diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:17:01 -0400 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2007-10-11 05:17:01 -0400 |
commit | 9a163ed8e0552fdcffe405d2ea7134819a81456e (patch) | |
tree | b322fd2afbb812ba7ddfd22f3734aaab007c2aa5 /arch/x86/kernel/process_32.c | |
parent | f7627e2513987bb5d4e8cb13c4e0a478352141ac (diff) |
i386: move kernel
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/kernel/process_32.c')
-rw-r--r-- | arch/x86/kernel/process_32.c | 951 |
1 files changed, 951 insertions, 0 deletions
diff --git a/arch/x86/kernel/process_32.c b/arch/x86/kernel/process_32.c new file mode 100644 index 000000000000..84664710b784 --- /dev/null +++ b/arch/x86/kernel/process_32.c | |||
@@ -0,0 +1,951 @@ | |||
1 | /* | ||
2 | * linux/arch/i386/kernel/process.c | ||
3 | * | ||
4 | * Copyright (C) 1995 Linus Torvalds | ||
5 | * | ||
6 | * Pentium III FXSR, SSE support | ||
7 | * Gareth Hughes <gareth@valinux.com>, May 2000 | ||
8 | */ | ||
9 | |||
10 | /* | ||
11 | * This file handles the architecture-dependent parts of process handling.. | ||
12 | */ | ||
13 | |||
14 | #include <stdarg.h> | ||
15 | |||
16 | #include <linux/cpu.h> | ||
17 | #include <linux/errno.h> | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/fs.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/mm.h> | ||
22 | #include <linux/elfcore.h> | ||
23 | #include <linux/smp.h> | ||
24 | #include <linux/stddef.h> | ||
25 | #include <linux/slab.h> | ||
26 | #include <linux/vmalloc.h> | ||
27 | #include <linux/user.h> | ||
28 | #include <linux/a.out.h> | ||
29 | #include <linux/interrupt.h> | ||
30 | #include <linux/utsname.h> | ||
31 | #include <linux/delay.h> | ||
32 | #include <linux/reboot.h> | ||
33 | #include <linux/init.h> | ||
34 | #include <linux/mc146818rtc.h> | ||
35 | #include <linux/module.h> | ||
36 | #include <linux/kallsyms.h> | ||
37 | #include <linux/ptrace.h> | ||
38 | #include <linux/random.h> | ||
39 | #include <linux/personality.h> | ||
40 | #include <linux/tick.h> | ||
41 | #include <linux/percpu.h> | ||
42 | |||
43 | #include <asm/uaccess.h> | ||
44 | #include <asm/pgtable.h> | ||
45 | #include <asm/system.h> | ||
46 | #include <asm/io.h> | ||
47 | #include <asm/ldt.h> | ||
48 | #include <asm/processor.h> | ||
49 | #include <asm/i387.h> | ||
50 | #include <asm/desc.h> | ||
51 | #include <asm/vm86.h> | ||
52 | #ifdef CONFIG_MATH_EMULATION | ||
53 | #include <asm/math_emu.h> | ||
54 | #endif | ||
55 | |||
56 | #include <linux/err.h> | ||
57 | |||
58 | #include <asm/tlbflush.h> | ||
59 | #include <asm/cpu.h> | ||
60 | |||
61 | asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); | ||
62 | |||
63 | static int hlt_counter; | ||
64 | |||
65 | unsigned long boot_option_idle_override = 0; | ||
66 | EXPORT_SYMBOL(boot_option_idle_override); | ||
67 | |||
68 | DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; | ||
69 | EXPORT_PER_CPU_SYMBOL(current_task); | ||
70 | |||
71 | DEFINE_PER_CPU(int, cpu_number); | ||
72 | EXPORT_PER_CPU_SYMBOL(cpu_number); | ||
73 | |||
74 | /* | ||
75 | * Return saved PC of a blocked thread. | ||
76 | */ | ||
77 | unsigned long thread_saved_pc(struct task_struct *tsk) | ||
78 | { | ||
79 | return ((unsigned long *)tsk->thread.esp)[3]; | ||
80 | } | ||
81 | |||
82 | /* | ||
83 | * Powermanagement idle function, if any.. | ||
84 | */ | ||
85 | void (*pm_idle)(void); | ||
86 | EXPORT_SYMBOL(pm_idle); | ||
87 | static DEFINE_PER_CPU(unsigned int, cpu_idle_state); | ||
88 | |||
89 | void disable_hlt(void) | ||
90 | { | ||
91 | hlt_counter++; | ||
92 | } | ||
93 | |||
94 | EXPORT_SYMBOL(disable_hlt); | ||
95 | |||
96 | void enable_hlt(void) | ||
97 | { | ||
98 | hlt_counter--; | ||
99 | } | ||
100 | |||
101 | EXPORT_SYMBOL(enable_hlt); | ||
102 | |||
103 | /* | ||
104 | * We use this if we don't have any better | ||
105 | * idle routine.. | ||
106 | */ | ||
107 | void default_idle(void) | ||
108 | { | ||
109 | if (!hlt_counter && boot_cpu_data.hlt_works_ok) { | ||
110 | current_thread_info()->status &= ~TS_POLLING; | ||
111 | /* | ||
112 | * TS_POLLING-cleared state must be visible before we | ||
113 | * test NEED_RESCHED: | ||
114 | */ | ||
115 | smp_mb(); | ||
116 | |||
117 | local_irq_disable(); | ||
118 | if (!need_resched()) | ||
119 | safe_halt(); /* enables interrupts racelessly */ | ||
120 | else | ||
121 | local_irq_enable(); | ||
122 | current_thread_info()->status |= TS_POLLING; | ||
123 | } else { | ||
124 | /* loop is done by the caller */ | ||
125 | cpu_relax(); | ||
126 | } | ||
127 | } | ||
128 | #ifdef CONFIG_APM_MODULE | ||
129 | EXPORT_SYMBOL(default_idle); | ||
130 | #endif | ||
131 | |||
132 | /* | ||
133 | * On SMP it's slightly faster (but much more power-consuming!) | ||
134 | * to poll the ->work.need_resched flag instead of waiting for the | ||
135 | * cross-CPU IPI to arrive. Use this option with caution. | ||
136 | */ | ||
137 | static void poll_idle (void) | ||
138 | { | ||
139 | cpu_relax(); | ||
140 | } | ||
141 | |||
142 | #ifdef CONFIG_HOTPLUG_CPU | ||
143 | #include <asm/nmi.h> | ||
144 | /* We don't actually take CPU down, just spin without interrupts. */ | ||
145 | static inline void play_dead(void) | ||
146 | { | ||
147 | /* This must be done before dead CPU ack */ | ||
148 | cpu_exit_clear(); | ||
149 | wbinvd(); | ||
150 | mb(); | ||
151 | /* Ack it */ | ||
152 | __get_cpu_var(cpu_state) = CPU_DEAD; | ||
153 | |||
154 | /* | ||
155 | * With physical CPU hotplug, we should halt the cpu | ||
156 | */ | ||
157 | local_irq_disable(); | ||
158 | while (1) | ||
159 | halt(); | ||
160 | } | ||
161 | #else | ||
162 | static inline void play_dead(void) | ||
163 | { | ||
164 | BUG(); | ||
165 | } | ||
166 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
167 | |||
168 | /* | ||
169 | * The idle thread. There's no useful work to be | ||
170 | * done, so just try to conserve power and have a | ||
171 | * low exit latency (ie sit in a loop waiting for | ||
172 | * somebody to say that they'd like to reschedule) | ||
173 | */ | ||
174 | void cpu_idle(void) | ||
175 | { | ||
176 | int cpu = smp_processor_id(); | ||
177 | |||
178 | current_thread_info()->status |= TS_POLLING; | ||
179 | |||
180 | /* endless idle loop with no priority at all */ | ||
181 | while (1) { | ||
182 | tick_nohz_stop_sched_tick(); | ||
183 | while (!need_resched()) { | ||
184 | void (*idle)(void); | ||
185 | |||
186 | if (__get_cpu_var(cpu_idle_state)) | ||
187 | __get_cpu_var(cpu_idle_state) = 0; | ||
188 | |||
189 | check_pgt_cache(); | ||
190 | rmb(); | ||
191 | idle = pm_idle; | ||
192 | |||
193 | if (!idle) | ||
194 | idle = default_idle; | ||
195 | |||
196 | if (cpu_is_offline(cpu)) | ||
197 | play_dead(); | ||
198 | |||
199 | __get_cpu_var(irq_stat).idle_timestamp = jiffies; | ||
200 | idle(); | ||
201 | } | ||
202 | tick_nohz_restart_sched_tick(); | ||
203 | preempt_enable_no_resched(); | ||
204 | schedule(); | ||
205 | preempt_disable(); | ||
206 | } | ||
207 | } | ||
208 | |||
209 | void cpu_idle_wait(void) | ||
210 | { | ||
211 | unsigned int cpu, this_cpu = get_cpu(); | ||
212 | cpumask_t map, tmp = current->cpus_allowed; | ||
213 | |||
214 | set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); | ||
215 | put_cpu(); | ||
216 | |||
217 | cpus_clear(map); | ||
218 | for_each_online_cpu(cpu) { | ||
219 | per_cpu(cpu_idle_state, cpu) = 1; | ||
220 | cpu_set(cpu, map); | ||
221 | } | ||
222 | |||
223 | __get_cpu_var(cpu_idle_state) = 0; | ||
224 | |||
225 | wmb(); | ||
226 | do { | ||
227 | ssleep(1); | ||
228 | for_each_online_cpu(cpu) { | ||
229 | if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) | ||
230 | cpu_clear(cpu, map); | ||
231 | } | ||
232 | cpus_and(map, map, cpu_online_map); | ||
233 | } while (!cpus_empty(map)); | ||
234 | |||
235 | set_cpus_allowed(current, tmp); | ||
236 | } | ||
237 | EXPORT_SYMBOL_GPL(cpu_idle_wait); | ||
238 | |||
239 | /* | ||
240 | * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, | ||
241 | * which can obviate IPI to trigger checking of need_resched. | ||
242 | * We execute MONITOR against need_resched and enter optimized wait state | ||
243 | * through MWAIT. Whenever someone changes need_resched, we would be woken | ||
244 | * up from MWAIT (without an IPI). | ||
245 | * | ||
246 | * New with Core Duo processors, MWAIT can take some hints based on CPU | ||
247 | * capability. | ||
248 | */ | ||
249 | void mwait_idle_with_hints(unsigned long eax, unsigned long ecx) | ||
250 | { | ||
251 | if (!need_resched()) { | ||
252 | __monitor((void *)¤t_thread_info()->flags, 0, 0); | ||
253 | smp_mb(); | ||
254 | if (!need_resched()) | ||
255 | __mwait(eax, ecx); | ||
256 | } | ||
257 | } | ||
258 | |||
259 | /* Default MONITOR/MWAIT with no hints, used for default C1 state */ | ||
260 | static void mwait_idle(void) | ||
261 | { | ||
262 | local_irq_enable(); | ||
263 | mwait_idle_with_hints(0, 0); | ||
264 | } | ||
265 | |||
266 | void __devinit select_idle_routine(const struct cpuinfo_x86 *c) | ||
267 | { | ||
268 | if (cpu_has(c, X86_FEATURE_MWAIT)) { | ||
269 | printk("monitor/mwait feature present.\n"); | ||
270 | /* | ||
271 | * Skip, if setup has overridden idle. | ||
272 | * One CPU supports mwait => All CPUs supports mwait | ||
273 | */ | ||
274 | if (!pm_idle) { | ||
275 | printk("using mwait in idle threads.\n"); | ||
276 | pm_idle = mwait_idle; | ||
277 | } | ||
278 | } | ||
279 | } | ||
280 | |||
281 | static int __init idle_setup(char *str) | ||
282 | { | ||
283 | if (!strcmp(str, "poll")) { | ||
284 | printk("using polling idle threads.\n"); | ||
285 | pm_idle = poll_idle; | ||
286 | #ifdef CONFIG_X86_SMP | ||
287 | if (smp_num_siblings > 1) | ||
288 | printk("WARNING: polling idle and HT enabled, performance may degrade.\n"); | ||
289 | #endif | ||
290 | } else if (!strcmp(str, "mwait")) | ||
291 | force_mwait = 1; | ||
292 | else | ||
293 | return -1; | ||
294 | |||
295 | boot_option_idle_override = 1; | ||
296 | return 0; | ||
297 | } | ||
298 | early_param("idle", idle_setup); | ||
299 | |||
300 | void show_regs(struct pt_regs * regs) | ||
301 | { | ||
302 | unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; | ||
303 | unsigned long d0, d1, d2, d3, d6, d7; | ||
304 | |||
305 | printk("\n"); | ||
306 | printk("Pid: %d, comm: %20s\n", current->pid, current->comm); | ||
307 | printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id()); | ||
308 | print_symbol("EIP is at %s\n", regs->eip); | ||
309 | |||
310 | if (user_mode_vm(regs)) | ||
311 | printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp); | ||
312 | printk(" EFLAGS: %08lx %s (%s %.*s)\n", | ||
313 | regs->eflags, print_tainted(), init_utsname()->release, | ||
314 | (int)strcspn(init_utsname()->version, " "), | ||
315 | init_utsname()->version); | ||
316 | printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", | ||
317 | regs->eax,regs->ebx,regs->ecx,regs->edx); | ||
318 | printk("ESI: %08lx EDI: %08lx EBP: %08lx", | ||
319 | regs->esi, regs->edi, regs->ebp); | ||
320 | printk(" DS: %04x ES: %04x FS: %04x\n", | ||
321 | 0xffff & regs->xds,0xffff & regs->xes, 0xffff & regs->xfs); | ||
322 | |||
323 | cr0 = read_cr0(); | ||
324 | cr2 = read_cr2(); | ||
325 | cr3 = read_cr3(); | ||
326 | cr4 = read_cr4_safe(); | ||
327 | printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4); | ||
328 | |||
329 | get_debugreg(d0, 0); | ||
330 | get_debugreg(d1, 1); | ||
331 | get_debugreg(d2, 2); | ||
332 | get_debugreg(d3, 3); | ||
333 | printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", | ||
334 | d0, d1, d2, d3); | ||
335 | get_debugreg(d6, 6); | ||
336 | get_debugreg(d7, 7); | ||
337 | printk("DR6: %08lx DR7: %08lx\n", d6, d7); | ||
338 | |||
339 | show_trace(NULL, regs, ®s->esp); | ||
340 | } | ||
341 | |||
342 | /* | ||
343 | * This gets run with %ebx containing the | ||
344 | * function to call, and %edx containing | ||
345 | * the "args". | ||
346 | */ | ||
347 | extern void kernel_thread_helper(void); | ||
348 | |||
349 | /* | ||
350 | * Create a kernel thread | ||
351 | */ | ||
352 | int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) | ||
353 | { | ||
354 | struct pt_regs regs; | ||
355 | |||
356 | memset(®s, 0, sizeof(regs)); | ||
357 | |||
358 | regs.ebx = (unsigned long) fn; | ||
359 | regs.edx = (unsigned long) arg; | ||
360 | |||
361 | regs.xds = __USER_DS; | ||
362 | regs.xes = __USER_DS; | ||
363 | regs.xfs = __KERNEL_PERCPU; | ||
364 | regs.orig_eax = -1; | ||
365 | regs.eip = (unsigned long) kernel_thread_helper; | ||
366 | regs.xcs = __KERNEL_CS | get_kernel_rpl(); | ||
367 | regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; | ||
368 | |||
369 | /* Ok, create the new process.. */ | ||
370 | return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); | ||
371 | } | ||
372 | EXPORT_SYMBOL(kernel_thread); | ||
373 | |||
374 | /* | ||
375 | * Free current thread data structures etc.. | ||
376 | */ | ||
377 | void exit_thread(void) | ||
378 | { | ||
379 | /* The process may have allocated an io port bitmap... nuke it. */ | ||
380 | if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { | ||
381 | struct task_struct *tsk = current; | ||
382 | struct thread_struct *t = &tsk->thread; | ||
383 | int cpu = get_cpu(); | ||
384 | struct tss_struct *tss = &per_cpu(init_tss, cpu); | ||
385 | |||
386 | kfree(t->io_bitmap_ptr); | ||
387 | t->io_bitmap_ptr = NULL; | ||
388 | clear_thread_flag(TIF_IO_BITMAP); | ||
389 | /* | ||
390 | * Careful, clear this in the TSS too: | ||
391 | */ | ||
392 | memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); | ||
393 | t->io_bitmap_max = 0; | ||
394 | tss->io_bitmap_owner = NULL; | ||
395 | tss->io_bitmap_max = 0; | ||
396 | tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; | ||
397 | put_cpu(); | ||
398 | } | ||
399 | } | ||
400 | |||
401 | void flush_thread(void) | ||
402 | { | ||
403 | struct task_struct *tsk = current; | ||
404 | |||
405 | memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8); | ||
406 | memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); | ||
407 | clear_tsk_thread_flag(tsk, TIF_DEBUG); | ||
408 | /* | ||
409 | * Forget coprocessor state.. | ||
410 | */ | ||
411 | clear_fpu(tsk); | ||
412 | clear_used_math(); | ||
413 | } | ||
414 | |||
415 | void release_thread(struct task_struct *dead_task) | ||
416 | { | ||
417 | BUG_ON(dead_task->mm); | ||
418 | release_vm86_irqs(dead_task); | ||
419 | } | ||
420 | |||
421 | /* | ||
422 | * This gets called before we allocate a new thread and copy | ||
423 | * the current task into it. | ||
424 | */ | ||
425 | void prepare_to_copy(struct task_struct *tsk) | ||
426 | { | ||
427 | unlazy_fpu(tsk); | ||
428 | } | ||
429 | |||
430 | int copy_thread(int nr, unsigned long clone_flags, unsigned long esp, | ||
431 | unsigned long unused, | ||
432 | struct task_struct * p, struct pt_regs * regs) | ||
433 | { | ||
434 | struct pt_regs * childregs; | ||
435 | struct task_struct *tsk; | ||
436 | int err; | ||
437 | |||
438 | childregs = task_pt_regs(p); | ||
439 | *childregs = *regs; | ||
440 | childregs->eax = 0; | ||
441 | childregs->esp = esp; | ||
442 | |||
443 | p->thread.esp = (unsigned long) childregs; | ||
444 | p->thread.esp0 = (unsigned long) (childregs+1); | ||
445 | |||
446 | p->thread.eip = (unsigned long) ret_from_fork; | ||
447 | |||
448 | savesegment(gs,p->thread.gs); | ||
449 | |||
450 | tsk = current; | ||
451 | if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { | ||
452 | p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, | ||
453 | IO_BITMAP_BYTES, GFP_KERNEL); | ||
454 | if (!p->thread.io_bitmap_ptr) { | ||
455 | p->thread.io_bitmap_max = 0; | ||
456 | return -ENOMEM; | ||
457 | } | ||
458 | set_tsk_thread_flag(p, TIF_IO_BITMAP); | ||
459 | } | ||
460 | |||
461 | /* | ||
462 | * Set a new TLS for the child thread? | ||
463 | */ | ||
464 | if (clone_flags & CLONE_SETTLS) { | ||
465 | struct desc_struct *desc; | ||
466 | struct user_desc info; | ||
467 | int idx; | ||
468 | |||
469 | err = -EFAULT; | ||
470 | if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info))) | ||
471 | goto out; | ||
472 | err = -EINVAL; | ||
473 | if (LDT_empty(&info)) | ||
474 | goto out; | ||
475 | |||
476 | idx = info.entry_number; | ||
477 | if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) | ||
478 | goto out; | ||
479 | |||
480 | desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN; | ||
481 | desc->a = LDT_entry_a(&info); | ||
482 | desc->b = LDT_entry_b(&info); | ||
483 | } | ||
484 | |||
485 | err = 0; | ||
486 | out: | ||
487 | if (err && p->thread.io_bitmap_ptr) { | ||
488 | kfree(p->thread.io_bitmap_ptr); | ||
489 | p->thread.io_bitmap_max = 0; | ||
490 | } | ||
491 | return err; | ||
492 | } | ||
493 | |||
494 | /* | ||
495 | * fill in the user structure for a core dump.. | ||
496 | */ | ||
497 | void dump_thread(struct pt_regs * regs, struct user * dump) | ||
498 | { | ||
499 | int i; | ||
500 | |||
501 | /* changed the size calculations - should hopefully work better. lbt */ | ||
502 | dump->magic = CMAGIC; | ||
503 | dump->start_code = 0; | ||
504 | dump->start_stack = regs->esp & ~(PAGE_SIZE - 1); | ||
505 | dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT; | ||
506 | dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT; | ||
507 | dump->u_dsize -= dump->u_tsize; | ||
508 | dump->u_ssize = 0; | ||
509 | for (i = 0; i < 8; i++) | ||
510 | dump->u_debugreg[i] = current->thread.debugreg[i]; | ||
511 | |||
512 | if (dump->start_stack < TASK_SIZE) | ||
513 | dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT; | ||
514 | |||
515 | dump->regs.ebx = regs->ebx; | ||
516 | dump->regs.ecx = regs->ecx; | ||
517 | dump->regs.edx = regs->edx; | ||
518 | dump->regs.esi = regs->esi; | ||
519 | dump->regs.edi = regs->edi; | ||
520 | dump->regs.ebp = regs->ebp; | ||
521 | dump->regs.eax = regs->eax; | ||
522 | dump->regs.ds = regs->xds; | ||
523 | dump->regs.es = regs->xes; | ||
524 | dump->regs.fs = regs->xfs; | ||
525 | savesegment(gs,dump->regs.gs); | ||
526 | dump->regs.orig_eax = regs->orig_eax; | ||
527 | dump->regs.eip = regs->eip; | ||
528 | dump->regs.cs = regs->xcs; | ||
529 | dump->regs.eflags = regs->eflags; | ||
530 | dump->regs.esp = regs->esp; | ||
531 | dump->regs.ss = regs->xss; | ||
532 | |||
533 | dump->u_fpvalid = dump_fpu (regs, &dump->i387); | ||
534 | } | ||
535 | EXPORT_SYMBOL(dump_thread); | ||
536 | |||
537 | /* | ||
538 | * Capture the user space registers if the task is not running (in user space) | ||
539 | */ | ||
540 | int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) | ||
541 | { | ||
542 | struct pt_regs ptregs = *task_pt_regs(tsk); | ||
543 | ptregs.xcs &= 0xffff; | ||
544 | ptregs.xds &= 0xffff; | ||
545 | ptregs.xes &= 0xffff; | ||
546 | ptregs.xss &= 0xffff; | ||
547 | |||
548 | elf_core_copy_regs(regs, &ptregs); | ||
549 | |||
550 | return 1; | ||
551 | } | ||
552 | |||
553 | #ifdef CONFIG_SECCOMP | ||
554 | void hard_disable_TSC(void) | ||
555 | { | ||
556 | write_cr4(read_cr4() | X86_CR4_TSD); | ||
557 | } | ||
558 | void disable_TSC(void) | ||
559 | { | ||
560 | preempt_disable(); | ||
561 | if (!test_and_set_thread_flag(TIF_NOTSC)) | ||
562 | /* | ||
563 | * Must flip the CPU state synchronously with | ||
564 | * TIF_NOTSC in the current running context. | ||
565 | */ | ||
566 | hard_disable_TSC(); | ||
567 | preempt_enable(); | ||
568 | } | ||
569 | void hard_enable_TSC(void) | ||
570 | { | ||
571 | write_cr4(read_cr4() & ~X86_CR4_TSD); | ||
572 | } | ||
573 | #endif /* CONFIG_SECCOMP */ | ||
574 | |||
575 | static noinline void | ||
576 | __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, | ||
577 | struct tss_struct *tss) | ||
578 | { | ||
579 | struct thread_struct *next; | ||
580 | |||
581 | next = &next_p->thread; | ||
582 | |||
583 | if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { | ||
584 | set_debugreg(next->debugreg[0], 0); | ||
585 | set_debugreg(next->debugreg[1], 1); | ||
586 | set_debugreg(next->debugreg[2], 2); | ||
587 | set_debugreg(next->debugreg[3], 3); | ||
588 | /* no 4 and 5 */ | ||
589 | set_debugreg(next->debugreg[6], 6); | ||
590 | set_debugreg(next->debugreg[7], 7); | ||
591 | } | ||
592 | |||
593 | #ifdef CONFIG_SECCOMP | ||
594 | if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ | ||
595 | test_tsk_thread_flag(next_p, TIF_NOTSC)) { | ||
596 | /* prev and next are different */ | ||
597 | if (test_tsk_thread_flag(next_p, TIF_NOTSC)) | ||
598 | hard_disable_TSC(); | ||
599 | else | ||
600 | hard_enable_TSC(); | ||
601 | } | ||
602 | #endif | ||
603 | |||
604 | if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { | ||
605 | /* | ||
606 | * Disable the bitmap via an invalid offset. We still cache | ||
607 | * the previous bitmap owner and the IO bitmap contents: | ||
608 | */ | ||
609 | tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; | ||
610 | return; | ||
611 | } | ||
612 | |||
613 | if (likely(next == tss->io_bitmap_owner)) { | ||
614 | /* | ||
615 | * Previous owner of the bitmap (hence the bitmap content) | ||
616 | * matches the next task, we dont have to do anything but | ||
617 | * to set a valid offset in the TSS: | ||
618 | */ | ||
619 | tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; | ||
620 | return; | ||
621 | } | ||
622 | /* | ||
623 | * Lazy TSS's I/O bitmap copy. We set an invalid offset here | ||
624 | * and we let the task to get a GPF in case an I/O instruction | ||
625 | * is performed. The handler of the GPF will verify that the | ||
626 | * faulting task has a valid I/O bitmap and, it true, does the | ||
627 | * real copy and restart the instruction. This will save us | ||
628 | * redundant copies when the currently switched task does not | ||
629 | * perform any I/O during its timeslice. | ||
630 | */ | ||
631 | tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; | ||
632 | } | ||
633 | |||
634 | /* | ||
635 | * switch_to(x,yn) should switch tasks from x to y. | ||
636 | * | ||
637 | * We fsave/fwait so that an exception goes off at the right time | ||
638 | * (as a call from the fsave or fwait in effect) rather than to | ||
639 | * the wrong process. Lazy FP saving no longer makes any sense | ||
640 | * with modern CPU's, and this simplifies a lot of things (SMP | ||
641 | * and UP become the same). | ||
642 | * | ||
643 | * NOTE! We used to use the x86 hardware context switching. The | ||
644 | * reason for not using it any more becomes apparent when you | ||
645 | * try to recover gracefully from saved state that is no longer | ||
646 | * valid (stale segment register values in particular). With the | ||
647 | * hardware task-switch, there is no way to fix up bad state in | ||
648 | * a reasonable manner. | ||
649 | * | ||
650 | * The fact that Intel documents the hardware task-switching to | ||
651 | * be slow is a fairly red herring - this code is not noticeably | ||
652 | * faster. However, there _is_ some room for improvement here, | ||
653 | * so the performance issues may eventually be a valid point. | ||
654 | * More important, however, is the fact that this allows us much | ||
655 | * more flexibility. | ||
656 | * | ||
657 | * The return value (in %eax) will be the "prev" task after | ||
658 | * the task-switch, and shows up in ret_from_fork in entry.S, | ||
659 | * for example. | ||
660 | */ | ||
661 | struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) | ||
662 | { | ||
663 | struct thread_struct *prev = &prev_p->thread, | ||
664 | *next = &next_p->thread; | ||
665 | int cpu = smp_processor_id(); | ||
666 | struct tss_struct *tss = &per_cpu(init_tss, cpu); | ||
667 | |||
668 | /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ | ||
669 | |||
670 | __unlazy_fpu(prev_p); | ||
671 | |||
672 | |||
673 | /* we're going to use this soon, after a few expensive things */ | ||
674 | if (next_p->fpu_counter > 5) | ||
675 | prefetch(&next->i387.fxsave); | ||
676 | |||
677 | /* | ||
678 | * Reload esp0. | ||
679 | */ | ||
680 | load_esp0(tss, next); | ||
681 | |||
682 | /* | ||
683 | * Save away %gs. No need to save %fs, as it was saved on the | ||
684 | * stack on entry. No need to save %es and %ds, as those are | ||
685 | * always kernel segments while inside the kernel. Doing this | ||
686 | * before setting the new TLS descriptors avoids the situation | ||
687 | * where we temporarily have non-reloadable segments in %fs | ||
688 | * and %gs. This could be an issue if the NMI handler ever | ||
689 | * used %fs or %gs (it does not today), or if the kernel is | ||
690 | * running inside of a hypervisor layer. | ||
691 | */ | ||
692 | savesegment(gs, prev->gs); | ||
693 | |||
694 | /* | ||
695 | * Load the per-thread Thread-Local Storage descriptor. | ||
696 | */ | ||
697 | load_TLS(next, cpu); | ||
698 | |||
699 | /* | ||
700 | * Restore IOPL if needed. In normal use, the flags restore | ||
701 | * in the switch assembly will handle this. But if the kernel | ||
702 | * is running virtualized at a non-zero CPL, the popf will | ||
703 | * not restore flags, so it must be done in a separate step. | ||
704 | */ | ||
705 | if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) | ||
706 | set_iopl_mask(next->iopl); | ||
707 | |||
708 | /* | ||
709 | * Now maybe handle debug registers and/or IO bitmaps | ||
710 | */ | ||
711 | if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || | ||
712 | task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) | ||
713 | __switch_to_xtra(prev_p, next_p, tss); | ||
714 | |||
715 | /* | ||
716 | * Leave lazy mode, flushing any hypercalls made here. | ||
717 | * This must be done before restoring TLS segments so | ||
718 | * the GDT and LDT are properly updated, and must be | ||
719 | * done before math_state_restore, so the TS bit is up | ||
720 | * to date. | ||
721 | */ | ||
722 | arch_leave_lazy_cpu_mode(); | ||
723 | |||
724 | /* If the task has used fpu the last 5 timeslices, just do a full | ||
725 | * restore of the math state immediately to avoid the trap; the | ||
726 | * chances of needing FPU soon are obviously high now | ||
727 | */ | ||
728 | if (next_p->fpu_counter > 5) | ||
729 | math_state_restore(); | ||
730 | |||
731 | /* | ||
732 | * Restore %gs if needed (which is common) | ||
733 | */ | ||
734 | if (prev->gs | next->gs) | ||
735 | loadsegment(gs, next->gs); | ||
736 | |||
737 | x86_write_percpu(current_task, next_p); | ||
738 | |||
739 | return prev_p; | ||
740 | } | ||
741 | |||
742 | asmlinkage int sys_fork(struct pt_regs regs) | ||
743 | { | ||
744 | return do_fork(SIGCHLD, regs.esp, ®s, 0, NULL, NULL); | ||
745 | } | ||
746 | |||
747 | asmlinkage int sys_clone(struct pt_regs regs) | ||
748 | { | ||
749 | unsigned long clone_flags; | ||
750 | unsigned long newsp; | ||
751 | int __user *parent_tidptr, *child_tidptr; | ||
752 | |||
753 | clone_flags = regs.ebx; | ||
754 | newsp = regs.ecx; | ||
755 | parent_tidptr = (int __user *)regs.edx; | ||
756 | child_tidptr = (int __user *)regs.edi; | ||
757 | if (!newsp) | ||
758 | newsp = regs.esp; | ||
759 | return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); | ||
760 | } | ||
761 | |||
762 | /* | ||
763 | * This is trivial, and on the face of it looks like it | ||
764 | * could equally well be done in user mode. | ||
765 | * | ||
766 | * Not so, for quite unobvious reasons - register pressure. | ||
767 | * In user mode vfork() cannot have a stack frame, and if | ||
768 | * done by calling the "clone()" system call directly, you | ||
769 | * do not have enough call-clobbered registers to hold all | ||
770 | * the information you need. | ||
771 | */ | ||
772 | asmlinkage int sys_vfork(struct pt_regs regs) | ||
773 | { | ||
774 | return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, ®s, 0, NULL, NULL); | ||
775 | } | ||
776 | |||
777 | /* | ||
778 | * sys_execve() executes a new program. | ||
779 | */ | ||
780 | asmlinkage int sys_execve(struct pt_regs regs) | ||
781 | { | ||
782 | int error; | ||
783 | char * filename; | ||
784 | |||
785 | filename = getname((char __user *) regs.ebx); | ||
786 | error = PTR_ERR(filename); | ||
787 | if (IS_ERR(filename)) | ||
788 | goto out; | ||
789 | error = do_execve(filename, | ||
790 | (char __user * __user *) regs.ecx, | ||
791 | (char __user * __user *) regs.edx, | ||
792 | ®s); | ||
793 | if (error == 0) { | ||
794 | task_lock(current); | ||
795 | current->ptrace &= ~PT_DTRACE; | ||
796 | task_unlock(current); | ||
797 | /* Make sure we don't return using sysenter.. */ | ||
798 | set_thread_flag(TIF_IRET); | ||
799 | } | ||
800 | putname(filename); | ||
801 | out: | ||
802 | return error; | ||
803 | } | ||
804 | |||
805 | #define top_esp (THREAD_SIZE - sizeof(unsigned long)) | ||
806 | #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) | ||
807 | |||
808 | unsigned long get_wchan(struct task_struct *p) | ||
809 | { | ||
810 | unsigned long ebp, esp, eip; | ||
811 | unsigned long stack_page; | ||
812 | int count = 0; | ||
813 | if (!p || p == current || p->state == TASK_RUNNING) | ||
814 | return 0; | ||
815 | stack_page = (unsigned long)task_stack_page(p); | ||
816 | esp = p->thread.esp; | ||
817 | if (!stack_page || esp < stack_page || esp > top_esp+stack_page) | ||
818 | return 0; | ||
819 | /* include/asm-i386/system.h:switch_to() pushes ebp last. */ | ||
820 | ebp = *(unsigned long *) esp; | ||
821 | do { | ||
822 | if (ebp < stack_page || ebp > top_ebp+stack_page) | ||
823 | return 0; | ||
824 | eip = *(unsigned long *) (ebp+4); | ||
825 | if (!in_sched_functions(eip)) | ||
826 | return eip; | ||
827 | ebp = *(unsigned long *) ebp; | ||
828 | } while (count++ < 16); | ||
829 | return 0; | ||
830 | } | ||
831 | |||
832 | /* | ||
833 | * sys_alloc_thread_area: get a yet unused TLS descriptor index. | ||
834 | */ | ||
835 | static int get_free_idx(void) | ||
836 | { | ||
837 | struct thread_struct *t = ¤t->thread; | ||
838 | int idx; | ||
839 | |||
840 | for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++) | ||
841 | if (desc_empty(t->tls_array + idx)) | ||
842 | return idx + GDT_ENTRY_TLS_MIN; | ||
843 | return -ESRCH; | ||
844 | } | ||
845 | |||
846 | /* | ||
847 | * Set a given TLS descriptor: | ||
848 | */ | ||
849 | asmlinkage int sys_set_thread_area(struct user_desc __user *u_info) | ||
850 | { | ||
851 | struct thread_struct *t = ¤t->thread; | ||
852 | struct user_desc info; | ||
853 | struct desc_struct *desc; | ||
854 | int cpu, idx; | ||
855 | |||
856 | if (copy_from_user(&info, u_info, sizeof(info))) | ||
857 | return -EFAULT; | ||
858 | idx = info.entry_number; | ||
859 | |||
860 | /* | ||
861 | * index -1 means the kernel should try to find and | ||
862 | * allocate an empty descriptor: | ||
863 | */ | ||
864 | if (idx == -1) { | ||
865 | idx = get_free_idx(); | ||
866 | if (idx < 0) | ||
867 | return idx; | ||
868 | if (put_user(idx, &u_info->entry_number)) | ||
869 | return -EFAULT; | ||
870 | } | ||
871 | |||
872 | if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) | ||
873 | return -EINVAL; | ||
874 | |||
875 | desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN; | ||
876 | |||
877 | /* | ||
878 | * We must not get preempted while modifying the TLS. | ||
879 | */ | ||
880 | cpu = get_cpu(); | ||
881 | |||
882 | if (LDT_empty(&info)) { | ||
883 | desc->a = 0; | ||
884 | desc->b = 0; | ||
885 | } else { | ||
886 | desc->a = LDT_entry_a(&info); | ||
887 | desc->b = LDT_entry_b(&info); | ||
888 | } | ||
889 | load_TLS(t, cpu); | ||
890 | |||
891 | put_cpu(); | ||
892 | |||
893 | return 0; | ||
894 | } | ||
895 | |||
896 | /* | ||
897 | * Get the current Thread-Local Storage area: | ||
898 | */ | ||
899 | |||
900 | #define GET_BASE(desc) ( \ | ||
901 | (((desc)->a >> 16) & 0x0000ffff) | \ | ||
902 | (((desc)->b << 16) & 0x00ff0000) | \ | ||
903 | ( (desc)->b & 0xff000000) ) | ||
904 | |||
905 | #define GET_LIMIT(desc) ( \ | ||
906 | ((desc)->a & 0x0ffff) | \ | ||
907 | ((desc)->b & 0xf0000) ) | ||
908 | |||
909 | #define GET_32BIT(desc) (((desc)->b >> 22) & 1) | ||
910 | #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3) | ||
911 | #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1) | ||
912 | #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1) | ||
913 | #define GET_PRESENT(desc) (((desc)->b >> 15) & 1) | ||
914 | #define GET_USEABLE(desc) (((desc)->b >> 20) & 1) | ||
915 | |||
916 | asmlinkage int sys_get_thread_area(struct user_desc __user *u_info) | ||
917 | { | ||
918 | struct user_desc info; | ||
919 | struct desc_struct *desc; | ||
920 | int idx; | ||
921 | |||
922 | if (get_user(idx, &u_info->entry_number)) | ||
923 | return -EFAULT; | ||
924 | if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) | ||
925 | return -EINVAL; | ||
926 | |||
927 | memset(&info, 0, sizeof(info)); | ||
928 | |||
929 | desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN; | ||
930 | |||
931 | info.entry_number = idx; | ||
932 | info.base_addr = GET_BASE(desc); | ||
933 | info.limit = GET_LIMIT(desc); | ||
934 | info.seg_32bit = GET_32BIT(desc); | ||
935 | info.contents = GET_CONTENTS(desc); | ||
936 | info.read_exec_only = !GET_WRITABLE(desc); | ||
937 | info.limit_in_pages = GET_LIMIT_PAGES(desc); | ||
938 | info.seg_not_present = !GET_PRESENT(desc); | ||
939 | info.useable = GET_USEABLE(desc); | ||
940 | |||
941 | if (copy_to_user(u_info, &info, sizeof(info))) | ||
942 | return -EFAULT; | ||
943 | return 0; | ||
944 | } | ||
945 | |||
946 | unsigned long arch_align_stack(unsigned long sp) | ||
947 | { | ||
948 | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | ||
949 | sp -= get_random_int() % 8192; | ||
950 | return sp & ~0xf; | ||
951 | } | ||