aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/smp_32.c
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2007-10-11 05:17:01 -0400
committerThomas Gleixner <tglx@linutronix.de>2007-10-11 05:17:01 -0400
commit9a163ed8e0552fdcffe405d2ea7134819a81456e (patch)
treeb322fd2afbb812ba7ddfd22f3734aaab007c2aa5 /arch/x86/kernel/smp_32.c
parentf7627e2513987bb5d4e8cb13c4e0a478352141ac (diff)
i386: move kernel
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/kernel/smp_32.c')
-rw-r--r--arch/x86/kernel/smp_32.c707
1 files changed, 707 insertions, 0 deletions
diff --git a/arch/x86/kernel/smp_32.c b/arch/x86/kernel/smp_32.c
new file mode 100644
index 000000000000..2d35d8502029
--- /dev/null
+++ b/arch/x86/kernel/smp_32.c
@@ -0,0 +1,707 @@
1/*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
10
11#include <linux/init.h>
12
13#include <linux/mm.h>
14#include <linux/delay.h>
15#include <linux/spinlock.h>
16#include <linux/kernel_stat.h>
17#include <linux/mc146818rtc.h>
18#include <linux/cache.h>
19#include <linux/interrupt.h>
20#include <linux/cpu.h>
21#include <linux/module.h>
22
23#include <asm/mtrr.h>
24#include <asm/tlbflush.h>
25#include <asm/mmu_context.h>
26#include <mach_apic.h>
27
28/*
29 * Some notes on x86 processor bugs affecting SMP operation:
30 *
31 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
32 * The Linux implications for SMP are handled as follows:
33 *
34 * Pentium III / [Xeon]
35 * None of the E1AP-E3AP errata are visible to the user.
36 *
37 * E1AP. see PII A1AP
38 * E2AP. see PII A2AP
39 * E3AP. see PII A3AP
40 *
41 * Pentium II / [Xeon]
42 * None of the A1AP-A3AP errata are visible to the user.
43 *
44 * A1AP. see PPro 1AP
45 * A2AP. see PPro 2AP
46 * A3AP. see PPro 7AP
47 *
48 * Pentium Pro
49 * None of 1AP-9AP errata are visible to the normal user,
50 * except occasional delivery of 'spurious interrupt' as trap #15.
51 * This is very rare and a non-problem.
52 *
53 * 1AP. Linux maps APIC as non-cacheable
54 * 2AP. worked around in hardware
55 * 3AP. fixed in C0 and above steppings microcode update.
56 * Linux does not use excessive STARTUP_IPIs.
57 * 4AP. worked around in hardware
58 * 5AP. symmetric IO mode (normal Linux operation) not affected.
59 * 'noapic' mode has vector 0xf filled out properly.
60 * 6AP. 'noapic' mode might be affected - fixed in later steppings
61 * 7AP. We do not assume writes to the LVT deassering IRQs
62 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
63 * 9AP. We do not use mixed mode
64 *
65 * Pentium
66 * There is a marginal case where REP MOVS on 100MHz SMP
67 * machines with B stepping processors can fail. XXX should provide
68 * an L1cache=Writethrough or L1cache=off option.
69 *
70 * B stepping CPUs may hang. There are hardware work arounds
71 * for this. We warn about it in case your board doesn't have the work
72 * arounds. Basically thats so I can tell anyone with a B stepping
73 * CPU and SMP problems "tough".
74 *
75 * Specific items [From Pentium Processor Specification Update]
76 *
77 * 1AP. Linux doesn't use remote read
78 * 2AP. Linux doesn't trust APIC errors
79 * 3AP. We work around this
80 * 4AP. Linux never generated 3 interrupts of the same priority
81 * to cause a lost local interrupt.
82 * 5AP. Remote read is never used
83 * 6AP. not affected - worked around in hardware
84 * 7AP. not affected - worked around in hardware
85 * 8AP. worked around in hardware - we get explicit CS errors if not
86 * 9AP. only 'noapic' mode affected. Might generate spurious
87 * interrupts, we log only the first one and count the
88 * rest silently.
89 * 10AP. not affected - worked around in hardware
90 * 11AP. Linux reads the APIC between writes to avoid this, as per
91 * the documentation. Make sure you preserve this as it affects
92 * the C stepping chips too.
93 * 12AP. not affected - worked around in hardware
94 * 13AP. not affected - worked around in hardware
95 * 14AP. we always deassert INIT during bootup
96 * 15AP. not affected - worked around in hardware
97 * 16AP. not affected - worked around in hardware
98 * 17AP. not affected - worked around in hardware
99 * 18AP. not affected - worked around in hardware
100 * 19AP. not affected - worked around in BIOS
101 *
102 * If this sounds worrying believe me these bugs are either ___RARE___,
103 * or are signal timing bugs worked around in hardware and there's
104 * about nothing of note with C stepping upwards.
105 */
106
107DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
108
109/*
110 * the following functions deal with sending IPIs between CPUs.
111 *
112 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
113 */
114
115static inline int __prepare_ICR (unsigned int shortcut, int vector)
116{
117 unsigned int icr = shortcut | APIC_DEST_LOGICAL;
118
119 switch (vector) {
120 default:
121 icr |= APIC_DM_FIXED | vector;
122 break;
123 case NMI_VECTOR:
124 icr |= APIC_DM_NMI;
125 break;
126 }
127 return icr;
128}
129
130static inline int __prepare_ICR2 (unsigned int mask)
131{
132 return SET_APIC_DEST_FIELD(mask);
133}
134
135void __send_IPI_shortcut(unsigned int shortcut, int vector)
136{
137 /*
138 * Subtle. In the case of the 'never do double writes' workaround
139 * we have to lock out interrupts to be safe. As we don't care
140 * of the value read we use an atomic rmw access to avoid costly
141 * cli/sti. Otherwise we use an even cheaper single atomic write
142 * to the APIC.
143 */
144 unsigned int cfg;
145
146 /*
147 * Wait for idle.
148 */
149 apic_wait_icr_idle();
150
151 /*
152 * No need to touch the target chip field
153 */
154 cfg = __prepare_ICR(shortcut, vector);
155
156 /*
157 * Send the IPI. The write to APIC_ICR fires this off.
158 */
159 apic_write_around(APIC_ICR, cfg);
160}
161
162void fastcall send_IPI_self(int vector)
163{
164 __send_IPI_shortcut(APIC_DEST_SELF, vector);
165}
166
167/*
168 * This is used to send an IPI with no shorthand notation (the destination is
169 * specified in bits 56 to 63 of the ICR).
170 */
171static inline void __send_IPI_dest_field(unsigned long mask, int vector)
172{
173 unsigned long cfg;
174
175 /*
176 * Wait for idle.
177 */
178 if (unlikely(vector == NMI_VECTOR))
179 safe_apic_wait_icr_idle();
180 else
181 apic_wait_icr_idle();
182
183 /*
184 * prepare target chip field
185 */
186 cfg = __prepare_ICR2(mask);
187 apic_write_around(APIC_ICR2, cfg);
188
189 /*
190 * program the ICR
191 */
192 cfg = __prepare_ICR(0, vector);
193
194 /*
195 * Send the IPI. The write to APIC_ICR fires this off.
196 */
197 apic_write_around(APIC_ICR, cfg);
198}
199
200/*
201 * This is only used on smaller machines.
202 */
203void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
204{
205 unsigned long mask = cpus_addr(cpumask)[0];
206 unsigned long flags;
207
208 local_irq_save(flags);
209 WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
210 __send_IPI_dest_field(mask, vector);
211 local_irq_restore(flags);
212}
213
214void send_IPI_mask_sequence(cpumask_t mask, int vector)
215{
216 unsigned long flags;
217 unsigned int query_cpu;
218
219 /*
220 * Hack. The clustered APIC addressing mode doesn't allow us to send
221 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
222 * should be modified to do 1 message per cluster ID - mbligh
223 */
224
225 local_irq_save(flags);
226 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
227 if (cpu_isset(query_cpu, mask)) {
228 __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu),
229 vector);
230 }
231 }
232 local_irq_restore(flags);
233}
234
235#include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
236
237/*
238 * Smarter SMP flushing macros.
239 * c/o Linus Torvalds.
240 *
241 * These mean you can really definitely utterly forget about
242 * writing to user space from interrupts. (Its not allowed anyway).
243 *
244 * Optimizations Manfred Spraul <manfred@colorfullife.com>
245 */
246
247static cpumask_t flush_cpumask;
248static struct mm_struct * flush_mm;
249static unsigned long flush_va;
250static DEFINE_SPINLOCK(tlbstate_lock);
251
252/*
253 * We cannot call mmdrop() because we are in interrupt context,
254 * instead update mm->cpu_vm_mask.
255 *
256 * We need to reload %cr3 since the page tables may be going
257 * away from under us..
258 */
259void leave_mm(unsigned long cpu)
260{
261 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
262 BUG();
263 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
264 load_cr3(swapper_pg_dir);
265}
266
267/*
268 *
269 * The flush IPI assumes that a thread switch happens in this order:
270 * [cpu0: the cpu that switches]
271 * 1) switch_mm() either 1a) or 1b)
272 * 1a) thread switch to a different mm
273 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
274 * Stop ipi delivery for the old mm. This is not synchronized with
275 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
276 * for the wrong mm, and in the worst case we perform a superflous
277 * tlb flush.
278 * 1a2) set cpu_tlbstate to TLBSTATE_OK
279 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
280 * was in lazy tlb mode.
281 * 1a3) update cpu_tlbstate[].active_mm
282 * Now cpu0 accepts tlb flushes for the new mm.
283 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
284 * Now the other cpus will send tlb flush ipis.
285 * 1a4) change cr3.
286 * 1b) thread switch without mm change
287 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
288 * flush ipis.
289 * 1b1) set cpu_tlbstate to TLBSTATE_OK
290 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
291 * Atomically set the bit [other cpus will start sending flush ipis],
292 * and test the bit.
293 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
294 * 2) switch %%esp, ie current
295 *
296 * The interrupt must handle 2 special cases:
297 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
298 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
299 * runs in kernel space, the cpu could load tlb entries for user space
300 * pages.
301 *
302 * The good news is that cpu_tlbstate is local to each cpu, no
303 * write/read ordering problems.
304 */
305
306/*
307 * TLB flush IPI:
308 *
309 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
310 * 2) Leave the mm if we are in the lazy tlb mode.
311 */
312
313fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
314{
315 unsigned long cpu;
316
317 cpu = get_cpu();
318
319 if (!cpu_isset(cpu, flush_cpumask))
320 goto out;
321 /*
322 * This was a BUG() but until someone can quote me the
323 * line from the intel manual that guarantees an IPI to
324 * multiple CPUs is retried _only_ on the erroring CPUs
325 * its staying as a return
326 *
327 * BUG();
328 */
329
330 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
331 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
332 if (flush_va == TLB_FLUSH_ALL)
333 local_flush_tlb();
334 else
335 __flush_tlb_one(flush_va);
336 } else
337 leave_mm(cpu);
338 }
339 ack_APIC_irq();
340 smp_mb__before_clear_bit();
341 cpu_clear(cpu, flush_cpumask);
342 smp_mb__after_clear_bit();
343out:
344 put_cpu_no_resched();
345}
346
347void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
348 unsigned long va)
349{
350 cpumask_t cpumask = *cpumaskp;
351
352 /*
353 * A couple of (to be removed) sanity checks:
354 *
355 * - current CPU must not be in mask
356 * - mask must exist :)
357 */
358 BUG_ON(cpus_empty(cpumask));
359 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
360 BUG_ON(!mm);
361
362#ifdef CONFIG_HOTPLUG_CPU
363 /* If a CPU which we ran on has gone down, OK. */
364 cpus_and(cpumask, cpumask, cpu_online_map);
365 if (unlikely(cpus_empty(cpumask)))
366 return;
367#endif
368
369 /*
370 * i'm not happy about this global shared spinlock in the
371 * MM hot path, but we'll see how contended it is.
372 * AK: x86-64 has a faster method that could be ported.
373 */
374 spin_lock(&tlbstate_lock);
375
376 flush_mm = mm;
377 flush_va = va;
378 cpus_or(flush_cpumask, cpumask, flush_cpumask);
379 /*
380 * We have to send the IPI only to
381 * CPUs affected.
382 */
383 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
384
385 while (!cpus_empty(flush_cpumask))
386 /* nothing. lockup detection does not belong here */
387 cpu_relax();
388
389 flush_mm = NULL;
390 flush_va = 0;
391 spin_unlock(&tlbstate_lock);
392}
393
394void flush_tlb_current_task(void)
395{
396 struct mm_struct *mm = current->mm;
397 cpumask_t cpu_mask;
398
399 preempt_disable();
400 cpu_mask = mm->cpu_vm_mask;
401 cpu_clear(smp_processor_id(), cpu_mask);
402
403 local_flush_tlb();
404 if (!cpus_empty(cpu_mask))
405 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
406 preempt_enable();
407}
408
409void flush_tlb_mm (struct mm_struct * mm)
410{
411 cpumask_t cpu_mask;
412
413 preempt_disable();
414 cpu_mask = mm->cpu_vm_mask;
415 cpu_clear(smp_processor_id(), cpu_mask);
416
417 if (current->active_mm == mm) {
418 if (current->mm)
419 local_flush_tlb();
420 else
421 leave_mm(smp_processor_id());
422 }
423 if (!cpus_empty(cpu_mask))
424 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
425
426 preempt_enable();
427}
428
429void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
430{
431 struct mm_struct *mm = vma->vm_mm;
432 cpumask_t cpu_mask;
433
434 preempt_disable();
435 cpu_mask = mm->cpu_vm_mask;
436 cpu_clear(smp_processor_id(), cpu_mask);
437
438 if (current->active_mm == mm) {
439 if(current->mm)
440 __flush_tlb_one(va);
441 else
442 leave_mm(smp_processor_id());
443 }
444
445 if (!cpus_empty(cpu_mask))
446 flush_tlb_others(cpu_mask, mm, va);
447
448 preempt_enable();
449}
450EXPORT_SYMBOL(flush_tlb_page);
451
452static void do_flush_tlb_all(void* info)
453{
454 unsigned long cpu = smp_processor_id();
455
456 __flush_tlb_all();
457 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
458 leave_mm(cpu);
459}
460
461void flush_tlb_all(void)
462{
463 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
464}
465
466/*
467 * this function sends a 'reschedule' IPI to another CPU.
468 * it goes straight through and wastes no time serializing
469 * anything. Worst case is that we lose a reschedule ...
470 */
471static void native_smp_send_reschedule(int cpu)
472{
473 WARN_ON(cpu_is_offline(cpu));
474 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
475}
476
477/*
478 * Structure and data for smp_call_function(). This is designed to minimise
479 * static memory requirements. It also looks cleaner.
480 */
481static DEFINE_SPINLOCK(call_lock);
482
483struct call_data_struct {
484 void (*func) (void *info);
485 void *info;
486 atomic_t started;
487 atomic_t finished;
488 int wait;
489};
490
491void lock_ipi_call_lock(void)
492{
493 spin_lock_irq(&call_lock);
494}
495
496void unlock_ipi_call_lock(void)
497{
498 spin_unlock_irq(&call_lock);
499}
500
501static struct call_data_struct *call_data;
502
503static void __smp_call_function(void (*func) (void *info), void *info,
504 int nonatomic, int wait)
505{
506 struct call_data_struct data;
507 int cpus = num_online_cpus() - 1;
508
509 if (!cpus)
510 return;
511
512 data.func = func;
513 data.info = info;
514 atomic_set(&data.started, 0);
515 data.wait = wait;
516 if (wait)
517 atomic_set(&data.finished, 0);
518
519 call_data = &data;
520 mb();
521
522 /* Send a message to all other CPUs and wait for them to respond */
523 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
524
525 /* Wait for response */
526 while (atomic_read(&data.started) != cpus)
527 cpu_relax();
528
529 if (wait)
530 while (atomic_read(&data.finished) != cpus)
531 cpu_relax();
532}
533
534
535/**
536 * smp_call_function_mask(): Run a function on a set of other CPUs.
537 * @mask: The set of cpus to run on. Must not include the current cpu.
538 * @func: The function to run. This must be fast and non-blocking.
539 * @info: An arbitrary pointer to pass to the function.
540 * @wait: If true, wait (atomically) until function has completed on other CPUs.
541 *
542 * Returns 0 on success, else a negative status code.
543 *
544 * If @wait is true, then returns once @func has returned; otherwise
545 * it returns just before the target cpu calls @func.
546 *
547 * You must not call this function with disabled interrupts or from a
548 * hardware interrupt handler or from a bottom half handler.
549 */
550static int
551native_smp_call_function_mask(cpumask_t mask,
552 void (*func)(void *), void *info,
553 int wait)
554{
555 struct call_data_struct data;
556 cpumask_t allbutself;
557 int cpus;
558
559 /* Can deadlock when called with interrupts disabled */
560 WARN_ON(irqs_disabled());
561
562 /* Holding any lock stops cpus from going down. */
563 spin_lock(&call_lock);
564
565 allbutself = cpu_online_map;
566 cpu_clear(smp_processor_id(), allbutself);
567
568 cpus_and(mask, mask, allbutself);
569 cpus = cpus_weight(mask);
570
571 if (!cpus) {
572 spin_unlock(&call_lock);
573 return 0;
574 }
575
576 data.func = func;
577 data.info = info;
578 atomic_set(&data.started, 0);
579 data.wait = wait;
580 if (wait)
581 atomic_set(&data.finished, 0);
582
583 call_data = &data;
584 mb();
585
586 /* Send a message to other CPUs */
587 if (cpus_equal(mask, allbutself))
588 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
589 else
590 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
591
592 /* Wait for response */
593 while (atomic_read(&data.started) != cpus)
594 cpu_relax();
595
596 if (wait)
597 while (atomic_read(&data.finished) != cpus)
598 cpu_relax();
599 spin_unlock(&call_lock);
600
601 return 0;
602}
603
604static void stop_this_cpu (void * dummy)
605{
606 local_irq_disable();
607 /*
608 * Remove this CPU:
609 */
610 cpu_clear(smp_processor_id(), cpu_online_map);
611 disable_local_APIC();
612 if (cpu_data[smp_processor_id()].hlt_works_ok)
613 for(;;) halt();
614 for (;;);
615}
616
617/*
618 * this function calls the 'stop' function on all other CPUs in the system.
619 */
620
621static void native_smp_send_stop(void)
622{
623 /* Don't deadlock on the call lock in panic */
624 int nolock = !spin_trylock(&call_lock);
625 unsigned long flags;
626
627 local_irq_save(flags);
628 __smp_call_function(stop_this_cpu, NULL, 0, 0);
629 if (!nolock)
630 spin_unlock(&call_lock);
631 disable_local_APIC();
632 local_irq_restore(flags);
633}
634
635/*
636 * Reschedule call back. Nothing to do,
637 * all the work is done automatically when
638 * we return from the interrupt.
639 */
640fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
641{
642 ack_APIC_irq();
643}
644
645fastcall void smp_call_function_interrupt(struct pt_regs *regs)
646{
647 void (*func) (void *info) = call_data->func;
648 void *info = call_data->info;
649 int wait = call_data->wait;
650
651 ack_APIC_irq();
652 /*
653 * Notify initiating CPU that I've grabbed the data and am
654 * about to execute the function
655 */
656 mb();
657 atomic_inc(&call_data->started);
658 /*
659 * At this point the info structure may be out of scope unless wait==1
660 */
661 irq_enter();
662 (*func)(info);
663 irq_exit();
664
665 if (wait) {
666 mb();
667 atomic_inc(&call_data->finished);
668 }
669}
670
671static int convert_apicid_to_cpu(int apic_id)
672{
673 int i;
674
675 for (i = 0; i < NR_CPUS; i++) {
676 if (x86_cpu_to_apicid[i] == apic_id)
677 return i;
678 }
679 return -1;
680}
681
682int safe_smp_processor_id(void)
683{
684 int apicid, cpuid;
685
686 if (!boot_cpu_has(X86_FEATURE_APIC))
687 return 0;
688
689 apicid = hard_smp_processor_id();
690 if (apicid == BAD_APICID)
691 return 0;
692
693 cpuid = convert_apicid_to_cpu(apicid);
694
695 return cpuid >= 0 ? cpuid : 0;
696}
697
698struct smp_ops smp_ops = {
699 .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
700 .smp_prepare_cpus = native_smp_prepare_cpus,
701 .cpu_up = native_cpu_up,
702 .smp_cpus_done = native_smp_cpus_done,
703
704 .smp_send_stop = native_smp_send_stop,
705 .smp_send_reschedule = native_smp_send_reschedule,
706 .smp_call_function_mask = native_smp_call_function_mask,
707};