diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:16:47 -0400 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:16:47 -0400 |
commit | ad757b6aa5801b81dec609d87753604a06313c53 (patch) | |
tree | 7bb40460e1729ad370b5ae75e65f9e6a0e824328 /arch/x86/mm/fault_32.c | |
parent | 96ae6ea0be1b902c28b3b463c27da42b41e2b63a (diff) |
i386: move mm
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/mm/fault_32.c')
-rw-r--r-- | arch/x86/mm/fault_32.c | 657 |
1 files changed, 657 insertions, 0 deletions
diff --git a/arch/x86/mm/fault_32.c b/arch/x86/mm/fault_32.c new file mode 100644 index 000000000000..fcb38e7f3543 --- /dev/null +++ b/arch/x86/mm/fault_32.c | |||
@@ -0,0 +1,657 @@ | |||
1 | /* | ||
2 | * linux/arch/i386/mm/fault.c | ||
3 | * | ||
4 | * Copyright (C) 1995 Linus Torvalds | ||
5 | */ | ||
6 | |||
7 | #include <linux/signal.h> | ||
8 | #include <linux/sched.h> | ||
9 | #include <linux/kernel.h> | ||
10 | #include <linux/errno.h> | ||
11 | #include <linux/string.h> | ||
12 | #include <linux/types.h> | ||
13 | #include <linux/ptrace.h> | ||
14 | #include <linux/mman.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/smp.h> | ||
17 | #include <linux/interrupt.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/tty.h> | ||
20 | #include <linux/vt_kern.h> /* For unblank_screen() */ | ||
21 | #include <linux/highmem.h> | ||
22 | #include <linux/bootmem.h> /* for max_low_pfn */ | ||
23 | #include <linux/vmalloc.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/kprobes.h> | ||
26 | #include <linux/uaccess.h> | ||
27 | #include <linux/kdebug.h> | ||
28 | |||
29 | #include <asm/system.h> | ||
30 | #include <asm/desc.h> | ||
31 | #include <asm/segment.h> | ||
32 | |||
33 | extern void die(const char *,struct pt_regs *,long); | ||
34 | |||
35 | static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain); | ||
36 | |||
37 | int register_page_fault_notifier(struct notifier_block *nb) | ||
38 | { | ||
39 | vmalloc_sync_all(); | ||
40 | return atomic_notifier_chain_register(¬ify_page_fault_chain, nb); | ||
41 | } | ||
42 | EXPORT_SYMBOL_GPL(register_page_fault_notifier); | ||
43 | |||
44 | int unregister_page_fault_notifier(struct notifier_block *nb) | ||
45 | { | ||
46 | return atomic_notifier_chain_unregister(¬ify_page_fault_chain, nb); | ||
47 | } | ||
48 | EXPORT_SYMBOL_GPL(unregister_page_fault_notifier); | ||
49 | |||
50 | static inline int notify_page_fault(struct pt_regs *regs, long err) | ||
51 | { | ||
52 | struct die_args args = { | ||
53 | .regs = regs, | ||
54 | .str = "page fault", | ||
55 | .err = err, | ||
56 | .trapnr = 14, | ||
57 | .signr = SIGSEGV | ||
58 | }; | ||
59 | return atomic_notifier_call_chain(¬ify_page_fault_chain, | ||
60 | DIE_PAGE_FAULT, &args); | ||
61 | } | ||
62 | |||
63 | /* | ||
64 | * Return EIP plus the CS segment base. The segment limit is also | ||
65 | * adjusted, clamped to the kernel/user address space (whichever is | ||
66 | * appropriate), and returned in *eip_limit. | ||
67 | * | ||
68 | * The segment is checked, because it might have been changed by another | ||
69 | * task between the original faulting instruction and here. | ||
70 | * | ||
71 | * If CS is no longer a valid code segment, or if EIP is beyond the | ||
72 | * limit, or if it is a kernel address when CS is not a kernel segment, | ||
73 | * then the returned value will be greater than *eip_limit. | ||
74 | * | ||
75 | * This is slow, but is very rarely executed. | ||
76 | */ | ||
77 | static inline unsigned long get_segment_eip(struct pt_regs *regs, | ||
78 | unsigned long *eip_limit) | ||
79 | { | ||
80 | unsigned long eip = regs->eip; | ||
81 | unsigned seg = regs->xcs & 0xffff; | ||
82 | u32 seg_ar, seg_limit, base, *desc; | ||
83 | |||
84 | /* Unlikely, but must come before segment checks. */ | ||
85 | if (unlikely(regs->eflags & VM_MASK)) { | ||
86 | base = seg << 4; | ||
87 | *eip_limit = base + 0xffff; | ||
88 | return base + (eip & 0xffff); | ||
89 | } | ||
90 | |||
91 | /* The standard kernel/user address space limit. */ | ||
92 | *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg; | ||
93 | |||
94 | /* By far the most common cases. */ | ||
95 | if (likely(SEGMENT_IS_FLAT_CODE(seg))) | ||
96 | return eip; | ||
97 | |||
98 | /* Check the segment exists, is within the current LDT/GDT size, | ||
99 | that kernel/user (ring 0..3) has the appropriate privilege, | ||
100 | that it's a code segment, and get the limit. */ | ||
101 | __asm__ ("larl %3,%0; lsll %3,%1" | ||
102 | : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); | ||
103 | if ((~seg_ar & 0x9800) || eip > seg_limit) { | ||
104 | *eip_limit = 0; | ||
105 | return 1; /* So that returned eip > *eip_limit. */ | ||
106 | } | ||
107 | |||
108 | /* Get the GDT/LDT descriptor base. | ||
109 | When you look for races in this code remember that | ||
110 | LDT and other horrors are only used in user space. */ | ||
111 | if (seg & (1<<2)) { | ||
112 | /* Must lock the LDT while reading it. */ | ||
113 | down(¤t->mm->context.sem); | ||
114 | desc = current->mm->context.ldt; | ||
115 | desc = (void *)desc + (seg & ~7); | ||
116 | } else { | ||
117 | /* Must disable preemption while reading the GDT. */ | ||
118 | desc = (u32 *)get_cpu_gdt_table(get_cpu()); | ||
119 | desc = (void *)desc + (seg & ~7); | ||
120 | } | ||
121 | |||
122 | /* Decode the code segment base from the descriptor */ | ||
123 | base = get_desc_base((unsigned long *)desc); | ||
124 | |||
125 | if (seg & (1<<2)) { | ||
126 | up(¤t->mm->context.sem); | ||
127 | } else | ||
128 | put_cpu(); | ||
129 | |||
130 | /* Adjust EIP and segment limit, and clamp at the kernel limit. | ||
131 | It's legitimate for segments to wrap at 0xffffffff. */ | ||
132 | seg_limit += base; | ||
133 | if (seg_limit < *eip_limit && seg_limit >= base) | ||
134 | *eip_limit = seg_limit; | ||
135 | return eip + base; | ||
136 | } | ||
137 | |||
138 | /* | ||
139 | * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. | ||
140 | * Check that here and ignore it. | ||
141 | */ | ||
142 | static int __is_prefetch(struct pt_regs *regs, unsigned long addr) | ||
143 | { | ||
144 | unsigned long limit; | ||
145 | unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit); | ||
146 | int scan_more = 1; | ||
147 | int prefetch = 0; | ||
148 | int i; | ||
149 | |||
150 | for (i = 0; scan_more && i < 15; i++) { | ||
151 | unsigned char opcode; | ||
152 | unsigned char instr_hi; | ||
153 | unsigned char instr_lo; | ||
154 | |||
155 | if (instr > (unsigned char *)limit) | ||
156 | break; | ||
157 | if (probe_kernel_address(instr, opcode)) | ||
158 | break; | ||
159 | |||
160 | instr_hi = opcode & 0xf0; | ||
161 | instr_lo = opcode & 0x0f; | ||
162 | instr++; | ||
163 | |||
164 | switch (instr_hi) { | ||
165 | case 0x20: | ||
166 | case 0x30: | ||
167 | /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */ | ||
168 | scan_more = ((instr_lo & 7) == 0x6); | ||
169 | break; | ||
170 | |||
171 | case 0x60: | ||
172 | /* 0x64 thru 0x67 are valid prefixes in all modes. */ | ||
173 | scan_more = (instr_lo & 0xC) == 0x4; | ||
174 | break; | ||
175 | case 0xF0: | ||
176 | /* 0xF0, 0xF2, and 0xF3 are valid prefixes */ | ||
177 | scan_more = !instr_lo || (instr_lo>>1) == 1; | ||
178 | break; | ||
179 | case 0x00: | ||
180 | /* Prefetch instruction is 0x0F0D or 0x0F18 */ | ||
181 | scan_more = 0; | ||
182 | if (instr > (unsigned char *)limit) | ||
183 | break; | ||
184 | if (probe_kernel_address(instr, opcode)) | ||
185 | break; | ||
186 | prefetch = (instr_lo == 0xF) && | ||
187 | (opcode == 0x0D || opcode == 0x18); | ||
188 | break; | ||
189 | default: | ||
190 | scan_more = 0; | ||
191 | break; | ||
192 | } | ||
193 | } | ||
194 | return prefetch; | ||
195 | } | ||
196 | |||
197 | static inline int is_prefetch(struct pt_regs *regs, unsigned long addr, | ||
198 | unsigned long error_code) | ||
199 | { | ||
200 | if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && | ||
201 | boot_cpu_data.x86 >= 6)) { | ||
202 | /* Catch an obscure case of prefetch inside an NX page. */ | ||
203 | if (nx_enabled && (error_code & 16)) | ||
204 | return 0; | ||
205 | return __is_prefetch(regs, addr); | ||
206 | } | ||
207 | return 0; | ||
208 | } | ||
209 | |||
210 | static noinline void force_sig_info_fault(int si_signo, int si_code, | ||
211 | unsigned long address, struct task_struct *tsk) | ||
212 | { | ||
213 | siginfo_t info; | ||
214 | |||
215 | info.si_signo = si_signo; | ||
216 | info.si_errno = 0; | ||
217 | info.si_code = si_code; | ||
218 | info.si_addr = (void __user *)address; | ||
219 | force_sig_info(si_signo, &info, tsk); | ||
220 | } | ||
221 | |||
222 | fastcall void do_invalid_op(struct pt_regs *, unsigned long); | ||
223 | |||
224 | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | ||
225 | { | ||
226 | unsigned index = pgd_index(address); | ||
227 | pgd_t *pgd_k; | ||
228 | pud_t *pud, *pud_k; | ||
229 | pmd_t *pmd, *pmd_k; | ||
230 | |||
231 | pgd += index; | ||
232 | pgd_k = init_mm.pgd + index; | ||
233 | |||
234 | if (!pgd_present(*pgd_k)) | ||
235 | return NULL; | ||
236 | |||
237 | /* | ||
238 | * set_pgd(pgd, *pgd_k); here would be useless on PAE | ||
239 | * and redundant with the set_pmd() on non-PAE. As would | ||
240 | * set_pud. | ||
241 | */ | ||
242 | |||
243 | pud = pud_offset(pgd, address); | ||
244 | pud_k = pud_offset(pgd_k, address); | ||
245 | if (!pud_present(*pud_k)) | ||
246 | return NULL; | ||
247 | |||
248 | pmd = pmd_offset(pud, address); | ||
249 | pmd_k = pmd_offset(pud_k, address); | ||
250 | if (!pmd_present(*pmd_k)) | ||
251 | return NULL; | ||
252 | if (!pmd_present(*pmd)) { | ||
253 | set_pmd(pmd, *pmd_k); | ||
254 | arch_flush_lazy_mmu_mode(); | ||
255 | } else | ||
256 | BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); | ||
257 | return pmd_k; | ||
258 | } | ||
259 | |||
260 | /* | ||
261 | * Handle a fault on the vmalloc or module mapping area | ||
262 | * | ||
263 | * This assumes no large pages in there. | ||
264 | */ | ||
265 | static inline int vmalloc_fault(unsigned long address) | ||
266 | { | ||
267 | unsigned long pgd_paddr; | ||
268 | pmd_t *pmd_k; | ||
269 | pte_t *pte_k; | ||
270 | /* | ||
271 | * Synchronize this task's top level page-table | ||
272 | * with the 'reference' page table. | ||
273 | * | ||
274 | * Do _not_ use "current" here. We might be inside | ||
275 | * an interrupt in the middle of a task switch.. | ||
276 | */ | ||
277 | pgd_paddr = read_cr3(); | ||
278 | pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); | ||
279 | if (!pmd_k) | ||
280 | return -1; | ||
281 | pte_k = pte_offset_kernel(pmd_k, address); | ||
282 | if (!pte_present(*pte_k)) | ||
283 | return -1; | ||
284 | return 0; | ||
285 | } | ||
286 | |||
287 | int show_unhandled_signals = 1; | ||
288 | |||
289 | /* | ||
290 | * This routine handles page faults. It determines the address, | ||
291 | * and the problem, and then passes it off to one of the appropriate | ||
292 | * routines. | ||
293 | * | ||
294 | * error_code: | ||
295 | * bit 0 == 0 means no page found, 1 means protection fault | ||
296 | * bit 1 == 0 means read, 1 means write | ||
297 | * bit 2 == 0 means kernel, 1 means user-mode | ||
298 | * bit 3 == 1 means use of reserved bit detected | ||
299 | * bit 4 == 1 means fault was an instruction fetch | ||
300 | */ | ||
301 | fastcall void __kprobes do_page_fault(struct pt_regs *regs, | ||
302 | unsigned long error_code) | ||
303 | { | ||
304 | struct task_struct *tsk; | ||
305 | struct mm_struct *mm; | ||
306 | struct vm_area_struct * vma; | ||
307 | unsigned long address; | ||
308 | int write, si_code; | ||
309 | int fault; | ||
310 | |||
311 | /* get the address */ | ||
312 | address = read_cr2(); | ||
313 | |||
314 | tsk = current; | ||
315 | |||
316 | si_code = SEGV_MAPERR; | ||
317 | |||
318 | /* | ||
319 | * We fault-in kernel-space virtual memory on-demand. The | ||
320 | * 'reference' page table is init_mm.pgd. | ||
321 | * | ||
322 | * NOTE! We MUST NOT take any locks for this case. We may | ||
323 | * be in an interrupt or a critical region, and should | ||
324 | * only copy the information from the master page table, | ||
325 | * nothing more. | ||
326 | * | ||
327 | * This verifies that the fault happens in kernel space | ||
328 | * (error_code & 4) == 0, and that the fault was not a | ||
329 | * protection error (error_code & 9) == 0. | ||
330 | */ | ||
331 | if (unlikely(address >= TASK_SIZE)) { | ||
332 | if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0) | ||
333 | return; | ||
334 | if (notify_page_fault(regs, error_code) == NOTIFY_STOP) | ||
335 | return; | ||
336 | /* | ||
337 | * Don't take the mm semaphore here. If we fixup a prefetch | ||
338 | * fault we could otherwise deadlock. | ||
339 | */ | ||
340 | goto bad_area_nosemaphore; | ||
341 | } | ||
342 | |||
343 | if (notify_page_fault(regs, error_code) == NOTIFY_STOP) | ||
344 | return; | ||
345 | |||
346 | /* It's safe to allow irq's after cr2 has been saved and the vmalloc | ||
347 | fault has been handled. */ | ||
348 | if (regs->eflags & (X86_EFLAGS_IF|VM_MASK)) | ||
349 | local_irq_enable(); | ||
350 | |||
351 | mm = tsk->mm; | ||
352 | |||
353 | /* | ||
354 | * If we're in an interrupt, have no user context or are running in an | ||
355 | * atomic region then we must not take the fault.. | ||
356 | */ | ||
357 | if (in_atomic() || !mm) | ||
358 | goto bad_area_nosemaphore; | ||
359 | |||
360 | /* When running in the kernel we expect faults to occur only to | ||
361 | * addresses in user space. All other faults represent errors in the | ||
362 | * kernel and should generate an OOPS. Unfortunatly, in the case of an | ||
363 | * erroneous fault occurring in a code path which already holds mmap_sem | ||
364 | * we will deadlock attempting to validate the fault against the | ||
365 | * address space. Luckily the kernel only validly references user | ||
366 | * space from well defined areas of code, which are listed in the | ||
367 | * exceptions table. | ||
368 | * | ||
369 | * As the vast majority of faults will be valid we will only perform | ||
370 | * the source reference check when there is a possibilty of a deadlock. | ||
371 | * Attempt to lock the address space, if we cannot we then validate the | ||
372 | * source. If this is invalid we can skip the address space check, | ||
373 | * thus avoiding the deadlock. | ||
374 | */ | ||
375 | if (!down_read_trylock(&mm->mmap_sem)) { | ||
376 | if ((error_code & 4) == 0 && | ||
377 | !search_exception_tables(regs->eip)) | ||
378 | goto bad_area_nosemaphore; | ||
379 | down_read(&mm->mmap_sem); | ||
380 | } | ||
381 | |||
382 | vma = find_vma(mm, address); | ||
383 | if (!vma) | ||
384 | goto bad_area; | ||
385 | if (vma->vm_start <= address) | ||
386 | goto good_area; | ||
387 | if (!(vma->vm_flags & VM_GROWSDOWN)) | ||
388 | goto bad_area; | ||
389 | if (error_code & 4) { | ||
390 | /* | ||
391 | * Accessing the stack below %esp is always a bug. | ||
392 | * The large cushion allows instructions like enter | ||
393 | * and pusha to work. ("enter $65535,$31" pushes | ||
394 | * 32 pointers and then decrements %esp by 65535.) | ||
395 | */ | ||
396 | if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp) | ||
397 | goto bad_area; | ||
398 | } | ||
399 | if (expand_stack(vma, address)) | ||
400 | goto bad_area; | ||
401 | /* | ||
402 | * Ok, we have a good vm_area for this memory access, so | ||
403 | * we can handle it.. | ||
404 | */ | ||
405 | good_area: | ||
406 | si_code = SEGV_ACCERR; | ||
407 | write = 0; | ||
408 | switch (error_code & 3) { | ||
409 | default: /* 3: write, present */ | ||
410 | /* fall through */ | ||
411 | case 2: /* write, not present */ | ||
412 | if (!(vma->vm_flags & VM_WRITE)) | ||
413 | goto bad_area; | ||
414 | write++; | ||
415 | break; | ||
416 | case 1: /* read, present */ | ||
417 | goto bad_area; | ||
418 | case 0: /* read, not present */ | ||
419 | if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | ||
420 | goto bad_area; | ||
421 | } | ||
422 | |||
423 | survive: | ||
424 | /* | ||
425 | * If for any reason at all we couldn't handle the fault, | ||
426 | * make sure we exit gracefully rather than endlessly redo | ||
427 | * the fault. | ||
428 | */ | ||
429 | fault = handle_mm_fault(mm, vma, address, write); | ||
430 | if (unlikely(fault & VM_FAULT_ERROR)) { | ||
431 | if (fault & VM_FAULT_OOM) | ||
432 | goto out_of_memory; | ||
433 | else if (fault & VM_FAULT_SIGBUS) | ||
434 | goto do_sigbus; | ||
435 | BUG(); | ||
436 | } | ||
437 | if (fault & VM_FAULT_MAJOR) | ||
438 | tsk->maj_flt++; | ||
439 | else | ||
440 | tsk->min_flt++; | ||
441 | |||
442 | /* | ||
443 | * Did it hit the DOS screen memory VA from vm86 mode? | ||
444 | */ | ||
445 | if (regs->eflags & VM_MASK) { | ||
446 | unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; | ||
447 | if (bit < 32) | ||
448 | tsk->thread.screen_bitmap |= 1 << bit; | ||
449 | } | ||
450 | up_read(&mm->mmap_sem); | ||
451 | return; | ||
452 | |||
453 | /* | ||
454 | * Something tried to access memory that isn't in our memory map.. | ||
455 | * Fix it, but check if it's kernel or user first.. | ||
456 | */ | ||
457 | bad_area: | ||
458 | up_read(&mm->mmap_sem); | ||
459 | |||
460 | bad_area_nosemaphore: | ||
461 | /* User mode accesses just cause a SIGSEGV */ | ||
462 | if (error_code & 4) { | ||
463 | /* | ||
464 | * It's possible to have interrupts off here. | ||
465 | */ | ||
466 | local_irq_enable(); | ||
467 | |||
468 | /* | ||
469 | * Valid to do another page fault here because this one came | ||
470 | * from user space. | ||
471 | */ | ||
472 | if (is_prefetch(regs, address, error_code)) | ||
473 | return; | ||
474 | |||
475 | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && | ||
476 | printk_ratelimit()) { | ||
477 | printk("%s%s[%d]: segfault at %08lx eip %08lx " | ||
478 | "esp %08lx error %lx\n", | ||
479 | tsk->pid > 1 ? KERN_INFO : KERN_EMERG, | ||
480 | tsk->comm, tsk->pid, address, regs->eip, | ||
481 | regs->esp, error_code); | ||
482 | } | ||
483 | tsk->thread.cr2 = address; | ||
484 | /* Kernel addresses are always protection faults */ | ||
485 | tsk->thread.error_code = error_code | (address >= TASK_SIZE); | ||
486 | tsk->thread.trap_no = 14; | ||
487 | force_sig_info_fault(SIGSEGV, si_code, address, tsk); | ||
488 | return; | ||
489 | } | ||
490 | |||
491 | #ifdef CONFIG_X86_F00F_BUG | ||
492 | /* | ||
493 | * Pentium F0 0F C7 C8 bug workaround. | ||
494 | */ | ||
495 | if (boot_cpu_data.f00f_bug) { | ||
496 | unsigned long nr; | ||
497 | |||
498 | nr = (address - idt_descr.address) >> 3; | ||
499 | |||
500 | if (nr == 6) { | ||
501 | do_invalid_op(regs, 0); | ||
502 | return; | ||
503 | } | ||
504 | } | ||
505 | #endif | ||
506 | |||
507 | no_context: | ||
508 | /* Are we prepared to handle this kernel fault? */ | ||
509 | if (fixup_exception(regs)) | ||
510 | return; | ||
511 | |||
512 | /* | ||
513 | * Valid to do another page fault here, because if this fault | ||
514 | * had been triggered by is_prefetch fixup_exception would have | ||
515 | * handled it. | ||
516 | */ | ||
517 | if (is_prefetch(regs, address, error_code)) | ||
518 | return; | ||
519 | |||
520 | /* | ||
521 | * Oops. The kernel tried to access some bad page. We'll have to | ||
522 | * terminate things with extreme prejudice. | ||
523 | */ | ||
524 | |||
525 | bust_spinlocks(1); | ||
526 | |||
527 | if (oops_may_print()) { | ||
528 | __typeof__(pte_val(__pte(0))) page; | ||
529 | |||
530 | #ifdef CONFIG_X86_PAE | ||
531 | if (error_code & 16) { | ||
532 | pte_t *pte = lookup_address(address); | ||
533 | |||
534 | if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) | ||
535 | printk(KERN_CRIT "kernel tried to execute " | ||
536 | "NX-protected page - exploit attempt? " | ||
537 | "(uid: %d)\n", current->uid); | ||
538 | } | ||
539 | #endif | ||
540 | if (address < PAGE_SIZE) | ||
541 | printk(KERN_ALERT "BUG: unable to handle kernel NULL " | ||
542 | "pointer dereference"); | ||
543 | else | ||
544 | printk(KERN_ALERT "BUG: unable to handle kernel paging" | ||
545 | " request"); | ||
546 | printk(" at virtual address %08lx\n",address); | ||
547 | printk(KERN_ALERT " printing eip:\n"); | ||
548 | printk("%08lx\n", regs->eip); | ||
549 | |||
550 | page = read_cr3(); | ||
551 | page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; | ||
552 | #ifdef CONFIG_X86_PAE | ||
553 | printk(KERN_ALERT "*pdpt = %016Lx\n", page); | ||
554 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
555 | && page & _PAGE_PRESENT) { | ||
556 | page &= PAGE_MASK; | ||
557 | page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) | ||
558 | & (PTRS_PER_PMD - 1)]; | ||
559 | printk(KERN_ALERT "*pde = %016Lx\n", page); | ||
560 | page &= ~_PAGE_NX; | ||
561 | } | ||
562 | #else | ||
563 | printk(KERN_ALERT "*pde = %08lx\n", page); | ||
564 | #endif | ||
565 | |||
566 | /* | ||
567 | * We must not directly access the pte in the highpte | ||
568 | * case if the page table is located in highmem. | ||
569 | * And let's rather not kmap-atomic the pte, just in case | ||
570 | * it's allocated already. | ||
571 | */ | ||
572 | if ((page >> PAGE_SHIFT) < max_low_pfn | ||
573 | && (page & _PAGE_PRESENT)) { | ||
574 | page &= PAGE_MASK; | ||
575 | page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) | ||
576 | & (PTRS_PER_PTE - 1)]; | ||
577 | printk(KERN_ALERT "*pte = %0*Lx\n", sizeof(page)*2, (u64)page); | ||
578 | } | ||
579 | } | ||
580 | |||
581 | tsk->thread.cr2 = address; | ||
582 | tsk->thread.trap_no = 14; | ||
583 | tsk->thread.error_code = error_code; | ||
584 | die("Oops", regs, error_code); | ||
585 | bust_spinlocks(0); | ||
586 | do_exit(SIGKILL); | ||
587 | |||
588 | /* | ||
589 | * We ran out of memory, or some other thing happened to us that made | ||
590 | * us unable to handle the page fault gracefully. | ||
591 | */ | ||
592 | out_of_memory: | ||
593 | up_read(&mm->mmap_sem); | ||
594 | if (is_init(tsk)) { | ||
595 | yield(); | ||
596 | down_read(&mm->mmap_sem); | ||
597 | goto survive; | ||
598 | } | ||
599 | printk("VM: killing process %s\n", tsk->comm); | ||
600 | if (error_code & 4) | ||
601 | do_exit(SIGKILL); | ||
602 | goto no_context; | ||
603 | |||
604 | do_sigbus: | ||
605 | up_read(&mm->mmap_sem); | ||
606 | |||
607 | /* Kernel mode? Handle exceptions or die */ | ||
608 | if (!(error_code & 4)) | ||
609 | goto no_context; | ||
610 | |||
611 | /* User space => ok to do another page fault */ | ||
612 | if (is_prefetch(regs, address, error_code)) | ||
613 | return; | ||
614 | |||
615 | tsk->thread.cr2 = address; | ||
616 | tsk->thread.error_code = error_code; | ||
617 | tsk->thread.trap_no = 14; | ||
618 | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); | ||
619 | } | ||
620 | |||
621 | void vmalloc_sync_all(void) | ||
622 | { | ||
623 | /* | ||
624 | * Note that races in the updates of insync and start aren't | ||
625 | * problematic: insync can only get set bits added, and updates to | ||
626 | * start are only improving performance (without affecting correctness | ||
627 | * if undone). | ||
628 | */ | ||
629 | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | ||
630 | static unsigned long start = TASK_SIZE; | ||
631 | unsigned long address; | ||
632 | |||
633 | if (SHARED_KERNEL_PMD) | ||
634 | return; | ||
635 | |||
636 | BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK); | ||
637 | for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) { | ||
638 | if (!test_bit(pgd_index(address), insync)) { | ||
639 | unsigned long flags; | ||
640 | struct page *page; | ||
641 | |||
642 | spin_lock_irqsave(&pgd_lock, flags); | ||
643 | for (page = pgd_list; page; page = | ||
644 | (struct page *)page->index) | ||
645 | if (!vmalloc_sync_one(page_address(page), | ||
646 | address)) { | ||
647 | BUG_ON(page != pgd_list); | ||
648 | break; | ||
649 | } | ||
650 | spin_unlock_irqrestore(&pgd_lock, flags); | ||
651 | if (!page) | ||
652 | set_bit(pgd_index(address), insync); | ||
653 | } | ||
654 | if (address == start && test_bit(pgd_index(address), insync)) | ||
655 | start = address + PGDIR_SIZE; | ||
656 | } | ||
657 | } | ||