aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/fault.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-02-26 07:02:23 -0500
committerIngo Molnar <mingo@elte.hu>2009-02-26 07:02:23 -0500
commit8e818179eb9e8f9e44d8410dd2a25077d026a08e (patch)
tree7d08afd30c95c04129c20693d974a18799caeb5a /arch/x86/mm/fault.c
parent742bd95ba96e19b3f7196c3a0834ebc17c8ba006 (diff)
parentecc25fbd6b9e07b33895c61ddf84006b00f55d99 (diff)
Merge branch 'x86/core' into perfcounters/core
Conflicts: arch/x86/kernel/apic/apic.c arch/x86/kernel/irqinit_32.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/mm/fault.c')
-rw-r--r--arch/x86/mm/fault.c1078
1 files changed, 599 insertions, 479 deletions
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index 29644175490f..a03b7279efa0 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -1,74 +1,79 @@
1/* 1/*
2 * Copyright (C) 1995 Linus Torvalds 2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
4 */ 5 */
5
6#include <linux/signal.h>
7#include <linux/sched.h>
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/string.h>
11#include <linux/types.h>
12#include <linux/ptrace.h>
13#include <linux/mmiotrace.h>
14#include <linux/mman.h>
15#include <linux/mm.h>
16#include <linux/smp.h>
17#include <linux/interrupt.h> 6#include <linux/interrupt.h>
18#include <linux/init.h> 7#include <linux/mmiotrace.h>
19#include <linux/tty.h> 8#include <linux/bootmem.h>
20#include <linux/vt_kern.h> /* For unblank_screen() */
21#include <linux/compiler.h> 9#include <linux/compiler.h>
22#include <linux/highmem.h> 10#include <linux/highmem.h>
23#include <linux/bootmem.h> /* for max_low_pfn */
24#include <linux/vmalloc.h>
25#include <linux/module.h>
26#include <linux/kprobes.h> 11#include <linux/kprobes.h>
27#include <linux/uaccess.h> 12#include <linux/uaccess.h>
13#include <linux/vmalloc.h>
14#include <linux/vt_kern.h>
15#include <linux/signal.h>
16#include <linux/kernel.h>
17#include <linux/ptrace.h>
18#include <linux/string.h>
19#include <linux/module.h>
28#include <linux/kdebug.h> 20#include <linux/kdebug.h>
21#include <linux/errno.h>
29#include <linux/magic.h> 22#include <linux/magic.h>
23#include <linux/sched.h>
24#include <linux/types.h>
25#include <linux/init.h>
26#include <linux/mman.h>
27#include <linux/tty.h>
28#include <linux/smp.h>
29#include <linux/mm.h>
30
31#include <asm-generic/sections.h>
30 32
31#include <asm/system.h>
32#include <asm/desc.h>
33#include <asm/segment.h>
34#include <asm/pgalloc.h>
35#include <asm/smp.h>
36#include <asm/tlbflush.h> 33#include <asm/tlbflush.h>
34#include <asm/pgalloc.h>
35#include <asm/segment.h>
36#include <asm/system.h>
37#include <asm/proto.h> 37#include <asm/proto.h>
38#include <asm-generic/sections.h>
39#include <asm/traps.h> 38#include <asm/traps.h>
39#include <asm/desc.h>
40 40
41/* 41/*
42 * Page fault error code bits 42 * Page fault error code bits:
43 * bit 0 == 0 means no page found, 1 means protection fault 43 *
44 * bit 1 == 0 means read, 1 means write 44 * bit 0 == 0: no page found 1: protection fault
45 * bit 2 == 0 means kernel, 1 means user-mode 45 * bit 1 == 0: read access 1: write access
46 * bit 3 == 1 means use of reserved bit detected 46 * bit 2 == 0: kernel-mode access 1: user-mode access
47 * bit 4 == 1 means fault was an instruction fetch 47 * bit 3 == 1: use of reserved bit detected
48 * bit 4 == 1: fault was an instruction fetch
48 */ 49 */
49#define PF_PROT (1<<0) 50enum x86_pf_error_code {
50#define PF_WRITE (1<<1)
51#define PF_USER (1<<2)
52#define PF_RSVD (1<<3)
53#define PF_INSTR (1<<4)
54 51
52 PF_PROT = 1 << 0,
53 PF_WRITE = 1 << 1,
54 PF_USER = 1 << 2,
55 PF_RSVD = 1 << 3,
56 PF_INSTR = 1 << 4,
57};
58
59/*
60 * Returns 0 if mmiotrace is disabled, or if the fault is not
61 * handled by mmiotrace:
62 */
55static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) 63static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
56{ 64{
57#ifdef CONFIG_MMIOTRACE
58 if (unlikely(is_kmmio_active())) 65 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs, addr) == 1) 66 if (kmmio_handler(regs, addr) == 1)
60 return -1; 67 return -1;
61#endif
62 return 0; 68 return 0;
63} 69}
64 70
65static inline int notify_page_fault(struct pt_regs *regs) 71static inline int notify_page_fault(struct pt_regs *regs)
66{ 72{
67#ifdef CONFIG_KPROBES
68 int ret = 0; 73 int ret = 0;
69 74
70 /* kprobe_running() needs smp_processor_id() */ 75 /* kprobe_running() needs smp_processor_id() */
71 if (!user_mode_vm(regs)) { 76 if (kprobes_built_in() && !user_mode_vm(regs)) {
72 preempt_disable(); 77 preempt_disable();
73 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 78 if (kprobe_running() && kprobe_fault_handler(regs, 14))
74 ret = 1; 79 ret = 1;
@@ -76,29 +81,76 @@ static inline int notify_page_fault(struct pt_regs *regs)
76 } 81 }
77 82
78 return ret; 83 return ret;
79#else
80 return 0;
81#endif
82} 84}
83 85
84/* 86/*
85 * X86_32 87 * Prefetch quirks:
86 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
87 * Check that here and ignore it.
88 * 88 *
89 * X86_64 89 * 32-bit mode:
90 * Sometimes the CPU reports invalid exceptions on prefetch.
91 * Check that here and ignore it.
92 * 90 *
93 * Opcode checker based on code by Richard Brunner 91 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
92 * Check that here and ignore it.
93 *
94 * 64-bit mode:
95 *
96 * Sometimes the CPU reports invalid exceptions on prefetch.
97 * Check that here and ignore it.
98 *
99 * Opcode checker based on code by Richard Brunner.
94 */ 100 */
95static int is_prefetch(struct pt_regs *regs, unsigned long error_code, 101static inline int
96 unsigned long addr) 102check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
103 unsigned char opcode, int *prefetch)
97{ 104{
105 unsigned char instr_hi = opcode & 0xf0;
106 unsigned char instr_lo = opcode & 0x0f;
107
108 switch (instr_hi) {
109 case 0x20:
110 case 0x30:
111 /*
112 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
113 * In X86_64 long mode, the CPU will signal invalid
114 * opcode if some of these prefixes are present so
115 * X86_64 will never get here anyway
116 */
117 return ((instr_lo & 7) == 0x6);
118#ifdef CONFIG_X86_64
119 case 0x40:
120 /*
121 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
122 * Need to figure out under what instruction mode the
123 * instruction was issued. Could check the LDT for lm,
124 * but for now it's good enough to assume that long
125 * mode only uses well known segments or kernel.
126 */
127 return (!user_mode(regs)) || (regs->cs == __USER_CS);
128#endif
129 case 0x60:
130 /* 0x64 thru 0x67 are valid prefixes in all modes. */
131 return (instr_lo & 0xC) == 0x4;
132 case 0xF0:
133 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
134 return !instr_lo || (instr_lo>>1) == 1;
135 case 0x00:
136 /* Prefetch instruction is 0x0F0D or 0x0F18 */
137 if (probe_kernel_address(instr, opcode))
138 return 0;
139
140 *prefetch = (instr_lo == 0xF) &&
141 (opcode == 0x0D || opcode == 0x18);
142 return 0;
143 default:
144 return 0;
145 }
146}
147
148static int
149is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
150{
151 unsigned char *max_instr;
98 unsigned char *instr; 152 unsigned char *instr;
99 int scan_more = 1;
100 int prefetch = 0; 153 int prefetch = 0;
101 unsigned char *max_instr;
102 154
103 /* 155 /*
104 * If it was a exec (instruction fetch) fault on NX page, then 156 * If it was a exec (instruction fetch) fault on NX page, then
@@ -107,106 +159,170 @@ static int is_prefetch(struct pt_regs *regs, unsigned long error_code,
107 if (error_code & PF_INSTR) 159 if (error_code & PF_INSTR)
108 return 0; 160 return 0;
109 161
110 instr = (unsigned char *)convert_ip_to_linear(current, regs); 162 instr = (void *)convert_ip_to_linear(current, regs);
111 max_instr = instr + 15; 163 max_instr = instr + 15;
112 164
113 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) 165 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
114 return 0; 166 return 0;
115 167
116 while (scan_more && instr < max_instr) { 168 while (instr < max_instr) {
117 unsigned char opcode; 169 unsigned char opcode;
118 unsigned char instr_hi;
119 unsigned char instr_lo;
120 170
121 if (probe_kernel_address(instr, opcode)) 171 if (probe_kernel_address(instr, opcode))
122 break; 172 break;
123 173
124 instr_hi = opcode & 0xf0;
125 instr_lo = opcode & 0x0f;
126 instr++; 174 instr++;
127 175
128 switch (instr_hi) { 176 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
129 case 0x20:
130 case 0x30:
131 /*
132 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
133 * In X86_64 long mode, the CPU will signal invalid
134 * opcode if some of these prefixes are present so
135 * X86_64 will never get here anyway
136 */
137 scan_more = ((instr_lo & 7) == 0x6);
138 break;
139#ifdef CONFIG_X86_64
140 case 0x40:
141 /*
142 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
143 * Need to figure out under what instruction mode the
144 * instruction was issued. Could check the LDT for lm,
145 * but for now it's good enough to assume that long
146 * mode only uses well known segments or kernel.
147 */
148 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
149 break;
150#endif
151 case 0x60:
152 /* 0x64 thru 0x67 are valid prefixes in all modes. */
153 scan_more = (instr_lo & 0xC) == 0x4;
154 break;
155 case 0xF0:
156 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
157 scan_more = !instr_lo || (instr_lo>>1) == 1;
158 break;
159 case 0x00:
160 /* Prefetch instruction is 0x0F0D or 0x0F18 */
161 scan_more = 0;
162
163 if (probe_kernel_address(instr, opcode))
164 break;
165 prefetch = (instr_lo == 0xF) &&
166 (opcode == 0x0D || opcode == 0x18);
167 break; 177 break;
168 default:
169 scan_more = 0;
170 break;
171 }
172 } 178 }
173 return prefetch; 179 return prefetch;
174} 180}
175 181
176static void force_sig_info_fault(int si_signo, int si_code, 182static void
177 unsigned long address, struct task_struct *tsk) 183force_sig_info_fault(int si_signo, int si_code, unsigned long address,
184 struct task_struct *tsk)
178{ 185{
179 siginfo_t info; 186 siginfo_t info;
180 187
181 info.si_signo = si_signo; 188 info.si_signo = si_signo;
182 info.si_errno = 0; 189 info.si_errno = 0;
183 info.si_code = si_code; 190 info.si_code = si_code;
184 info.si_addr = (void __user *)address; 191 info.si_addr = (void __user *)address;
192
185 force_sig_info(si_signo, &info, tsk); 193 force_sig_info(si_signo, &info, tsk);
186} 194}
187 195
188#ifdef CONFIG_X86_64 196DEFINE_SPINLOCK(pgd_lock);
189static int bad_address(void *p) 197LIST_HEAD(pgd_list);
198
199#ifdef CONFIG_X86_32
200static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
190{ 201{
191 unsigned long dummy; 202 unsigned index = pgd_index(address);
192 return probe_kernel_address((unsigned long *)p, dummy); 203 pgd_t *pgd_k;
204 pud_t *pud, *pud_k;
205 pmd_t *pmd, *pmd_k;
206
207 pgd += index;
208 pgd_k = init_mm.pgd + index;
209
210 if (!pgd_present(*pgd_k))
211 return NULL;
212
213 /*
214 * set_pgd(pgd, *pgd_k); here would be useless on PAE
215 * and redundant with the set_pmd() on non-PAE. As would
216 * set_pud.
217 */
218 pud = pud_offset(pgd, address);
219 pud_k = pud_offset(pgd_k, address);
220 if (!pud_present(*pud_k))
221 return NULL;
222
223 pmd = pmd_offset(pud, address);
224 pmd_k = pmd_offset(pud_k, address);
225 if (!pmd_present(*pmd_k))
226 return NULL;
227
228 if (!pmd_present(*pmd)) {
229 set_pmd(pmd, *pmd_k);
230 arch_flush_lazy_mmu_mode();
231 } else {
232 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
233 }
234
235 return pmd_k;
236}
237
238void vmalloc_sync_all(void)
239{
240 unsigned long address;
241
242 if (SHARED_KERNEL_PMD)
243 return;
244
245 for (address = VMALLOC_START & PMD_MASK;
246 address >= TASK_SIZE && address < FIXADDR_TOP;
247 address += PMD_SIZE) {
248
249 unsigned long flags;
250 struct page *page;
251
252 spin_lock_irqsave(&pgd_lock, flags);
253 list_for_each_entry(page, &pgd_list, lru) {
254 if (!vmalloc_sync_one(page_address(page), address))
255 break;
256 }
257 spin_unlock_irqrestore(&pgd_lock, flags);
258 }
259}
260
261/*
262 * 32-bit:
263 *
264 * Handle a fault on the vmalloc or module mapping area
265 */
266static noinline int vmalloc_fault(unsigned long address)
267{
268 unsigned long pgd_paddr;
269 pmd_t *pmd_k;
270 pte_t *pte_k;
271
272 /* Make sure we are in vmalloc area: */
273 if (!(address >= VMALLOC_START && address < VMALLOC_END))
274 return -1;
275
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
291
292 return 0;
293}
294
295/*
296 * Did it hit the DOS screen memory VA from vm86 mode?
297 */
298static inline void
299check_v8086_mode(struct pt_regs *regs, unsigned long address,
300 struct task_struct *tsk)
301{
302 unsigned long bit;
303
304 if (!v8086_mode(regs))
305 return;
306
307 bit = (address - 0xA0000) >> PAGE_SHIFT;
308 if (bit < 32)
309 tsk->thread.screen_bitmap |= 1 << bit;
193} 310}
194#endif
195 311
196static void dump_pagetable(unsigned long address) 312static void dump_pagetable(unsigned long address)
197{ 313{
198#ifdef CONFIG_X86_32
199 __typeof__(pte_val(__pte(0))) page; 314 __typeof__(pte_val(__pte(0))) page;
200 315
201 page = read_cr3(); 316 page = read_cr3();
202 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; 317 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
318
203#ifdef CONFIG_X86_PAE 319#ifdef CONFIG_X86_PAE
204 printk("*pdpt = %016Lx ", page); 320 printk("*pdpt = %016Lx ", page);
205 if ((page >> PAGE_SHIFT) < max_low_pfn 321 if ((page >> PAGE_SHIFT) < max_low_pfn
206 && page & _PAGE_PRESENT) { 322 && page & _PAGE_PRESENT) {
207 page &= PAGE_MASK; 323 page &= PAGE_MASK;
208 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) 324 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
209 & (PTRS_PER_PMD - 1)]; 325 & (PTRS_PER_PMD - 1)];
210 printk(KERN_CONT "*pde = %016Lx ", page); 326 printk(KERN_CONT "*pde = %016Lx ", page);
211 page &= ~_PAGE_NX; 327 page &= ~_PAGE_NX;
212 } 328 }
@@ -218,19 +334,145 @@ static void dump_pagetable(unsigned long address)
218 * We must not directly access the pte in the highpte 334 * We must not directly access the pte in the highpte
219 * case if the page table is located in highmem. 335 * case if the page table is located in highmem.
220 * And let's rather not kmap-atomic the pte, just in case 336 * And let's rather not kmap-atomic the pte, just in case
221 * it's allocated already. 337 * it's allocated already:
222 */ 338 */
223 if ((page >> PAGE_SHIFT) < max_low_pfn 339 if ((page >> PAGE_SHIFT) < max_low_pfn
224 && (page & _PAGE_PRESENT) 340 && (page & _PAGE_PRESENT)
225 && !(page & _PAGE_PSE)) { 341 && !(page & _PAGE_PSE)) {
342
226 page &= PAGE_MASK; 343 page &= PAGE_MASK;
227 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) 344 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
228 & (PTRS_PER_PTE - 1)]; 345 & (PTRS_PER_PTE - 1)];
229 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); 346 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
230 } 347 }
231 348
232 printk("\n"); 349 printk("\n");
233#else /* CONFIG_X86_64 */ 350}
351
352#else /* CONFIG_X86_64: */
353
354void vmalloc_sync_all(void)
355{
356 unsigned long address;
357
358 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
359 address += PGDIR_SIZE) {
360
361 const pgd_t *pgd_ref = pgd_offset_k(address);
362 unsigned long flags;
363 struct page *page;
364
365 if (pgd_none(*pgd_ref))
366 continue;
367
368 spin_lock_irqsave(&pgd_lock, flags);
369 list_for_each_entry(page, &pgd_list, lru) {
370 pgd_t *pgd;
371 pgd = (pgd_t *)page_address(page) + pgd_index(address);
372 if (pgd_none(*pgd))
373 set_pgd(pgd, *pgd_ref);
374 else
375 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
376 }
377 spin_unlock_irqrestore(&pgd_lock, flags);
378 }
379}
380
381/*
382 * 64-bit:
383 *
384 * Handle a fault on the vmalloc area
385 *
386 * This assumes no large pages in there.
387 */
388static noinline int vmalloc_fault(unsigned long address)
389{
390 pgd_t *pgd, *pgd_ref;
391 pud_t *pud, *pud_ref;
392 pmd_t *pmd, *pmd_ref;
393 pte_t *pte, *pte_ref;
394
395 /* Make sure we are in vmalloc area: */
396 if (!(address >= VMALLOC_START && address < VMALLOC_END))
397 return -1;
398
399 /*
400 * Copy kernel mappings over when needed. This can also
401 * happen within a race in page table update. In the later
402 * case just flush:
403 */
404 pgd = pgd_offset(current->active_mm, address);
405 pgd_ref = pgd_offset_k(address);
406 if (pgd_none(*pgd_ref))
407 return -1;
408
409 if (pgd_none(*pgd))
410 set_pgd(pgd, *pgd_ref);
411 else
412 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
413
414 /*
415 * Below here mismatches are bugs because these lower tables
416 * are shared:
417 */
418
419 pud = pud_offset(pgd, address);
420 pud_ref = pud_offset(pgd_ref, address);
421 if (pud_none(*pud_ref))
422 return -1;
423
424 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
425 BUG();
426
427 pmd = pmd_offset(pud, address);
428 pmd_ref = pmd_offset(pud_ref, address);
429 if (pmd_none(*pmd_ref))
430 return -1;
431
432 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
433 BUG();
434
435 pte_ref = pte_offset_kernel(pmd_ref, address);
436 if (!pte_present(*pte_ref))
437 return -1;
438
439 pte = pte_offset_kernel(pmd, address);
440
441 /*
442 * Don't use pte_page here, because the mappings can point
443 * outside mem_map, and the NUMA hash lookup cannot handle
444 * that:
445 */
446 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
447 BUG();
448
449 return 0;
450}
451
452static const char errata93_warning[] =
453KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
454KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
455KERN_ERR "******* Please consider a BIOS update.\n"
456KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
457
458/*
459 * No vm86 mode in 64-bit mode:
460 */
461static inline void
462check_v8086_mode(struct pt_regs *regs, unsigned long address,
463 struct task_struct *tsk)
464{
465}
466
467static int bad_address(void *p)
468{
469 unsigned long dummy;
470
471 return probe_kernel_address((unsigned long *)p, dummy);
472}
473
474static void dump_pagetable(unsigned long address)
475{
234 pgd_t *pgd; 476 pgd_t *pgd;
235 pud_t *pud; 477 pud_t *pud;
236 pmd_t *pmd; 478 pmd_t *pmd;
@@ -239,102 +481,77 @@ static void dump_pagetable(unsigned long address)
239 pgd = (pgd_t *)read_cr3(); 481 pgd = (pgd_t *)read_cr3();
240 482
241 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); 483 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
484
242 pgd += pgd_index(address); 485 pgd += pgd_index(address);
243 if (bad_address(pgd)) goto bad; 486 if (bad_address(pgd))
487 goto bad;
488
244 printk("PGD %lx ", pgd_val(*pgd)); 489 printk("PGD %lx ", pgd_val(*pgd));
245 if (!pgd_present(*pgd)) goto ret; 490
491 if (!pgd_present(*pgd))
492 goto out;
246 493
247 pud = pud_offset(pgd, address); 494 pud = pud_offset(pgd, address);
248 if (bad_address(pud)) goto bad; 495 if (bad_address(pud))
496 goto bad;
497
249 printk("PUD %lx ", pud_val(*pud)); 498 printk("PUD %lx ", pud_val(*pud));
250 if (!pud_present(*pud) || pud_large(*pud)) 499 if (!pud_present(*pud) || pud_large(*pud))
251 goto ret; 500 goto out;
252 501
253 pmd = pmd_offset(pud, address); 502 pmd = pmd_offset(pud, address);
254 if (bad_address(pmd)) goto bad; 503 if (bad_address(pmd))
504 goto bad;
505
255 printk("PMD %lx ", pmd_val(*pmd)); 506 printk("PMD %lx ", pmd_val(*pmd));
256 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret; 507 if (!pmd_present(*pmd) || pmd_large(*pmd))
508 goto out;
257 509
258 pte = pte_offset_kernel(pmd, address); 510 pte = pte_offset_kernel(pmd, address);
259 if (bad_address(pte)) goto bad; 511 if (bad_address(pte))
512 goto bad;
513
260 printk("PTE %lx", pte_val(*pte)); 514 printk("PTE %lx", pte_val(*pte));
261ret: 515out:
262 printk("\n"); 516 printk("\n");
263 return; 517 return;
264bad: 518bad:
265 printk("BAD\n"); 519 printk("BAD\n");
266#endif
267} 520}
268 521
269#ifdef CONFIG_X86_32 522#endif /* CONFIG_X86_64 */
270static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
271{
272 unsigned index = pgd_index(address);
273 pgd_t *pgd_k;
274 pud_t *pud, *pud_k;
275 pmd_t *pmd, *pmd_k;
276
277 pgd += index;
278 pgd_k = init_mm.pgd + index;
279
280 if (!pgd_present(*pgd_k))
281 return NULL;
282 523
283 /* 524/*
284 * set_pgd(pgd, *pgd_k); here would be useless on PAE 525 * Workaround for K8 erratum #93 & buggy BIOS.
285 * and redundant with the set_pmd() on non-PAE. As would 526 *
286 * set_pud. 527 * BIOS SMM functions are required to use a specific workaround
287 */ 528 * to avoid corruption of the 64bit RIP register on C stepping K8.
288 529 *
289 pud = pud_offset(pgd, address); 530 * A lot of BIOS that didn't get tested properly miss this.
290 pud_k = pud_offset(pgd_k, address); 531 *
291 if (!pud_present(*pud_k)) 532 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
292 return NULL; 533 * Try to work around it here.
293 534 *
294 pmd = pmd_offset(pud, address); 535 * Note we only handle faults in kernel here.
295 pmd_k = pmd_offset(pud_k, address); 536 * Does nothing on 32-bit.
296 if (!pmd_present(*pmd_k))
297 return NULL;
298 if (!pmd_present(*pmd)) {
299 set_pmd(pmd, *pmd_k);
300 arch_flush_lazy_mmu_mode();
301 } else
302 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
303 return pmd_k;
304}
305#endif
306
307#ifdef CONFIG_X86_64
308static const char errata93_warning[] =
309KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
310KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
311KERN_ERR "******* Please consider a BIOS update.\n"
312KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
313#endif
314
315/* Workaround for K8 erratum #93 & buggy BIOS.
316 BIOS SMM functions are required to use a specific workaround
317 to avoid corruption of the 64bit RIP register on C stepping K8.
318 A lot of BIOS that didn't get tested properly miss this.
319 The OS sees this as a page fault with the upper 32bits of RIP cleared.
320 Try to work around it here.
321 Note we only handle faults in kernel here.
322 Does nothing for X86_32
323 */ 537 */
324static int is_errata93(struct pt_regs *regs, unsigned long address) 538static int is_errata93(struct pt_regs *regs, unsigned long address)
325{ 539{
326#ifdef CONFIG_X86_64 540#ifdef CONFIG_X86_64
327 static int warned; 541 static int once;
542
328 if (address != regs->ip) 543 if (address != regs->ip)
329 return 0; 544 return 0;
545
330 if ((address >> 32) != 0) 546 if ((address >> 32) != 0)
331 return 0; 547 return 0;
548
332 address |= 0xffffffffUL << 32; 549 address |= 0xffffffffUL << 32;
333 if ((address >= (u64)_stext && address <= (u64)_etext) || 550 if ((address >= (u64)_stext && address <= (u64)_etext) ||
334 (address >= MODULES_VADDR && address <= MODULES_END)) { 551 (address >= MODULES_VADDR && address <= MODULES_END)) {
335 if (!warned) { 552 if (!once) {
336 printk(errata93_warning); 553 printk(errata93_warning);
337 warned = 1; 554 once = 1;
338 } 555 }
339 regs->ip = address; 556 regs->ip = address;
340 return 1; 557 return 1;
@@ -344,16 +561,17 @@ static int is_errata93(struct pt_regs *regs, unsigned long address)
344} 561}
345 562
346/* 563/*
347 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal 564 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
348 * addresses >4GB. We catch this in the page fault handler because these 565 * to illegal addresses >4GB.
349 * addresses are not reachable. Just detect this case and return. Any code 566 *
567 * We catch this in the page fault handler because these addresses
568 * are not reachable. Just detect this case and return. Any code
350 * segment in LDT is compatibility mode. 569 * segment in LDT is compatibility mode.
351 */ 570 */
352static int is_errata100(struct pt_regs *regs, unsigned long address) 571static int is_errata100(struct pt_regs *regs, unsigned long address)
353{ 572{
354#ifdef CONFIG_X86_64 573#ifdef CONFIG_X86_64
355 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && 574 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
356 (address >> 32))
357 return 1; 575 return 1;
358#endif 576#endif
359 return 0; 577 return 0;
@@ -363,8 +581,9 @@ static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
363{ 581{
364#ifdef CONFIG_X86_F00F_BUG 582#ifdef CONFIG_X86_F00F_BUG
365 unsigned long nr; 583 unsigned long nr;
584
366 /* 585 /*
367 * Pentium F0 0F C7 C8 bug workaround. 586 * Pentium F0 0F C7 C8 bug workaround:
368 */ 587 */
369 if (boot_cpu_data.f00f_bug) { 588 if (boot_cpu_data.f00f_bug) {
370 nr = (address - idt_descr.address) >> 3; 589 nr = (address - idt_descr.address) >> 3;
@@ -378,80 +597,87 @@ static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
378 return 0; 597 return 0;
379} 598}
380 599
381static void show_fault_oops(struct pt_regs *regs, unsigned long error_code, 600static const char nx_warning[] = KERN_CRIT
382 unsigned long address) 601"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
602
603static void
604show_fault_oops(struct pt_regs *regs, unsigned long error_code,
605 unsigned long address)
383{ 606{
384#ifdef CONFIG_X86_32
385 if (!oops_may_print()) 607 if (!oops_may_print())
386 return; 608 return;
387#endif
388 609
389#ifdef CONFIG_X86_PAE
390 if (error_code & PF_INSTR) { 610 if (error_code & PF_INSTR) {
391 unsigned int level; 611 unsigned int level;
612
392 pte_t *pte = lookup_address(address, &level); 613 pte_t *pte = lookup_address(address, &level);
393 614
394 if (pte && pte_present(*pte) && !pte_exec(*pte)) 615 if (pte && pte_present(*pte) && !pte_exec(*pte))
395 printk(KERN_CRIT "kernel tried to execute " 616 printk(nx_warning, current_uid());
396 "NX-protected page - exploit attempt? "
397 "(uid: %d)\n", current_uid());
398 } 617 }
399#endif
400 618
401 printk(KERN_ALERT "BUG: unable to handle kernel "); 619 printk(KERN_ALERT "BUG: unable to handle kernel ");
402 if (address < PAGE_SIZE) 620 if (address < PAGE_SIZE)
403 printk(KERN_CONT "NULL pointer dereference"); 621 printk(KERN_CONT "NULL pointer dereference");
404 else 622 else
405 printk(KERN_CONT "paging request"); 623 printk(KERN_CONT "paging request");
624
406 printk(KERN_CONT " at %p\n", (void *) address); 625 printk(KERN_CONT " at %p\n", (void *) address);
407 printk(KERN_ALERT "IP:"); 626 printk(KERN_ALERT "IP:");
408 printk_address(regs->ip, 1); 627 printk_address(regs->ip, 1);
628
409 dump_pagetable(address); 629 dump_pagetable(address);
410} 630}
411 631
412#ifdef CONFIG_X86_64 632static noinline void
413static noinline void pgtable_bad(struct pt_regs *regs, 633pgtable_bad(struct pt_regs *regs, unsigned long error_code,
414 unsigned long error_code, unsigned long address) 634 unsigned long address)
415{ 635{
416 unsigned long flags = oops_begin(); 636 struct task_struct *tsk;
417 int sig = SIGKILL; 637 unsigned long flags;
418 struct task_struct *tsk = current; 638 int sig;
639
640 flags = oops_begin();
641 tsk = current;
642 sig = SIGKILL;
419 643
420 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 644 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
421 tsk->comm, address); 645 tsk->comm, address);
422 dump_pagetable(address); 646 dump_pagetable(address);
423 tsk->thread.cr2 = address; 647
424 tsk->thread.trap_no = 14; 648 tsk->thread.cr2 = address;
425 tsk->thread.error_code = error_code; 649 tsk->thread.trap_no = 14;
650 tsk->thread.error_code = error_code;
651
426 if (__die("Bad pagetable", regs, error_code)) 652 if (__die("Bad pagetable", regs, error_code))
427 sig = 0; 653 sig = 0;
654
428 oops_end(flags, regs, sig); 655 oops_end(flags, regs, sig);
429} 656}
430#endif
431 657
432static noinline void no_context(struct pt_regs *regs, 658static noinline void
433 unsigned long error_code, unsigned long address) 659no_context(struct pt_regs *regs, unsigned long error_code,
660 unsigned long address)
434{ 661{
435 struct task_struct *tsk = current; 662 struct task_struct *tsk = current;
436 unsigned long *stackend; 663 unsigned long *stackend;
437
438#ifdef CONFIG_X86_64
439 unsigned long flags; 664 unsigned long flags;
440 int sig; 665 int sig;
441#endif
442 666
443 /* Are we prepared to handle this kernel fault? */ 667 /* Are we prepared to handle this kernel fault? */
444 if (fixup_exception(regs)) 668 if (fixup_exception(regs))
445 return; 669 return;
446 670
447 /* 671 /*
448 * X86_32 672 * 32-bit:
449 * Valid to do another page fault here, because if this fault 673 *
450 * had been triggered by is_prefetch fixup_exception would have 674 * Valid to do another page fault here, because if this fault
451 * handled it. 675 * had been triggered by is_prefetch fixup_exception would have
676 * handled it.
677 *
678 * 64-bit:
452 * 679 *
453 * X86_64 680 * Hall of shame of CPU/BIOS bugs.
454 * Hall of shame of CPU/BIOS bugs.
455 */ 681 */
456 if (is_prefetch(regs, error_code, address)) 682 if (is_prefetch(regs, error_code, address))
457 return; 683 return;
@@ -461,54 +687,70 @@ static noinline void no_context(struct pt_regs *regs,
461 687
462 /* 688 /*
463 * Oops. The kernel tried to access some bad page. We'll have to 689 * Oops. The kernel tried to access some bad page. We'll have to
464 * terminate things with extreme prejudice. 690 * terminate things with extreme prejudice:
465 */ 691 */
466#ifdef CONFIG_X86_32
467 bust_spinlocks(1);
468#else
469 flags = oops_begin(); 692 flags = oops_begin();
470#endif
471 693
472 show_fault_oops(regs, error_code, address); 694 show_fault_oops(regs, error_code, address);
473 695
474 stackend = end_of_stack(tsk); 696 stackend = end_of_stack(tsk);
475 if (*stackend != STACK_END_MAGIC) 697 if (*stackend != STACK_END_MAGIC)
476 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 698 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
477 699
478 tsk->thread.cr2 = address; 700 tsk->thread.cr2 = address;
479 tsk->thread.trap_no = 14; 701 tsk->thread.trap_no = 14;
480 tsk->thread.error_code = error_code; 702 tsk->thread.error_code = error_code;
481 703
482#ifdef CONFIG_X86_32
483 die("Oops", regs, error_code);
484 bust_spinlocks(0);
485 do_exit(SIGKILL);
486#else
487 sig = SIGKILL; 704 sig = SIGKILL;
488 if (__die("Oops", regs, error_code)) 705 if (__die("Oops", regs, error_code))
489 sig = 0; 706 sig = 0;
707
490 /* Executive summary in case the body of the oops scrolled away */ 708 /* Executive summary in case the body of the oops scrolled away */
491 printk(KERN_EMERG "CR2: %016lx\n", address); 709 printk(KERN_EMERG "CR2: %016lx\n", address);
710
492 oops_end(flags, regs, sig); 711 oops_end(flags, regs, sig);
493#endif
494} 712}
495 713
496static void __bad_area_nosemaphore(struct pt_regs *regs, 714/*
497 unsigned long error_code, unsigned long address, 715 * Print out info about fatal segfaults, if the show_unhandled_signals
498 int si_code) 716 * sysctl is set:
717 */
718static inline void
719show_signal_msg(struct pt_regs *regs, unsigned long error_code,
720 unsigned long address, struct task_struct *tsk)
721{
722 if (!unhandled_signal(tsk, SIGSEGV))
723 return;
724
725 if (!printk_ratelimit())
726 return;
727
728 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
729 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
730 tsk->comm, task_pid_nr(tsk), address,
731 (void *)regs->ip, (void *)regs->sp, error_code);
732
733 print_vma_addr(KERN_CONT " in ", regs->ip);
734
735 printk(KERN_CONT "\n");
736}
737
738static void
739__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
740 unsigned long address, int si_code)
499{ 741{
500 struct task_struct *tsk = current; 742 struct task_struct *tsk = current;
501 743
502 /* User mode accesses just cause a SIGSEGV */ 744 /* User mode accesses just cause a SIGSEGV */
503 if (error_code & PF_USER) { 745 if (error_code & PF_USER) {
504 /* 746 /*
505 * It's possible to have interrupts off here. 747 * It's possible to have interrupts off here:
506 */ 748 */
507 local_irq_enable(); 749 local_irq_enable();
508 750
509 /* 751 /*
510 * Valid to do another page fault here because this one came 752 * Valid to do another page fault here because this one came
511 * from user space. 753 * from user space:
512 */ 754 */
513 if (is_prefetch(regs, error_code, address)) 755 if (is_prefetch(regs, error_code, address))
514 return; 756 return;
@@ -516,22 +758,16 @@ static void __bad_area_nosemaphore(struct pt_regs *regs,
516 if (is_errata100(regs, address)) 758 if (is_errata100(regs, address))
517 return; 759 return;
518 760
519 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 761 if (unlikely(show_unhandled_signals))
520 printk_ratelimit()) { 762 show_signal_msg(regs, error_code, address, tsk);
521 printk( 763
522 "%s%s[%d]: segfault at %lx ip %p sp %p error %lx", 764 /* Kernel addresses are always protection faults: */
523 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, 765 tsk->thread.cr2 = address;
524 tsk->comm, task_pid_nr(tsk), address, 766 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
525 (void *) regs->ip, (void *) regs->sp, error_code); 767 tsk->thread.trap_no = 14;
526 print_vma_addr(" in ", regs->ip);
527 printk("\n");
528 }
529 768
530 tsk->thread.cr2 = address;
531 /* Kernel addresses are always protection faults */
532 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
533 tsk->thread.trap_no = 14;
534 force_sig_info_fault(SIGSEGV, si_code, address, tsk); 769 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
770
535 return; 771 return;
536 } 772 }
537 773
@@ -541,15 +777,16 @@ static void __bad_area_nosemaphore(struct pt_regs *regs,
541 no_context(regs, error_code, address); 777 no_context(regs, error_code, address);
542} 778}
543 779
544static noinline void bad_area_nosemaphore(struct pt_regs *regs, 780static noinline void
545 unsigned long error_code, unsigned long address) 781bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
782 unsigned long address)
546{ 783{
547 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); 784 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
548} 785}
549 786
550static void __bad_area(struct pt_regs *regs, 787static void
551 unsigned long error_code, unsigned long address, 788__bad_area(struct pt_regs *regs, unsigned long error_code,
552 int si_code) 789 unsigned long address, int si_code)
553{ 790{
554 struct mm_struct *mm = current->mm; 791 struct mm_struct *mm = current->mm;
555 792
@@ -562,67 +799,75 @@ static void __bad_area(struct pt_regs *regs,
562 __bad_area_nosemaphore(regs, error_code, address, si_code); 799 __bad_area_nosemaphore(regs, error_code, address, si_code);
563} 800}
564 801
565static noinline void bad_area(struct pt_regs *regs, 802static noinline void
566 unsigned long error_code, unsigned long address) 803bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
567{ 804{
568 __bad_area(regs, error_code, address, SEGV_MAPERR); 805 __bad_area(regs, error_code, address, SEGV_MAPERR);
569} 806}
570 807
571static noinline void bad_area_access_error(struct pt_regs *regs, 808static noinline void
572 unsigned long error_code, unsigned long address) 809bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
810 unsigned long address)
573{ 811{
574 __bad_area(regs, error_code, address, SEGV_ACCERR); 812 __bad_area(regs, error_code, address, SEGV_ACCERR);
575} 813}
576 814
577/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */ 815/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
578static void out_of_memory(struct pt_regs *regs, 816static void
579 unsigned long error_code, unsigned long address) 817out_of_memory(struct pt_regs *regs, unsigned long error_code,
818 unsigned long address)
580{ 819{
581 /* 820 /*
582 * We ran out of memory, call the OOM killer, and return the userspace 821 * We ran out of memory, call the OOM killer, and return the userspace
583 * (which will retry the fault, or kill us if we got oom-killed). 822 * (which will retry the fault, or kill us if we got oom-killed):
584 */ 823 */
585 up_read(&current->mm->mmap_sem); 824 up_read(&current->mm->mmap_sem);
825
586 pagefault_out_of_memory(); 826 pagefault_out_of_memory();
587} 827}
588 828
589static void do_sigbus(struct pt_regs *regs, 829static void
590 unsigned long error_code, unsigned long address) 830do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
591{ 831{
592 struct task_struct *tsk = current; 832 struct task_struct *tsk = current;
593 struct mm_struct *mm = tsk->mm; 833 struct mm_struct *mm = tsk->mm;
594 834
595 up_read(&mm->mmap_sem); 835 up_read(&mm->mmap_sem);
596 836
597 /* Kernel mode? Handle exceptions or die */ 837 /* Kernel mode? Handle exceptions or die: */
598 if (!(error_code & PF_USER)) 838 if (!(error_code & PF_USER))
599 no_context(regs, error_code, address); 839 no_context(regs, error_code, address);
600#ifdef CONFIG_X86_32 840
601 /* User space => ok to do another page fault */ 841 /* User-space => ok to do another page fault: */
602 if (is_prefetch(regs, error_code, address)) 842 if (is_prefetch(regs, error_code, address))
603 return; 843 return;
604#endif 844
605 tsk->thread.cr2 = address; 845 tsk->thread.cr2 = address;
606 tsk->thread.error_code = error_code; 846 tsk->thread.error_code = error_code;
607 tsk->thread.trap_no = 14; 847 tsk->thread.trap_no = 14;
848
608 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); 849 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
609} 850}
610 851
611static noinline void mm_fault_error(struct pt_regs *regs, 852static noinline void
612 unsigned long error_code, unsigned long address, unsigned int fault) 853mm_fault_error(struct pt_regs *regs, unsigned long error_code,
854 unsigned long address, unsigned int fault)
613{ 855{
614 if (fault & VM_FAULT_OOM) 856 if (fault & VM_FAULT_OOM) {
615 out_of_memory(regs, error_code, address); 857 out_of_memory(regs, error_code, address);
616 else if (fault & VM_FAULT_SIGBUS) 858 } else {
617 do_sigbus(regs, error_code, address); 859 if (fault & VM_FAULT_SIGBUS)
618 else 860 do_sigbus(regs, error_code, address);
619 BUG(); 861 else
862 BUG();
863 }
620} 864}
621 865
622static int spurious_fault_check(unsigned long error_code, pte_t *pte) 866static int spurious_fault_check(unsigned long error_code, pte_t *pte)
623{ 867{
624 if ((error_code & PF_WRITE) && !pte_write(*pte)) 868 if ((error_code & PF_WRITE) && !pte_write(*pte))
625 return 0; 869 return 0;
870
626 if ((error_code & PF_INSTR) && !pte_exec(*pte)) 871 if ((error_code & PF_INSTR) && !pte_exec(*pte))
627 return 0; 872 return 0;
628 873
@@ -630,21 +875,25 @@ static int spurious_fault_check(unsigned long error_code, pte_t *pte)
630} 875}
631 876
632/* 877/*
633 * Handle a spurious fault caused by a stale TLB entry. This allows 878 * Handle a spurious fault caused by a stale TLB entry.
634 * us to lazily refresh the TLB when increasing the permissions of a 879 *
635 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very 880 * This allows us to lazily refresh the TLB when increasing the
636 * expensive since that implies doing a full cross-processor TLB 881 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
637 * flush, even if no stale TLB entries exist on other processors. 882 * eagerly is very expensive since that implies doing a full
883 * cross-processor TLB flush, even if no stale TLB entries exist
884 * on other processors.
885 *
638 * There are no security implications to leaving a stale TLB when 886 * There are no security implications to leaving a stale TLB when
639 * increasing the permissions on a page. 887 * increasing the permissions on a page.
640 */ 888 */
641static noinline int spurious_fault(unsigned long error_code, 889static noinline int
642 unsigned long address) 890spurious_fault(unsigned long error_code, unsigned long address)
643{ 891{
644 pgd_t *pgd; 892 pgd_t *pgd;
645 pud_t *pud; 893 pud_t *pud;
646 pmd_t *pmd; 894 pmd_t *pmd;
647 pte_t *pte; 895 pte_t *pte;
896 int ret;
648 897
649 /* Reserved-bit violation or user access to kernel space? */ 898 /* Reserved-bit violation or user access to kernel space? */
650 if (error_code & (PF_USER | PF_RSVD)) 899 if (error_code & (PF_USER | PF_RSVD))
@@ -672,123 +921,46 @@ static noinline int spurious_fault(unsigned long error_code,
672 if (!pte_present(*pte)) 921 if (!pte_present(*pte))
673 return 0; 922 return 0;
674 923
675 return spurious_fault_check(error_code, pte); 924 ret = spurious_fault_check(error_code, pte);
676} 925 if (!ret)
677 926 return 0;
678/*
679 * X86_32
680 * Handle a fault on the vmalloc or module mapping area
681 *
682 * X86_64
683 * Handle a fault on the vmalloc area
684 *
685 * This assumes no large pages in there.
686 */
687static noinline int vmalloc_fault(unsigned long address)
688{
689#ifdef CONFIG_X86_32
690 unsigned long pgd_paddr;
691 pmd_t *pmd_k;
692 pte_t *pte_k;
693
694 /* Make sure we are in vmalloc area */
695 if (!(address >= VMALLOC_START && address < VMALLOC_END))
696 return -1;
697 927
698 /* 928 /*
699 * Synchronize this task's top level page-table 929 * Make sure we have permissions in PMD.
700 * with the 'reference' page table. 930 * If not, then there's a bug in the page tables:
701 *
702 * Do _not_ use "current" here. We might be inside
703 * an interrupt in the middle of a task switch..
704 */ 931 */
705 pgd_paddr = read_cr3(); 932 ret = spurious_fault_check(error_code, (pte_t *) pmd);
706 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 933 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
707 if (!pmd_k)
708 return -1;
709 pte_k = pte_offset_kernel(pmd_k, address);
710 if (!pte_present(*pte_k))
711 return -1;
712 return 0;
713#else
714 pgd_t *pgd, *pgd_ref;
715 pud_t *pud, *pud_ref;
716 pmd_t *pmd, *pmd_ref;
717 pte_t *pte, *pte_ref;
718 934
719 /* Make sure we are in vmalloc area */ 935 return ret;
720 if (!(address >= VMALLOC_START && address < VMALLOC_END))
721 return -1;
722
723 /* Copy kernel mappings over when needed. This can also
724 happen within a race in page table update. In the later
725 case just flush. */
726
727 pgd = pgd_offset(current->active_mm, address);
728 pgd_ref = pgd_offset_k(address);
729 if (pgd_none(*pgd_ref))
730 return -1;
731 if (pgd_none(*pgd))
732 set_pgd(pgd, *pgd_ref);
733 else
734 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
735
736 /* Below here mismatches are bugs because these lower tables
737 are shared */
738
739 pud = pud_offset(pgd, address);
740 pud_ref = pud_offset(pgd_ref, address);
741 if (pud_none(*pud_ref))
742 return -1;
743 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
744 BUG();
745 pmd = pmd_offset(pud, address);
746 pmd_ref = pmd_offset(pud_ref, address);
747 if (pmd_none(*pmd_ref))
748 return -1;
749 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
750 BUG();
751 pte_ref = pte_offset_kernel(pmd_ref, address);
752 if (!pte_present(*pte_ref))
753 return -1;
754 pte = pte_offset_kernel(pmd, address);
755 /* Don't use pte_page here, because the mappings can point
756 outside mem_map, and the NUMA hash lookup cannot handle
757 that. */
758 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
759 BUG();
760 return 0;
761#endif
762} 936}
763 937
764int show_unhandled_signals = 1; 938int show_unhandled_signals = 1;
765 939
766static inline int access_error(unsigned long error_code, int write, 940static inline int
767 struct vm_area_struct *vma) 941access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
768{ 942{
769 if (write) { 943 if (write) {
770 /* write, present and write, not present */ 944 /* write, present and write, not present: */
771 if (unlikely(!(vma->vm_flags & VM_WRITE))) 945 if (unlikely(!(vma->vm_flags & VM_WRITE)))
772 return 1; 946 return 1;
773 } else if (unlikely(error_code & PF_PROT)) { 947 return 0;
774 /* read, present */
775 return 1;
776 } else {
777 /* read, not present */
778 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
779 return 1;
780 } 948 }
781 949
950 /* read, present: */
951 if (unlikely(error_code & PF_PROT))
952 return 1;
953
954 /* read, not present: */
955 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
956 return 1;
957
782 return 0; 958 return 0;
783} 959}
784 960
785static int fault_in_kernel_space(unsigned long address) 961static int fault_in_kernel_space(unsigned long address)
786{ 962{
787#ifdef CONFIG_X86_32 963 return address >= TASK_SIZE_MAX;
788 return address >= TASK_SIZE;
789#else /* !CONFIG_X86_32 */
790 return address >= TASK_SIZE64;
791#endif /* CONFIG_X86_32 */
792} 964}
793 965
794/* 966/*
@@ -796,23 +968,22 @@ static int fault_in_kernel_space(unsigned long address)
796 * and the problem, and then passes it off to one of the appropriate 968 * and the problem, and then passes it off to one of the appropriate
797 * routines. 969 * routines.
798 */ 970 */
799#ifdef CONFIG_X86_64 971dotraplinkage void __kprobes
800asmlinkage 972do_page_fault(struct pt_regs *regs, unsigned long error_code)
801#endif
802void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
803{ 973{
804 unsigned long address; 974 struct vm_area_struct *vma;
805 struct task_struct *tsk; 975 struct task_struct *tsk;
976 unsigned long address;
806 struct mm_struct *mm; 977 struct mm_struct *mm;
807 struct vm_area_struct *vma;
808 int write; 978 int write;
809 int fault; 979 int fault;
810 980
811 tsk = current; 981 tsk = current;
812 mm = tsk->mm; 982 mm = tsk->mm;
983
813 prefetchw(&mm->mmap_sem); 984 prefetchw(&mm->mmap_sem);
814 985
815 /* get the address */ 986 /* Get the faulting address: */
816 address = read_cr2(); 987 address = read_cr2();
817 988
818 if (unlikely(kmmio_fault(regs, address))) 989 if (unlikely(kmmio_fault(regs, address)))
@@ -836,22 +1007,23 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
836 vmalloc_fault(address) >= 0) 1007 vmalloc_fault(address) >= 0)
837 return; 1008 return;
838 1009
839 /* Can handle a stale RO->RW TLB */ 1010 /* Can handle a stale RO->RW TLB: */
840 if (spurious_fault(error_code, address)) 1011 if (spurious_fault(error_code, address))
841 return; 1012 return;
842 1013
843 /* kprobes don't want to hook the spurious faults. */ 1014 /* kprobes don't want to hook the spurious faults: */
844 if (notify_page_fault(regs)) 1015 if (notify_page_fault(regs))
845 return; 1016 return;
846 /* 1017 /*
847 * Don't take the mm semaphore here. If we fixup a prefetch 1018 * Don't take the mm semaphore here. If we fixup a prefetch
848 * fault we could otherwise deadlock. 1019 * fault we could otherwise deadlock:
849 */ 1020 */
850 bad_area_nosemaphore(regs, error_code, address); 1021 bad_area_nosemaphore(regs, error_code, address);
1022
851 return; 1023 return;
852 } 1024 }
853 1025
854 /* kprobes don't want to hook the spurious faults. */ 1026 /* kprobes don't want to hook the spurious faults: */
855 if (unlikely(notify_page_fault(regs))) 1027 if (unlikely(notify_page_fault(regs)))
856 return; 1028 return;
857 /* 1029 /*
@@ -859,22 +1031,22 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
859 * vmalloc fault has been handled. 1031 * vmalloc fault has been handled.
860 * 1032 *
861 * User-mode registers count as a user access even for any 1033 * User-mode registers count as a user access even for any
862 * potential system fault or CPU buglet. 1034 * potential system fault or CPU buglet:
863 */ 1035 */
864 if (user_mode_vm(regs)) { 1036 if (user_mode_vm(regs)) {
865 local_irq_enable(); 1037 local_irq_enable();
866 error_code |= PF_USER; 1038 error_code |= PF_USER;
867 } else if (regs->flags & X86_EFLAGS_IF) 1039 } else {
868 local_irq_enable(); 1040 if (regs->flags & X86_EFLAGS_IF)
1041 local_irq_enable();
1042 }
869 1043
870#ifdef CONFIG_X86_64
871 if (unlikely(error_code & PF_RSVD)) 1044 if (unlikely(error_code & PF_RSVD))
872 pgtable_bad(regs, error_code, address); 1045 pgtable_bad(regs, error_code, address);
873#endif
874 1046
875 /* 1047 /*
876 * If we're in an interrupt, have no user context or are running in an 1048 * If we're in an interrupt, have no user context or are running
877 * atomic region then we must not take the fault. 1049 * in an atomic region then we must not take the fault:
878 */ 1050 */
879 if (unlikely(in_atomic() || !mm)) { 1051 if (unlikely(in_atomic() || !mm)) {
880 bad_area_nosemaphore(regs, error_code, address); 1052 bad_area_nosemaphore(regs, error_code, address);
@@ -883,19 +1055,19 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
883 1055
884 /* 1056 /*
885 * When running in the kernel we expect faults to occur only to 1057 * When running in the kernel we expect faults to occur only to
886 * addresses in user space. All other faults represent errors in the 1058 * addresses in user space. All other faults represent errors in
887 * kernel and should generate an OOPS. Unfortunately, in the case of an 1059 * the kernel and should generate an OOPS. Unfortunately, in the
888 * erroneous fault occurring in a code path which already holds mmap_sem 1060 * case of an erroneous fault occurring in a code path which already
889 * we will deadlock attempting to validate the fault against the 1061 * holds mmap_sem we will deadlock attempting to validate the fault
890 * address space. Luckily the kernel only validly references user 1062 * against the address space. Luckily the kernel only validly
891 * space from well defined areas of code, which are listed in the 1063 * references user space from well defined areas of code, which are
892 * exceptions table. 1064 * listed in the exceptions table.
893 * 1065 *
894 * As the vast majority of faults will be valid we will only perform 1066 * As the vast majority of faults will be valid we will only perform
895 * the source reference check when there is a possibility of a deadlock. 1067 * the source reference check when there is a possibility of a
896 * Attempt to lock the address space, if we cannot we then validate the 1068 * deadlock. Attempt to lock the address space, if we cannot we then
897 * source. If this is invalid we can skip the address space check, 1069 * validate the source. If this is invalid we can skip the address
898 * thus avoiding the deadlock. 1070 * space check, thus avoiding the deadlock:
899 */ 1071 */
900 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 1072 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
901 if ((error_code & PF_USER) == 0 && 1073 if ((error_code & PF_USER) == 0 &&
@@ -906,8 +1078,9 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
906 down_read(&mm->mmap_sem); 1078 down_read(&mm->mmap_sem);
907 } else { 1079 } else {
908 /* 1080 /*
909 * The above down_read_trylock() might have succeeded in which 1081 * The above down_read_trylock() might have succeeded in
910 * case we'll have missed the might_sleep() from down_read(). 1082 * which case we'll have missed the might_sleep() from
1083 * down_read():
911 */ 1084 */
912 might_sleep(); 1085 might_sleep();
913 } 1086 }
@@ -927,7 +1100,7 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
927 /* 1100 /*
928 * Accessing the stack below %sp is always a bug. 1101 * Accessing the stack below %sp is always a bug.
929 * The large cushion allows instructions like enter 1102 * The large cushion allows instructions like enter
930 * and pusha to work. ("enter $65535,$31" pushes 1103 * and pusha to work. ("enter $65535, $31" pushes
931 * 32 pointers and then decrements %sp by 65535.) 1104 * 32 pointers and then decrements %sp by 65535.)
932 */ 1105 */
933 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { 1106 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
@@ -946,6 +1119,7 @@ void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
946 */ 1119 */
947good_area: 1120good_area:
948 write = error_code & PF_WRITE; 1121 write = error_code & PF_WRITE;
1122
949 if (unlikely(access_error(error_code, write, vma))) { 1123 if (unlikely(access_error(error_code, write, vma))) {
950 bad_area_access_error(regs, error_code, address); 1124 bad_area_access_error(regs, error_code, address);
951 return; 1125 return;
@@ -954,75 +1128,21 @@ good_area:
954 /* 1128 /*
955 * If for any reason at all we couldn't handle the fault, 1129 * If for any reason at all we couldn't handle the fault,
956 * make sure we exit gracefully rather than endlessly redo 1130 * make sure we exit gracefully rather than endlessly redo
957 * the fault. 1131 * the fault:
958 */ 1132 */
959 fault = handle_mm_fault(mm, vma, address, write); 1133 fault = handle_mm_fault(mm, vma, address, write);
1134
960 if (unlikely(fault & VM_FAULT_ERROR)) { 1135 if (unlikely(fault & VM_FAULT_ERROR)) {
961 mm_fault_error(regs, error_code, address, fault); 1136 mm_fault_error(regs, error_code, address, fault);
962 return; 1137 return;
963 } 1138 }
1139
964 if (fault & VM_FAULT_MAJOR) 1140 if (fault & VM_FAULT_MAJOR)
965 tsk->maj_flt++; 1141 tsk->maj_flt++;
966 else 1142 else
967 tsk->min_flt++; 1143 tsk->min_flt++;
968 1144
969#ifdef CONFIG_X86_32 1145 check_v8086_mode(regs, address, tsk);
970 /*
971 * Did it hit the DOS screen memory VA from vm86 mode?
972 */
973 if (v8086_mode(regs)) {
974 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
975 if (bit < 32)
976 tsk->thread.screen_bitmap |= 1 << bit;
977 }
978#endif
979 up_read(&mm->mmap_sem);
980}
981
982DEFINE_SPINLOCK(pgd_lock);
983LIST_HEAD(pgd_list);
984 1146
985void vmalloc_sync_all(void) 1147 up_read(&mm->mmap_sem);
986{
987 unsigned long address;
988
989#ifdef CONFIG_X86_32
990 if (SHARED_KERNEL_PMD)
991 return;
992
993 for (address = VMALLOC_START & PMD_MASK;
994 address >= TASK_SIZE && address < FIXADDR_TOP;
995 address += PMD_SIZE) {
996 unsigned long flags;
997 struct page *page;
998
999 spin_lock_irqsave(&pgd_lock, flags);
1000 list_for_each_entry(page, &pgd_list, lru) {
1001 if (!vmalloc_sync_one(page_address(page),
1002 address))
1003 break;
1004 }
1005 spin_unlock_irqrestore(&pgd_lock, flags);
1006 }
1007#else /* CONFIG_X86_64 */
1008 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
1009 address += PGDIR_SIZE) {
1010 const pgd_t *pgd_ref = pgd_offset_k(address);
1011 unsigned long flags;
1012 struct page *page;
1013
1014 if (pgd_none(*pgd_ref))
1015 continue;
1016 spin_lock_irqsave(&pgd_lock, flags);
1017 list_for_each_entry(page, &pgd_list, lru) {
1018 pgd_t *pgd;
1019 pgd = (pgd_t *)page_address(page) + pgd_index(address);
1020 if (pgd_none(*pgd))
1021 set_pgd(pgd, *pgd_ref);
1022 else
1023 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1024 }
1025 spin_unlock_irqrestore(&pgd_lock, flags);
1026 }
1027#endif
1028} 1148}