diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:16:47 -0400 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:16:47 -0400 |
commit | ad757b6aa5801b81dec609d87753604a06313c53 (patch) | |
tree | 7bb40460e1729ad370b5ae75e65f9e6a0e824328 /arch/x86/mm/discontig_32.c | |
parent | 96ae6ea0be1b902c28b3b463c27da42b41e2b63a (diff) |
i386: move mm
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/mm/discontig_32.c')
-rw-r--r-- | arch/x86/mm/discontig_32.c | 431 |
1 files changed, 431 insertions, 0 deletions
diff --git a/arch/x86/mm/discontig_32.c b/arch/x86/mm/discontig_32.c new file mode 100644 index 000000000000..860e912a3fbb --- /dev/null +++ b/arch/x86/mm/discontig_32.c | |||
@@ -0,0 +1,431 @@ | |||
1 | /* | ||
2 | * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation | ||
3 | * August 2002: added remote node KVA remap - Martin J. Bligh | ||
4 | * | ||
5 | * Copyright (C) 2002, IBM Corp. | ||
6 | * | ||
7 | * All rights reserved. | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License as published by | ||
11 | * the Free Software Foundation; either version 2 of the License, or | ||
12 | * (at your option) any later version. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but | ||
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
17 | * NON INFRINGEMENT. See the GNU General Public License for more | ||
18 | * details. | ||
19 | * | ||
20 | * You should have received a copy of the GNU General Public License | ||
21 | * along with this program; if not, write to the Free Software | ||
22 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
23 | */ | ||
24 | |||
25 | #include <linux/mm.h> | ||
26 | #include <linux/bootmem.h> | ||
27 | #include <linux/mmzone.h> | ||
28 | #include <linux/highmem.h> | ||
29 | #include <linux/initrd.h> | ||
30 | #include <linux/nodemask.h> | ||
31 | #include <linux/module.h> | ||
32 | #include <linux/kexec.h> | ||
33 | #include <linux/pfn.h> | ||
34 | #include <linux/swap.h> | ||
35 | |||
36 | #include <asm/e820.h> | ||
37 | #include <asm/setup.h> | ||
38 | #include <asm/mmzone.h> | ||
39 | #include <bios_ebda.h> | ||
40 | |||
41 | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | ||
42 | EXPORT_SYMBOL(node_data); | ||
43 | bootmem_data_t node0_bdata; | ||
44 | |||
45 | /* | ||
46 | * numa interface - we expect the numa architecture specific code to have | ||
47 | * populated the following initialisation. | ||
48 | * | ||
49 | * 1) node_online_map - the map of all nodes configured (online) in the system | ||
50 | * 2) node_start_pfn - the starting page frame number for a node | ||
51 | * 3) node_end_pfn - the ending page fram number for a node | ||
52 | */ | ||
53 | unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; | ||
54 | unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; | ||
55 | |||
56 | |||
57 | #ifdef CONFIG_DISCONTIGMEM | ||
58 | /* | ||
59 | * 4) physnode_map - the mapping between a pfn and owning node | ||
60 | * physnode_map keeps track of the physical memory layout of a generic | ||
61 | * numa node on a 256Mb break (each element of the array will | ||
62 | * represent 256Mb of memory and will be marked by the node id. so, | ||
63 | * if the first gig is on node 0, and the second gig is on node 1 | ||
64 | * physnode_map will contain: | ||
65 | * | ||
66 | * physnode_map[0-3] = 0; | ||
67 | * physnode_map[4-7] = 1; | ||
68 | * physnode_map[8- ] = -1; | ||
69 | */ | ||
70 | s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1}; | ||
71 | EXPORT_SYMBOL(physnode_map); | ||
72 | |||
73 | void memory_present(int nid, unsigned long start, unsigned long end) | ||
74 | { | ||
75 | unsigned long pfn; | ||
76 | |||
77 | printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n", | ||
78 | nid, start, end); | ||
79 | printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid); | ||
80 | printk(KERN_DEBUG " "); | ||
81 | for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { | ||
82 | physnode_map[pfn / PAGES_PER_ELEMENT] = nid; | ||
83 | printk("%ld ", pfn); | ||
84 | } | ||
85 | printk("\n"); | ||
86 | } | ||
87 | |||
88 | unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, | ||
89 | unsigned long end_pfn) | ||
90 | { | ||
91 | unsigned long nr_pages = end_pfn - start_pfn; | ||
92 | |||
93 | if (!nr_pages) | ||
94 | return 0; | ||
95 | |||
96 | return (nr_pages + 1) * sizeof(struct page); | ||
97 | } | ||
98 | #endif | ||
99 | |||
100 | extern unsigned long find_max_low_pfn(void); | ||
101 | extern void add_one_highpage_init(struct page *, int, int); | ||
102 | extern unsigned long highend_pfn, highstart_pfn; | ||
103 | |||
104 | #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) | ||
105 | |||
106 | unsigned long node_remap_start_pfn[MAX_NUMNODES]; | ||
107 | unsigned long node_remap_size[MAX_NUMNODES]; | ||
108 | unsigned long node_remap_offset[MAX_NUMNODES]; | ||
109 | void *node_remap_start_vaddr[MAX_NUMNODES]; | ||
110 | void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); | ||
111 | |||
112 | void *node_remap_end_vaddr[MAX_NUMNODES]; | ||
113 | void *node_remap_alloc_vaddr[MAX_NUMNODES]; | ||
114 | static unsigned long kva_start_pfn; | ||
115 | static unsigned long kva_pages; | ||
116 | /* | ||
117 | * FLAT - support for basic PC memory model with discontig enabled, essentially | ||
118 | * a single node with all available processors in it with a flat | ||
119 | * memory map. | ||
120 | */ | ||
121 | int __init get_memcfg_numa_flat(void) | ||
122 | { | ||
123 | printk("NUMA - single node, flat memory mode\n"); | ||
124 | |||
125 | /* Run the memory configuration and find the top of memory. */ | ||
126 | find_max_pfn(); | ||
127 | node_start_pfn[0] = 0; | ||
128 | node_end_pfn[0] = max_pfn; | ||
129 | memory_present(0, 0, max_pfn); | ||
130 | |||
131 | /* Indicate there is one node available. */ | ||
132 | nodes_clear(node_online_map); | ||
133 | node_set_online(0); | ||
134 | return 1; | ||
135 | } | ||
136 | |||
137 | /* | ||
138 | * Find the highest page frame number we have available for the node | ||
139 | */ | ||
140 | static void __init find_max_pfn_node(int nid) | ||
141 | { | ||
142 | if (node_end_pfn[nid] > max_pfn) | ||
143 | node_end_pfn[nid] = max_pfn; | ||
144 | /* | ||
145 | * if a user has given mem=XXXX, then we need to make sure | ||
146 | * that the node _starts_ before that, too, not just ends | ||
147 | */ | ||
148 | if (node_start_pfn[nid] > max_pfn) | ||
149 | node_start_pfn[nid] = max_pfn; | ||
150 | BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); | ||
151 | } | ||
152 | |||
153 | /* | ||
154 | * Allocate memory for the pg_data_t for this node via a crude pre-bootmem | ||
155 | * method. For node zero take this from the bottom of memory, for | ||
156 | * subsequent nodes place them at node_remap_start_vaddr which contains | ||
157 | * node local data in physically node local memory. See setup_memory() | ||
158 | * for details. | ||
159 | */ | ||
160 | static void __init allocate_pgdat(int nid) | ||
161 | { | ||
162 | if (nid && node_has_online_mem(nid)) | ||
163 | NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; | ||
164 | else { | ||
165 | NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn)); | ||
166 | min_low_pfn += PFN_UP(sizeof(pg_data_t)); | ||
167 | } | ||
168 | } | ||
169 | |||
170 | void *alloc_remap(int nid, unsigned long size) | ||
171 | { | ||
172 | void *allocation = node_remap_alloc_vaddr[nid]; | ||
173 | |||
174 | size = ALIGN(size, L1_CACHE_BYTES); | ||
175 | |||
176 | if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) | ||
177 | return 0; | ||
178 | |||
179 | node_remap_alloc_vaddr[nid] += size; | ||
180 | memset(allocation, 0, size); | ||
181 | |||
182 | return allocation; | ||
183 | } | ||
184 | |||
185 | void __init remap_numa_kva(void) | ||
186 | { | ||
187 | void *vaddr; | ||
188 | unsigned long pfn; | ||
189 | int node; | ||
190 | |||
191 | for_each_online_node(node) { | ||
192 | for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { | ||
193 | vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); | ||
194 | set_pmd_pfn((ulong) vaddr, | ||
195 | node_remap_start_pfn[node] + pfn, | ||
196 | PAGE_KERNEL_LARGE); | ||
197 | } | ||
198 | } | ||
199 | } | ||
200 | |||
201 | static unsigned long calculate_numa_remap_pages(void) | ||
202 | { | ||
203 | int nid; | ||
204 | unsigned long size, reserve_pages = 0; | ||
205 | unsigned long pfn; | ||
206 | |||
207 | for_each_online_node(nid) { | ||
208 | unsigned old_end_pfn = node_end_pfn[nid]; | ||
209 | |||
210 | /* | ||
211 | * The acpi/srat node info can show hot-add memroy zones | ||
212 | * where memory could be added but not currently present. | ||
213 | */ | ||
214 | if (node_start_pfn[nid] > max_pfn) | ||
215 | continue; | ||
216 | if (node_end_pfn[nid] > max_pfn) | ||
217 | node_end_pfn[nid] = max_pfn; | ||
218 | |||
219 | /* ensure the remap includes space for the pgdat. */ | ||
220 | size = node_remap_size[nid] + sizeof(pg_data_t); | ||
221 | |||
222 | /* convert size to large (pmd size) pages, rounding up */ | ||
223 | size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; | ||
224 | /* now the roundup is correct, convert to PAGE_SIZE pages */ | ||
225 | size = size * PTRS_PER_PTE; | ||
226 | |||
227 | /* | ||
228 | * Validate the region we are allocating only contains valid | ||
229 | * pages. | ||
230 | */ | ||
231 | for (pfn = node_end_pfn[nid] - size; | ||
232 | pfn < node_end_pfn[nid]; pfn++) | ||
233 | if (!page_is_ram(pfn)) | ||
234 | break; | ||
235 | |||
236 | if (pfn != node_end_pfn[nid]) | ||
237 | size = 0; | ||
238 | |||
239 | printk("Reserving %ld pages of KVA for lmem_map of node %d\n", | ||
240 | size, nid); | ||
241 | node_remap_size[nid] = size; | ||
242 | node_remap_offset[nid] = reserve_pages; | ||
243 | reserve_pages += size; | ||
244 | printk("Shrinking node %d from %ld pages to %ld pages\n", | ||
245 | nid, node_end_pfn[nid], node_end_pfn[nid] - size); | ||
246 | |||
247 | if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) { | ||
248 | /* | ||
249 | * Align node_end_pfn[] and node_remap_start_pfn[] to | ||
250 | * pmd boundary. remap_numa_kva will barf otherwise. | ||
251 | */ | ||
252 | printk("Shrinking node %d further by %ld pages for proper alignment\n", | ||
253 | nid, node_end_pfn[nid] & (PTRS_PER_PTE-1)); | ||
254 | size += node_end_pfn[nid] & (PTRS_PER_PTE-1); | ||
255 | } | ||
256 | |||
257 | node_end_pfn[nid] -= size; | ||
258 | node_remap_start_pfn[nid] = node_end_pfn[nid]; | ||
259 | shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]); | ||
260 | } | ||
261 | printk("Reserving total of %ld pages for numa KVA remap\n", | ||
262 | reserve_pages); | ||
263 | return reserve_pages; | ||
264 | } | ||
265 | |||
266 | extern void setup_bootmem_allocator(void); | ||
267 | unsigned long __init setup_memory(void) | ||
268 | { | ||
269 | int nid; | ||
270 | unsigned long system_start_pfn, system_max_low_pfn; | ||
271 | |||
272 | /* | ||
273 | * When mapping a NUMA machine we allocate the node_mem_map arrays | ||
274 | * from node local memory. They are then mapped directly into KVA | ||
275 | * between zone normal and vmalloc space. Calculate the size of | ||
276 | * this space and use it to adjust the boundry between ZONE_NORMAL | ||
277 | * and ZONE_HIGHMEM. | ||
278 | */ | ||
279 | find_max_pfn(); | ||
280 | get_memcfg_numa(); | ||
281 | |||
282 | kva_pages = calculate_numa_remap_pages(); | ||
283 | |||
284 | /* partially used pages are not usable - thus round upwards */ | ||
285 | system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end); | ||
286 | |||
287 | kva_start_pfn = find_max_low_pfn() - kva_pages; | ||
288 | |||
289 | #ifdef CONFIG_BLK_DEV_INITRD | ||
290 | /* Numa kva area is below the initrd */ | ||
291 | if (LOADER_TYPE && INITRD_START) | ||
292 | kva_start_pfn = PFN_DOWN(INITRD_START) - kva_pages; | ||
293 | #endif | ||
294 | kva_start_pfn -= kva_start_pfn & (PTRS_PER_PTE-1); | ||
295 | |||
296 | system_max_low_pfn = max_low_pfn = find_max_low_pfn(); | ||
297 | printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n", | ||
298 | kva_start_pfn, max_low_pfn); | ||
299 | printk("max_pfn = %ld\n", max_pfn); | ||
300 | #ifdef CONFIG_HIGHMEM | ||
301 | highstart_pfn = highend_pfn = max_pfn; | ||
302 | if (max_pfn > system_max_low_pfn) | ||
303 | highstart_pfn = system_max_low_pfn; | ||
304 | printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", | ||
305 | pages_to_mb(highend_pfn - highstart_pfn)); | ||
306 | num_physpages = highend_pfn; | ||
307 | high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; | ||
308 | #else | ||
309 | num_physpages = system_max_low_pfn; | ||
310 | high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1; | ||
311 | #endif | ||
312 | printk(KERN_NOTICE "%ldMB LOWMEM available.\n", | ||
313 | pages_to_mb(system_max_low_pfn)); | ||
314 | printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", | ||
315 | min_low_pfn, max_low_pfn, highstart_pfn); | ||
316 | |||
317 | printk("Low memory ends at vaddr %08lx\n", | ||
318 | (ulong) pfn_to_kaddr(max_low_pfn)); | ||
319 | for_each_online_node(nid) { | ||
320 | node_remap_start_vaddr[nid] = pfn_to_kaddr( | ||
321 | kva_start_pfn + node_remap_offset[nid]); | ||
322 | /* Init the node remap allocator */ | ||
323 | node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] + | ||
324 | (node_remap_size[nid] * PAGE_SIZE); | ||
325 | node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] + | ||
326 | ALIGN(sizeof(pg_data_t), PAGE_SIZE); | ||
327 | |||
328 | allocate_pgdat(nid); | ||
329 | printk ("node %d will remap to vaddr %08lx - %08lx\n", nid, | ||
330 | (ulong) node_remap_start_vaddr[nid], | ||
331 | (ulong) pfn_to_kaddr(highstart_pfn | ||
332 | + node_remap_offset[nid] + node_remap_size[nid])); | ||
333 | } | ||
334 | printk("High memory starts at vaddr %08lx\n", | ||
335 | (ulong) pfn_to_kaddr(highstart_pfn)); | ||
336 | for_each_online_node(nid) | ||
337 | find_max_pfn_node(nid); | ||
338 | |||
339 | memset(NODE_DATA(0), 0, sizeof(struct pglist_data)); | ||
340 | NODE_DATA(0)->bdata = &node0_bdata; | ||
341 | setup_bootmem_allocator(); | ||
342 | return max_low_pfn; | ||
343 | } | ||
344 | |||
345 | void __init numa_kva_reserve(void) | ||
346 | { | ||
347 | reserve_bootmem(PFN_PHYS(kva_start_pfn),PFN_PHYS(kva_pages)); | ||
348 | } | ||
349 | |||
350 | void __init zone_sizes_init(void) | ||
351 | { | ||
352 | int nid; | ||
353 | unsigned long max_zone_pfns[MAX_NR_ZONES]; | ||
354 | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | ||
355 | max_zone_pfns[ZONE_DMA] = | ||
356 | virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | ||
357 | max_zone_pfns[ZONE_NORMAL] = max_low_pfn; | ||
358 | #ifdef CONFIG_HIGHMEM | ||
359 | max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; | ||
360 | #endif | ||
361 | |||
362 | /* If SRAT has not registered memory, register it now */ | ||
363 | if (find_max_pfn_with_active_regions() == 0) { | ||
364 | for_each_online_node(nid) { | ||
365 | if (node_has_online_mem(nid)) | ||
366 | add_active_range(nid, node_start_pfn[nid], | ||
367 | node_end_pfn[nid]); | ||
368 | } | ||
369 | } | ||
370 | |||
371 | free_area_init_nodes(max_zone_pfns); | ||
372 | return; | ||
373 | } | ||
374 | |||
375 | void __init set_highmem_pages_init(int bad_ppro) | ||
376 | { | ||
377 | #ifdef CONFIG_HIGHMEM | ||
378 | struct zone *zone; | ||
379 | struct page *page; | ||
380 | |||
381 | for_each_zone(zone) { | ||
382 | unsigned long node_pfn, zone_start_pfn, zone_end_pfn; | ||
383 | |||
384 | if (!is_highmem(zone)) | ||
385 | continue; | ||
386 | |||
387 | zone_start_pfn = zone->zone_start_pfn; | ||
388 | zone_end_pfn = zone_start_pfn + zone->spanned_pages; | ||
389 | |||
390 | printk("Initializing %s for node %d (%08lx:%08lx)\n", | ||
391 | zone->name, zone_to_nid(zone), | ||
392 | zone_start_pfn, zone_end_pfn); | ||
393 | |||
394 | for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) { | ||
395 | if (!pfn_valid(node_pfn)) | ||
396 | continue; | ||
397 | page = pfn_to_page(node_pfn); | ||
398 | add_one_highpage_init(page, node_pfn, bad_ppro); | ||
399 | } | ||
400 | } | ||
401 | totalram_pages += totalhigh_pages; | ||
402 | #endif | ||
403 | } | ||
404 | |||
405 | #ifdef CONFIG_MEMORY_HOTPLUG | ||
406 | int paddr_to_nid(u64 addr) | ||
407 | { | ||
408 | int nid; | ||
409 | unsigned long pfn = PFN_DOWN(addr); | ||
410 | |||
411 | for_each_node(nid) | ||
412 | if (node_start_pfn[nid] <= pfn && | ||
413 | pfn < node_end_pfn[nid]) | ||
414 | return nid; | ||
415 | |||
416 | return -1; | ||
417 | } | ||
418 | |||
419 | /* | ||
420 | * This function is used to ask node id BEFORE memmap and mem_section's | ||
421 | * initialization (pfn_to_nid() can't be used yet). | ||
422 | * If _PXM is not defined on ACPI's DSDT, node id must be found by this. | ||
423 | */ | ||
424 | int memory_add_physaddr_to_nid(u64 addr) | ||
425 | { | ||
426 | int nid = paddr_to_nid(addr); | ||
427 | return (nid >= 0) ? nid : 0; | ||
428 | } | ||
429 | |||
430 | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); | ||
431 | #endif | ||