aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/fault.c
diff options
context:
space:
mode:
authorHarvey Harrison <harvey.harrison@gmail.com>2008-01-30 07:34:11 -0500
committerIngo Molnar <mingo@elte.hu>2008-01-30 07:34:11 -0500
commitc61e211d9989e4c112d3d58db12ad58f9016a3c8 (patch)
tree17ac1e9220b9becda9bee059b4aa0bb129a56e1f /arch/x86/mm/fault.c
parentf8c2ee224d8397364835204c6c0130d08c2e644c (diff)
x86: unify fault_32|64.c
Unify includes in moved fault.c. Modify Makefiles to pick up unified file. Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'arch/x86/mm/fault.c')
-rw-r--r--arch/x86/mm/fault.c955
1 files changed, 955 insertions, 0 deletions
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
new file mode 100644
index 000000000000..14a0c6e541de
--- /dev/null
+++ b/arch/x86/mm/fault.c
@@ -0,0 +1,955 @@
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
5
6#include <linux/signal.h>
7#include <linux/sched.h>
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/string.h>
11#include <linux/types.h>
12#include <linux/ptrace.h>
13#include <linux/mman.h>
14#include <linux/mm.h>
15#include <linux/smp.h>
16#include <linux/interrupt.h>
17#include <linux/init.h>
18#include <linux/tty.h>
19#include <linux/vt_kern.h> /* For unblank_screen() */
20#include <linux/compiler.h>
21#include <linux/highmem.h>
22#include <linux/bootmem.h> /* for max_low_pfn */
23#include <linux/vmalloc.h>
24#include <linux/module.h>
25#include <linux/kprobes.h>
26#include <linux/uaccess.h>
27#include <linux/kdebug.h>
28
29#include <asm/system.h>
30#include <asm/desc.h>
31#include <asm/segment.h>
32#include <asm/pgalloc.h>
33#include <asm/smp.h>
34#include <asm/tlbflush.h>
35#include <asm/proto.h>
36#include <asm-generic/sections.h>
37
38/*
39 * Page fault error code bits
40 * bit 0 == 0 means no page found, 1 means protection fault
41 * bit 1 == 0 means read, 1 means write
42 * bit 2 == 0 means kernel, 1 means user-mode
43 * bit 3 == 1 means use of reserved bit detected
44 * bit 4 == 1 means fault was an instruction fetch
45 */
46#define PF_PROT (1<<0)
47#define PF_WRITE (1<<1)
48#define PF_USER (1<<2)
49#define PF_RSVD (1<<3)
50#define PF_INSTR (1<<4)
51
52static inline int notify_page_fault(struct pt_regs *regs)
53{
54#ifdef CONFIG_KPROBES
55 int ret = 0;
56
57 /* kprobe_running() needs smp_processor_id() */
58#ifdef CONFIG_X86_32
59 if (!user_mode_vm(regs)) {
60#else
61 if (!user_mode(regs)) {
62#endif
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
68
69 return ret;
70#else
71 return 0;
72#endif
73}
74
75/*
76 * X86_32
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
79 *
80 * X86_64
81 * Sometimes the CPU reports invalid exceptions on prefetch.
82 * Check that here and ignore it.
83 *
84 * Opcode checker based on code by Richard Brunner
85 */
86static int is_prefetch(struct pt_regs *regs, unsigned long addr,
87 unsigned long error_code)
88{
89 unsigned char *instr;
90 int scan_more = 1;
91 int prefetch = 0;
92 unsigned char *max_instr;
93
94#ifdef CONFIG_X86_32
95# ifdef CONFIG_X86_PAE
96 /* If it was a exec fault on NX page, ignore */
97 if (nx_enabled && (error_code & PF_INSTR))
98 return 0;
99# else
100 return 0;
101# endif
102#else /* CONFIG_X86_64 */
103 /* If it was a exec fault on NX page, ignore */
104 if (error_code & PF_INSTR)
105 return 0;
106#endif
107
108 instr = (unsigned char *)convert_ip_to_linear(current, regs);
109 max_instr = instr + 15;
110
111 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
112 return 0;
113
114 while (scan_more && instr < max_instr) {
115 unsigned char opcode;
116 unsigned char instr_hi;
117 unsigned char instr_lo;
118
119 if (probe_kernel_address(instr, opcode))
120 break;
121
122 instr_hi = opcode & 0xf0;
123 instr_lo = opcode & 0x0f;
124 instr++;
125
126 switch (instr_hi) {
127 case 0x20:
128 case 0x30:
129 /*
130 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
131 * In X86_64 long mode, the CPU will signal invalid
132 * opcode if some of these prefixes are present so
133 * X86_64 will never get here anyway
134 */
135 scan_more = ((instr_lo & 7) == 0x6);
136 break;
137#ifdef CONFIG_X86_64
138 case 0x40:
139 /*
140 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
141 * Need to figure out under what instruction mode the
142 * instruction was issued. Could check the LDT for lm,
143 * but for now it's good enough to assume that long
144 * mode only uses well known segments or kernel.
145 */
146 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
147 break;
148#endif
149 case 0x60:
150 /* 0x64 thru 0x67 are valid prefixes in all modes. */
151 scan_more = (instr_lo & 0xC) == 0x4;
152 break;
153 case 0xF0:
154 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
155 scan_more = !instr_lo || (instr_lo>>1) == 1;
156 break;
157 case 0x00:
158 /* Prefetch instruction is 0x0F0D or 0x0F18 */
159 scan_more = 0;
160
161 if (probe_kernel_address(instr, opcode))
162 break;
163 prefetch = (instr_lo == 0xF) &&
164 (opcode == 0x0D || opcode == 0x18);
165 break;
166 default:
167 scan_more = 0;
168 break;
169 }
170 }
171 return prefetch;
172}
173
174static void force_sig_info_fault(int si_signo, int si_code,
175 unsigned long address, struct task_struct *tsk)
176{
177 siginfo_t info;
178
179 info.si_signo = si_signo;
180 info.si_errno = 0;
181 info.si_code = si_code;
182 info.si_addr = (void __user *)address;
183 force_sig_info(si_signo, &info, tsk);
184}
185
186#ifdef CONFIG_X86_64
187static int bad_address(void *p)
188{
189 unsigned long dummy;
190 return probe_kernel_address((unsigned long *)p, dummy);
191}
192#endif
193
194void dump_pagetable(unsigned long address)
195{
196#ifdef CONFIG_X86_32
197 __typeof__(pte_val(__pte(0))) page;
198
199 page = read_cr3();
200 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
201#ifdef CONFIG_X86_PAE
202 printk("*pdpt = %016Lx ", page);
203 if ((page >> PAGE_SHIFT) < max_low_pfn
204 && page & _PAGE_PRESENT) {
205 page &= PAGE_MASK;
206 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
207 & (PTRS_PER_PMD - 1)];
208 printk(KERN_CONT "*pde = %016Lx ", page);
209 page &= ~_PAGE_NX;
210 }
211#else
212 printk("*pde = %08lx ", page);
213#endif
214
215 /*
216 * We must not directly access the pte in the highpte
217 * case if the page table is located in highmem.
218 * And let's rather not kmap-atomic the pte, just in case
219 * it's allocated already.
220 */
221 if ((page >> PAGE_SHIFT) < max_low_pfn
222 && (page & _PAGE_PRESENT)
223 && !(page & _PAGE_PSE)) {
224 page &= PAGE_MASK;
225 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
226 & (PTRS_PER_PTE - 1)];
227 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
228 }
229
230 printk("\n");
231#else /* CONFIG_X86_64 */
232 pgd_t *pgd;
233 pud_t *pud;
234 pmd_t *pmd;
235 pte_t *pte;
236
237 pgd = (pgd_t *)read_cr3();
238
239 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
240 pgd += pgd_index(address);
241 if (bad_address(pgd)) goto bad;
242 printk("PGD %lx ", pgd_val(*pgd));
243 if (!pgd_present(*pgd)) goto ret;
244
245 pud = pud_offset(pgd, address);
246 if (bad_address(pud)) goto bad;
247 printk("PUD %lx ", pud_val(*pud));
248 if (!pud_present(*pud)) goto ret;
249
250 pmd = pmd_offset(pud, address);
251 if (bad_address(pmd)) goto bad;
252 printk("PMD %lx ", pmd_val(*pmd));
253 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
254
255 pte = pte_offset_kernel(pmd, address);
256 if (bad_address(pte)) goto bad;
257 printk("PTE %lx", pte_val(*pte));
258ret:
259 printk("\n");
260 return;
261bad:
262 printk("BAD\n");
263#endif
264}
265
266#ifdef CONFIG_X86_32
267static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
268{
269 unsigned index = pgd_index(address);
270 pgd_t *pgd_k;
271 pud_t *pud, *pud_k;
272 pmd_t *pmd, *pmd_k;
273
274 pgd += index;
275 pgd_k = init_mm.pgd + index;
276
277 if (!pgd_present(*pgd_k))
278 return NULL;
279
280 /*
281 * set_pgd(pgd, *pgd_k); here would be useless on PAE
282 * and redundant with the set_pmd() on non-PAE. As would
283 * set_pud.
284 */
285
286 pud = pud_offset(pgd, address);
287 pud_k = pud_offset(pgd_k, address);
288 if (!pud_present(*pud_k))
289 return NULL;
290
291 pmd = pmd_offset(pud, address);
292 pmd_k = pmd_offset(pud_k, address);
293 if (!pmd_present(*pmd_k))
294 return NULL;
295 if (!pmd_present(*pmd)) {
296 set_pmd(pmd, *pmd_k);
297 arch_flush_lazy_mmu_mode();
298 } else
299 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
300 return pmd_k;
301}
302#endif
303
304#ifdef CONFIG_X86_64
305static const char errata93_warning[] =
306KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
307KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
308KERN_ERR "******* Please consider a BIOS update.\n"
309KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
310#endif
311
312/* Workaround for K8 erratum #93 & buggy BIOS.
313 BIOS SMM functions are required to use a specific workaround
314 to avoid corruption of the 64bit RIP register on C stepping K8.
315 A lot of BIOS that didn't get tested properly miss this.
316 The OS sees this as a page fault with the upper 32bits of RIP cleared.
317 Try to work around it here.
318 Note we only handle faults in kernel here.
319 Does nothing for X86_32
320 */
321static int is_errata93(struct pt_regs *regs, unsigned long address)
322{
323#ifdef CONFIG_X86_64
324 static int warned;
325 if (address != regs->ip)
326 return 0;
327 if ((address >> 32) != 0)
328 return 0;
329 address |= 0xffffffffUL << 32;
330 if ((address >= (u64)_stext && address <= (u64)_etext) ||
331 (address >= MODULES_VADDR && address <= MODULES_END)) {
332 if (!warned) {
333 printk(errata93_warning);
334 warned = 1;
335 }
336 regs->ip = address;
337 return 1;
338 }
339#endif
340 return 0;
341}
342
343/*
344 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
345 * addresses >4GB. We catch this in the page fault handler because these
346 * addresses are not reachable. Just detect this case and return. Any code
347 * segment in LDT is compatibility mode.
348 */
349static int is_errata100(struct pt_regs *regs, unsigned long address)
350{
351#ifdef CONFIG_X86_64
352 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
353 (address >> 32))
354 return 1;
355#endif
356 return 0;
357}
358
359void do_invalid_op(struct pt_regs *, unsigned long);
360
361static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
362{
363#ifdef CONFIG_X86_F00F_BUG
364 unsigned long nr;
365 /*
366 * Pentium F0 0F C7 C8 bug workaround.
367 */
368 if (boot_cpu_data.f00f_bug) {
369 nr = (address - idt_descr.address) >> 3;
370
371 if (nr == 6) {
372 do_invalid_op(regs, 0);
373 return 1;
374 }
375 }
376#endif
377 return 0;
378}
379
380static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
381 unsigned long address)
382{
383#ifdef CONFIG_X86_32
384 if (!oops_may_print())
385 return;
386
387#ifdef CONFIG_X86_PAE
388 if (error_code & PF_INSTR) {
389 int level;
390 pte_t *pte = lookup_address(address, &level);
391
392 if (pte && pte_present(*pte) && !pte_exec(*pte))
393 printk(KERN_CRIT "kernel tried to execute "
394 "NX-protected page - exploit attempt? "
395 "(uid: %d)\n", current->uid);
396 }
397#endif
398 printk(KERN_ALERT "BUG: unable to handle kernel ");
399 if (address < PAGE_SIZE)
400 printk(KERN_CONT "NULL pointer dereference");
401 else
402 printk(KERN_CONT "paging request");
403 printk(KERN_CONT " at %08lx\n", address);
404
405 printk(KERN_ALERT "IP:");
406 printk_address(regs->ip, 1);
407 dump_pagetable(address);
408#else /* CONFIG_X86_64 */
409 printk(KERN_ALERT "BUG: unable to handle kernel ");
410 if (address < PAGE_SIZE)
411 printk(KERN_CONT "NULL pointer dereference");
412 else
413 printk(KERN_CONT "paging request");
414 printk(KERN_CONT " at %016lx\n", address);
415
416 printk(KERN_ALERT "IP:");
417 printk_address(regs->ip, 1);
418 dump_pagetable(address);
419#endif
420}
421
422#ifdef CONFIG_X86_64
423static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
424 unsigned long error_code)
425{
426 unsigned long flags = oops_begin();
427 struct task_struct *tsk;
428
429 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
430 current->comm, address);
431 dump_pagetable(address);
432 tsk = current;
433 tsk->thread.cr2 = address;
434 tsk->thread.trap_no = 14;
435 tsk->thread.error_code = error_code;
436 if (__die("Bad pagetable", regs, error_code))
437 regs = NULL;
438 oops_end(flags, regs, SIGKILL);
439}
440#endif
441
442/*
443 * X86_32
444 * Handle a fault on the vmalloc or module mapping area
445 *
446 * X86_64
447 * Handle a fault on the vmalloc area
448 *
449 * This assumes no large pages in there.
450 */
451static int vmalloc_fault(unsigned long address)
452{
453#ifdef CONFIG_X86_32
454 unsigned long pgd_paddr;
455 pmd_t *pmd_k;
456 pte_t *pte_k;
457 /*
458 * Synchronize this task's top level page-table
459 * with the 'reference' page table.
460 *
461 * Do _not_ use "current" here. We might be inside
462 * an interrupt in the middle of a task switch..
463 */
464 pgd_paddr = read_cr3();
465 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
466 if (!pmd_k)
467 return -1;
468 pte_k = pte_offset_kernel(pmd_k, address);
469 if (!pte_present(*pte_k))
470 return -1;
471 return 0;
472#else
473 pgd_t *pgd, *pgd_ref;
474 pud_t *pud, *pud_ref;
475 pmd_t *pmd, *pmd_ref;
476 pte_t *pte, *pte_ref;
477
478 /* Copy kernel mappings over when needed. This can also
479 happen within a race in page table update. In the later
480 case just flush. */
481
482 pgd = pgd_offset(current->mm ?: &init_mm, address);
483 pgd_ref = pgd_offset_k(address);
484 if (pgd_none(*pgd_ref))
485 return -1;
486 if (pgd_none(*pgd))
487 set_pgd(pgd, *pgd_ref);
488 else
489 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
490
491 /* Below here mismatches are bugs because these lower tables
492 are shared */
493
494 pud = pud_offset(pgd, address);
495 pud_ref = pud_offset(pgd_ref, address);
496 if (pud_none(*pud_ref))
497 return -1;
498 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
499 BUG();
500 pmd = pmd_offset(pud, address);
501 pmd_ref = pmd_offset(pud_ref, address);
502 if (pmd_none(*pmd_ref))
503 return -1;
504 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
505 BUG();
506 pte_ref = pte_offset_kernel(pmd_ref, address);
507 if (!pte_present(*pte_ref))
508 return -1;
509 pte = pte_offset_kernel(pmd, address);
510 /* Don't use pte_page here, because the mappings can point
511 outside mem_map, and the NUMA hash lookup cannot handle
512 that. */
513 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
514 BUG();
515 return 0;
516#endif
517}
518
519int show_unhandled_signals = 1;
520
521/*
522 * This routine handles page faults. It determines the address,
523 * and the problem, and then passes it off to one of the appropriate
524 * routines.
525 */
526#ifdef CONFIG_X86_64
527asmlinkage
528#endif
529void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
530{
531 struct task_struct *tsk;
532 struct mm_struct *mm;
533 struct vm_area_struct *vma;
534 unsigned long address;
535 int write, si_code;
536 int fault;
537#ifdef CONFIG_X86_64
538 unsigned long flags;
539#endif
540
541 /*
542 * We can fault from pretty much anywhere, with unknown IRQ state.
543 */
544 trace_hardirqs_fixup();
545
546 tsk = current;
547 mm = tsk->mm;
548 prefetchw(&mm->mmap_sem);
549
550 /* get the address */
551 address = read_cr2();
552
553 si_code = SEGV_MAPERR;
554
555 if (notify_page_fault(regs))
556 return;
557
558 /*
559 * We fault-in kernel-space virtual memory on-demand. The
560 * 'reference' page table is init_mm.pgd.
561 *
562 * NOTE! We MUST NOT take any locks for this case. We may
563 * be in an interrupt or a critical region, and should
564 * only copy the information from the master page table,
565 * nothing more.
566 *
567 * This verifies that the fault happens in kernel space
568 * (error_code & 4) == 0, and that the fault was not a
569 * protection error (error_code & 9) == 0.
570 */
571#ifdef CONFIG_X86_32
572 if (unlikely(address >= TASK_SIZE)) {
573 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
574 vmalloc_fault(address) >= 0)
575 return;
576 /*
577 * Don't take the mm semaphore here. If we fixup a prefetch
578 * fault we could otherwise deadlock.
579 */
580 goto bad_area_nosemaphore;
581 }
582
583 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
584 fault has been handled. */
585 if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
586 local_irq_enable();
587
588 /*
589 * If we're in an interrupt, have no user context or are running in an
590 * atomic region then we must not take the fault.
591 */
592 if (in_atomic() || !mm)
593 goto bad_area_nosemaphore;
594#else /* CONFIG_X86_64 */
595 if (unlikely(address >= TASK_SIZE64)) {
596 /*
597 * Don't check for the module range here: its PML4
598 * is always initialized because it's shared with the main
599 * kernel text. Only vmalloc may need PML4 syncups.
600 */
601 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
602 ((address >= VMALLOC_START && address < VMALLOC_END))) {
603 if (vmalloc_fault(address) >= 0)
604 return;
605 }
606 /*
607 * Don't take the mm semaphore here. If we fixup a prefetch
608 * fault we could otherwise deadlock.
609 */
610 goto bad_area_nosemaphore;
611 }
612 if (likely(regs->flags & X86_EFLAGS_IF))
613 local_irq_enable();
614
615 if (unlikely(error_code & PF_RSVD))
616 pgtable_bad(address, regs, error_code);
617
618 /*
619 * If we're in an interrupt, have no user context or are running in an
620 * atomic region then we must not take the fault.
621 */
622 if (unlikely(in_atomic() || !mm))
623 goto bad_area_nosemaphore;
624
625 /*
626 * User-mode registers count as a user access even for any
627 * potential system fault or CPU buglet.
628 */
629 if (user_mode_vm(regs))
630 error_code |= PF_USER;
631again:
632#endif
633 /* When running in the kernel we expect faults to occur only to
634 * addresses in user space. All other faults represent errors in the
635 * kernel and should generate an OOPS. Unfortunately, in the case of an
636 * erroneous fault occurring in a code path which already holds mmap_sem
637 * we will deadlock attempting to validate the fault against the
638 * address space. Luckily the kernel only validly references user
639 * space from well defined areas of code, which are listed in the
640 * exceptions table.
641 *
642 * As the vast majority of faults will be valid we will only perform
643 * the source reference check when there is a possibility of a deadlock.
644 * Attempt to lock the address space, if we cannot we then validate the
645 * source. If this is invalid we can skip the address space check,
646 * thus avoiding the deadlock.
647 */
648 if (!down_read_trylock(&mm->mmap_sem)) {
649 if ((error_code & PF_USER) == 0 &&
650 !search_exception_tables(regs->ip))
651 goto bad_area_nosemaphore;
652 down_read(&mm->mmap_sem);
653 }
654
655 vma = find_vma(mm, address);
656 if (!vma)
657 goto bad_area;
658#ifdef CONFIG_X86_32
659 if (vma->vm_start <= address)
660#else
661 if (likely(vma->vm_start <= address))
662#endif
663 goto good_area;
664 if (!(vma->vm_flags & VM_GROWSDOWN))
665 goto bad_area;
666 if (error_code & PF_USER) {
667 /*
668 * Accessing the stack below %sp is always a bug.
669 * The large cushion allows instructions like enter
670 * and pusha to work. ("enter $65535,$31" pushes
671 * 32 pointers and then decrements %sp by 65535.)
672 */
673 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
674 goto bad_area;
675 }
676 if (expand_stack(vma, address))
677 goto bad_area;
678/*
679 * Ok, we have a good vm_area for this memory access, so
680 * we can handle it..
681 */
682good_area:
683 si_code = SEGV_ACCERR;
684 write = 0;
685 switch (error_code & (PF_PROT|PF_WRITE)) {
686 default: /* 3: write, present */
687 /* fall through */
688 case PF_WRITE: /* write, not present */
689 if (!(vma->vm_flags & VM_WRITE))
690 goto bad_area;
691 write++;
692 break;
693 case PF_PROT: /* read, present */
694 goto bad_area;
695 case 0: /* read, not present */
696 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
697 goto bad_area;
698 }
699
700#ifdef CONFIG_X86_32
701survive:
702#endif
703 /*
704 * If for any reason at all we couldn't handle the fault,
705 * make sure we exit gracefully rather than endlessly redo
706 * the fault.
707 */
708 fault = handle_mm_fault(mm, vma, address, write);
709 if (unlikely(fault & VM_FAULT_ERROR)) {
710 if (fault & VM_FAULT_OOM)
711 goto out_of_memory;
712 else if (fault & VM_FAULT_SIGBUS)
713 goto do_sigbus;
714 BUG();
715 }
716 if (fault & VM_FAULT_MAJOR)
717 tsk->maj_flt++;
718 else
719 tsk->min_flt++;
720
721#ifdef CONFIG_X86_32
722 /*
723 * Did it hit the DOS screen memory VA from vm86 mode?
724 */
725 if (v8086_mode(regs)) {
726 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
727 if (bit < 32)
728 tsk->thread.screen_bitmap |= 1 << bit;
729 }
730#endif
731 up_read(&mm->mmap_sem);
732 return;
733
734/*
735 * Something tried to access memory that isn't in our memory map..
736 * Fix it, but check if it's kernel or user first..
737 */
738bad_area:
739 up_read(&mm->mmap_sem);
740
741bad_area_nosemaphore:
742 /* User mode accesses just cause a SIGSEGV */
743 if (error_code & PF_USER) {
744 /*
745 * It's possible to have interrupts off here.
746 */
747 local_irq_enable();
748
749 /*
750 * Valid to do another page fault here because this one came
751 * from user space.
752 */
753 if (is_prefetch(regs, address, error_code))
754 return;
755
756 if (is_errata100(regs, address))
757 return;
758
759 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
760 printk_ratelimit()) {
761 printk(
762#ifdef CONFIG_X86_32
763 "%s%s[%d]: segfault at %lx ip %08lx sp %08lx error %lx",
764#else
765 "%s%s[%d]: segfault at %lx ip %lx sp %lx error %lx",
766#endif
767 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
768 tsk->comm, task_pid_nr(tsk), address, regs->ip,
769 regs->sp, error_code);
770 print_vma_addr(" in ", regs->ip);
771 printk("\n");
772 }
773
774 tsk->thread.cr2 = address;
775 /* Kernel addresses are always protection faults */
776 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
777 tsk->thread.trap_no = 14;
778 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
779 return;
780 }
781
782 if (is_f00f_bug(regs, address))
783 return;
784
785no_context:
786 /* Are we prepared to handle this kernel fault? */
787 if (fixup_exception(regs))
788 return;
789
790 /*
791 * X86_32
792 * Valid to do another page fault here, because if this fault
793 * had been triggered by is_prefetch fixup_exception would have
794 * handled it.
795 *
796 * X86_64
797 * Hall of shame of CPU/BIOS bugs.
798 */
799 if (is_prefetch(regs, address, error_code))
800 return;
801
802 if (is_errata93(regs, address))
803 return;
804
805/*
806 * Oops. The kernel tried to access some bad page. We'll have to
807 * terminate things with extreme prejudice.
808 */
809#ifdef CONFIG_X86_32
810 bust_spinlocks(1);
811
812 show_fault_oops(regs, error_code, address);
813
814 tsk->thread.cr2 = address;
815 tsk->thread.trap_no = 14;
816 tsk->thread.error_code = error_code;
817 die("Oops", regs, error_code);
818 bust_spinlocks(0);
819 do_exit(SIGKILL);
820#else /* CONFIG_X86_64 */
821 flags = oops_begin();
822
823 show_fault_oops(regs, error_code, address);
824
825 tsk->thread.cr2 = address;
826 tsk->thread.trap_no = 14;
827 tsk->thread.error_code = error_code;
828 if (__die("Oops", regs, error_code))
829 regs = NULL;
830 /* Executive summary in case the body of the oops scrolled away */
831 printk(KERN_EMERG "CR2: %016lx\n", address);
832 oops_end(flags, regs, SIGKILL);
833#endif
834
835/*
836 * We ran out of memory, or some other thing happened to us that made
837 * us unable to handle the page fault gracefully.
838 */
839out_of_memory:
840 up_read(&mm->mmap_sem);
841#ifdef CONFIG_X86_32
842 if (is_global_init(tsk)) {
843 yield();
844 down_read(&mm->mmap_sem);
845 goto survive;
846 }
847#else
848 if (is_global_init(current)) {
849 yield();
850 goto again;
851 }
852#endif
853 printk("VM: killing process %s\n", tsk->comm);
854 if (error_code & PF_USER)
855 do_group_exit(SIGKILL);
856 goto no_context;
857
858do_sigbus:
859 up_read(&mm->mmap_sem);
860
861 /* Kernel mode? Handle exceptions or die */
862 if (!(error_code & PF_USER))
863 goto no_context;
864#ifdef CONFIG_X86_32
865 /* User space => ok to do another page fault */
866 if (is_prefetch(regs, address, error_code))
867 return;
868#endif
869 tsk->thread.cr2 = address;
870 tsk->thread.error_code = error_code;
871 tsk->thread.trap_no = 14;
872 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
873}
874
875#ifdef CONFIG_X86_64
876DEFINE_SPINLOCK(pgd_lock);
877LIST_HEAD(pgd_list);
878#endif
879
880void vmalloc_sync_all(void)
881{
882#ifdef CONFIG_X86_32
883 /*
884 * Note that races in the updates of insync and start aren't
885 * problematic: insync can only get set bits added, and updates to
886 * start are only improving performance (without affecting correctness
887 * if undone).
888 */
889 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
890 static unsigned long start = TASK_SIZE;
891 unsigned long address;
892
893 if (SHARED_KERNEL_PMD)
894 return;
895
896 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
897 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
898 if (!test_bit(pgd_index(address), insync)) {
899 unsigned long flags;
900 struct page *page;
901
902 spin_lock_irqsave(&pgd_lock, flags);
903 for (page = pgd_list; page; page =
904 (struct page *)page->index)
905 if (!vmalloc_sync_one(page_address(page),
906 address)) {
907 BUG_ON(page != pgd_list);
908 break;
909 }
910 spin_unlock_irqrestore(&pgd_lock, flags);
911 if (!page)
912 set_bit(pgd_index(address), insync);
913 }
914 if (address == start && test_bit(pgd_index(address), insync))
915 start = address + PGDIR_SIZE;
916 }
917#else /* CONFIG_X86_64 */
918 /*
919 * Note that races in the updates of insync and start aren't
920 * problematic: insync can only get set bits added, and updates to
921 * start are only improving performance (without affecting correctness
922 * if undone).
923 */
924 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
925 static unsigned long start = VMALLOC_START & PGDIR_MASK;
926 unsigned long address;
927
928 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
929 if (!test_bit(pgd_index(address), insync)) {
930 const pgd_t *pgd_ref = pgd_offset_k(address);
931 struct page *page;
932
933 if (pgd_none(*pgd_ref))
934 continue;
935 spin_lock(&pgd_lock);
936 list_for_each_entry(page, &pgd_list, lru) {
937 pgd_t *pgd;
938 pgd = (pgd_t *)page_address(page) + pgd_index(address);
939 if (pgd_none(*pgd))
940 set_pgd(pgd, *pgd_ref);
941 else
942 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
943 }
944 spin_unlock(&pgd_lock);
945 set_bit(pgd_index(address), insync);
946 }
947 if (address == start)
948 start = address + PGDIR_SIZE;
949 }
950 /* Check that there is no need to do the same for the modules area. */
951 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
952 BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
953 (__START_KERNEL & PGDIR_MASK)));
954#endif
955}