endif /* CONFIG_HIGHMEM */ | ||
328 | |||
329 | unsigned long long __PAGE_KERNEL = _PAGE_KERNEL; | ||
330 | EXPORT_SYMBOL(__PAGE_KERNEL); | ||
331 | unsigned long long __PAGE_KERNEL_EXEC = _PAGE_KERNEL_EXEC; | ||
332 | |||
333 | #ifdef CONFIG_NUMA | ||
334 | extern void __init remap_numa_kva(void); | ||
335 | #else | ||
336 | #define remap_numa_kva() do {} while (0) | ||
337 | #endif | ||
338 | |||
339 | void __init native_pagetable_setup_start(pgd_t *base) | ||
340 | { | ||
341 | #ifdef CONFIG_X86_PAE | ||
342 | int i; | ||
343 | |||
344 | /* | ||
345 | * Init entries of the first-level page table to the | ||
346 | * zero page, if they haven't already been set up. | ||
347 | * | ||
348 | * In a normal native boot, we'll be running on a | ||
349 | * pagetable rooted in swapper_pg_dir, but not in PAE | ||
350 | * mode, so this will end up clobbering the mappings | ||
351 | * for the lower 24Mbytes of the address space, | ||
352 | * without affecting the kernel address space. | ||
353 | */ | ||
354 | for (i = 0; i < USER_PTRS_PER_PGD; i++) | ||
355 | set_pgd(&base[i], | ||
356 | __pgd(__pa(empty_zero_page) | _PAGE_PRESENT)); | ||
357 | |||
358 | /* Make sure kernel address space is empty so that a pagetable | ||
359 | will be allocated for it. */ | ||
360 | memset(&base[USER_PTRS_PER_PGD], 0, | ||
361 | KERNEL_PGD_PTRS * sizeof(pgd_t)); | ||
362 | #else | ||
363 | paravirt_alloc_pd(__pa(swapper_pg_dir) >> PAGE_SHIFT); | ||
364 | #endif | ||
365 | } | ||
366 | |||
367 | void __init native_pagetable_setup_done(pgd_t *base) | ||
368 | { | ||
369 | #ifdef CONFIG_X86_PAE | ||
370 | /* | ||
371 | * Add low memory identity-mappings - SMP needs it when | ||
372 | * starting up on an AP from real-mode. In the non-PAE | ||
373 | * case we already have these mappings through head.S. | ||
374 | * All user-space mappings are explicitly cleared after | ||
375 | * SMP startup. | ||
376 | */ | ||
377 | set_pgd(&base[0], base[USER_PTRS_PER_PGD]); | ||
378 | #endif | ||
379 | } | ||
380 | |||
381 | /* | ||
382 | * Build a proper pagetable for the kernel mappings. Up until this | ||
383 | * point, we've been running on some set of pagetables constructed by | ||
384 | * the boot process. | ||
385 | * | ||
386 | * If we're booting on native hardware, this will be a pagetable | ||
387 | * constructed in arch/i386/kernel/head.S, and not running in PAE mode | ||
388 | * (even if we'll end up running in PAE). The root of the pagetable | ||
389 | * will be swapper_pg_dir. | ||
390 | * | ||
391 | * If we're booting paravirtualized under a hypervisor, then there are | ||
392 | * more options: we may already be running PAE, and the pagetable may | ||
393 | * or may not be based in swapper_pg_dir. In any case, | ||
394 | * paravirt_pagetable_setup_start() will set up swapper_pg_dir | ||
395 | * appropriately for the rest of the initialization to work. | ||
396 | * | ||
397 | * In general, pagetable_init() assumes that the pagetable may already | ||
398 | * be partially populated, and so it avoids stomping on any existing | ||
399 | * mappings. | ||
400 | */ | ||
401 | static void __init pagetable_init (void) | ||
402 | { | ||
403 | unsigned long vaddr, end; | ||
404 | pgd_t *pgd_base = swapper_pg_dir; | ||
405 | |||
406 | paravirt_pagetable_setup_start(pgd_base); | ||
407 | |||
408 | /* Enable PSE if available */ | ||
409 | if (cpu_has_pse) | ||
410 | set_in_cr4(X86_CR4_PSE); | ||
411 | |||
412 | /* Enable PGE if available */ | ||
413 | if (cpu_has_pge) { | ||
414 | set_in_cr4(X86_CR4_PGE); | ||
415 | __PAGE_KERNEL |= _PAGE_GLOBAL; | ||
416 | __PAGE_KERNEL_EXEC |= _PAGE_GLOBAL; | ||
417 | } | ||
418 | |||
419 | kernel_physical_mapping_init(pgd_base); | ||
420 | remap_numa_kva(); | ||
421 | |||
422 | /* | ||
423 | * Fixed mappings, only the page table structure has to be | ||
424 | * created - mappings will be set by set_fixmap(): | ||
425 | */ | ||
426 | vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK; | ||
427 | end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK; | ||
428 | page_table_range_init(vaddr, end, pgd_base); | ||
429 | |||
430 | permanent_kmaps_init(pgd_base); | ||
431 | |||
432 | paravirt_pagetable_setup_done(pgd_base); | ||
433 | } | ||
434 | |||
435 | #if defined(CONFIG_HIBERNATION) || defined(CONFIG_ACPI) | ||
436 | /* | ||
437 | * Swap suspend & friends need this for resume because things like the intel-agp | ||
438 | * driver might have split up a kernel 4MB mapping. | ||
439 | */ | ||
440 | char __nosavedata swsusp_pg_dir[PAGE_SIZE] | ||
441 | __attribute__ ((aligned (PAGE_SIZE))); | ||
442 | |||
443 | static inline void save_pg_dir(void) | ||
444 | { | ||
445 | memcpy(swsusp_pg_dir, swapper_pg_dir, PAGE_SIZE); | ||
446 | } | ||
447 | #else | ||
448 | static inline void save_pg_dir(void) | ||
449 | { | ||
450 | } | ||
451 | #endif | ||
452 | |||
453 | void zap_low_mappings (void) | ||
454 | { | ||
455 | int i; | ||
456 | |||
457 | save_pg_dir(); | ||
458 | |||
459 | /* | ||
460 | * Zap initial low-memory mappings. | ||
461 | * | ||
462 | * Note that "pgd_clear()" doesn't do it for | ||
463 | * us, because pgd_clear() is a no-op on i386. | ||
464 | */ | ||
465 | for (i = 0; i < USER_PTRS_PER_PGD; i++) | ||
466 | #ifdef CONFIG_X86_PAE | ||
467 | set_pgd(swapper_pg_dir+i, __pgd(1 + __pa(empty_zero_page))); | ||
468 | #else | ||
469 | set_pgd(swapper_pg_dir+i, __pgd(0)); | ||
470 | #endif | ||
471 | flush_tlb_all(); | ||
472 | } | ||
473 | |||
474 | int nx_enabled = 0; | ||
475 | |||
476 | #ifdef CONFIG_X86_PAE | ||
477 | |||
478 | static int disable_nx __initdata = 0; | ||
479 | u64 __supported_pte_mask __read_mostly = ~_PAGE_NX; | ||
480 | EXPORT_SYMBOL_GPL(__supported_pte_mask); | ||
481 | |||
482 | /* | ||
483 | * noexec = on|off | ||
484 | * | ||
485 | * Control non executable mappings. | ||
486 | * | ||
487 | * on Enable | ||
488 | * off Disable | ||
489 | */ | ||
490 | static int __init noexec_setup(char *str) | ||
491 | { | ||
492 | if (!str || !strcmp(str, "on")) { | ||
493 | if (cpu_has_nx) { | ||
494 | __supported_pte_mask |= _PAGE_NX; | ||
495 | disable_nx = 0; | ||
496 | } | ||
497 | } else if (!strcmp(str,"off")) { | ||
498 | disable_nx = 1; | ||
499 | __supported_pte_mask &= ~_PAGE_NX; | ||
500 | } else | ||
501 | return -EINVAL; | ||
502 | |||
503 | return 0; | ||
504 | } | ||
505 | early_param("noexec", noexec_setup); | ||
506 | |||
507 | static void __init set_nx(void) | ||
508 | { | ||
509 | unsigned int v[4], l, h; | ||
510 | |||
511 | if (cpu_has_pae && (cpuid_eax(0x80000000) > 0x80000001)) { | ||
512 | cpuid(0x80000001, &v[0], &v[1], &v[2], &v[3]); | ||
513 | if ((v[3] & (1 << 20)) && !disable_nx) { | ||
514 | rdmsr(MSR_EFER, l, h); | ||
515 | l |= EFER_NX; | ||
516 | wrmsr(MSR_EFER, l, h); | ||
517 | nx_enabled = 1; | ||
518 | __supported_pte_mask |= _PAGE_NX; | ||
519 | } | ||
520 | } | ||
521 | } | ||
522 | |||
523 | /* | ||
524 | * Enables/disables executability of a given kernel page and | ||
525 | * returns the previous setting. | ||
526 | */ | ||
527 | int __init set_kernel_exec(unsigned long vaddr, int enable) | ||
528 | { | ||
529 | pte_t *pte; | ||
530 | int ret = 1; | ||
531 | |||
532 | if (!nx_enabled) | ||
533 | goto out; | ||
534 | |||
535 | pte = lookup_address(vaddr); | ||
536 | BUG_ON(!pte); | ||
537 | |||
538 | if (!pte_exec_kernel(*pte)) | ||
539 | ret = 0; | ||
540 | |||
541 | if (enable) | ||
542 | pte->pte_high &= ~(1 << (_PAGE_BIT_NX - 32)); | ||
543 | else | ||
544 | pte->pte_high |= 1 << (_PAGE_BIT_NX - 32); | ||
545 | pte_update_defer(&init_mm, vaddr, pte); | ||
546 | __flush_tlb_all(); | ||
547 | out: | ||
548 | return ret; | ||
549 | } | ||
550 | |||
551 | #endif | ||
552 | |||
553 | /* | ||
554 | * paging_init() sets up the page tables - note that the first 8MB are | ||
555 | * already mapped by head.S. | ||
556 | * | ||
557 | * This routines also unmaps the page at virtual kernel address 0, so | ||
558 | * that we can trap those pesky NULL-reference errors in the kernel. | ||
559 | */ | ||
560 | void __init paging_init(void) | ||
561 | { | ||
562 | #ifdef CONFIG_X86_PAE | ||
563 | set_nx(); | ||
564 | if (nx_enabled) | ||
565 | printk("NX (Execute Disable) protection: active\n"); | ||
566 | #endif | ||
567 | |||
568 | pagetable_init(); | ||
569 | |||
570 | load_cr3(swapper_pg_dir); | ||
571 | |||
572 | #ifdef CONFIG_X86_PAE | ||
573 | /* | ||
574 | * We will bail out later - printk doesn't work right now so | ||
575 | * the user would just see a hanging kernel. | ||
576 | */ | ||
577 | if (cpu_has_pae) | ||
578 | set_in_cr4(X86_CR4_PAE); | ||
579 | #endif | ||
580 | __flush_tlb_all(); | ||
581 | |||
582 | kmap_init(); | ||
583 | } | ||
584 | |||
585 | /* | ||
586 | * Test if the WP bit works in supervisor mode. It isn't supported on 386's | ||
587 | * and also on some strange 486's (NexGen etc.). All 586+'s are OK. This | ||
588 | * used to involve black magic jumps to work around some nasty CPU bugs, | ||
589 | * but fortunately the switch to using exceptions got rid of all that. | ||
590 | */ | ||
591 | |||
592 | static void __init test_wp_bit(void) | ||
593 | { | ||
594 | printk("Checking if this processor honours the WP bit even in supervisor mode... "); | ||
595 | |||
596 | /* Any page-aligned address will do, the test is non-destructive */ | ||
597 | __set_fixmap(FIX_WP_TEST, __pa(&swapper_pg_dir), PAGE_READONLY); | ||
598 | boot_cpu_data.wp_works_ok = do_test_wp_bit(); | ||
599 | clear_fixmap(FIX_WP_TEST); | ||
600 | |||
601 | if (!boot_cpu_data.wp_works_ok) { | ||
602 | printk("No.\n"); | ||
603 | #ifdef CONFIG_X86_WP_WORKS_OK | ||
604 | panic("This kernel doesn't support CPU's with broken WP. Recompile it for a 386!"); | ||
605 | #endif | ||
606 | } else { | ||
607 | printk("Ok.\n"); | ||
608 | } | ||
609 | } | ||
610 | |||
611 | static struct kcore_list kcore_mem, kcore_vmalloc; | ||
612 | |||
613 | void __init mem_init(void) | ||
614 | { | ||
615 | extern int ppro_with_ram_bug(void); | ||
616 | int codesize, reservedpages, datasize, initsize; | ||
617 | int tmp; | ||
618 | int bad_ppro; | ||
619 | |||
620 | #ifdef CONFIG_FLATMEM | ||
621 | BUG_ON(!mem_map); | ||
622 | #endif | ||
623 | |||
624 | bad_ppro = ppro_with_ram_bug(); | ||
625 | |||
626 | #ifdef CONFIG_HIGHMEM | ||
627 | /* check that fixmap and pkmap do not overlap */ | ||
628 | if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) { | ||
629 | printk(KERN_ERR "fixmap and kmap areas overlap - this will crash\n"); | ||
630 | printk(KERN_ERR "pkstart: %lxh pkend: %lxh fixstart %lxh\n", | ||
631 | PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, FIXADDR_START); | ||
632 | BUG(); | ||
633 | } | ||
634 | #endif | ||
635 | |||
636 | /* this will put all low memory onto the freelists */ | ||
637 | totalram_pages += free_all_bootmem(); | ||
638 | |||
639 | reservedpages = 0; | ||
640 | for (tmp = 0; tmp < max_low_pfn; tmp++) | ||
641 | /* | ||
642 | * Only count reserved RAM pages | ||
643 | */ | ||
644 | if (page_is_ram(tmp) && PageReserved(pfn_to_page(tmp))) | ||
645 | reservedpages++; | ||
646 | |||
647 | set_highmem_pages_init(bad_ppro); | ||
648 | |||
649 | codesize = (unsigned long) &_etext - (unsigned long) &_text; | ||
650 | datasize = (unsigned long) &_edata - (unsigned long) &_etext; | ||
651 | initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; | ||
652 | |||
653 | kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); | ||
654 | kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, | ||
655 | VMALLOC_END-VMALLOC_START); | ||
656 | |||
657 | printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n", | ||
658 | (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), | ||
659 | num_physpages << (PAGE_SHIFT-10), | ||
660 | codesize >> 10, | ||
661 | reservedpages << (PAGE_SHIFT-10), | ||
662 | datasize >> 10, | ||
663 | initsize >> 10, | ||
664 | (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)) | ||
665 | ); | ||
666 | |||
667 | #if 1 /* double-sanity-check paranoia */ | ||
668 | printk("virtual kernel memory layout:\n" | ||
669 | " fixmap : 0x%08lx - 0x%08lx (%4ld kB)\n" | ||
670 | #ifdef CONFIG_HIGHMEM | ||
671 | " pkmap : 0x%08lx - 0x%08lx (%4ld kB)\n" | ||
672 | #endif | ||
673 | " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n" | ||
674 | " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n" | ||
675 | " .init : 0x%08lx - 0x%08lx (%4ld kB)\n" | ||
676 | " .data : 0x%08lx - 0x%08lx (%4ld kB)\n" | ||
677 | " .text : 0x%08lx - 0x%08lx (%4ld kB)\n", | ||
678 | FIXADDR_START, FIXADDR_TOP, | ||
679 | (FIXADDR_TOP - FIXADDR_START) >> 10, | ||
680 | |||
681 | #ifdef CONFIG_HIGHMEM | ||
682 | PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, | ||
683 | (LAST_PKMAP*PAGE_SIZE) >> 10, | ||
684 | #endif | ||
685 | |||
686 | VMALLOC_START, VMALLOC_END, | ||
687 | (VMALLOC_END - VMALLOC_START) >> 20, | ||
688 | |||
689 | (unsigned long)__va(0), (unsigned long)high_memory, | ||
690 | ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, | ||
691 | |||
692 | (unsigned long)&__init_begin, (unsigned long)&__init_end, | ||
693 | ((unsigned long)&__init_end - (unsigned long)&__init_begin) >> 10, | ||
694 | |||
695 | (unsigned long)&_etext, (unsigned long)&_edata, | ||
696 | ((unsigned long)&_edata - (unsigned long)&_etext) >> 10, | ||
697 | |||
698 | (unsigned long)&_text, (unsigned long)&_etext, | ||
699 | ((unsigned long)&_etext - (unsigned long)&_text) >> 10); | ||
700 | |||
701 | #ifdef CONFIG_HIGHMEM | ||
702 | BUG_ON(PKMAP_BASE+LAST_PKMAP*PAGE_SIZE > FIXADDR_START); | ||
703 | BUG_ON(VMALLOC_END > PKMAP_BASE); | ||
704 | #endif | ||
705 | BUG_ON(VMALLOC_START > VMALLOC_END); | ||
706 | BUG_ON((unsigned long)high_memory > VMALLOC_START); | ||
707 | #endif /* double-sanity-check paranoia */ | ||
708 | |||
709 | #ifdef CONFIG_X86_PAE | ||
710 | if (!cpu_has_pae) | ||
711 | panic("cannot execute a PAE-enabled kernel on a PAE-less CPU!"); | ||
712 | #endif | ||
713 | if (boot_cpu_data.wp_works_ok < 0) | ||
714 | test_wp_bit(); | ||
715 | |||
716 | /* | ||
717 | * Subtle. SMP is doing it's boot stuff late (because it has to | ||
718 | * fork idle threads) - but it also needs low mappings for the | ||
719 | * protected-mode entry to work. We zap these entries only after | ||
720 | * the WP-bit has been tested. | ||
721 | */ | ||
722 | #ifndef CONFIG_SMP | ||
723 | zap_low_mappings(); | ||
724 | #endif | ||
725 | } | ||
726 | |||
727 | #ifdef CONFIG_MEMORY_HOTPLUG | ||
728 | int arch_add_memory(int nid, u64 start, u64 size) | ||
729 | { | ||
730 | struct pglist_data *pgdata = NODE_DATA(nid); | ||
731 | struct zone *zone = pgdata->node_zones + ZONE_HIGHMEM; | ||
732 | unsigned long start_pfn = start >> PAGE_SHIFT; | ||
733 | unsigned long nr_pages = size >> PAGE_SHIFT; | ||
734 | |||
735 | return __add_pages(zone, start_pfn, nr_pages); | ||
736 | } | ||
737 | |||
738 | int remove_memory(u64 start, u64 size) | ||
739 | { | ||
740 | return -EINVAL; | ||
741 | } | ||
742 | EXPORT_SYMBOL_GPL(remove_memory); | ||
743 | #endif | ||
744 | |||
745 | struct kmem_cache *pmd_cache; | ||
746 | |||
747 | void __init pgtable_cache_init(void) | ||
748 | { | ||
749 | size_t pgd_size = PTRS_PER_PGD*sizeof(pgd_t); | ||
750 | |||
751 | if (PTRS_PER_PMD > 1) { | ||
752 | pmd_cache = kmem_cache_create("pmd", | ||
753 | PTRS_PER_PMD*sizeof(pmd_t), | ||
754 | PTRS_PER_PMD*sizeof(pmd_t), | ||
755 | SLAB_PANIC, | ||
756 | pmd_ctor); | ||
757 | if (!SHARED_KERNEL_PMD) { | ||
758 | /* If we're in PAE mode and have a non-shared | ||
759 | kernel pmd, then the pgd size must be a | ||
760 | page size. This is because the pgd_list | ||
761 | links through the page structure, so there | ||
762 | can only be one pgd per page for this to | ||
763 | work. */ | ||
764 | pgd_size = PAGE_SIZE; | ||
765 | } | ||
766 | } | ||
767 | } | ||
768 | |||
769 | /* | ||
770 | * This function cannot be __init, since exceptions don't work in that | ||
771 | * section. Put this after the callers, so that it cannot be inlined. | ||
772 | */ | ||
773 | static int noinline do_test_wp_bit(void) | ||
774 | { | ||
775 | char tmp_reg; | ||
776 | int flag; | ||
777 | |||
778 | __asm__ __volatile__( | ||
779 | " movb %0,%1 \n" | ||
780 | "1: movb %1,%0 \n" | ||
781 | " xorl %2,%2 \n" | ||
782 | "2: \n" | ||
783 | ".section __ex_table,\"a\"\n" | ||
784 | " .align 4 \n" | ||
785 | " .long 1b,2b \n" | ||
786 | ".previous \n" | ||
787 | :"=m" (*(char *)fix_to_virt(FIX_WP_TEST)), | ||
788 | "=q" (tmp_reg), | ||
789 | "=r" (flag) | ||
790 | :"2" (1) | ||
791 | :"memory"); | ||
792 | |||
793 | return flag; | ||
794 | } | ||
795 | |||
796 | #ifdef CONFIG_DEBUG_RODATA | ||
797 | |||
798 | void mark_rodata_ro(void) | ||
799 | { | ||
800 | unsigned long start = PFN_ALIGN(_text); | ||
801 | unsigned long size = PFN_ALIGN(_etext) - start; | ||
802 | |||
803 | #ifndef CONFIG_KPROBES | ||
804 | #ifdef CONFIG_HOTPLUG_CPU | ||
805 | /* It must still be possible to apply SMP alternatives. */ | ||
806 | if (num_possible_cpus() <= 1) | ||
807 | #endif | ||
808 | { | ||
809 | change_page_attr(virt_to_page(start), | ||
810 | size >> PAGE_SHIFT, PAGE_KERNEL_RX); | ||
811 | printk("Write protecting the kernel text: %luk\n", size >> 10); | ||
812 | } | ||
813 | #endif | ||
814 | start += size; | ||
815 | size = (unsigned long)__end_rodata - start; | ||
816 | change_page_attr(virt_to_page(start), | ||
817 | size >> PAGE_SHIFT, PAGE_KERNEL_RO); | ||
818 | printk("Write protecting the kernel read-only data: %luk\n", | ||
819 | size >> 10); | ||
820 | |||
821 | /* | ||
822 | * change_page_attr() requires a global_flush_tlb() call after it. | ||
823 | * We do this after the printk so that if something went wrong in the | ||
824 | * change, the printk gets out at least to give a better debug hint | ||
825 | * of who is the culprit. | ||
826 | */ | ||
827 | global_flush_tlb(); | ||
828 | } | ||
829 | #endif | ||
830 | |||
831 | void free_init_pages(char *what, unsigned long begin, unsigned long end) | ||
832 | { | ||
833 | unsigned long addr; | ||
834 | |||
835 | for (addr = begin; addr < end; addr += PAGE_SIZE) { | ||
836 | ClearPageReserved(virt_to_page(addr)); | ||
837 | init_page_count(virt_to_page(addr)); | ||
838 | memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); | ||
839 | free_page(addr); | ||
840 | totalram_pages++; | ||
841 | } | ||
842 | printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); | ||
843 | } | ||
844 | |||
845 | void free_initmem(void) | ||
846 | { | ||
847 | free_init_pages("unused kernel memory", | ||
848 | (unsigned long)(&__init_begin), | ||
849 | (unsigned long)(&__init_end)); | ||
850 | } | ||
851 | |||
852 | #ifdef CONFIG_BLK_DEV_INITRD | ||
853 | void free_initrd_mem(unsigned long start, unsigned long end) | ||
854 | { | ||
855 | free_init_pages("initrd memory", start, end); | ||
856 | } | ||
857 | #endif | ||
858 | |||
diff --git a/arch/x86/mm/ioremap_32.c b/arch/x86/mm/ioremap_32.c new file mode 100644 index 000000000000..0b278315d737 --- /dev/null +++ b/arch/x86/mm/ioremap_32.c | |||
@@ -0,0 +1,274 @@ | |||
1 | /* | ||
2 | * arch/i386/mm/ioremap.c | ||
3 | * | ||
4 | * Re-map IO memory to kernel address space so that we can access it. | ||
5 | * This is needed for high PCI addresses that aren't mapped in the | ||
6 | * 640k-1MB IO memory area on PC's | ||
7 | * | ||
8 | * (C) Copyright 1995 1996 Linus Torvalds | ||
9 | */ | ||
10 | |||
11 | #include <linux/vmalloc.h> | ||
12 | #include <linux/init.h> | ||
13 | #include <linux/slab.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/io.h> | ||
16 | #include <asm/fixmap.h> | ||
17 | #include <asm/cacheflush.h> | ||
18 | #include <asm/tlbflush.h> | ||
19 | #include <asm/pgtable.h> | ||
20 | |||
21 | #define ISA_START_ADDRESS 0xa0000 | ||
22 | #define ISA_END_ADDRESS 0x100000 | ||
23 | |||
24 | /* | ||
25 | * Generic mapping function (not visible outside): | ||
26 | */ | ||
27 | |||
28 | /* | ||
29 | * Remap an arbitrary physical address space into the kernel virtual | ||
30 | * address space. Needed when the kernel wants to access high addresses | ||
31 | * directly. | ||
32 | * | ||
33 | * NOTE! We need to allow non-page-aligned mappings too: we will obviously | ||
34 | * have to convert them into an offset in a page-aligned mapping, but the | ||
35 | * caller shouldn't need to know that small detail. | ||
36 | */ | ||
37 | void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags) | ||
38 | { | ||
39 | void __iomem * addr; | ||
40 | struct vm_struct * area; | ||
41 | unsigned long offset, last_addr; | ||
42 | pgprot_t prot; | ||
43 | |||
44 | /* Don't allow wraparound or zero size */ | ||
45 | last_addr = phys_addr + size - 1; | ||
46 | if (!size || last_addr < phys_addr) | ||
47 | return NULL; | ||
48 | |||
49 | /* | ||
50 | * Don't remap the low PCI/ISA area, it's always mapped.. | ||
51 | */ | ||
52 | if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS) | ||
53 | return (void __iomem *) phys_to_virt(phys_addr); | ||
54 | |||
55 | /* | ||
56 | * Don't allow anybody to remap normal RAM that we're using.. | ||
57 | */ | ||
58 | if (phys_addr <= virt_to_phys(high_memory - 1)) { | ||
59 | char *t_addr, *t_end; | ||
60 | struct page *page; | ||
61 | |||
62 | t_addr = __va(phys_addr); | ||
63 | t_end = t_addr + (size - 1); | ||
64 | |||
65 | for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++) | ||
66 | if(!PageReserved(page)) | ||
67 | return NULL; | ||
68 | } | ||
69 | |||
70 | prot = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | ||
71 | | _PAGE_ACCESSED | flags); | ||
72 | |||
73 | /* | ||
74 | * Mappings have to be page-aligned | ||
75 | */ | ||
76 | offset = phys_addr & ~PAGE_MASK; | ||
77 | phys_addr &= PAGE_MASK; | ||
78 | size = PAGE_ALIGN(last_addr+1) - phys_addr; | ||
79 | |||
80 | /* | ||
81 | * Ok, go for it.. | ||
82 | */ | ||
83 | area = get_vm_area(size, VM_IOREMAP | (flags << 20)); | ||
84 | if (!area) | ||
85 | return NULL; | ||
86 | area->phys_addr = phys_addr; | ||
87 | addr = (void __iomem *) area->addr; | ||
88 | if (ioremap_page_range((unsigned long) addr, | ||
89 | (unsigned long) addr + size, phys_addr, prot)) { | ||
90 | vunmap((void __force *) addr); | ||
91 | return NULL; | ||
92 | } | ||
93 | return (void __iomem *) (offset + (char __iomem *)addr); | ||
94 | } | ||
95 | EXPORT_SYMBOL(__ioremap); | ||
96 | |||
97 | /** | ||
98 | * ioremap_nocache - map bus memory into CPU space | ||
99 | * @offset: bus address of the memory | ||
100 | * @size: size of the resource to map | ||
101 | * | ||
102 | * ioremap_nocache performs a platform specific sequence of operations to | ||
103 | * make bus memory CPU accessible via the readb/readw/readl/writeb/ | ||
104 | * writew/writel functions and the other mmio helpers. The returned | ||
105 | * address is not guaranteed to be usable directly as a virtual | ||
106 | * address. | ||
107 | * | ||
108 | * This version of ioremap ensures that the memory is marked uncachable | ||
109 | * on the CPU as well as honouring existing caching rules from things like | ||
110 | * the PCI bus. Note that there are other caches and buffers on many | ||
111 | * busses. In particular driver authors should read up on PCI writes | ||
112 | * | ||
113 | * It's useful if some control registers are in such an area and | ||
114 | * write combining or read caching is not desirable: | ||
115 | * | ||
116 | * Must be freed with iounmap. | ||
117 | */ | ||
118 | |||
119 | void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size) | ||
120 | { | ||
121 | unsigned long last_addr; | ||
122 | void __iomem *p = __ioremap(phys_addr, size, _PAGE_PCD); | ||
123 | if (!p) | ||
124 | return p; | ||
125 | |||
126 | /* Guaranteed to be > phys_addr, as per __ioremap() */ | ||
127 | last_addr = phys_addr + size - 1; | ||
128 | |||
129 | if (last_addr < virt_to_phys(high_memory) - 1) { | ||
130 | struct page *ppage = virt_to_page(__va(phys_addr)); | ||
131 | unsigned long npages; | ||
132 | |||
133 | phys_addr &= PAGE_MASK; | ||
134 | |||
135 | /* This might overflow and become zero.. */ | ||
136 | last_addr = PAGE_ALIGN(last_addr); | ||
137 | |||
138 | /* .. but that's ok, because modulo-2**n arithmetic will make | ||
139 | * the page-aligned "last - first" come out right. | ||
140 | */ | ||
141 | npages = (last_addr - phys_addr) >> PAGE_SHIFT; | ||
142 | |||
143 | if (change_page_attr(ppage, npages, PAGE_KERNEL_NOCACHE) < 0) { | ||
144 | iounmap(p); | ||
145 | p = NULL; | ||
146 | } | ||
147 | global_flush_tlb(); | ||
148 | } | ||
149 | |||
150 | return p; | ||
151 | } | ||
152 | EXPORT_SYMBOL(ioremap_nocache); | ||
153 | |||
154 | /** | ||
155 | * iounmap - Free a IO remapping | ||
156 | * @addr: virtual address from ioremap_* | ||
157 | * | ||
158 | * Caller must ensure there is only one unmapping for the same pointer. | ||
159 | */ | ||
160 | void iounmap(volatile void __iomem *addr) | ||
161 | { | ||
162 | struct vm_struct *p, *o; | ||
163 | |||
164 | if ((void __force *)addr <= high_memory) | ||
165 | return; | ||
166 | |||
167 | /* | ||
168 | * __ioremap special-cases the PCI/ISA range by not instantiating a | ||
169 | * vm_area and by simply returning an address into the kernel mapping | ||
170 | * of ISA space. So handle that here. | ||
171 | */ | ||
172 | if (addr >= phys_to_virt(ISA_START_ADDRESS) && | ||
173 | addr < phys_to_virt(ISA_END_ADDRESS)) | ||
174 | return; | ||
175 | |||
176 | addr = (volatile void __iomem *)(PAGE_MASK & (unsigned long __force)addr); | ||
177 | |||
178 | /* Use the vm area unlocked, assuming the caller | ||
179 | ensures there isn't another iounmap for the same address | ||
180 | in parallel. Reuse of the virtual address is prevented by | ||
181 | leaving it in the global lists until we're done with it. | ||
182 | cpa takes care of the direct mappings. */ | ||
183 | read_lock(&vmlist_lock); | ||
184 | for (p = vmlist; p; p = p->next) { | ||
185 | if (p->addr == addr) | ||
186 | break; | ||
187 | } | ||
188 | read_unlock(&vmlist_lock); | ||
189 | |||
190 | if (!p) { | ||
191 | printk("iounmap: bad address %p\n", addr); | ||
192 | dump_stack(); | ||
193 | return; | ||
194 | } | ||
195 | |||
196 | /* Reset the direct mapping. Can block */ | ||
197 | if ((p->flags >> 20) && p->phys_addr < virt_to_phys(high_memory) - 1) { | ||
198 | change_page_attr(virt_to_page(__va(p->phys_addr)), | ||
199 | get_vm_area_size(p) >> PAGE_SHIFT, | ||
200 | PAGE_KERNEL); | ||
201 | global_flush_tlb(); | ||
202 | } | ||
203 | |||
204 | /* Finally remove it */ | ||
205 | o = remove_vm_area((void *)addr); | ||
206 | BUG_ON(p != o || o == NULL); | ||
207 | kfree(p); | ||
208 | } | ||
209 | EXPORT_SYMBOL(iounmap); | ||
210 | |||
211 | void __init *bt_ioremap(unsigned long phys_addr, unsigned long size) | ||
212 | { | ||
213 | unsigned long offset, last_addr; | ||
214 | unsigned int nrpages; | ||
215 | enum fixed_addresses idx; | ||
216 | |||
217 | /* Don't allow wraparound or zero size */ | ||
218 | last_addr = phys_addr + size - 1; | ||
219 | if (!size || last_addr < phys_addr) | ||
220 | return NULL; | ||
221 | |||
222 | /* | ||
223 | * Don't remap the low PCI/ISA area, it's always mapped.. | ||
224 | */ | ||
225 | if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS) | ||
226 | return phys_to_virt(phys_addr); | ||
227 | |||
228 | /* | ||
229 | * Mappings have to be page-aligned | ||
230 | */ | ||
231 | offset = phys_addr & ~PAGE_MASK; | ||
232 | phys_addr &= PAGE_MASK; | ||
233 | size = PAGE_ALIGN(last_addr) - phys_addr; | ||
234 | |||
235 | /* | ||
236 | * Mappings have to fit in the FIX_BTMAP area. | ||
237 | */ | ||
238 | nrpages = size >> PAGE_SHIFT; | ||
239 | if (nrpages > NR_FIX_BTMAPS) | ||
240 | return NULL; | ||
241 | |||
242 | /* | ||
243 | * Ok, go for it.. | ||
244 | */ | ||
245 | idx = FIX_BTMAP_BEGIN; | ||
246 | while (nrpages > 0) { | ||
247 | set_fixmap(idx, phys_addr); | ||
248 | phys_addr += PAGE_SIZE; | ||
249 | --idx; | ||
250 | --nrpages; | ||
251 | } | ||
252 | return (void*) (offset + fix_to_virt(FIX_BTMAP_BEGIN)); | ||
253 | } | ||
254 | |||
255 | void __init bt_iounmap(void *addr, unsigned long size) | ||
256 | { | ||
257 | unsigned long virt_addr; | ||
258 | unsigned long offset; | ||
259 | unsigned int nrpages; | ||
260 | enum fixed_addresses idx; | ||
261 | |||
262 | virt_addr = (unsigned long)addr; | ||
263 | if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) | ||
264 | return; | ||
265 | offset = virt_addr & ~PAGE_MASK; | ||
266 | nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT; | ||
267 | |||
268 | idx = FIX_BTMAP_BEGIN; | ||
269 | while (nrpages > 0) { | ||
270 | clear_fixmap(idx); | ||
271 | --idx; | ||
272 | --nrpages; | ||
273 | } | ||
274 | } | ||
diff --git a/arch/x86/mm/mmap_32.c b/arch/x86/mm/mmap_32.c new file mode 100644 index 000000000000..552e08473755 --- /dev/null +++ b/arch/x86/mm/mmap_32.c | |||
@@ -0,0 +1,77 @@ | |||
1 | /* | ||
2 | * linux/arch/i386/mm/mmap.c | ||
3 | * | ||
4 | * flexible mmap layout support | ||
5 | * | ||
6 | * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. | ||
7 | * All Rights Reserved. | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License as published by | ||
11 | * the Free Software Foundation; either version 2 of the License, or | ||
12 | * (at your option) any later version. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, | ||
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
17 | * GNU General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
22 | * | ||
23 | * | ||
24 | * Started by Ingo Molnar <mingo@elte.hu> | ||
25 | */ | ||
26 | |||
27 | #include <linux/personality.h> | ||
28 | #include <linux/mm.h> | ||
29 | #include <linux/random.h> | ||
30 | #include <linux/sched.h> | ||
31 | |||
32 | /* | ||
33 | * Top of mmap area (just below the process stack). | ||
34 | * | ||
35 | * Leave an at least ~128 MB hole. | ||
36 | */ | ||
37 | #define MIN_GAP (128*1024*1024) | ||
38 | #define MAX_GAP (TASK_SIZE/6*5) | ||
39 | |||
40 | static inline unsigned long mmap_base(struct mm_struct *mm) | ||
41 | { | ||
42 | unsigned long gap = current->signal->rlim[RLIMIT_STACK].rlim_cur; | ||
43 | unsigned long random_factor = 0; | ||
44 | |||
45 | if (current->flags & PF_RANDOMIZE) | ||
46 | random_factor = get_random_int() % (1024*1024); | ||
47 | |||
48 | if (gap < MIN_GAP) | ||
49 | gap = MIN_GAP; | ||
50 | else if (gap > MAX_GAP) | ||
51 | gap = MAX_GAP; | ||
52 | |||
53 | return PAGE_ALIGN(TASK_SIZE - gap - random_factor); | ||
54 | } | ||
55 | |||
56 | /* | ||
57 | * This function, called very early during the creation of a new | ||
58 | * process VM image, sets up which VM layout function to use: | ||
59 | */ | ||
60 | void arch_pick_mmap_layout(struct mm_struct *mm) | ||
61 | { | ||
62 | /* | ||
63 | * Fall back to the standard layout if the personality | ||
64 | * bit is set, or if the expected stack growth is unlimited: | ||
65 | */ | ||
66 | if (sysctl_legacy_va_layout || | ||
67 | (current->personality & ADDR_COMPAT_LAYOUT) || | ||
68 | current->signal->rlim[RLIMIT_STACK].rlim_cur == RLIM_INFINITY) { | ||
69 | mm->mmap_base = TASK_UNMAPPED_BASE; | ||
70 | mm->get_unmapped_area = arch_get_unmapped_area; | ||
71 | mm->unmap_area = arch_unmap_area; | ||
72 | } else { | ||
73 | mm->mmap_base = mmap_base(mm); | ||
74 | mm->get_unmapped_area = arch_get_unmapped_area_topdown; | ||
75 | mm->unmap_area = arch_unmap_area_topdown; | ||
76 | } | ||
77 | } | ||
diff --git a/arch/x86/mm/pageattr_32.c b/arch/x86/mm/pageattr_32.c new file mode 100644 index 000000000000..4241a74d16c8 --- /dev/null +++ b/arch/x86/mm/pageattr_32.c | |||
@@ -0,0 +1,278 @@ | |||
1 | /* | ||
2 | * Copyright 2002 Andi Kleen, SuSE Labs. | ||
3 | * Thanks to Ben LaHaise for precious feedback. | ||
4 | */ | ||
5 | |||
6 | #include <linux/mm.h> | ||
7 | #include <linux/sched.h> | ||
8 | #include <linux/highmem.h> | ||
9 | #include <linux/module.h> | ||
10 | #include <linux/slab.h> | ||
11 | #include <asm/uaccess.h> | ||
12 | #include <asm/processor.h> | ||
13 | #include <asm/tlbflush.h> | ||
14 | #include <asm/pgalloc.h> | ||
15 | #include <asm/sections.h> | ||
16 | |||
17 | static DEFINE_SPINLOCK(cpa_lock); | ||
18 | static struct list_head df_list = LIST_HEAD_INIT(df_list); | ||
19 | |||
20 | |||
21 | pte_t *lookup_address(unsigned long address) | ||
22 | { | ||
23 | pgd_t *pgd = pgd_offset_k(address); | ||
24 | pud_t *pud; | ||
25 | pmd_t *pmd; | ||
26 | if (pgd_none(*pgd)) | ||
27 | return NULL; | ||
28 | pud = pud_offset(pgd, address); | ||
29 | if (pud_none(*pud)) | ||
30 | return NULL; | ||
31 | pmd = pmd_offset(pud, address); | ||
32 | if (pmd_none(*pmd)) | ||
33 | return NULL; | ||
34 | if (pmd_large(*pmd)) | ||
35 | return (pte_t *)pmd; | ||
36 | return pte_offset_kernel(pmd, address); | ||
37 | } | ||
38 | |||
39 | static struct page *split_large_page(unsigned long address, pgprot_t prot, | ||
40 | pgprot_t ref_prot) | ||
41 | { | ||
42 | int i; | ||
43 | unsigned long addr; | ||
44 | struct page *base; | ||
45 | pte_t *pbase; | ||
46 | |||
47 | spin_unlock_irq(&cpa_lock); | ||
48 | base = alloc_pages(GFP_KERNEL, 0); | ||
49 | spin_lock_irq(&cpa_lock); | ||
50 | if (!base) | ||
51 | return NULL; | ||
52 | |||
53 | /* | ||
54 | * page_private is used to track the number of entries in | ||
55 | * the page table page that have non standard attributes. | ||
56 | */ | ||
57 | SetPagePrivate(base); | ||
58 | page_private(base) = 0; | ||
59 | |||
60 | address = __pa(address); | ||
61 | addr = address & LARGE_PAGE_MASK; | ||
62 | pbase = (pte_t *)page_address(base); | ||
63 | paravirt_alloc_pt(&init_mm, page_to_pfn(base)); | ||
64 | for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { | ||
65 | set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT, | ||
66 | addr == address ? prot : ref_prot)); | ||
67 | } | ||
68 | return base; | ||
69 | } | ||
70 | |||
71 | static void cache_flush_page(struct page *p) | ||
72 | { | ||
73 | unsigned long adr = (unsigned long)page_address(p); | ||
74 | int i; | ||
75 | for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size) | ||
76 | asm volatile("clflush (%0)" :: "r" (adr + i)); | ||
77 | } | ||
78 | |||
79 | static void flush_kernel_map(void *arg) | ||
80 | { | ||
81 | struct list_head *lh = (struct list_head *)arg; | ||
82 | struct page *p; | ||
83 | |||
84 | /* High level code is not ready for clflush yet */ | ||
85 | if (0 && cpu_has_clflush) { | ||
86 | list_for_each_entry (p, lh, lru) | ||
87 | cache_flush_page(p); | ||
88 | } else if (boot_cpu_data.x86_model >= 4) | ||
89 | wbinvd(); | ||
90 | |||
91 | /* Flush all to work around Errata in early athlons regarding | ||
92 | * large page flushing. | ||
93 | */ | ||
94 | __flush_tlb_all(); | ||
95 | } | ||
96 | |||
97 | static void set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) | ||
98 | { | ||
99 | struct page *page; | ||
100 | unsigned long flags; | ||
101 | |||
102 | set_pte_atomic(kpte, pte); /* change init_mm */ | ||
103 | if (SHARED_KERNEL_PMD) | ||
104 | return; | ||
105 | |||
106 | spin_lock_irqsave(&pgd_lock, flags); | ||
107 | for (page = pgd_list; page; page = (struct page *)page->index) { | ||
108 | pgd_t *pgd; | ||
109 | pud_t *pud; | ||
110 | pmd_t *pmd; | ||
111 | pgd = (pgd_t *)page_address(page) + pgd_index(address); | ||
112 | pud = pud_offset(pgd, address); | ||
113 | pmd = pmd_offset(pud, address); | ||
114 | set_pte_atomic((pte_t *)pmd, pte); | ||
115 | } | ||
116 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
117 | } | ||
118 | |||
119 | /* | ||
120 | * No more special protections in this 2/4MB area - revert to a | ||
121 | * large page again. | ||
122 | */ | ||
123 | static inline void revert_page(struct page *kpte_page, unsigned long address) | ||
124 | { | ||
125 | pgprot_t ref_prot; | ||
126 | pte_t *linear; | ||
127 | |||
128 | ref_prot = | ||
129 | ((address & LARGE_PAGE_MASK) < (unsigned long)&_etext) | ||
130 | ? PAGE_KERNEL_LARGE_EXEC : PAGE_KERNEL_LARGE; | ||
131 | |||
132 | linear = (pte_t *) | ||
133 | pmd_offset(pud_offset(pgd_offset_k(address), address), address); | ||
134 | set_pmd_pte(linear, address, | ||
135 | pfn_pte((__pa(address) & LARGE_PAGE_MASK) >> PAGE_SHIFT, | ||
136 | ref_prot)); | ||
137 | } | ||
138 | |||
139 | static inline void save_page(struct page *kpte_page) | ||
140 | { | ||
141 | if (!test_and_set_bit(PG_arch_1, &kpte_page->flags)) | ||
142 | list_add(&kpte_page->lru, &df_list); | ||
143 | } | ||
144 | |||
145 | static int | ||
146 | __change_page_attr(struct page *page, pgprot_t prot) | ||
147 | { | ||
148 | pte_t *kpte; | ||
149 | unsigned long address; | ||
150 | struct page *kpte_page; | ||
151 | |||
152 | BUG_ON(PageHighMem(page)); | ||
153 | address = (unsigned long)page_address(page); | ||
154 | |||
155 | kpte = lookup_address(address); | ||
156 | if (!kpte) | ||
157 | return -EINVAL; | ||
158 | kpte_page = virt_to_page(kpte); | ||
159 | BUG_ON(PageLRU(kpte_page)); | ||
160 | BUG_ON(PageCompound(kpte_page)); | ||
161 | |||
162 | if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) { | ||
163 | if (!pte_huge(*kpte)) { | ||
164 | set_pte_atomic(kpte, mk_pte(page, prot)); | ||
165 | } else { | ||
166 | pgprot_t ref_prot; | ||
167 | struct page *split; | ||
168 | |||
169 | ref_prot = | ||
170 | ((address & LARGE_PAGE_MASK) < (unsigned long)&_etext) | ||
171 | ? PAGE_KERNEL_EXEC : PAGE_KERNEL; | ||
172 | split = split_large_page(address, prot, ref_prot); | ||
173 | if (!split) | ||
174 | return -ENOMEM; | ||
175 | set_pmd_pte(kpte,address,mk_pte(split, ref_prot)); | ||
176 | kpte_page = split; | ||
177 | } | ||
178 | page_private(kpte_page)++; | ||
179 | } else if (!pte_huge(*kpte)) { | ||
180 | set_pte_atomic(kpte, mk_pte(page, PAGE_KERNEL)); | ||
181 | BUG_ON(page_private(kpte_page) == 0); | ||
182 | page_private(kpte_page)--; | ||
183 | } else | ||
184 | BUG(); | ||
185 | |||
186 | /* | ||
187 | * If the pte was reserved, it means it was created at boot | ||
188 | * time (not via split_large_page) and in turn we must not | ||
189 | * replace it with a largepage. | ||
190 | */ | ||
191 | |||
192 | save_page(kpte_page); | ||
193 | if (!PageReserved(kpte_page)) { | ||
194 | if (cpu_has_pse && (page_private(kpte_page) == 0)) { | ||
195 | paravirt_release_pt(page_to_pfn(kpte_page)); | ||
196 | revert_page(kpte_page, address); | ||
197 | } | ||
198 | } | ||
199 | return 0; | ||
200 | } | ||
201 | |||
202 | static inline void flush_map(struct list_head *l) | ||
203 | { | ||
204 | on_each_cpu(flush_kernel_map, l, 1, 1); | ||
205 | } | ||
206 | |||
207 | /* | ||
208 | * Change the page attributes of an page in the linear mapping. | ||
209 | * | ||
210 | * This should be used when a page is mapped with a different caching policy | ||
211 | * than write-back somewhere - some CPUs do not like it when mappings with | ||
212 | * different caching policies exist. This changes the page attributes of the | ||
213 | * in kernel linear mapping too. | ||
214 | * | ||
215 | * The caller needs to ensure that there are no conflicting mappings elsewhere. | ||
216 | * This function only deals with the kernel linear map. | ||
217 | * | ||
218 | * Caller must call global_flush_tlb() after this. | ||
219 | */ | ||
220 | int change_page_attr(struct page *page, int numpages, pgprot_t prot) | ||
221 | { | ||
222 | int err = 0; | ||
223 | int i; | ||
224 | unsigned long flags; | ||
225 | |||
226 | spin_lock_irqsave(&cpa_lock, flags); | ||
227 | for (i = 0; i < numpages; i++, page++) { | ||
228 | err = __change_page_attr(page, prot); | ||
229 | if (err) | ||
230 | break; | ||
231 | } | ||
232 | spin_unlock_irqrestore(&cpa_lock, flags); | ||
233 | return err; | ||
234 | } | ||
235 | |||
236 | void global_flush_tlb(void) | ||
237 | { | ||
238 | struct list_head l; | ||
239 | struct page *pg, *next; | ||
240 | |||
241 | BUG_ON(irqs_disabled()); | ||
242 | |||
243 | spin_lock_irq(&cpa_lock); | ||
244 | list_replace_init(&df_list, &l); | ||
245 | spin_unlock_irq(&cpa_lock); | ||
246 | flush_map(&l); | ||
247 | list_for_each_entry_safe(pg, next, &l, lru) { | ||
248 | list_del(&pg->lru); | ||
249 | clear_bit(PG_arch_1, &pg->flags); | ||
250 | if (PageReserved(pg) || !cpu_has_pse || page_private(pg) != 0) | ||
251 | continue; | ||
252 | ClearPagePrivate(pg); | ||
253 | __free_page(pg); | ||
254 | } | ||
255 | } | ||
256 | |||
257 | #ifdef CONFIG_DEBUG_PAGEALLOC | ||
258 | void kernel_map_pages(struct page *page, int numpages, int enable) | ||
259 | { | ||
260 | if (PageHighMem(page)) | ||
261 | return; | ||
262 | if (!enable) | ||
263 | debug_check_no_locks_freed(page_address(page), | ||
264 | numpages * PAGE_SIZE); | ||
265 | |||
266 | /* the return value is ignored - the calls cannot fail, | ||
267 | * large pages are disabled at boot time. | ||
268 | */ | ||
269 | change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0)); | ||
270 | /* we should perform an IPI and flush all tlbs, | ||
271 | * but that can deadlock->flush only current cpu. | ||
272 | */ | ||
273 | __flush_tlb_all(); | ||
274 | } | ||
275 | #endif | ||
276 | |||
277 | EXPORT_SYMBOL(change_page_attr); | ||
278 | EXPORT_SYMBOL(global_flush_tlb); | ||
diff --git a/arch/x86/mm/pgtable_32.c b/arch/x86/mm/pgtable_32.c new file mode 100644 index 000000000000..01437c46baae --- /dev/null +++ b/arch/x86/mm/pgtable_32.c | |||
@@ -0,0 +1,373 @@ | |||
1 | /* | ||
2 | * linux/arch/i386/mm/pgtable.c | ||
3 | */ | ||
4 | |||
5 | #include <linux/sched.h> | ||
6 | #include <linux/kernel.h> | ||
7 | #include <linux/errno.h> | ||
8 | #include <linux/mm.h> | ||
9 | #include <linux/swap.h> | ||
10 | #include <linux/smp.h> | ||
11 | #include <linux/highmem.h> | ||
12 | #include <linux/slab.h> | ||
13 | #include <linux/pagemap.h> | ||
14 | #include <linux/spinlock.h> | ||
15 | #include <linux/module.h> | ||
16 | #include <linux/quicklist.h> | ||
17 | |||
18 | #include <asm/system.h> | ||
19 | #include <asm/pgtable.h> | ||
20 | #include <asm/pgalloc.h> | ||
21 | #include <asm/fixmap.h> | ||
22 | #include <asm/e820.h> | ||
23 | #include <asm/tlb.h> | ||
24 | #include <asm/tlbflush.h> | ||
25 | |||
26 | void show_mem(void) | ||
27 | { | ||
28 | int total = 0, reserved = 0; | ||
29 | int shared = 0, cached = 0; | ||
30 | int highmem = 0; | ||
31 | struct page *page; | ||
32 | pg_data_t *pgdat; | ||
33 | unsigned long i; | ||
34 | unsigned long flags; | ||
35 | |||
36 | printk(KERN_INFO "Mem-info:\n"); | ||
37 | show_free_areas(); | ||
38 | printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | ||
39 | for_each_online_pgdat(pgdat) { | ||
40 | pgdat_resize_lock(pgdat, &flags); | ||
41 | for (i = 0; i < pgdat->node_spanned_pages; ++i) { | ||
42 | page = pgdat_page_nr(pgdat, i); | ||
43 | total++; | ||
44 | if (PageHighMem(page)) | ||
45 | highmem++; | ||
46 | if (PageReserved(page)) | ||
47 | reserved++; | ||
48 | else if (PageSwapCache(page)) | ||
49 | cached++; | ||
50 | else if (page_count(page)) | ||
51 | shared += page_count(page) - 1; | ||
52 | } | ||
53 | pgdat_resize_unlock(pgdat, &flags); | ||
54 | } | ||
55 | printk(KERN_INFO "%d pages of RAM\n", total); | ||
56 | printk(KERN_INFO "%d pages of HIGHMEM\n", highmem); | ||
57 | printk(KERN_INFO "%d reserved pages\n", reserved); | ||
58 | printk(KERN_INFO "%d pages shared\n", shared); | ||
59 | printk(KERN_INFO "%d pages swap cached\n", cached); | ||
60 | |||
61 | printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY)); | ||
62 | printk(KERN_INFO "%lu pages writeback\n", | ||
63 | global_page_state(NR_WRITEBACK)); | ||
64 | printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED)); | ||
65 | printk(KERN_INFO "%lu pages slab\n", | ||
66 | global_page_state(NR_SLAB_RECLAIMABLE) + | ||
67 | global_page_state(NR_SLAB_UNRECLAIMABLE)); | ||
68 | printk(KERN_INFO "%lu pages pagetables\n", | ||
69 | global_page_state(NR_PAGETABLE)); | ||
70 | } | ||
71 | |||
72 | /* | ||
73 | * Associate a virtual page frame with a given physical page frame | ||
74 | * and protection flags for that frame. | ||
75 | */ | ||
76 | static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) | ||
77 | { | ||
78 | pgd_t *pgd; | ||
79 | pud_t *pud; | ||
80 | pmd_t *pmd; | ||
81 | pte_t *pte; | ||
82 | |||
83 | pgd = swapper_pg_dir + pgd_index(vaddr); | ||
84 | if (pgd_none(*pgd)) { | ||
85 | BUG(); | ||
86 | return; | ||
87 | } | ||
88 | pud = pud_offset(pgd, vaddr); | ||
89 | if (pud_none(*pud)) { | ||
90 | BUG(); | ||
91 | return; | ||
92 | } | ||
93 | pmd = pmd_offset(pud, vaddr); | ||
94 | if (pmd_none(*pmd)) { | ||
95 | BUG(); | ||
96 | return; | ||
97 | } | ||
98 | pte = pte_offset_kernel(pmd, vaddr); | ||
99 | if (pgprot_val(flags)) | ||
100 | /* <pfn,flags> stored as-is, to permit clearing entries */ | ||
101 | set_pte(pte, pfn_pte(pfn, flags)); | ||
102 | else | ||
103 | pte_clear(&init_mm, vaddr, pte); | ||
104 | |||
105 | /* | ||
106 | * It's enough to flush this one mapping. | ||
107 | * (PGE mappings get flushed as well) | ||
108 | */ | ||
109 | __flush_tlb_one(vaddr); | ||
110 | } | ||
111 | |||
112 | /* | ||
113 | * Associate a large virtual page frame with a given physical page frame | ||
114 | * and protection flags for that frame. pfn is for the base of the page, | ||
115 | * vaddr is what the page gets mapped to - both must be properly aligned. | ||
116 | * The pmd must already be instantiated. Assumes PAE mode. | ||
117 | */ | ||
118 | void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) | ||
119 | { | ||
120 | pgd_t *pgd; | ||
121 | pud_t *pud; | ||
122 | pmd_t *pmd; | ||
123 | |||
124 | if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */ | ||
125 | printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n"); | ||
126 | return; /* BUG(); */ | ||
127 | } | ||
128 | if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */ | ||
129 | printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n"); | ||
130 | return; /* BUG(); */ | ||
131 | } | ||
132 | pgd = swapper_pg_dir + pgd_index(vaddr); | ||
133 | if (pgd_none(*pgd)) { | ||
134 | printk(KERN_WARNING "set_pmd_pfn: pgd_none\n"); | ||
135 | return; /* BUG(); */ | ||
136 | } | ||
137 | pud = pud_offset(pgd, vaddr); | ||
138 | pmd = pmd_offset(pud, vaddr); | ||
139 | set_pmd(pmd, pfn_pmd(pfn, flags)); | ||
140 | /* | ||
141 | * It's enough to flush this one mapping. | ||
142 | * (PGE mappings get flushed as well) | ||
143 | */ | ||
144 | __flush_tlb_one(vaddr); | ||
145 | } | ||
146 | |||
147 | static int fixmaps; | ||
148 | unsigned long __FIXADDR_TOP = 0xfffff000; | ||
149 | EXPORT_SYMBOL(__FIXADDR_TOP); | ||
150 | |||
151 | void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags) | ||
152 | { | ||
153 | unsigned long address = __fix_to_virt(idx); | ||
154 | |||
155 | if (idx >= __end_of_fixed_addresses) { | ||
156 | BUG(); | ||
157 | return; | ||
158 | } | ||
159 | set_pte_pfn(address, phys >> PAGE_SHIFT, flags); | ||
160 | fixmaps++; | ||
161 | } | ||
162 | |||
163 | /** | ||
164 | * reserve_top_address - reserves a hole in the top of kernel address space | ||
165 | * @reserve - size of hole to reserve | ||
166 | * | ||
167 | * Can be used to relocate the fixmap area and poke a hole in the top | ||
168 | * of kernel address space to make room for a hypervisor. | ||
169 | */ | ||
170 | void reserve_top_address(unsigned long reserve) | ||
171 | { | ||
172 | BUG_ON(fixmaps > 0); | ||
173 | printk(KERN_INFO "Reserving virtual address space above 0x%08x\n", | ||
174 | (int)-reserve); | ||
175 | __FIXADDR_TOP = -reserve - PAGE_SIZE; | ||
176 | __VMALLOC_RESERVE += reserve; | ||
177 | } | ||
178 | |||
179 | pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) | ||
180 | { | ||
181 | return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO); | ||
182 | } | ||
183 | |||
184 | struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) | ||
185 | { | ||
186 | struct page *pte; | ||
187 | |||
188 | #ifdef CONFIG_HIGHPTE | ||
189 | pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0); | ||
190 | #else | ||
191 | pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0); | ||
192 | #endif | ||
193 | return pte; | ||
194 | } | ||
195 | |||
196 | void pmd_ctor(void *pmd, struct kmem_cache *cache, unsigned long flags) | ||
197 | { | ||
198 | memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t)); | ||
199 | } | ||
200 | |||
201 | /* | ||
202 | * List of all pgd's needed for non-PAE so it can invalidate entries | ||
203 | * in both cached and uncached pgd's; not needed for PAE since the | ||
204 | * kernel pmd is shared. If PAE were not to share the pmd a similar | ||
205 | * tactic would be needed. This is essentially codepath-based locking | ||
206 | * against pageattr.c; it is the unique case in which a valid change | ||
207 | * of kernel pagetables can't be lazily synchronized by vmalloc faults. | ||
208 | * vmalloc faults work because attached pagetables are never freed. | ||
209 | * -- wli | ||
210 | */ | ||
211 | DEFINE_SPINLOCK(pgd_lock); | ||
212 | struct page *pgd_list; | ||
213 | |||
214 | static inline void pgd_list_add(pgd_t *pgd) | ||
215 | { | ||
216 | struct page *page = virt_to_page(pgd); | ||
217 | page->index = (unsigned long)pgd_list; | ||
218 | if (pgd_list) | ||
219 | set_page_private(pgd_list, (unsigned long)&page->index); | ||
220 | pgd_list = page; | ||
221 | set_page_private(page, (unsigned long)&pgd_list); | ||
222 | } | ||
223 | |||
224 | static inline void pgd_list_del(pgd_t *pgd) | ||
225 | { | ||
226 | struct page *next, **pprev, *page = virt_to_page(pgd); | ||
227 | next = (struct page *)page->index; | ||
228 | pprev = (struct page **)page_private(page); | ||
229 | *pprev = next; | ||
230 | if (next) | ||
231 | set_page_private(next, (unsigned long)pprev); | ||
232 | } | ||
233 | |||
234 | |||
235 | |||
236 | #if (PTRS_PER_PMD == 1) | ||
237 | /* Non-PAE pgd constructor */ | ||
238 | static void pgd_ctor(void *pgd) | ||
239 | { | ||
240 | unsigned long flags; | ||
241 | |||
242 | /* !PAE, no pagetable sharing */ | ||
243 | memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t)); | ||
244 | |||
245 | spin_lock_irqsave(&pgd_lock, flags); | ||
246 | |||
247 | /* must happen under lock */ | ||
248 | clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD, | ||
249 | swapper_pg_dir + USER_PTRS_PER_PGD, | ||
250 | KERNEL_PGD_PTRS); | ||
251 | paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT, | ||
252 | __pa(swapper_pg_dir) >> PAGE_SHIFT, | ||
253 | USER_PTRS_PER_PGD, | ||
254 | KERNEL_PGD_PTRS); | ||
255 | pgd_list_add(pgd); | ||
256 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
257 | } | ||
258 | #else /* PTRS_PER_PMD > 1 */ | ||
259 | /* PAE pgd constructor */ | ||
260 | static void pgd_ctor(void *pgd) | ||
261 | { | ||
262 | /* PAE, kernel PMD may be shared */ | ||
263 | |||
264 | if (SHARED_KERNEL_PMD) { | ||
265 | clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD, | ||
266 | swapper_pg_dir + USER_PTRS_PER_PGD, | ||
267 | KERNEL_PGD_PTRS); | ||
268 | } else { | ||
269 | unsigned long flags; | ||
270 | |||
271 | memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t)); | ||
272 | spin_lock_irqsave(&pgd_lock, flags); | ||
273 | pgd_list_add(pgd); | ||
274 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
275 | } | ||
276 | } | ||
277 | #endif /* PTRS_PER_PMD */ | ||
278 | |||
279 | static void pgd_dtor(void *pgd) | ||
280 | { | ||
281 | unsigned long flags; /* can be called from interrupt context */ | ||
282 | |||
283 | if (SHARED_KERNEL_PMD) | ||
284 | return; | ||
285 | |||
286 | paravirt_release_pd(__pa(pgd) >> PAGE_SHIFT); | ||
287 | spin_lock_irqsave(&pgd_lock, flags); | ||
288 | pgd_list_del(pgd); | ||
289 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
290 | } | ||
291 | |||
292 | #define UNSHARED_PTRS_PER_PGD \ | ||
293 | (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD) | ||
294 | |||
295 | /* If we allocate a pmd for part of the kernel address space, then | ||
296 | make sure its initialized with the appropriate kernel mappings. | ||
297 | Otherwise use a cached zeroed pmd. */ | ||
298 | static pmd_t *pmd_cache_alloc(int idx) | ||
299 | { | ||
300 | pmd_t *pmd; | ||
301 | |||
302 | if (idx >= USER_PTRS_PER_PGD) { | ||
303 | pmd = (pmd_t *)__get_free_page(GFP_KERNEL); | ||
304 | |||
305 | if (pmd) | ||
306 | memcpy(pmd, | ||
307 | (void *)pgd_page_vaddr(swapper_pg_dir[idx]), | ||
308 | sizeof(pmd_t) * PTRS_PER_PMD); | ||
309 | } else | ||
310 | pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL); | ||
311 | |||
312 | return pmd; | ||
313 | } | ||
314 | |||
315 | static void pmd_cache_free(pmd_t *pmd, int idx) | ||
316 | { | ||
317 | if (idx >= USER_PTRS_PER_PGD) | ||
318 | free_page((unsigned long)pmd); | ||
319 | else | ||
320 | kmem_cache_free(pmd_cache, pmd); | ||
321 | } | ||
322 | |||
323 | pgd_t *pgd_alloc(struct mm_struct *mm) | ||
324 | { | ||
325 | int i; | ||
326 | pgd_t *pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor); | ||
327 | |||
328 | if (PTRS_PER_PMD == 1 || !pgd) | ||
329 | return pgd; | ||
330 | |||
331 | for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) { | ||
332 | pmd_t *pmd = pmd_cache_alloc(i); | ||
333 | |||
334 | if (!pmd) | ||
335 | goto out_oom; | ||
336 | |||
337 | paravirt_alloc_pd(__pa(pmd) >> PAGE_SHIFT); | ||
338 | set_pgd(&pgd[i], __pgd(1 + __pa(pmd))); | ||
339 | } | ||
340 | return pgd; | ||
341 | |||
342 | out_oom: | ||
343 | for (i--; i >= 0; i--) { | ||
344 | pgd_t pgdent = pgd[i]; | ||
345 | void* pmd = (void *)__va(pgd_val(pgdent)-1); | ||
346 | paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT); | ||
347 | pmd_cache_free(pmd, i); | ||
348 | } | ||
349 | quicklist_free(0, pgd_dtor, pgd); | ||
350 | return NULL; | ||
351 | } | ||
352 | |||
353 | void pgd_free(pgd_t *pgd) | ||
354 | { | ||
355 | int i; | ||
356 | |||
357 | /* in the PAE case user pgd entries are overwritten before usage */ | ||
358 | if (PTRS_PER_PMD > 1) | ||
359 | for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) { | ||
360 | pgd_t pgdent = pgd[i]; | ||
361 | void* pmd = (void *)__va(pgd_val(pgdent)-1); | ||
362 | paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT); | ||
363 | pmd_cache_free(pmd, i); | ||
364 | } | ||
365 | /* in the non-PAE case, free_pgtables() clears user pgd entries */ | ||
366 | quicklist_free(0, pgd_dtor, pgd); | ||
367 | } | ||
368 | |||
369 | void check_pgt_cache(void) | ||
370 | { | ||
371 | quicklist_trim(0, pgd_dtor, 25, 16); | ||
372 | } | ||
373 | |||