diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:17:01 -0400 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:17:01 -0400 |
commit | 9a163ed8e0552fdcffe405d2ea7134819a81456e (patch) | |
tree | b322fd2afbb812ba7ddfd22f3734aaab007c2aa5 /arch/x86/kernel/smp_32.c | |
parent | f7627e2513987bb5d4e8cb13c4e0a478352141ac (diff) |
i386: move kernel
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/kernel/smp_32.c')
-rw-r--r-- | arch/x86/kernel/smp_32.c | 707 |
1 files changed, 707 insertions, 0 deletions
diff --git a/arch/x86/kernel/smp_32.c b/arch/x86/kernel/smp_32.c new file mode 100644 index 000000000000..2d35d8502029 --- /dev/null +++ b/arch/x86/kernel/smp_32.c | |||
@@ -0,0 +1,707 @@ | |||
1 | /* | ||
2 | * Intel SMP support routines. | ||
3 | * | ||
4 | * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> | ||
5 | * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com> | ||
6 | * | ||
7 | * This code is released under the GNU General Public License version 2 or | ||
8 | * later. | ||
9 | */ | ||
10 | |||
11 | #include <linux/init.h> | ||
12 | |||
13 | #include <linux/mm.h> | ||
14 | #include <linux/delay.h> | ||
15 | #include <linux/spinlock.h> | ||
16 | #include <linux/kernel_stat.h> | ||
17 | #include <linux/mc146818rtc.h> | ||
18 | #include <linux/cache.h> | ||
19 | #include <linux/interrupt.h> | ||
20 | #include <linux/cpu.h> | ||
21 | #include <linux/module.h> | ||
22 | |||
23 | #include <asm/mtrr.h> | ||
24 | #include <asm/tlbflush.h> | ||
25 | #include <asm/mmu_context.h> | ||
26 | #include <mach_apic.h> | ||
27 | |||
28 | /* | ||
29 | * Some notes on x86 processor bugs affecting SMP operation: | ||
30 | * | ||
31 | * Pentium, Pentium Pro, II, III (and all CPUs) have bugs. | ||
32 | * The Linux implications for SMP are handled as follows: | ||
33 | * | ||
34 | * Pentium III / [Xeon] | ||
35 | * None of the E1AP-E3AP errata are visible to the user. | ||
36 | * | ||
37 | * E1AP. see PII A1AP | ||
38 | * E2AP. see PII A2AP | ||
39 | * E3AP. see PII A3AP | ||
40 | * | ||
41 | * Pentium II / [Xeon] | ||
42 | * None of the A1AP-A3AP errata are visible to the user. | ||
43 | * | ||
44 | * A1AP. see PPro 1AP | ||
45 | * A2AP. see PPro 2AP | ||
46 | * A3AP. see PPro 7AP | ||
47 | * | ||
48 | * Pentium Pro | ||
49 | * None of 1AP-9AP errata are visible to the normal user, | ||
50 | * except occasional delivery of 'spurious interrupt' as trap #15. | ||
51 | * This is very rare and a non-problem. | ||
52 | * | ||
53 | * 1AP. Linux maps APIC as non-cacheable | ||
54 | * 2AP. worked around in hardware | ||
55 | * 3AP. fixed in C0 and above steppings microcode update. | ||
56 | * Linux does not use excessive STARTUP_IPIs. | ||
57 | * 4AP. worked around in hardware | ||
58 | * 5AP. symmetric IO mode (normal Linux operation) not affected. | ||
59 | * 'noapic' mode has vector 0xf filled out properly. | ||
60 | * 6AP. 'noapic' mode might be affected - fixed in later steppings | ||
61 | * 7AP. We do not assume writes to the LVT deassering IRQs | ||
62 | * 8AP. We do not enable low power mode (deep sleep) during MP bootup | ||
63 | * 9AP. We do not use mixed mode | ||
64 | * | ||
65 | * Pentium | ||
66 | * There is a marginal case where REP MOVS on 100MHz SMP | ||
67 | * machines with B stepping processors can fail. XXX should provide | ||
68 | * an L1cache=Writethrough or L1cache=off option. | ||
69 | * | ||
70 | * B stepping CPUs may hang. There are hardware work arounds | ||
71 | * for this. We warn about it in case your board doesn't have the work | ||
72 | * arounds. Basically thats so I can tell anyone with a B stepping | ||
73 | * CPU and SMP problems "tough". | ||
74 | * | ||
75 | * Specific items [From Pentium Processor Specification Update] | ||
76 | * | ||
77 | * 1AP. Linux doesn't use remote read | ||
78 | * 2AP. Linux doesn't trust APIC errors | ||
79 | * 3AP. We work around this | ||
80 | * 4AP. Linux never generated 3 interrupts of the same priority | ||
81 | * to cause a lost local interrupt. | ||
82 | * 5AP. Remote read is never used | ||
83 | * 6AP. not affected - worked around in hardware | ||
84 | * 7AP. not affected - worked around in hardware | ||
85 | * 8AP. worked around in hardware - we get explicit CS errors if not | ||
86 | * 9AP. only 'noapic' mode affected. Might generate spurious | ||
87 | * interrupts, we log only the first one and count the | ||
88 | * rest silently. | ||
89 | * 10AP. not affected - worked around in hardware | ||
90 | * 11AP. Linux reads the APIC between writes to avoid this, as per | ||
91 | * the documentation. Make sure you preserve this as it affects | ||
92 | * the C stepping chips too. | ||
93 | * 12AP. not affected - worked around in hardware | ||
94 | * 13AP. not affected - worked around in hardware | ||
95 | * 14AP. we always deassert INIT during bootup | ||
96 | * 15AP. not affected - worked around in hardware | ||
97 | * 16AP. not affected - worked around in hardware | ||
98 | * 17AP. not affected - worked around in hardware | ||
99 | * 18AP. not affected - worked around in hardware | ||
100 | * 19AP. not affected - worked around in BIOS | ||
101 | * | ||
102 | * If this sounds worrying believe me these bugs are either ___RARE___, | ||
103 | * or are signal timing bugs worked around in hardware and there's | ||
104 | * about nothing of note with C stepping upwards. | ||
105 | */ | ||
106 | |||
107 | DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, }; | ||
108 | |||
109 | /* | ||
110 | * the following functions deal with sending IPIs between CPUs. | ||
111 | * | ||
112 | * We use 'broadcast', CPU->CPU IPIs and self-IPIs too. | ||
113 | */ | ||
114 | |||
115 | static inline int __prepare_ICR (unsigned int shortcut, int vector) | ||
116 | { | ||
117 | unsigned int icr = shortcut | APIC_DEST_LOGICAL; | ||
118 | |||
119 | switch (vector) { | ||
120 | default: | ||
121 | icr |= APIC_DM_FIXED | vector; | ||
122 | break; | ||
123 | case NMI_VECTOR: | ||
124 | icr |= APIC_DM_NMI; | ||
125 | break; | ||
126 | } | ||
127 | return icr; | ||
128 | } | ||
129 | |||
130 | static inline int __prepare_ICR2 (unsigned int mask) | ||
131 | { | ||
132 | return SET_APIC_DEST_FIELD(mask); | ||
133 | } | ||
134 | |||
135 | void __send_IPI_shortcut(unsigned int shortcut, int vector) | ||
136 | { | ||
137 | /* | ||
138 | * Subtle. In the case of the 'never do double writes' workaround | ||
139 | * we have to lock out interrupts to be safe. As we don't care | ||
140 | * of the value read we use an atomic rmw access to avoid costly | ||
141 | * cli/sti. Otherwise we use an even cheaper single atomic write | ||
142 | * to the APIC. | ||
143 | */ | ||
144 | unsigned int cfg; | ||
145 | |||
146 | /* | ||
147 | * Wait for idle. | ||
148 | */ | ||
149 | apic_wait_icr_idle(); | ||
150 | |||
151 | /* | ||
152 | * No need to touch the target chip field | ||
153 | */ | ||
154 | cfg = __prepare_ICR(shortcut, vector); | ||
155 | |||
156 | /* | ||
157 | * Send the IPI. The write to APIC_ICR fires this off. | ||
158 | */ | ||
159 | apic_write_around(APIC_ICR, cfg); | ||
160 | } | ||
161 | |||
162 | void fastcall send_IPI_self(int vector) | ||
163 | { | ||
164 | __send_IPI_shortcut(APIC_DEST_SELF, vector); | ||
165 | } | ||
166 | |||
167 | /* | ||
168 | * This is used to send an IPI with no shorthand notation (the destination is | ||
169 | * specified in bits 56 to 63 of the ICR). | ||
170 | */ | ||
171 | static inline void __send_IPI_dest_field(unsigned long mask, int vector) | ||
172 | { | ||
173 | unsigned long cfg; | ||
174 | |||
175 | /* | ||
176 | * Wait for idle. | ||
177 | */ | ||
178 | if (unlikely(vector == NMI_VECTOR)) | ||
179 | safe_apic_wait_icr_idle(); | ||
180 | else | ||
181 | apic_wait_icr_idle(); | ||
182 | |||
183 | /* | ||
184 | * prepare target chip field | ||
185 | */ | ||
186 | cfg = __prepare_ICR2(mask); | ||
187 | apic_write_around(APIC_ICR2, cfg); | ||
188 | |||
189 | /* | ||
190 | * program the ICR | ||
191 | */ | ||
192 | cfg = __prepare_ICR(0, vector); | ||
193 | |||
194 | /* | ||
195 | * Send the IPI. The write to APIC_ICR fires this off. | ||
196 | */ | ||
197 | apic_write_around(APIC_ICR, cfg); | ||
198 | } | ||
199 | |||
200 | /* | ||
201 | * This is only used on smaller machines. | ||
202 | */ | ||
203 | void send_IPI_mask_bitmask(cpumask_t cpumask, int vector) | ||
204 | { | ||
205 | unsigned long mask = cpus_addr(cpumask)[0]; | ||
206 | unsigned long flags; | ||
207 | |||
208 | local_irq_save(flags); | ||
209 | WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]); | ||
210 | __send_IPI_dest_field(mask, vector); | ||
211 | local_irq_restore(flags); | ||
212 | } | ||
213 | |||
214 | void send_IPI_mask_sequence(cpumask_t mask, int vector) | ||
215 | { | ||
216 | unsigned long flags; | ||
217 | unsigned int query_cpu; | ||
218 | |||
219 | /* | ||
220 | * Hack. The clustered APIC addressing mode doesn't allow us to send | ||
221 | * to an arbitrary mask, so I do a unicasts to each CPU instead. This | ||
222 | * should be modified to do 1 message per cluster ID - mbligh | ||
223 | */ | ||
224 | |||
225 | local_irq_save(flags); | ||
226 | for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) { | ||
227 | if (cpu_isset(query_cpu, mask)) { | ||
228 | __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu), | ||
229 | vector); | ||
230 | } | ||
231 | } | ||
232 | local_irq_restore(flags); | ||
233 | } | ||
234 | |||
235 | #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */ | ||
236 | |||
237 | /* | ||
238 | * Smarter SMP flushing macros. | ||
239 | * c/o Linus Torvalds. | ||
240 | * | ||
241 | * These mean you can really definitely utterly forget about | ||
242 | * writing to user space from interrupts. (Its not allowed anyway). | ||
243 | * | ||
244 | * Optimizations Manfred Spraul <manfred@colorfullife.com> | ||
245 | */ | ||
246 | |||
247 | static cpumask_t flush_cpumask; | ||
248 | static struct mm_struct * flush_mm; | ||
249 | static unsigned long flush_va; | ||
250 | static DEFINE_SPINLOCK(tlbstate_lock); | ||
251 | |||
252 | /* | ||
253 | * We cannot call mmdrop() because we are in interrupt context, | ||
254 | * instead update mm->cpu_vm_mask. | ||
255 | * | ||
256 | * We need to reload %cr3 since the page tables may be going | ||
257 | * away from under us.. | ||
258 | */ | ||
259 | void leave_mm(unsigned long cpu) | ||
260 | { | ||
261 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) | ||
262 | BUG(); | ||
263 | cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask); | ||
264 | load_cr3(swapper_pg_dir); | ||
265 | } | ||
266 | |||
267 | /* | ||
268 | * | ||
269 | * The flush IPI assumes that a thread switch happens in this order: | ||
270 | * [cpu0: the cpu that switches] | ||
271 | * 1) switch_mm() either 1a) or 1b) | ||
272 | * 1a) thread switch to a different mm | ||
273 | * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); | ||
274 | * Stop ipi delivery for the old mm. This is not synchronized with | ||
275 | * the other cpus, but smp_invalidate_interrupt ignore flush ipis | ||
276 | * for the wrong mm, and in the worst case we perform a superflous | ||
277 | * tlb flush. | ||
278 | * 1a2) set cpu_tlbstate to TLBSTATE_OK | ||
279 | * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 | ||
280 | * was in lazy tlb mode. | ||
281 | * 1a3) update cpu_tlbstate[].active_mm | ||
282 | * Now cpu0 accepts tlb flushes for the new mm. | ||
283 | * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); | ||
284 | * Now the other cpus will send tlb flush ipis. | ||
285 | * 1a4) change cr3. | ||
286 | * 1b) thread switch without mm change | ||
287 | * cpu_tlbstate[].active_mm is correct, cpu0 already handles | ||
288 | * flush ipis. | ||
289 | * 1b1) set cpu_tlbstate to TLBSTATE_OK | ||
290 | * 1b2) test_and_set the cpu bit in cpu_vm_mask. | ||
291 | * Atomically set the bit [other cpus will start sending flush ipis], | ||
292 | * and test the bit. | ||
293 | * 1b3) if the bit was 0: leave_mm was called, flush the tlb. | ||
294 | * 2) switch %%esp, ie current | ||
295 | * | ||
296 | * The interrupt must handle 2 special cases: | ||
297 | * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. | ||
298 | * - the cpu performs speculative tlb reads, i.e. even if the cpu only | ||
299 | * runs in kernel space, the cpu could load tlb entries for user space | ||
300 | * pages. | ||
301 | * | ||
302 | * The good news is that cpu_tlbstate is local to each cpu, no | ||
303 | * write/read ordering problems. | ||
304 | */ | ||
305 | |||
306 | /* | ||
307 | * TLB flush IPI: | ||
308 | * | ||
309 | * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. | ||
310 | * 2) Leave the mm if we are in the lazy tlb mode. | ||
311 | */ | ||
312 | |||
313 | fastcall void smp_invalidate_interrupt(struct pt_regs *regs) | ||
314 | { | ||
315 | unsigned long cpu; | ||
316 | |||
317 | cpu = get_cpu(); | ||
318 | |||
319 | if (!cpu_isset(cpu, flush_cpumask)) | ||
320 | goto out; | ||
321 | /* | ||
322 | * This was a BUG() but until someone can quote me the | ||
323 | * line from the intel manual that guarantees an IPI to | ||
324 | * multiple CPUs is retried _only_ on the erroring CPUs | ||
325 | * its staying as a return | ||
326 | * | ||
327 | * BUG(); | ||
328 | */ | ||
329 | |||
330 | if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) { | ||
331 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) { | ||
332 | if (flush_va == TLB_FLUSH_ALL) | ||
333 | local_flush_tlb(); | ||
334 | else | ||
335 | __flush_tlb_one(flush_va); | ||
336 | } else | ||
337 | leave_mm(cpu); | ||
338 | } | ||
339 | ack_APIC_irq(); | ||
340 | smp_mb__before_clear_bit(); | ||
341 | cpu_clear(cpu, flush_cpumask); | ||
342 | smp_mb__after_clear_bit(); | ||
343 | out: | ||
344 | put_cpu_no_resched(); | ||
345 | } | ||
346 | |||
347 | void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm, | ||
348 | unsigned long va) | ||
349 | { | ||
350 | cpumask_t cpumask = *cpumaskp; | ||
351 | |||
352 | /* | ||
353 | * A couple of (to be removed) sanity checks: | ||
354 | * | ||
355 | * - current CPU must not be in mask | ||
356 | * - mask must exist :) | ||
357 | */ | ||
358 | BUG_ON(cpus_empty(cpumask)); | ||
359 | BUG_ON(cpu_isset(smp_processor_id(), cpumask)); | ||
360 | BUG_ON(!mm); | ||
361 | |||
362 | #ifdef CONFIG_HOTPLUG_CPU | ||
363 | /* If a CPU which we ran on has gone down, OK. */ | ||
364 | cpus_and(cpumask, cpumask, cpu_online_map); | ||
365 | if (unlikely(cpus_empty(cpumask))) | ||
366 | return; | ||
367 | #endif | ||
368 | |||
369 | /* | ||
370 | * i'm not happy about this global shared spinlock in the | ||
371 | * MM hot path, but we'll see how contended it is. | ||
372 | * AK: x86-64 has a faster method that could be ported. | ||
373 | */ | ||
374 | spin_lock(&tlbstate_lock); | ||
375 | |||
376 | flush_mm = mm; | ||
377 | flush_va = va; | ||
378 | cpus_or(flush_cpumask, cpumask, flush_cpumask); | ||
379 | /* | ||
380 | * We have to send the IPI only to | ||
381 | * CPUs affected. | ||
382 | */ | ||
383 | send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR); | ||
384 | |||
385 | while (!cpus_empty(flush_cpumask)) | ||
386 | /* nothing. lockup detection does not belong here */ | ||
387 | cpu_relax(); | ||
388 | |||
389 | flush_mm = NULL; | ||
390 | flush_va = 0; | ||
391 | spin_unlock(&tlbstate_lock); | ||
392 | } | ||
393 | |||
394 | void flush_tlb_current_task(void) | ||
395 | { | ||
396 | struct mm_struct *mm = current->mm; | ||
397 | cpumask_t cpu_mask; | ||
398 | |||
399 | preempt_disable(); | ||
400 | cpu_mask = mm->cpu_vm_mask; | ||
401 | cpu_clear(smp_processor_id(), cpu_mask); | ||
402 | |||
403 | local_flush_tlb(); | ||
404 | if (!cpus_empty(cpu_mask)) | ||
405 | flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); | ||
406 | preempt_enable(); | ||
407 | } | ||
408 | |||
409 | void flush_tlb_mm (struct mm_struct * mm) | ||
410 | { | ||
411 | cpumask_t cpu_mask; | ||
412 | |||
413 | preempt_disable(); | ||
414 | cpu_mask = mm->cpu_vm_mask; | ||
415 | cpu_clear(smp_processor_id(), cpu_mask); | ||
416 | |||
417 | if (current->active_mm == mm) { | ||
418 | if (current->mm) | ||
419 | local_flush_tlb(); | ||
420 | else | ||
421 | leave_mm(smp_processor_id()); | ||
422 | } | ||
423 | if (!cpus_empty(cpu_mask)) | ||
424 | flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); | ||
425 | |||
426 | preempt_enable(); | ||
427 | } | ||
428 | |||
429 | void flush_tlb_page(struct vm_area_struct * vma, unsigned long va) | ||
430 | { | ||
431 | struct mm_struct *mm = vma->vm_mm; | ||
432 | cpumask_t cpu_mask; | ||
433 | |||
434 | preempt_disable(); | ||
435 | cpu_mask = mm->cpu_vm_mask; | ||
436 | cpu_clear(smp_processor_id(), cpu_mask); | ||
437 | |||
438 | if (current->active_mm == mm) { | ||
439 | if(current->mm) | ||
440 | __flush_tlb_one(va); | ||
441 | else | ||
442 | leave_mm(smp_processor_id()); | ||
443 | } | ||
444 | |||
445 | if (!cpus_empty(cpu_mask)) | ||
446 | flush_tlb_others(cpu_mask, mm, va); | ||
447 | |||
448 | preempt_enable(); | ||
449 | } | ||
450 | EXPORT_SYMBOL(flush_tlb_page); | ||
451 | |||
452 | static void do_flush_tlb_all(void* info) | ||
453 | { | ||
454 | unsigned long cpu = smp_processor_id(); | ||
455 | |||
456 | __flush_tlb_all(); | ||
457 | if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY) | ||
458 | leave_mm(cpu); | ||
459 | } | ||
460 | |||
461 | void flush_tlb_all(void) | ||
462 | { | ||
463 | on_each_cpu(do_flush_tlb_all, NULL, 1, 1); | ||
464 | } | ||
465 | |||
466 | /* | ||
467 | * this function sends a 'reschedule' IPI to another CPU. | ||
468 | * it goes straight through and wastes no time serializing | ||
469 | * anything. Worst case is that we lose a reschedule ... | ||
470 | */ | ||
471 | static void native_smp_send_reschedule(int cpu) | ||
472 | { | ||
473 | WARN_ON(cpu_is_offline(cpu)); | ||
474 | send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR); | ||
475 | } | ||
476 | |||
477 | /* | ||
478 | * Structure and data for smp_call_function(). This is designed to minimise | ||
479 | * static memory requirements. It also looks cleaner. | ||
480 | */ | ||
481 | static DEFINE_SPINLOCK(call_lock); | ||
482 | |||
483 | struct call_data_struct { | ||
484 | void (*func) (void *info); | ||
485 | void *info; | ||
486 | atomic_t started; | ||
487 | atomic_t finished; | ||
488 | int wait; | ||
489 | }; | ||
490 | |||
491 | void lock_ipi_call_lock(void) | ||
492 | { | ||
493 | spin_lock_irq(&call_lock); | ||
494 | } | ||
495 | |||
496 | void unlock_ipi_call_lock(void) | ||
497 | { | ||
498 | spin_unlock_irq(&call_lock); | ||
499 | } | ||
500 | |||
501 | static struct call_data_struct *call_data; | ||
502 | |||
503 | static void __smp_call_function(void (*func) (void *info), void *info, | ||
504 | int nonatomic, int wait) | ||
505 | { | ||
506 | struct call_data_struct data; | ||
507 | int cpus = num_online_cpus() - 1; | ||
508 | |||
509 | if (!cpus) | ||
510 | return; | ||
511 | |||
512 | data.func = func; | ||
513 | data.info = info; | ||
514 | atomic_set(&data.started, 0); | ||
515 | data.wait = wait; | ||
516 | if (wait) | ||
517 | atomic_set(&data.finished, 0); | ||
518 | |||
519 | call_data = &data; | ||
520 | mb(); | ||
521 | |||
522 | /* Send a message to all other CPUs and wait for them to respond */ | ||
523 | send_IPI_allbutself(CALL_FUNCTION_VECTOR); | ||
524 | |||
525 | /* Wait for response */ | ||
526 | while (atomic_read(&data.started) != cpus) | ||
527 | cpu_relax(); | ||
528 | |||
529 | if (wait) | ||
530 | while (atomic_read(&data.finished) != cpus) | ||
531 | cpu_relax(); | ||
532 | } | ||
533 | |||
534 | |||
535 | /** | ||
536 | * smp_call_function_mask(): Run a function on a set of other CPUs. | ||
537 | * @mask: The set of cpus to run on. Must not include the current cpu. | ||
538 | * @func: The function to run. This must be fast and non-blocking. | ||
539 | * @info: An arbitrary pointer to pass to the function. | ||
540 | * @wait: If true, wait (atomically) until function has completed on other CPUs. | ||
541 | * | ||
542 | * Returns 0 on success, else a negative status code. | ||
543 | * | ||
544 | * If @wait is true, then returns once @func has returned; otherwise | ||
545 | * it returns just before the target cpu calls @func. | ||
546 | * | ||
547 | * You must not call this function with disabled interrupts or from a | ||
548 | * hardware interrupt handler or from a bottom half handler. | ||
549 | */ | ||
550 | static int | ||
551 | native_smp_call_function_mask(cpumask_t mask, | ||
552 | void (*func)(void *), void *info, | ||
553 | int wait) | ||
554 | { | ||
555 | struct call_data_struct data; | ||
556 | cpumask_t allbutself; | ||
557 | int cpus; | ||
558 | |||
559 | /* Can deadlock when called with interrupts disabled */ | ||
560 | WARN_ON(irqs_disabled()); | ||
561 | |||
562 | /* Holding any lock stops cpus from going down. */ | ||
563 | spin_lock(&call_lock); | ||
564 | |||
565 | allbutself = cpu_online_map; | ||
566 | cpu_clear(smp_processor_id(), allbutself); | ||
567 | |||
568 | cpus_and(mask, mask, allbutself); | ||
569 | cpus = cpus_weight(mask); | ||
570 | |||
571 | if (!cpus) { | ||
572 | spin_unlock(&call_lock); | ||
573 | return 0; | ||
574 | } | ||
575 | |||
576 | data.func = func; | ||
577 | data.info = info; | ||
578 | atomic_set(&data.started, 0); | ||
579 | data.wait = wait; | ||
580 | if (wait) | ||
581 | atomic_set(&data.finished, 0); | ||
582 | |||
583 | call_data = &data; | ||
584 | mb(); | ||
585 | |||
586 | /* Send a message to other CPUs */ | ||
587 | if (cpus_equal(mask, allbutself)) | ||
588 | send_IPI_allbutself(CALL_FUNCTION_VECTOR); | ||
589 | else | ||
590 | send_IPI_mask(mask, CALL_FUNCTION_VECTOR); | ||
591 | |||
592 | /* Wait for response */ | ||
593 | while (atomic_read(&data.started) != cpus) | ||
594 | cpu_relax(); | ||
595 | |||
596 | if (wait) | ||
597 | while (atomic_read(&data.finished) != cpus) | ||
598 | cpu_relax(); | ||
599 | spin_unlock(&call_lock); | ||
600 | |||
601 | return 0; | ||
602 | } | ||
603 | |||
604 | static void stop_this_cpu (void * dummy) | ||
605 | { | ||
606 | local_irq_disable(); | ||
607 | /* | ||
608 | * Remove this CPU: | ||
609 | */ | ||
610 | cpu_clear(smp_processor_id(), cpu_online_map); | ||
611 | disable_local_APIC(); | ||
612 | if (cpu_data[smp_processor_id()].hlt_works_ok) | ||
613 | for(;;) halt(); | ||
614 | for (;;); | ||
615 | } | ||
616 | |||
617 | /* | ||
618 | * this function calls the 'stop' function on all other CPUs in the system. | ||
619 | */ | ||
620 | |||
621 | static void native_smp_send_stop(void) | ||
622 | { | ||
623 | /* Don't deadlock on the call lock in panic */ | ||
624 | int nolock = !spin_trylock(&call_lock); | ||
625 | unsigned long flags; | ||
626 | |||
627 | local_irq_save(flags); | ||
628 | __smp_call_function(stop_this_cpu, NULL, 0, 0); | ||
629 | if (!nolock) | ||
630 | spin_unlock(&call_lock); | ||
631 | disable_local_APIC(); | ||
632 | local_irq_restore(flags); | ||
633 | } | ||
634 | |||
635 | /* | ||
636 | * Reschedule call back. Nothing to do, | ||
637 | * all the work is done automatically when | ||
638 | * we return from the interrupt. | ||
639 | */ | ||
640 | fastcall void smp_reschedule_interrupt(struct pt_regs *regs) | ||
641 | { | ||
642 | ack_APIC_irq(); | ||
643 | } | ||
644 | |||
645 | fastcall void smp_call_function_interrupt(struct pt_regs *regs) | ||
646 | { | ||
647 | void (*func) (void *info) = call_data->func; | ||
648 | void *info = call_data->info; | ||
649 | int wait = call_data->wait; | ||
650 | |||
651 | ack_APIC_irq(); | ||
652 | /* | ||
653 | * Notify initiating CPU that I've grabbed the data and am | ||
654 | * about to execute the function | ||
655 | */ | ||
656 | mb(); | ||
657 | atomic_inc(&call_data->started); | ||
658 | /* | ||
659 | * At this point the info structure may be out of scope unless wait==1 | ||
660 | */ | ||
661 | irq_enter(); | ||
662 | (*func)(info); | ||
663 | irq_exit(); | ||
664 | |||
665 | if (wait) { | ||
666 | mb(); | ||
667 | atomic_inc(&call_data->finished); | ||
668 | } | ||
669 | } | ||
670 | |||
671 | static int convert_apicid_to_cpu(int apic_id) | ||
672 | { | ||
673 | int i; | ||
674 | |||
675 | for (i = 0; i < NR_CPUS; i++) { | ||
676 | if (x86_cpu_to_apicid[i] == apic_id) | ||
677 | return i; | ||
678 | } | ||
679 | return -1; | ||
680 | } | ||
681 | |||
682 | int safe_smp_processor_id(void) | ||
683 | { | ||
684 | int apicid, cpuid; | ||
685 | |||
686 | if (!boot_cpu_has(X86_FEATURE_APIC)) | ||
687 | return 0; | ||
688 | |||
689 | apicid = hard_smp_processor_id(); | ||
690 | if (apicid == BAD_APICID) | ||
691 | return 0; | ||
692 | |||
693 | cpuid = convert_apicid_to_cpu(apicid); | ||
694 | |||
695 | return cpuid >= 0 ? cpuid : 0; | ||
696 | } | ||
697 | |||
698 | struct smp_ops smp_ops = { | ||
699 | .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu, | ||
700 | .smp_prepare_cpus = native_smp_prepare_cpus, | ||
701 | .cpu_up = native_cpu_up, | ||
702 | .smp_cpus_done = native_smp_cpus_done, | ||
703 | |||
704 | .smp_send_stop = native_smp_send_stop, | ||
705 | .smp_send_reschedule = native_smp_send_reschedule, | ||
706 | .smp_call_function_mask = native_smp_call_function_mask, | ||
707 | }; | ||